
Attend or Perish: Benchmarking Attention in Algorithmic Reasoning

Anonymous ACL submission

Abstract

Can transformers learn to perform algorith-001
mic tasks reliably across previously unseen002
input/output domains? While pre-trained lan-003
guage models show solid accuracy on bench-004
marks incorporating algorithmic reasoning, as-005
sessing the reliability of these results necessi-006
tates an ability to distinguish genuine algorith-007
mic understanding from rote memorization. In008
this paper, we propose AttentionSpan, an al-009
gorithmic benchmark comprising five tasks of010
infinite input domains where we can also disen-011
tangle and trace the correct, robust algorithm012
necessary for the task. This allows us to as-013
sess (i) models’ ability to extrapolate to unseen014
types of inputs, including new lengths, value015
ranges or input domains, but also (ii) to assess016
the robustness of their learned mechanisms. By017
analyzing attention maps and performing tar-018
geted interventions, we causally demonstrate019
that the attention mechanism is a key bottle-020
neck, directly contributing to failures in extrap-021
olation. We make the implementation of all022
our tasks and interpretability methods publicly023
available.1024

1 Introduction025

The neural architecture of Transformer (Vaswani026

et al., 2017) presents a backbone for a vast ma-027

jority of modern language processing applications.028

A growing body of these applications, including029

code generation, conversational assistants, or data030

processing automatization, require Transformers to031

exhibit robust reasoning, i.e., an ability to identify032

and combine relevant pieces of information to infer033

new information (Yu et al., 2024).034

The Attention mechanism (Bahdanau et al.,035

2014) is a critical component for Transformer036

reasoning, uniquely enabling information mixing037

across token streams, which is an important process038

for long-form reasoning. However, its effectiveness039

often degrades, especially with increasing sequence040

1See the supplementary material

Figure 1: Examples of attention visualizations used to
evaluate model reasoning patterns. Each panel displays
normalized attention scores (post-softmax), aggregated
across heads and layers via attention rollout, overlaid
with a reference mask highlighting essential tokens in
red. Visualizations are shown for the addition, value
assignment, and FFML tasks (top to bottom).

lengths (Veličković et al., 2025). Despite the theo- 041

retical expressivity of Transformers in modelling 042

even complex reasoning tasks (Lin et al., 2021; 043

Merrill and Sabharwal, 2024), Transformers often 044

depend on oversimplified, non-robust, or spurious 045

features of data (Mikula et al., 2024) causing even 046

high-end models to fail in unexpected scenarios. 047

This unreliability currently presents a critical bot- 048

tleneck across a variety of applications. However, 049

bridging this gap requires fundamental improve- 050

ments not only in architecture (Ye et al., 2025; 051

Veličković et al., 2025) but also evaluation to rigor- 052

ously assess how robust is the reasoning process of 053

our models. 054

In this work, we contribute to bridging this gap 055

by creating AttentionSpan, a new evaluation suite 056

focused on assessing fundamental reasoning capa- 057

bilities of language models in out-of-distribution 058

scenarios. 059

Each task in our benchmark has a solver algo- 060

rithm, which generates a step-by-step solution and 061

traces which past tokens are necessary for correctly 062

generating the next one. This allows us to con- 063

1



struct a benchmark enabling deeper analyses of the064

model’s reasoning behavior that were not possible065

with existing resources:066

• Provision of reference attention masks rep-067

resenting the ground truth reasoning patterns068

that a successful model has to follow in order069

to achieve a correct prediction.070

• Parametrization of distribution shifts, i.e.071

systematic changes in the constructed dataset072

that allow for a reliable assessment of the ro-073

bustness of models’ reasoning.074

First, we apply our benchmark to evaluate two075

different facets of generalization of existing lan-076

guage models: (i) an ability to learn to accurately077

combine the information necessary for the task in-078

distribution, uncovering the models ability to fit079

an algorithm explaining perturbations of the input080

samples, and (ii) an ability to generalize to out-of-081

distribution data, exploiting the inherent limitations082

of existing architectures. We find that Transformer083

models can learn to robustly execute algorithms084

on arbitrary in-distribution inputs. Based on our085

evaluation, models explain ID data by a seemingly086

correct algorithm, but despite that fail to generalize087

on new, out-of-distribution (OOD) inputs.088

Based on this finding and previous work, we089

hypothesize that out-of-distribution (OOD) errors090

stem from attention misalignments. Intervening to091

align attention with reference masks during OOD092

inference causally verified this: OOD accuracy in-093

creased by up to 90 percentage points (absolute)094

and, crucially, remained stable across increasing095

sequence lengths. This establishes a direct causal096

link between attention failures and poor generaliza-097

tion, pinpointing attention as a key bottleneck for098

length extrapolation.099

The presented benchmark will empower future100

work by a toolset for deeper analyses of models’ in-101

ternal functioning, cleansed from other covariates102

such as memorization. Our findings also motivate103

future work in architectural refinements, particu-104

larly those addressing limitations of the current105

Attention mechanism.106

2 Related Work107

Closest to our work, CRLS-Text (Markeeva et al.,108

2024) is a benchmark specialising in algorith-109

mic reasoning implementing many traditional al-110

gorithms and trains and evaluates recent state-of-111

the-art LLMs. We build upon the methodology of112

CRLS-Text and extend it to allow for, not only ac- 113

cessing the performance, but also to provide means 114

for interpretation and investigation of the results by 115

means of the reference attention masks. 116

BIG-Bench (Srivastava et al., 2023) is a mas- 117

sive benchmark comprised of more than 200 tasks, 118

many of which specialize in evaluating algorithmic 119

reasoning, e.g. addition or dyck languages. How- 120

ever, as a fixed test set, it is hard to use it to robustly 121

evaluate models on extrapolation, while the recent 122

work finds that BIG-Bench was indeed leaked into 123

the training data of recent models (Fajcik et al., 124

2024), including Qwen. We extend the tasks from 125

BIG-Bench into configurable generators capable 126

of generating infinite data, allowing training and 127

evaluation while avoiding data contamination. 128

Flip-Flop Language Modeling is a synthetic task 129

introduced by Liu et al. (2023). Authors introduce 130

this simple algorithmic task to analyze hallucina- 131

tions caused by attention glitches. We extend this 132

idea and implement novel analysis of attention on 133

a number of diverse algorithmic tasks. 134

3 AttentionSpan: Dataset and Evaluation 135

Suite 136

Model Task ID Acc. OOD
Acc.

OOD
Partial
Acc.

L
la

m
a-

3.
2 String Reversal 95.83 53.83 96.18

Long Addition 96.87 1.61 64.76
Long Multiplication 86.00 0.00 73.87
FFML 100.00 99.20 99.79
Value Assignment 93.95 0.52 65.26

Q
w

en
2.

5

String Reversal 98.95 21.77 76.26
Long Addition 100.00 44.75 92.77
Long Multiplication 56.25 0.00 80.14
FFML 100.00 88.50 96.71
Value Assignment 76.04 1.04 81.06

ge
m

m
a-

3

String Reversal 96.87 6.04 37.64
Long Addition 100.00 2.62 67.85
Long Multiplication 89.58 0.00 77.16
FFML 100.00 90.12 96.71
Value Assignment 98.95 0.00 19.35

Table 1: Table shows the accuracy of finetuned Llama-
3.2-1B-Instruct, Qwen2.5-1.5B-Instruct and gemma-3-
1b-it on various tasks with uniformly generated in-
distribution and out-of-distribution datasets. We find
that while models are able to generalize well even to
unseen in-distribution data. Despite a sharp decline in
overall OOD accuracy in almost all cases, the OOD par-
tial accuracy (average percentage of correctly predicted
target tokens for each data sample) reveals that models
correctly predict a large proportion of target tokens, in-
dicating some extrapolation abilities are present.

2



To evaluate the reasoning robustness of Trans-137

formers, we introduce AttentionSpan, a framework138

for analyzing models’ attention patterns in step-by-139

step reasoning tasks.140

AttentionSpan is composed of synthetic tasks141

with a highly controlled setting such as string re-142

versal, addition or multiplication. See Appendix A143

for detailed description of each task. Examples of144

inputs and outputs can be found in Table 3. Task145

instances (problems) can be randomly generated in146

arbitrary quantity and with configurable difficulty.147

The configuration also allows for systematic ID/IID148

splits that we also apply in our evaluations, includ-149

ing input lengths, ranges or domain. We detail150

provided configurations of AttentionSpan’s tasks151

in Appendix F.152

3.1 Reference Attention Masks153

A key contribution of this work is the inclusion of154

a reference attention mask with every generated155

data sample. This mask precisely identifies the156

past tokens essential for correct next-token infer-157

ence. Notably, these reference masks are designed158

to be independent of any specific model’s algorith-159

mic implementation. We utilize these masks as an160

expected attention pattern for an ideal model and161

subsequently measure the alignment of a model’s162

learned attention with this reference. Our experi-163

ments demonstrate that reference attention masks164

are a powerful tool for diagnosing reasoning errors165

in transformers. We propose that they could fa-166

cilitate future research aimed at enhancing model167

reliability through architectural modifications.168

The reference attention mask is a discrete169

boolean matrix. For each target token to be pre-170

dicted, it identifies significant (reference) past to-171

kens that the model should attend to for robust172

problem-solving. An element in the matrix is set to173

1 if the corresponding past token carries informa-174

tion relevant to predicting the target token; other-175

wise, it is set to 0, indicating the token is irrelevant176

and should not be attended. We empirically vali-177

date our reference masks by showing learned atten-178

tion reflects these patterns and that interventionally179

reinforcing these patterns boosts accuracy.180

4 Experiments and Evaluation181

Using the newly constructed benchmark, we aim to182

understand to what extent recent language models183

are capable of robustly representing and execut-184

ing the underlying algorithms of our tasks. To-185

wards this goal, we fine-tune and evaluate popu- 186

lar LLama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct 187

and gemma-3-1b-it on all tasks with instruction 188

prompt in a few-shot setting. While models trained 189

from random initialization struggled with conver- 190

gence and OOD generalization even with extensive 191

data, initializing from pre-trained weights signifi- 192

cantly improved convergence efficiency, yielding 193

non-trivial performance with minimal samples. As 194

detailed in Table 1, these fine-tuned models exhibit 195

difficulty generalizing to out-of-distribution (OOD) 196

data (See Appendix F for details on exact ID/OOD 197

parameters). However, their ability to correctly pre- 198

dict a majority of target tokens in each sample (See 199

OOD Partial Acc. in Table 1) suggests underlying 200

length extrapolation capabilities and potential for 201

future improvement. Training setup and hyperpa- 202

rameter search are described in Appendix E. 203

To inspect which tokens the model considers 204

in each reasoning step, we employ attention roll- 205

out (Abnar and Zuidema, 2020), a standard method 206

for aggregating attention across heads and lay- 207

ers. This allows us to visualize the attention pat- 208

terns (e.g., Figure 1) and assess whether the model 209

learned the expected attention patterns crucial for 210

generalization. Quantitatively, we leverage our 211

dataset’s reference attention masks to calculate the 212

proportion of attention scores assigned to tokens 213

identified as essential for correct prediction (see 214

Appendix C for details). We particularly analyze 215

these metrics by comparing model performance on 216

correct and incorrect test (token-level) predictions 217

to identify systematic attention patterns associated 218

with errors. 219

5 Results and Discussion: Attention is the 220

Bottleneck 221

Several tasks display errors in OOD evaluations 222

that are often associated with a marked reduction 223

in attention on reference tokens (see Table 2 and 224

Appendix B). This pattern suggests a class of errors, 225

where insufficient attention to reference tokens di- 226

rectly contributes to faulty predictions. We find 227

that this phenomena is consistent across different 228

pre-trained models and architectures, implying that 229

it is a general, naturally emergent problem. 230

5.1 Attention Reinforcement 231

To causally validate that attention deficits drive 232

out-of-distribution (OOD) failure, we first identi- 233

fied key attention heads (typically <10% of total, 234

3



500 1000 1500
0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000

Llama-3.2 - Vanilla Llama-3.2 - Reinforced Attention Qwen-2.5 - Vanilla Qwen-2.5 - Reinforced Attention

Input Length (tokens) Input Length (tokens)

A
cc

ur
ac

y

String Reversal Task Value Assignment Task

Loading [MathJax]/extensions/MathMenu.js

Figure 2: We demonstrate that by intervening on models’ (Llama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct) ac-
tivations and directly adjusting their attention scores to reinforce our reference attention pattern, we are able
to drastically improve the length extrapolation performance over the vanilla models without invervention. This
intervention clearly attributes the failure to extrapolate to the attention mechanism.

Model Task OOD
Acc.

Attn
Score
(Cor-
rect)

Attn
Score
(Error)

L
la

m
a-

3.
2 String Reversal 53.83 0.0455 0.0236

Value Assignment 0.52 0.0333 0.0126

Q
w

en
2.

5 String Reversal 21.77 0.0307 0.0217
Value Assignment 1.04 0.0127 0.0120

ge
m

m
a-

3 String Reversal 6.04 0.0397 0.0230
Value Assignment 0.00 0.0504 0.0491

Table 2: Error in prediction largely correlates with
lower attention to reference tokens. Attn Score rep-
resents the mean (across samples and all target tokens)
proportion of attention scores attributed to the refer-
ence tokens (see Appendix C for details). We measure
this score separately for cases when the model makes
an correct/incorrect (token-level) prediction and find a
statistically significant shift, attributing the prediction
failures to low attention on reference tokens.

e.g., 3-40 out of 512) by summing their scores on235

reference tokens during in-distribution inference236

and selecting those that attended the most to these237

reference tokens. We then selectively reinforced238

this reference pattern during OOD inference by239

directly increasing these heads’ post-softmax atten-240

tion on reference tokens. This intervention (Fig-241

ure 2) yielded up to a 90 percentage point (absolute)242

increase in OOD accuracy, providing direct causal243

evidence that insufficient attention to reference244

tokens contributes to extrapolation failures. For245

details on the implementation of the intervention,246

see Appendix G.247

While our intervention targets attention outputs,248

the root cause of out-of-distribution (OOD) atten-249

tion deficits may stem from deeper computational 250

issues, such as faltering key-query interactions un- 251

der distributional shift. Notably, we observed mis- 252

allocated attention shifting to distant, rather than 253

neighboring, tokens in OOD scenarios. This sug- 254

gests a potential breakdown in the generalization 255

of positional embeddings like RoPE. Future work 256

should investigate RoPE’s behavior under such 257

shifts and explore integrating these insights into 258

model training for more robust attention and posi- 259

tional encoding. 260

6 Conclusion 261

We introduced a novel algorithmic benchmark with 262

reference attention masks to robustly assess Trans- 263

former extrapolation and reasoning, minimizing 264

memorization effects. Our evaluations reveal that 265

while pre-training helps, models struggle with out- 266

of-distribution (OOD) generalization on these chal- 267

lenging tasks. Crucially, through attention analysis 268

and targeted interventions, we causally attribute 269

these OOD failures primarily to the attention mech- 270

anism’s inability to maintain focus on essential 271

tokens. Reinforcing correct attention patterns sig- 272

nificantly improved OOD accuracy and length ex- 273

trapolation, pinpointing attention as a critical bot- 274

tleneck. This work underscores the difficulty these 275

tasks pose for current architectures and highlights 276

the need for more robust attention mechanisms. By 277

releasing our benchmark and findings, we aim to 278

spur research towards more robust and reliable AI 279

systems. 280

4



Limitations281

We identify several limitations of our work and282

mention what we believe are the main ones be-283

low. First, our interpretability of models’ inter-284

nal functioning builds upon the assumption that285

models robustly executing the correct algorithm286

should fully attend only to tokens that are relevant287

to the algorithm. Nevertheless, we note that even288

a model with a systematic dispersion of attention289

across irrelevant tokens might still be able to ro-290

bustly execute algorithm, as long as the irrelevant291

attended tokens do not significantly alter the atten-292

tion’s output representations. Therefore, there is293

not a necessary equivalence between the model’s294

robustness and accuracy of attention with respect295

to our references. However, in the situation where296

the model does not attend the relevant tokens at all,297

we can still claim that the model does not represent298

the task’s correct/robust algorithm.299

Finally, we note the limitation in using a sin-300

gle interpretability method in our analyses in Sec-301

tion 4 (Attention rollout). While we argue that302

this method best represents the computation flow303

within the transformer across tokens, it still does304

not take into account some computation parts of the305

model, such as the impact of feed-forward layers306

which might, theoretically, exclude the impact of307

even some attended tokens.308

References309

Samira Abnar and Willem Zuidema. 2020. Quantifying310
attention flow in transformers.311

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua312
Bengio. 2014. Neural Machine Translation313
by Jointly Learning to Align and Translate.314
ArXiv:1409.0473v1.315

Martin Fajcik, Martin Docekal, Jan Dolezal, Karel On-316
drej, Karel Beneš, Jan Kapsa, Pavel Smrz, Alexan-317
der Polok, Michal Hradis, Zuzana Neverilova, et al.318
2024. Benczechmark: A czech-centric multitask319
and multimetric benchmark for large language mod-320
els with duel scoring mechanism. arXiv preprint321
arXiv:2412.17933.322

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.323
Gormley, and Jason Eisner. 2021. Limitations of324
autoregressive models and their alternatives. In Pro-325
ceedings of the 2021 Conference of the North Amer-326
ican Chapter of the Association for Computational327
Linguistics: Human Language Technologies, pages328
5147–5173, Online. Association for Computational329
Linguistics.330

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krish- 331
namurthy, and Cyril Zhang. 2023. Exposing attention 332
glitches with flip-flop language modeling. 333

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried 334
Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles Blun- 335
dell, Tom Goldstein, Avi Schwarzschild, and Petar 336
Veličković. 2024. The clrs-text algorithmic reasoning 337
language benchmark. 338

William Merrill and Ashish Sabharwal. 2024. The ex- 339
pressive power of transformers with chain of thought. 340
In The Twelfth International Conference on Learning 341
Representations. 342

Lukáš Mikula, Michal Štefánik, Marek Petrovič, and 343
Petr Sojka. 2024. Think Twice: Measuring the Effi- 344
ciency of Eliminating Prediction Shortcuts of Ques- 345
tion Answering Models. In Proceedings of the 18th 346
Conference of the European Chapter of the ACL (Vol- 347
ume 1: Long Papers), pages 2179–2193, St. Julian’s, 348
Malta. ACL. 349

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 350
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 351
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià 352
Garriga-Alonso, et al. 2023. Beyond the imitation 353
game: Quantifying and extrapolating the capabilities 354
of language models. 355

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 356
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 357
Kaiser, and Illia Polosukhin. 2017. Attention is all 358
you need. In Advances in Neural Information Pro- 359
cessing Systems, volume 30. Curran Associates, Inc. 360

Petar Veličković, Christos Perivolaropoulos, Federico 361
Barbero, and Razvan Pascanu. 2025. softmax is not 362
enough (for sharp out-of-distribution). 363

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 364
Chaumond, Clement Delangue, Anthony Moi, Pier- 365
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, 366
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 367
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven 368
Le Scao, Sylvain Gugger, Mariama Drame, Quentin 369
Lhoest, and Alexander Rush. 2020. Transformers: 370
State-of-the-Art Natural Language Processing. In 371
Proc. of the 2020 Conf. EMNLP: System Demonstra- 372
tions, pages 38–45. ACL. 373

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, 374
Gao Huang, and Furu Wei. 2025. Differential trans- 375
former. In The Thirteenth International Conference 376
on Learning Representations. 377

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou 378
Wang. 2024. Natural language reasoning, a survey. 379
ACM Comput. Surv. 380

A Task Descriptions 381

A.1 String Reversal 382

This task requires the model to generate the input 383

sequence in the reverse order. The task generator 384

5

http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2406.04229
http://arxiv.org/abs/2406.04229
http://arxiv.org/abs/2406.04229
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=wMj6PgKVuJ
https://openreview.net/forum?id=wMj6PgKVuJ
https://openreview.net/forum?id=wMj6PgKVuJ
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN
https://doi.org/10.1145/3664194


Task Example Input Corresponding Output
String Reversal d h 1 3 h 8 2 h j 2 8 3 j 2 3 H = H 3 2 j 3 8 2 j h 2 8 h 3 1 h d
Long Addition 1240 + 4335 + 3440 = 8916
Long Multiplication 9900 * 9900 = 1980 + 0198 + 0000 + 0000 = 1089
FFLM w 1 1 i 1 1 f 1 0 r 1 0 f 1 0 r 1 1
Value Assignment B1 E0 D1 A1 C0 ABBEDACABCD 11101101101

Table 3: Example instances of our tasks. The spacing is adjusted for clarity and does not denote a separator of
tokens. How the tasks handle tokenization is described in greater detail in Appendix D

can be configured by the character set and the range385

of the input length.386

A.2 Long Multiplication387

Long multiplication is parametrized by the digit388

length of two operands and optional padding. The389

solution contains a sequence of intermediate prod-390

ucts, which are then summed together into the final391

result. The digit ordering is consistent with the392

long addition task.393

A.3 Long Addition394

This task consists of adding several multi-digit395

numbers. The digits are ordered from the least sig-396

nificant to the most significant. The ordering of the397

digits is given by the standard addition algorithm398

where we compute the lower order digits first in or-399

der to be able to propagate the carry to the topmost400

digit. The problem generator can be parametrized401

by the number of operands, their length in digits,402

and whether short numbers are padded with zeros.403

As a subtask of long multiplication, it provides fur-404

ther insight into the inner functioning of models on405

these arithmetic tasks.406

A.4 Value Assignment407

In this task, the problem specifies a translation table408

from an input alphabet to an output alphabet. The409

model is then required to translate an input string,410

symbol by symbol. The character sets, and the411

string length can be configured. Value assignment412

is a subtask of many algorithmic tasks where we413

work with symbolic representations.414

A.5 Flip Flop Language Modeling415

Flip Flop Language Modeling, as introduced by416

(Liu et al., 2023) represents a simulation of mem-417

ory composed of a single one-bit registers. We418

extend this into multiple registers problem, adding419

a new flip command that flips the value of the spe-420

cific register. The input is a sequence of read, write,421

ignore, and flip instructions, each with the register422

Figure 3: In String Reversal, the model must learn a
diagonal attention pattern. In ID evaluation (left), the
model attributes high scores to all reference tokens. In
OOD (right), it fails to do so for some tokens (high-
lighted in red), leading to prediction errors.

index specified as a first operand. The sequence 423

ends with a read instruction, and the solution is the 424

bit value currently stored at the selected register. 425

The parameters of the task can specify how many 426

registers are used, the length of the instruction se- 427

quence, and whether flip commands are used. 428

B OOD Evaluation of String Reversal 429

Figure 3 illustrates the correlation between low 430

attention on reference tokens and prediction errors. 431

C Attention Score on Reference Tokens 432

The proportion attention score attributed to refer- 433

ence tokens is computed per each row of the ag- 434

gregated attention, that is for each predicted token, 435

separately. This attributes to the need to investigate 436

the proportion of information that has influenced 437

a given output representation or output token. The 438

result is then averaged across the whole sample or 439

the whole batch to get an idea of how the model 440

attributes attentions score on a given distribution of 441

data. 442

6



D Tokenization of training and evaluation443

samples444

With the exclusion of the instruction prompt, we445

tokenize the few-shot examples and the data points446

themselves into single character-level tokens. This447

is important to prepare the reference attention448

masks. Without tokenizing like this it would be449

possible to evaluate the attention patterns because450

different tokenization schemes wildly change the451

nature of the task and distribution of critical infor-452

mation between tokens. However, the fine-tuned453

models were able to parse this representation and454

fit the task as can be seen in the resulting accuracies455

after training.456

E Training Hyperparameters457

The following configuration summarizes the setup458

used for fine-tuning (or training from scratch) of459

our models.460

Model:461

• Name: meta-llama/Llama-3.2-1B-Instruct462

• Architecture Configuration:463

– Attention Dropout Probability: 0.0464

– Hidden Dropout Probability: 0.0465

Training Hyperparameters:466

• Epochs: 1467

• Batch Size: 4468

• Optimizer: AdamW469

• Optimizer Parameters:470

– Learning Rate: 5× 10−6471

– β1: 0.95472

– β2: 0.999473

– Weight Decay: 0.2474

These hyperparameters are chosen on the basis475

of a hyperparameter search that was executed on476

String Reversal and Addition tasks, the results of477

the search was averaged over these two tasks. The478

hyperparameter search can be reproduced by run-479

ning the prepared script in our codebase.480

The conclusion of the hyperparameter search481

was that, for both tasks, smaller batch size, smaller482

learning and weight decay were effective in in-483

creasing accuracy in OOD. The effect of using484

dropout in attention or hidden layers was highly485

task-dependent and inconclusive, so we decided 486

not to use it. 487

All our experiments were run on a single Nvidia 488

A100 GPU card and required less than 12 hours to 489

converge. As we document in our codebase, our 490

experiments employ HuggingFace Transformers 491

library (Wolf et al., 2020) v4.48.1 and PyTorch 492

v2.5.1. 493

F OOD Evaluation 494

F.1 Long Addition Task Evaluation 495

Parameters 496

The following configuration details the evaluation 497

setup for the Long Addition task. 498

In-distribution: 499

• 2 operands 500

• Each number is 1-4 digits long 501

Out-of-distribution: 502

• 2 operands 503

• Each number is 5-10 digits long 504

F.2 FFML Task Evaluation Parameters 505

The following configuration details the evaluation 506

setup for the FFML task. 507

In-distribution: 508

• Use the flip command 509

• Each string is composed of 10 commands 510

• Each instance works with 2 different registers 511

Out-of-distribution: 512

• Use the flip command 513

• Each string is composed of 11-100 commands 514

• Each instance works with 2 different registers 515

F.3 Long Multiplication Task Evaluation 516

Parameters 517

The following configuration details the evaluation 518

setup for the Long Multiplication task. 519

In-distribution: 520

• Each number is 1-3 digits long 521

Out-of-distribution: 522

• Each number is 4-6 digits long 523

7



F.4 String Reversal Task Evaluation524

Parameters525

The following configuration details the evaluation526

setup for the String Reversal task.527

In-distribution:528

• Each string is 1-10 characters long529

• The character set is composed of at least 50530

unique characters531

Out-of-distribution:532

• Each string is 11-50 characters long533

• The character set is composed of at least 50534

unique characters535

F.5 Successor Task Evaluation Parameters536

The following configuration details the evaluation537

setup for the Successor task.538

In-distribution:539

• The starting number is between 1 and 90540

• The length of the series is 2-4 numbers541

Out-of-distribution:542

• The starting number is between 100 and 900543

• The length of the series is 5-6 numbers544

F.6 Value Assignment Evaluation Parameters545

The following configuration details the evaluation546

setup for the Value Assignment task.547

In-distribution:548

• The number of unique tuples in the translation549

table is 5550

• The length of the string to be translated is 5551

Out-of-distribution:552

• The number of unique tuples in the translation553

table is 10-50554

• The length of the string to be translated is555

10-20556

G Attention Intervention Details 557

Our intervention method aims to causally link at- 558

tention deficits to out-of-distribution (OOD) per- 559

formance degradation by selectively reinforcing 560

attention to reference tokens. The process involves 561

two main stages: identifying key attention heads 562

and applying the intervention. 563

1. Identifying Key Attention Heads: To pinpoint 564

the attention heads most responsible for im- 565

plementing the desired reference attention pat- 566

tern, we perform the following steps: 567

• We run inference on multiple in- 568

distribution (ID) data samples (typically 569

30 in our experiments). 570

• For each attention head, we calculate the 571

sum of its post-softmax attention scores 572

on the pre-defined reference tokens. This 573

sum is accumulated across all ID sam- 574

ples. 575

• This cumulative scoring helps identify 576

heads that consistently attend to refer- 577

ence tokens, as well as those that might 578

activate for specific patterns present only 579

in a subset of samples (e.g., particular 580

carry operations in addition tasks). 581

• Heads are then ranked in descending or- 582

der based on this cumulativ e score. 583

• We select the top N heads for interven- 584

tion. N is a hyperparameter optimized to 585

achieve significant performance improve- 586

ment on the end-to-end task (e.g., string 587

reversal) post-intervention. 588

2. Applying the Intervention during OOD Infer- 589

ence: The intervention is applied exclusively 590

to the N selected heads during OOD inference. 591

• Standard Intervention (e.g., for String Re- 592

versal): For each selected head, we di- 593

rectly modify its post-softmax attention 594

scores. A constant value C (a hyperpa- 595

rameter, typically ranging from 0.3 to 596

2.0) is added to the attention score of ev- 597

ery token position corresponding to a ref- 598

erence token. These modified attention 599

scores are then propagated through the 600

network. This approach proved effective 601

for tasks like string reversal. 602

• Conditional Intervention (e.g., for Value 603

Assignment): For more complex tasks 604

8



like value assignment, we observed that605

the reference attention pattern was often606

distributed across multiple heads, and a607

simple global reinforcement was ineffec-608

tive. Instead, we adopted a conditional609

reinforcement strategy:610

– For each selected head, we add the611

constant C to the post-softmax atten-612

tion score at a reference token po-613

sition only if the original attention614

score at that specific position already615

exceeds a certain threshold (another616

optimizable hyperparameter).617

– This approach reinforces existing, al-618

beit potentially weak, attention sub-619

patterns within a head, rather than620

imposing the entire reference pattern621

uniformly.622

– The conditional intervention for623

value assignment, while improving624

performance, sometimes results in a625

slightly lower accuracy boost com-626

pared to the standard intervention on627

simpler tasks. This is because if the628

initial activation for a crucial refer-629

ence token falls below the threshold,630

our intervention, by design, will not631

reinforce it, even if doing so would632

be beneficial.633

9


