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Performance Comparisons on Multimodal Benchmarks
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Figure 1: Performance comparison between VL-Rethinker and other SoOTA models on different
multimodal reasoning benchmarks.

Abstract

Recently, slow-thinking systems like GPT-o1 and DeepSeek-R1 have demonstrated
great potential in solving challenging problems through explicit reflection. They
significantly outperform the best fast-thinking models, such as GPT-40, on various
math and science benchmarks. However, their multimodal reasoning capabilities
remain on par with fast-thinking models. For instance, GPT-01’s performance on
benchmarks like MathVista, MathVerse, and MathVision is similar to fast-thinking
models. In this paper, we showcase how to enhance the slow-thinking capabilities
of vision-language models using reinforcement learning, to advance the state of
the art, without relying on costly distillation. First, we adapt the GRPO algorithm
with a novel technique called Selective Sample Replay (SSR) to address the van-
ishing advantages problem. While this approach yields strong performance, the
resulting RL-trained models exhibit limited self-reflection. To further encourage
slow-thinking, we introduce Forced Rethinking, which appends a rethinking trigger
token to the end of rollouts in RL training, explicitly enforcing a self-reflection
reasoning step. By combining these two techniques, our model, VL-Rethinker,
advances state-of-the-art scores on MathVista, MathVerse to achieve 80.4%, 63.5%
respectively. VL-Rethinker also achieves open-source SoTA on multi-disciplinary
benchmarks such as MathVision, MMMU-Pro, EMMA, and MEGA-Bench, nar-
rowing the gap with OpenAl-ol. We conduct comprehensive ablations and analysis
to provide insights into the effectiveness of our approach.
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1 Introduction

Recently, slow-thinking systems such as OpenAl-ol [Jaech et al.| 2024, DeepSeek-R1 [|Guo et al.|
2025]], Kimi-1.5 [[Team et al., 2025[, Gemini-Thinking [Team et al., 2023]], and QwQ/QvQ [Bai
et al.| [2025]] have significantly advanced the performance of language models in solving challenging
math and science problems. These models engage in extended reasoning and reflection before
arriving at a final answer, in contrast to fast-thinking models like GPT-40 [Hurst et al., [2024]] and
Claude-3.5-Sonnet [[Anthropic, [2024]], which produce answers rapidly without such deliberation.
Through this reflective process, slow-thinking models outperform the best fast-thinking models by
over 30% on math datasets such as AIME24 and AMC23 [Hendrycks et al.], and by around 10% on
general science benchmarks like GPQA [Rein et al., 2024]].

However, their multimodal reasoning capabilities remain on par with fast-thinking models. For
example, GPT-o1 achieves 73.9% on MathVista [Lu et al., 2023|] and 57.0% on MathVerse [[Wang
et al.||2024a]], which is slightly worse than Qwen2.5-VL-72B [Wang et al., 2024b] scoring 74.8% and
57.2% on the same benchmarks. This raises an important research question:

How can we effectively incentivize multimodal slow-thinking capabilities in Vision-Language Models?

To address this, we explore how to effectively train multimodal reasoning models through reinforce-
ment learning (RL), without relying on costly distillation from stronger teacher models [Yang et al.,
2025, |Deng et al., [2025]]. Our main contributions are as follows:

GRPO with SSR: We construct a dataset of 38,870 queries covering a diverse range of topics
for training our vision-language model (VLM). We adapt the Group Relative Policy Optimization
(GRPO) algorithm [Guo et al.| 2025]], which computes advantages by comparing responses within
the same query group and normalizes rewards to guide policy updates. However, we identify a key
challenge with GRPO: the vanishing advantages problem. This occurs when all responses in a group
receive identical rewards (either all correct or all incorrect), leading to zero advantage signals and
ineffective gradient updates. This reward uniformity exacerbates instability as training progresses,
hindering the model from exploring deeper reasoning.

To mitigate this, we introduce Selective Sample Replay (SSR), which enhances GRPO by integrating
an experience replay mechanism that samples high-value experiences from past iterations. SSR
augments the current training batch with rehearsed samples that previously indicated large magnitudes
of advantages. This strategic experience replay embodies the principles of curriculum learning [Team
et al., 2025] in an online and active fashion [Lightman et al.| [2023]], which dynamically adjusts
the training focus towards high-value experiences situated near the model’s decision boundaries.
While this approach demonstrates strong empirical performance across several multimodal reasoning
benchmarks, we observe that the resulting models still exhibit limitations in explicit reflective
behavior, suggesting avenues for further improvement.

Forced Rethinking: To encourage explicit reflections, we propose a simple yet effective technique
called forced rethinking. We append a textual rethinking trigger to the end of roll-out responses and
train the model using the same RL setup. This strategy prompts the model to engage in self-reflection
and self-verification before producing the final answer. We name the resulting model VL-Rethinker.
As shown in Fig.[T] VL-Rethinker significantly outperforms GPT-o1 on mathematical benchmarks
such as MathVista, MathVerse. Furthermore, on general-purpose multimodal benchmarks like EMMA
and MMMU-Pro, VL-Rethinker achieves a new open-source state of the art performance, closely
approaching GPT-01’s performance.

Observations: We observe a notable discrepancy between modalities: while RL training often
induces slow-thinking behaviors such as longer reasoning traces in math-focused tasks [Zeng et al.,
2025, |Wen et al., 2025]], vision-language tasks rarely exhibit such development. In fact, our analysis
reveals that accuracy improvements in VL-Rethinker do not correlate with an increase in the length
of the reasoning chain. This finding leads us to a key conjecture: the current bottleneck in multimodal
reasoning may not be the depth of logical deliberation, but the accuracy of initial perception. This
suggests the "slow-thinking" incentivized by our method is qualitatively different. Rather than
extending abstract logical chains, the model learns to use its rethinking steps to perform perceptual
verification and self-correction (e.g., “Wait, let me double-check that number in the chart”). The
balance between perceptual accuracy over reasoning depth — is a critical insight for improving
vision-language models and opens a new avenue for future research.



In summary, our contributions are threefold: (a) We propose and validate a simple, direct RL
approach for enhancing VLM reasoning, offering a viable alternative to complex supervised fine-
tuning and distillation pipelines. (b) We introduce Selective Sample Replay (SSR) to mitigate the
vanishing advantages in GRPO-based RL for VLMs. (c) We propose Forced Rethinking, a lightweight
yet powerful strategy to incentivize self-reflection in VLMs. Our final model, VL-Rethinker, sets
a new state of the art on key multimodal reasoning benchmarks, demonstrating the value of slow-
thinking reinforcement in vision-language modeling.

2 Preliminaries

Problem Formulation We define the multimodal reasoning task as follows: given a multimodal
input consisting of one or more images I and a textual query (), the goal is to generate a textual
response y that correctly answers the query by reasoning over both visual and textual information.

Let V denote the visual input space and 7 the textual input space. The input is denoted as x € V X T,
where x = (I, Q) captures both modalities. The output is a textual response y € ), where )
represents the response space. The challenge lies in building a vision-language model (VLM) that can
integrate multimodal information and perform deep, multi-step reasoning—especially for complex
queries requiring extended deliberation or external knowledge.

Our goal is to improve the reasoning capabilities of an instruction-tuned VLM that initially exhibits
fast-thinking behavior, i.e., producing shallow, immediate responses. We aim to shift the model toward
slow-thinking behavior [Wang et al., 2025alb]] — engaging in deeper, more deliberate reasoning—to
significantly improve performance on downstream multimodal tasks. We achieve this via direct
reinforcement learning (RL), which encourages the generation of accurate, thorough, and well-
reasoned responses by assigning higher rewards to such outputs.

Formally, we train a policy 7y (y|x), parameterized by 6, to maximize the expected reward r(y, )
for generating a response y given an input x. The reward function r(y, «) is designed to prioritize
correctness. The learning objective is:
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where D is a dataset of multimodal queries and their corresponding answers. Consistent with
Deepseek R1|Guo et al|[2025]], we adopt a binary reward function: r(y, ) = 1 if y is correct for
input x, and r(y, «) = 0 otherwise.

Group Relative Policy Optimization (GRPO) is a variant of PPO [Schulman et al 2017]. It
estimates the advantages of language model generations by comparing responses within a query-
specific group. For a given input z = (I, @), the behavior policy 7y, generates a group of G
candidate responses {;}$ ;. The advantage for the i-th response at time step ¢ is computed by
normalizing the rewards across the group:

i r(z,y;) — mean({r(z,y1),...,7(x,yc)})
n Std({T({E,yl),...,T(.’E,yg)})

3 Our Method

This section outlines our contribution, including Selective Sample Replay (SSR) and Forced rethink-
ing, two techniques to incentivize slow-thinking capabilities.

3.1 Vanishing Advantages in GRPO

We identify a critical limitation in GRPO, which we term the "Vanishing Advantages" problem. In
GRPO, a simple binary reward signal is used to indicate the correctness of a response ¥ to a given
vision-language query . When all responses within a query group are uniformly correct or uniformly
incorrect, the calculated advantages become zero for every response in that group. Consequently,
such examples cease to provide effective policy gradients, as the gradient signal relies on non-zero
advantages to guide learning.

This issue becomes increasingly pronounced as training progresses, especially for high-capacity
models. As illustrated in Fig. [2} tracking the training of Qwen2.5-VL-72B reveals a steady decline in
the percentage of examples exhibiting non-zero advantages, falling from approximately 40% at the
start to below 20% after 16 x 16 gradient steps. This decline is a symptom of the policy’s tendency
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Figure 3: Method Overview. We present a two-stage RL method based
Figure 2: The Vanishing Advan- on Qwen2.5-VL-Instruct. The first stage enhances general reasoning
tages problem. Training of 72B through GRPO with Selective Sample Replay (SSR), which retains ex-
rapidly saturates, leading to a signifi- plored trajectories with non-zero advantages and selectively replay samples
cant decrease of effective queries to based on their advantages. The second stage promotes deliberate reasoning
only 20% within 256 steps. using forced rethinking, where we append a specific rethinking trigger.

to converge towards generating responses that yield uniform rewards within a group over time. As
the policy improves and generates more consistently correct and incorrect responses within a query
group, the reward diversity (variations) necessary for calculating meaningful advantages diminishes,
thereby intensifying the problem. We notice that similar trends have been concurrently observed in
GRPO training on text-based LLMs [Yu et al.| [2025].

The "Vanishing Advantages" phenomenon undermines the goal of fostering deliberate, complex
reasoning in VLMs. As more query groups yield zero advantages, the effective batch size for training
shrinks, causing training instability. This instability increases the risk of premature convergence to
shallower reasoning traces, discouraging the model from exploring deeper reasoning pathways.

3.2 Selective Sample Replay (SSR)

To counteract the Vanishing Advantages problem and maintain training efficiency, we introduce
Selective Sample Replay (SSR). SSR enhances GRPO by integrating an experience replay mechanism
that strategically samples high-value experiences from past iterations, similar to Prioritized Experience
Replay [Schaul et al 2015]] in Temporal Difference learning.

SSR maintains a replay buffer Brepiay that persists for K storing tuples (x, y;, A;). Critically, the buffer

exclusively stores samples for which the corresponding query group exhibited non-zero (|flk| > 0).
The effective training batch is augmented at each training step by incorporating rehearsal samples
drawn from Breplay. The sampling is prioritized based on the absolute magnitude of the advantages,
thereby emphasizing the rehearsal of experiences that previously indicated significant positive or
negative advantage signals. Specifically, a sample j from the buffer is selected with probability:

| 4;

P(select j) = a
k [e3%

ey

k€ Breplay

where « is a hyperparameter that governs the intensity of prioritization. We provide an algorithm
diagram for SSR in the appendix.

By selectively sampling valuable experiences, SSR counteracts the issue of vanishing advantages and
provides more consistent gradient signals. This stabilizes training and prevents premature stagnation,
as further substantiated in the ablation studies (Fig.[5). Furthermore, SSR embodies the principles of
curriculum learning [Team et al., 2025, Wang et al.,|2022] in an online and active fashion|Lightman
et al.| [2023]]. Instead of relying on a static, offline data curriculum, SSR dynamically prioritizes
experiences that lie near the model’s decision boundaries. This dynamic focus directs training efforts
towards improving performance on challenging queries associated with large positive advantages
(signaling promising reasoning pathways) and penalizing incorrect solutions corresponding to large
negative advantages (often relating trivial queries).
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Figure 4: An example of Forced Rethinking (Left). VL-Rethinker discovers a flawed problem via rethinking
upon its hallucinations. The word cloud of VL-Rethinker (Right) shows the learned rethinking pattern of
self-verification, self-correction and self-questioning.

3.3 Forced Rethinking

While GRPO with SSR improves optimization stability, we observe that complex, deliberate thinking
patterns, such as explicit self-correction, did not consistently emerge as a direct result of standard RL
on VLMs, a divergence from trends observed in large text-only models. Specifically, the base model,
Qwen?2.5-VL-Instruct, did not intrinsically generate reasoning processes incorporating self-reflection.
To explicitly cultivate deliberate reasoning within our VLM framework, we introduce a training
technique termed Forced Rethinking. This method aims to proactively encourage the model to engage
in more extensive internal deliberation before producing a final answer.

Forced Rethinking employs two means to stimulate the model’s deliberate reasoning. The first, a
straightforward means, involves a hint within the instruction prompt itself, e.g., "regularly perform
self-reflection on your ongoing reasoning”. This contextual cue serves to increase the model’s
propensity for generating rethinking sequences. The core principle of Forced Rethinking, however,
lies in a targeted intervention within the RL rollout procedure, as depicted in Fig. 3] Following
the VLM’s initial generation of a response y; to a given input x, we append a specific textual
"rethinking trigger" to y;. This augmented sequence is then fed back into the model, urging it to
generate a subsequent response segment y,. Consequently, the complete generated sequence becomes
y = y1 P trigger & yo. To elicit a diverse range of reasoning behaviors, we designed three distinct
categories of triggers: self-verification, self-correction, and self-questioning. Detailed descriptions of
these rethinking triggers are provided in the appendix.

We apply forced rethinking to a fraction 0 < ¢ < 1 of the generated responses, and retain only those
rethinking trajectories that lead to a correct final answer. Based on these successful forced rethinking
trajectories, we incorporate an additional imitation loss (the SFT loss), which directly incentivizes
the model to generate the desired deliberate thinking patterns.

Our method shares similarities in forced prompting with inference-time budget forcing in S1 [Muen-
nighoff et al.l 2025]], but it serves as a training intervention to incentivize deliberate reasoning. This
approach also constitutes a key distinction from methods [Deng et al.l 2025} Yang et al., 2025] that
rely on SFT distillation from existing deep-thinking systems. Our VL-Rethinker, trained with this
strategy, does not necessitate a rethinking step for every query. Instead, it learns to strategically en-
gage in this process only when it implicitly determines it to be necessary, potentially leading to more
efficient inference. Intriguingly, as illustrated in the example provided in Fig.[4] our VL-Rethinker
demonstrates the capability to even identify flaws in the given problem when checking its initial
reasoning through rethinking, showcasing a form of emergent metacognitive ability (similar to the
findings in|Wang et al.| [2025c]]).

Discussion: Rethinking as Perceptual Verification. A primary takeaway from our work is the
qualitative difference in "rethinking" between text-only and vision-language models. In our analysis,
we found no strong correlation between improved accuracy and the length of the generated reasoning
chain. This suggests that the "slow-thinking" fostered by VL-Rethinker does not improve performance
by significantly enhancing logical deliberation, but about improving perceptual accuracy. The model
does not learn to think "longer"; it learns to "look twice." The "rethinking" tokens are used to trigger a
re-evaluation of the visual input against the initial reasoning step. This insight reframes the challenge
of VLM reasoning: the primary bottleneck in the current stage is often not only the reasoning itself,
but the synergy of the visual perception and reasoning.



Model Math-Related Multi-Discipline Real-World
MathVista MathVerse MathVision MMMU-Pro MMMU EMMA MEGA

testmini testmini test overall val full core
Proprietary Model
OpenAl-ol 73.9 57.0 60.3 62.4 78.2 45.7 56.2
OpenAI-GPT-40 60.0 41.2 30.6 51.9 69.1 32.7 52.7
Claude-3.5-Sonnet 67.7 47.8 33.5 51.5 68.3 35.1 52.3
Gemini-2.0-Flash 73.4 54.6 41.3 51.7 70.7 33.6 54.1
Open-Source Models

Llama4-Scout-109B 70.7 - - 52.2 69.4 24.6 31.8
InternVL-2.5-78B 72.3 51.7 34.9 48.6 61.8 27.1 44.1
QvQ-72B 71.4 48.6 35.9 51.5 166.7 32.0 8.8
LLava-OV-72B 67.5 39.1 30.1 31.0 56.8 23.8 29.7
Qwen2.5-VL-32B 74.7 48.5 38.4 49.5 159.4 31.1 13.3
Qwen2.5-VL-72B 74.8 57.2 38.1 51.6 167.0 34.1 49.0
VL-Rethinker-32B 78.8 56.9 40.5 50.6 65.6 37.9 19.9
VL-Rethinker-72B 80.4 63.5 44.9 55.9 68.8 38.5 51.3
A (Ours - Open SoTA) +5.6 +6.3 +6.5 +3.7 -0.6 +4.4 +2.3

Table 1: Comparison between our 72B model and other state-of-the-art models. The notation of T indicates
reproduced results using our evaluation protocols.

4 Experiments

In this section, we first outline the training and evaluation settings, and then examine the key factors
for effectively fostering deliberate reasoning in VLMs.

Training Data and Benchmarks. Our training data was compiled by integrating publicly available
datasets [Du et al., [2025] |Yang et al., 2025} Meng et al., [2025]] with novel data collected from the web.
This initial "seed" query set underwent a rigorous cleaning and augmentation pipeline, yielding a
high-quality dataset of approximately 38,870 queries. Analysis of training dynamics (Fig. [2) revealed
that RL training on the seed queries quickly reached saturation, so we strategically curated different
query subsets for training models of varying scales based on query difficulty. This procedure resulted
in specialized subsets: approximately 16,000 queries for 7B model training and 20,000 queries for
32B and 72B model training, representing a spectrum of performance levels for each corresponding
model. A detailed description of our data preparation methodology is provided in the appendix.

For evaluation, we employ a diverse set of challenging multimodal benchmarks:

* Math-related reasoning: MathVista [Lu et al. 2023[], MathVerse [Zhang et al., 2024], and
MathVision [Wang et al.,2024a].

e Multi-discipline understanding and reasoning: MMMU [ Yue et al., 2024a], MMMU-Pro [Yue
et al.,[2024b]], and EMMA [Hao et al.| 2025]].

» Large-scale long-tailed real-world tasks: MegaBench [Chen et al., 2024al].

This benchmark suite covers a wide range of complex multimodal reasoning challenges. We report
the Pass@1 accuracy using greedy decoding.

Baselines and Implementation. We compare against several categories of models:

* Proprietary models: GPT-4o [Hurst et al., 2024], ol [Jaech et al., 2024, Claude 3.5 Sonnet [An-
thropic}, 2024]], Gemini-2.0-Flash [Team et al., [2023]].

* State-of-the-art open-source models: Qwen2.5-VL-72B [Bai et al., [2025]], QvQ-72B [Wang et al.,
2024b|], InternVL-2.5-78B [Chen et al.,[2024b]], Llava-Onevision [Li et al., 2024, Llama-4-Scout
and Kimi-VL [Team et al., 2025]].

* Representative open-source reasoning-focused models: OpenVLThinker [Deng et al., [2025],
R1-OneVision [Yang et al., [2025]], R1-VL [Zhang et al., 2025] and MM-Eureka [Meng et al.,
2025]]. These models are mainly trained on multimodal reasoning dataset.

Our VL-Rethinker-72B was trained using OpenRLHF for a maximum of 3 epochs on 8 sets of
8 x A800(80G) for approximately 60 hours. We include training details in the appendix, and will
release code, models and our high-quality 39K dataset.
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Model Math-Related Multi-Discipline Real-World

MathVista MathVerse MathVision MMMU-Pro MMMU EMMA MEGA
testmini testmini test overall val full core

General Vision-Language Models

InternVL2-8B 58.3 - 17.4 29.0 51.2 19.8 26.0
InternVL2.5-8B 64.4 39.5 19.7 343 56.0 - 30.4
Qwen2-VL-7B 58.2 - 16.3 30.5 54.1 20.2 34.8
Qwen2.5-VL-7B 68.2 46.3 25.1 36.9 1543 21.5 35.0
Llava-OV-7B 63.2 26.2 - 24.1 48.8 18.3 229
Kimi-VL-16B 68.7 44.9 21.4 - 55.7 - -
Vision-Language Reasoning Models
MM-Eureka-8B (InternVL) 67.1 40.4 22.2 27.8 49.2 - -
R1-VL-7B 63.5 40.0 24.7 7.8 44.5 8.3 29.9
R1-Onevision-7B 64.1 46.4 29.9 21.6 - 20.8 27.1
OpenVLThinker-7B 70.2 47.9 25.3 373 52.5 26.6 12.0
VL-Rethinker-7B 74.9 54.2 323 41.7 56.7 29.7 37.2
A (Ours - Prev SoTA) +4.7 +6.3 +2.4 +4.4 +0.7 +3.1 +2.2
Ablations (Incrementally Ablated from VL-Rethinker-7B)
VL-Reasoner-7B 724 53.2 29.8 40.9 - 29.5 -
w/o SSR (=DAPO) 72.0 50.0 28.5 40.0 - 26.9 -
w/o Filter (=GRPO) 71.2 50.8 274 39.2 - 26.4 -

Table 2: Comparison between our 7B model and other general and reasoning vision-language models. T means
that the results are reproduced by us.
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4.1 Main Results

Our approach demonstrates significant performance gains, as evidenced by the quantitative results.
For the 72B models (Table [T)), VL-Rethinker-72B achieved significant improvements over the
base model, Qwen2.5-VL-72B. Notably, VL-Rethinker-72B achieved state-of-the-art results on
math-related benchmarks among all models, including OpenAl-ol. For the 7B models (Table 2),
VL-Rethinker-7B outperforms competitor 7B models that also employ RL, e.g., OpenVLThinker,
R1-OneVision, by a large margin. These results underscore the effectiveness of our proposed approach
in enhancing performance across various challenging benchmarks.

4.2 Ablation Studies

Ablation on Data. We include an ablation of data compositions in the appendix.

Ablation on Selective Sample Replay (SSR). To address vanishing advantages, we introduce
Selective Sample Replay (SSR) based on GRPO. GRPO-SSR filters out queries causing zero ad-
vantages and perform selective sampling with a probability proportional to the absolute advantage.
To investigate the impact of filtering and selective replay, we establish two corresponding baselines
for comparison against VL-Reasoner (a baseline without "Forced Rethinking"): (a) the baseline
without selective replay but retains the filtering, denoted as GRPO-Filter (also used in DAPO [Yu
et al.| 2025])); (b) the baseline with neither sample replay nor filtering, identical to standard GRPO.
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Figure 7: Relative Improvement with Different Re-thinking Strategies. We compare: (a) VL-Reasoner
(forced), which is forced to rethink at test time; (b) VL-Reasoner (bound), represents the upper bound of
test-time forced re-thinking; and (c) VL-Rethinker is trained for self-reflection. The results indicate that forcing
VL-Reasoner to rethink at test time yields positive performance gains. Training for self-reflection significantly
enhances performance, achieving closer results to the upper bound of forced re-thinking. The overlaid line plot
shows the rethinking ratio (right y-axis) of VL-Rethinker across different benchmarks, showing VL-Rethinker
adaptively performs re-thinking, unlike the fixed forced re-thinking strategy.

The results presented in Table. 2] highlight the effectiveness of our proposed components. The models
trained with the full GRPO-SSR algorithm consistently achieves superior performance compared to
the ablated versions, strongly supporting the benefits of both filtering and selective replay.

Further insights into the behavior of these algorithms are revealed by analyzing the training dynamics,
as shown in Fig.[5] the GRPO baseline exhibits the most pronounced overfitting, eventually leading
to performance degradation. This can be attributed to the vanishing advantages problem, where
the number of training examples with near-zero advantages increases as training progresses. These
examples provide minimal learning signal, effectively reducing the batch size and destabilizing the
training process. In contrast, GRPO-SSR demonstrates a more stable training process and achieves
better convergence compared to GRPO-Filter, suggesting the beneficial role of SSR.

The underlying reason for these differences is illuminated by the advantage distributions during
training (Fig.[6). Standard GRPO displays a highly skewed distribution, with a pronounced peak at
zero advantage, confirming that a large fraction of samples provides ineffective gradients. GRPO-
Filter alleviates the extreme peak at zero, yet it still retains a strong central bias, indicating that many
examples with very small advantages persist.

Conversely, GRPO-SSR significantly alters the advantage distribution by redistributing the probability
mass away from zero and placing greater emphasis on examples with large absolute advantages.
These examples, such as a correct response to a challenging query or an incorrect response to a simple
one, are intuitively more informative as they likely lie closer to the decision boundary. By selectively
replaying these high-advantage examples, GRPO-SSR ensures a more balanced and effective learning
process, ultimately leading to improved convergence as evidenced by the reward curves.

Analysis on Forced Rethinking. To evaluate the effectiveness of our Forced Rethinking training
technique in fostering deliberate reasoning, we compared its impact against baseline models and
theoretical limits, as illustrated in Fig.[7] Our primary objective was to examine whether training with
Forced Rethinking encourages VL-Rethinker to develop internal metacognitive awareness, enabling
it to strategically decide when rethinking is beneficial, rather than applying it rigidly.

Fig.[/|compares the performance of VL-Rethinker against several configurations. The baseline is
"w/o Forced Rethinking", which we dub VL-Reasoner. We first assessed the inherent potential of
rethinking via VL-Reasoner (forced), where the baseline model is compelled to perform a rethinking
step at test time for every instance. The results (blue bars) show positive relative improvements across
all benchmarks. This indicates that the baseline model already possesses latent rethinking capabilities



that can lead to correct answers. However, this approach is suboptimal, as the baseline struggles to
effectively leverage this ability, sometimes even corrupting initially correct answers through flawed
rethinking. We also compute an upper bound, VL-Reasoner (bound) (yellow bars), which represents
the maximum achievable improvement if test-time rethinking is only applied to the wrong outputs.

Crucially, VL-Rethinker (red bars), trained using our Forced Rethinking technique, consistently
outperforms the VL-Reasoner (forced) baseline. For example, on MathVision, VL-Rethinker achieves
an 8.46% relative improvement, significantly higher than the 2.49% gained by passively forcing the
baseline to re-think. This demonstrates that integrating rethinking into the training phase markedly
enhances the model’s capacity for effective self-reflection.

Importantly, the analysis highlights the adaptive nature of the learned rethinking behavior. The
overlaid line plot (right y-axis) shows the "Rethinking Ratio" for VL-Rethinker — the fraction of test
instances where it spontaneously engaged in the rethinking process. This ratio varies substantially
across benchmarks, in stark contrast to the rigid, 100% application in the VL-Reasoner (forced)
scenario. It suggests that VL-Rethinker has learned to selectively trigger re-thinking based on the
query’s perceived difficulty or its initial confidence, embodying the targeted metacognitive awareness
rather than relying on a fixed, potentially inefficient strategy.

5 Related Work

5.1 Multimodal Instruction Tuning

Instruction tuning has become a central technique for aligning large language models (LLMs)
with human intent, enabling them to better follow open-ended natural language instructions. In
the multimodal setting, however, aligning both language and vision modalities presents unique
challenges. Building upon the success of unimodal instruction tuning methods such as FLAN [Wei
et al.| 2022], Self-Instruct [Wang et al.| 2023}, and Direct Preference Optimization (DPO) [Rafailov
et al.,|2023]], researchers have extended these strategies to vision-language models (VLMs). These
models must reason over visual semantics, resolve cross-modal references, and produce grounded,
coherent responses—all within the framework of natural language instructions.

Initial efforts such as InstructBLIP [Dai et al.,2023]], LLaVA [Liu et al., 2023]], and MiniGPT-4 [Zhu
et al.| 2024] demonstrated the feasibility of aligning VLMs using instruction-following data. More
recent advances, including Llava-OV [Li et al.,|2024], Infinity-MM [Gu et al.} 2024]], MAmmoTH-
VL [Guo et al., [2024], and VisualWeblnstruct [Jia et al., [2025]], show that scaling up instruction
tuning datasets and introducing diverse tasks can significantly enhance generalization across a wide
range of multimodal benchmarks.

5.2 Reasoning with Reinforcement Learning

The release of GPT-o1 [Jaech et al.,[2024]] and DeepSeek-R1 [|Guo et al., [2025] has sparked renewed
interest in incentivizing reasoning capabilities in LLMs via reinforcement learning (RL). Recent
works like SimpleRL-Zoo [Zeng et al., 2025] and Open-Reasoner-Zero [Hu et al., 2025] explore direct
RL fine-tuning from base models without relying on additional supervised instruction-tuning phases.
Building on this foundation, approaches such as DeepScaler [Luo et al.,[2025]] and Light-R1 [Wen
et al., [2025]] incorporate cold-start datasets specifically designed to promote long-form reasoning and
step-by-step thought processes.

In parallel, efforts such as DAPO [Yu et al.,|2025]] and Dr GRPO [L1u et al.,[2025] aim to improve
the original Group Relative Policy Optimization (GRPO) algorithm, refining reward structures and
advantage estimation to more effectively elicit deep reasoning behaviors from LLMs during training.

5.3 Multimodal Reinforcement Learning

There is a growing body of work focused on bringing RL-based reasoning into the multimodal
domain [Deng et al.l [2025| |Yang et al., |2025, Huang et al., 2025} [Peng et al., 2025]]. Inspired by
models like DeepSeek-R1, these approaches typically follow a multi-stage pipeline. A common
practice involves first performing supervised fine-tuning (SFT) on vision-language data that has been
annotated or augmented with detailed reasoning traces, often derived from strong text-only LLMs
after converting visual inputs into textual descriptions.



Following the SFT stage, reinforcement learning is used to further enhance the model’s reasoning
capabilities. While effective, these pipelines often require complex and resource-intensive processes,
including visual captioning, teacher model distillation, and tightly coupled SFT+RL orchestra-
tion [Wang et al.,2025c¢]|. In contrast, our work investigates a more direct and lightweight RL-only
approach, aiming to incentivize slow-thinking behavior without relying on large-scale supervision or
teacher-based distillation.

6 Conclusion

In this paper, we investigated how to more effectively incentivize the reasoning capabilities of
multimodal models. Our proposed approaches have shown effectiveness in multimodal reasoning
benchmarks. However, our models are still lagging behind human expert performance on more
general multimodal tasks like EMMA and MEGA-Bench. We conjecture that this is due to a lack
of high-quality multimodal training dataset. In the future, we endeavor to further improve the data
quality to improve multimodal reasoning capabilities.
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Appendix

A Limitations and Discussions

In this work, we studied how to effectively cultivate slow-thinking via Reinforcement Learning.
We proposed Selective Sample Replay to mitigate the vanishing advantages in GRPO, and em-
ployed forced rethinking to foster deliberate reasoning. While we achieve state-of-the-art results on
math-related benchmarks, our models still lag behind human expert performance on more general
multimodal benchmarks like EMMA and MEGA-Bench. This reveals that our model is still limited
in high-quality training queries. While we show that a direct RL approach without costly distillation
can outperform existing RL-based VLMs that involve costly distillations, it remains an open question
in what conditions SFT can indeed help the subsequent RL phase for VLMs.

B Training and Implementations

B.1 Training Dataset

Our initial seed query set was constructed by aggregating publicly available multimodal datasets
et all}, 20235 Meng et al., 2025} [Kembhavi et al., 2016 [Saikh et al., 2022} [Du et al, 2025]] with
novel queries gathered from the web. This aggregated dataset exhibits a broad topical diversity, as
visually represented in Fig.[8] Given our reliance on rule-based reward mechanisms for subsequent
Reinforcement Learning (RL) training, a crucial first step involved filtering the seed queries. We
retained only those queries with reference answers that were programmatically verifiable by our
defined rules. From this verifiable subset, an augmented query set was systematically generated
through the rephrasing of questions and permutation of multi-choice options. This augmentation
strategy was designed to facilitate knowledge re-occurrence and reinforce learning across variations
of the same core information. This rigorous data preparation pipeline culminated in a final training
set comprising 38,870 queries.

Main Distribution of Topics

(Non;gc;t;)‘yMath Detail of "Others"
. ‘o

Commonsen:
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Spatial Reasoning
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Charts/Diagrams
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Il (Non-Geo) Math B Charts/Diagrams Spatial Reasoning I Social Science
Bl (Geometric) Math Phys/Chem/Bio I STEM Topics Il Commonsense

Figure 8: Our training data contains a diverse collection of topics, including eight major categories.

Utilizing this comprehensive query set, we proceeded to train models at different scales. To ensure
efficient training and leverage each model’s inherent strengths, we selected subsets of queries tailored
to their initial capabilities. Specifically, for each model scale, we curated a training subset consisting
of queries where the initial checkpoint of that model demonstrated a non-zero PassRate @8. This
selection criterion ensured that the models were trained on queries falling within their potential
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Algorithm 1 Selective Sample Replay (SSR)

Input: Buffer Bieplay, raw training batch Dyoy = { (24, ¥i, Ai)}, intensity a > 0.
Output: Training batch Dyy,n, updated buffer Brepiay

Let Nbatch = |Draw‘

Initialize list for effective current samples Degrective < 0

for each sample (x;, y;, /L) in Dy, do
Add (z;,yi, A;) t0 Defective When |4;| > 0

end for
Update buffer: Bieplay <— Breplay U Defrective

9: Let Nefrective = |Deffective‘
10: Calculate number of samples needed from buffer: ngom puffer = Max(0, Noatch — Neffective)
11: Initialize list for samples from buffer Dyom_puffer < 0
12: if Nfrom_buffer = 0 then
13: Calculate sampling probabilities P(select j) for all j € Byeplay according to Eq.
14: Form Drrom_putter by drawing ngrom_pufter Samples from Biepay
15: end if
16: Dtrain — Deffective U ,Dfromfbuffer

A A S ol

competence range, allowing the RL process to refine and enhance existing, albeit nascent, abilities
rather than attempting to instill knowledge from scratch.

B.2 Algorithms

We provide a diagram for Selective Sample Replay in Alg.[T]

B.3 Implementations and Training Details

Our VL-Rethinker-72B was trained using OpenRLHF for a maximum of 3 epochs on 8 sets of
8 x A800(80G) for approximately 60 hours. The final checkpoint was selected based on the mean
reward achieved on a held-out validation set. We employed a near on-policy RL paradigm, where
the behavior policy was synchronized with the improvement policy after every 1024 queries, which
we define as an episode. The replay buffer for SSR persisted for the duration of each episode before
being cleared. For each query, we sampled 8 responses. The training batch size was set to 512
query-response pairs. We accept at most two correct rethinking trajectories for each query. We set the
priority hyperparameter in SSR to o = 1.0 in the experiments. We released code, models and our
high-quality 39K dataset to support further research.

B.4 Prompts Used for Training

Default Instruction Prompt

{question}
Please reason step by step, and put your final answer within \\boxed{}.

During the first stage RL training with SSR, we use the default instruction prompt as above.

Rethinking Instruction Prompt

{question}
Guidelines:

Please think step by step, and **regularly perform self-questioning, self
-verification, self-correction to check your ongoing reasoningx*, using
connectives such as "Wait a moment"”, "Wait, does it seem right?", etc. Remember
to put your final answer within \\boxed{}.

16



During the Forced Rethinking training stage, we use the above prompt to encourage self-reflection,
and use three types of rethinking textual triggers.

Rethinking Triggers

self_questioning = "\n\nWait, does it seem right?”
self_correction = "\n\nWait, there might be a mistake"”
self_verification = "\n\nWait, let's double check”

C Additional Experiments and Analysis

C.1 Experiments

We conducted an ablation on the data compositions. Our training queries are comprised of three
major genres: math-related vision-language queries, science-related queries and text-only ones. We
conducted ablation studies on these components. As shown in Table. [3] removing text-only queries
does not cause significant differences. As we further remove queries from the broader scientific
domains, we observe a more pronounced drop in performance. This significant reduction underscores
the importance of scientific data in improving the model’s general reasoning ability.

Model RL-Algo Data MathVision MathVista MathVerse MMMU-Pro EMMA
VL-Rethinker-7B SSR 16K 323 74.9 54.2 41.7 29.7
w/o ‘Forced-Rethinking’ SSR 16K 29.8 72.4 53.2 40.9 29.5
-no SSR Filter 16K 28.5 72.0 50.0 40.0 26.9
- no SSR& Filter GRPO 16K 26.0 70.9 514 38.8 26.2
- no Text SSR 13K 29.1 73.5 53.5 41.1 28.7
- no Science&Text SSR 11K 28.0 71.6 50.3 39.7 28.0

Table 3: Ablation Results to show the impact of SSR and Data Mix.

We performed a sensitivity analysis to the prioritization intensity hyperparameter in SSR. We plot the
final averaged eval reward of models trained with different hyperparameters. As shown in Fig.[9] the
performance does not vary significantly regarding different hyperparameters, and the best value is
around 1.0. We observe that models trained with different hyperparameters will always reach similar
peaks sooner or later.

Hyperparameter vs. Averaged Reward
0.4575 0.4653 0.4612

o
@

0.4436

o o o
N w S

Averaged Reward

o
=

o
o

0.6 0.7 0.8 0.9 1.0 11 1.2
Hyperparameter

Figure 9: Sensitivity Analysis of the Hyperparameter in SSR

C.2 Cases

Below we show a few cases where VL-Rethinker shows the ability of rethinking. This ability
can help achieve correct answers more often than not, but sometimes it still fails with challenging
questions.

Listing 1: successful casel
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Q: Hint: Please answer the question requiring an integer answer and
<~ provide the final value, e.g., 1, 2, 3.

What is the highest amount this class measures?

GT: \boxed{600}

A: To determine the highest amount this beaker measures, let's analyze
— the image step by step:

1. The beaker is labeled \"600ml\"” at the bottom, which indicates its
— total capacity.

2. The markings on the side of the beaker show volume levels: 100, 200,
< 300, and 400 ml.

3. The highest marking visible on the beaker is 400 ml.

Wait a moment, does the highest marking represent the total capacity?
— No, it doesn't. The beaker is labeled \"600ml\" at the bottom,
<~ which means it can hold up to 600 ml of liquid.

Wait, does it seem right? Yes, it does. The beaker is designed to hold
<~ 600 ml, even though the highest marking is 400 ml. The remaining
<~ capacity above 400 ml is not marked but is still part of the
<~ beaker's total capacity.

Therefore, the highest amount this beaker measures is 600 ml.
\\boxed {600}

Listing 2: successful case2

Q: In the triangle with hypotenuse length 20, find
— y.\nChoices:\nA:4\nB:6\nC:8\nD:10

GT: \boxed{D}

A: To find the length of \\( y \\) in the given right triangle with a
— hypotenuse of 20 and an angle of 60\u@@b@, we can use
— trigonometric relationships.

1. **xIdentify the trigonometric relationship:xx

- In a right triangle, the sine of an angle is the ratio of the length
— of the opposite side to the hypotenuse.

- Here, \\( \\sin(60\u@0bo) = \\frac{y}{20} \\).

2. *xRecall the value of \\( \\sin(60\u@@b@) \\):*x*
= \\( \\sin(60\u@obo) = \\frac{\\sqrt{3}3}{2} \\).

3. x*Set up the equation:x*x

\\[\n \\sin(60\u@0b0) = \\frac{y}{20} \\implies \\frac{\\sqrt{33}3}{2}
— \\frac{y}{203}\n \\J\n\n4. *xSolve for \\( y \\):xx\n \\[\n

— = 20 \\cdot \\frac{\\sqgrt{3}3}{2} = 10\\sqrt{3}\n \\1]

*xWait a momentx**, let's double check the problem statement and the
choices.** The problem asks for \\( y \\) and the choices are 4,
6, 8, 10. It seems there might be a mistake in the problem setup
or the choices provided. However, based on the trigonometric
calculation, the correct value of \\( y \\) is \\( 10\\sqrt{3}
\\), which is approximately 17.32, not matching any of the given
choices.

U

Given the choices, the closest integer value to \\( 10\\sqrt{3} \\) is
<~ 10, but it is not exactly 10.

y

*xWait, does it seem right?**x The problem might have a different context

— or the choices might be incorrect.

Since the problem asks for the closest value and 10 is the closest to
— \\( 10\\sqgrt{3} \\), the answer is:\n\n\\boxed{D}
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Listing 3: failure case

Q: In the figure there are nine regions inside the circles. The numbers
<~ 1 to 9 should be written in the regions so that the sum of the
< numbers in each circle is exactly 11. Which number has to go in
— the region with the question mark?<imagel>

GT: \boxed{6}

A: To solve this problem, we need to place the numbers 1 to 9 in the
< nine regions such that the sum of the numbers in each circle is
<~ exactly 11. Let's denote the regions as follows:

- \\( A \\) is the region in the top left circle.

- \\( B \\) is the region in the top middle circle.

- \\( C \\) is the region in the top right circle.

- \\( D \\) is the region in the bottom left circle.

- \\( E \\) is the region in the bottom middle circle.

- \\( F \\) is the region in the bottom right circle.

- \\( G \\) is the region in the middle left circle.

- \\(C H \\) is the region in the middle right circle.

- \\(C I \\) is the region in the middle circle (the one with the

<~ question mark).

The circles and their regions can be described as follows:
- The top left circle contains \\( A, G, D \\).

- The top middle circle contains \\( G, B, H \\).

- The top right circle contains \\( H, C, F \\).

- The bottom left circle contains \\( D, E, I \\).

- The bottom right circle contains \\( I, F, E \\).

We need to satisfy the following equations:
1. \NC A+ G+ D=111\\)
2. \N( G+ B + H =11 1\\)
3. W\(H+C+ F =11 1\\)
4. \\( D+ E+1I =11 1\\)
5. W( I + F + E =11 \\)

Let's start by adding all five equations:

\\[ (A+G+D) + (G+B+H) + ((H+C+F)+ (D+E+1I)+ (I +F+E)
— = 55 \\]

This simplifies to:

\\[L A+ B+ C+ 2D + 2E + 2F + 2G + 2H + 2I 55 \\]

Since \\( A+B +C+D+E+F+ G+ H+ I 45 \\) (the sum of the
<~ numbers 1 to 9), we can substitute \\( 45 + D + E + F + G + H + I
— = 55 \\), which simplifies to:

ML D+E+F+ G+ H+I=10\\]

Now, let's try to find a solution by trial and error, keeping in mind
— that each circle must sum to 11.

Assume \\( I = 1 \\):

19




Then \\( D + E + 1 =11 \\) and \\(C 1T + F + E = 11 \\), so \\( D + E =
— 10 \\) and \\( F + E = 10 \\). This means \\( D = F \\), which is
<~ not possible since all numbers must be distinct.

Then \\( D + E
— \\) and \\(
<~ possible.

11 \\) and \\( 2 + F + E =11 \\), so \\( D+ E =29

Assume \\( I = 2 \\):
+ 2 =
F + E =9 \\). This means \\( D = F \\), which is not

Assume \\( I = 3 \\):

Then \\( D + E + 3 = 11 \\) and \\( 3 + F + E =11 \\), so \\( D + E = 8
— \\) and \\( F + E = 8 \\). This means \\( D = F \\), which is not
<~ possible.

Assume \\( I = 4 \\):

Then \\( D + E + 4 =11 \\) and \\( 4 + F + E = 11 \\), so \\( D +E =17
— \\) and \\( F + E = 7 \\). This means \\( D = F \\), which is not
<~ possible.

Assume \\( I = 5\

Then \\( D + E + 5
— \\) and \\(
— possible.

11 \\) and \\( 5 + F +E =11 \\), so \\( D+ E =26

\):
F + E =6 \\). This means \\( D = F \\), which is not

Assume \\( I = 6 \\):

Then \\( D + E + 6 = 11 \\) and \\( 6 + F + E = 11 \\), so \\( D+ E =5
— \\) and \\( F + E = 5 \\). This means \\( D = F \\), which is not
<~ possible.

Then \\( D + E
<~ \\) and \\(
<~ possible.

11 \\) and \\( 7 + F + E = 11 \\), so \\( D + E = 4

Assume \\( I = 7 \\):
+ 7 =
F + E =4 \\). This means \\( D = F \\), which is not

Assume \\( I = 8 \\):
Then \\( D + E + 8 = 11 \\) and \\( 8 + F + E = 11 \\), so \\( D + E = 3
< \\) and \\( F + E = 3 \\). This means \\( D = F \\), which is not

<~ possible.

Assume \\( I = 9 \\):
Then \\( D + E + 9 =11 \\) and \\( 9 + F + E =11 \\), so \\( D+ E =2
— \\) and \\( F + E = 2 \\). This means \\( D = F \\), which is not

<~ possible.

After trying all possibilities, we find that the only number that works
— is \\(C I =1 \\).

**Wait, does it seem right? Let's verify:*x*
If \\NC I =1 \\), then \\(C D+ E =10 \\) and \\( F + E = 10 \\). Let's
— try \\( D = 6 \\) and \\( E = 4 \\), and \\( F = 6 \\) and \\( E
4 \\). This is not possible. Let's try \\( D = 5 \\) and \\( E =
\\), and \\( F = 5 \\) and \\( E = 5 \\). This is not possible.
Let's try \\(C D = 3 \\) and \\C E = 7 \\), and \\( F = 3 \\) and
\\( E =7 \\). This is not possible. Let's try \\( D = 2 \\) and
\NC E =8 \\), and \\( F = 2 \\) and \\( E = 8 \\). This is not
possible. Let's try \\( D = 1 \\) and \\( E = 9 \\), and \\( F =
— \\) and \\( E = 9 \\). This is not possible.

After all these trials, we find that the only number that works is \\( I
— =1 \\).

Therefore, the number that has to go in the region with the question
— mark is \\(\\boxed{13}\\).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have ensured the claims are accurately reflected.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the conclusion and the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have detailed the assumptions and problem formulation.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the training and evaluation settings. We include further
details in the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided code, data and models for reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the training and evaluation details in experiment section and
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not provide error bars due to the high cost of experiments. The results
have surpassed existing models by large margins, sufficing to support its effectiveness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the information.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and fully adhered to the NeurIPS Code of Ethics throughout
our research process, including data usage, experimental design, and reporting. No ethical
concerns were identified in the course of this work.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work has potential positive societal impacts by advancing the capabilities
of multimodal models, which could benefit applications such as assistive technologies and
education. However, like other general-purpose Al systems, it also poses risks of misuse,
such as generating misleading or harmful content. We encourage responsible use and open
discussion regarding the deployment of such technologies.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work does not involve the release of pretrained language models, image
generators, or scraped datasets that pose a high risk of misuse. Therefore, no specific
safeguards are required.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and code assets used in our work are properly cited in the paper,

along with their respective licenses. We ensured compliance with the terms of use of each
asset, and included license details where applicable.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets in the form of code and data used in our experiments.
These assets are accompanied by clear documentation, including usage instructions, data
schema descriptions, and license information.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: None.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve any research with human subjects or crowdsourced
participants, and therefore IRB approval is not required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have detailed in the appendix.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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