Attend or Perish: Benchmarking Attention in Algorithmic Reasoning

Anonymous ACL submission

Abstract

Can transformers learn to perform algorith-
mic tasks reliably across previously unseen
input/output domains? While pre-trained lan-
guage models show solid accuracy on bench-
marks incorporating algorithmic reasoning, as-
sessing the reliability of these results necessi-
tates an ability to distinguish genuine algorith-
mic understanding from rote memorization. In
this paper, we propose AttentionSpan, an al-
gorithmic benchmark comprising five tasks of
infinite input domains where we can also disen-
tangle and trace the correct, robust algorithm
necessary for the task. This allows us to as-
sess (i) models’ ability to extrapolate to unseen
types of inputs, including new lengths, value
ranges or input domains, but also (ii) to assess
the robustness of their learned mechanisms. By
analyzing attention maps and performing tar-
geted interventions, we causally demonstrate
that the attention mechanism is a key bottle-
neck, directly contributing to failures in extrap-
olation. We make the implementation of all
our tasks and interpretability methods publicly
available.!

1 Introduction

The neural architecture of Transformer (Vaswani
et al., 2017) presents a backbone for a vast ma-
jority of modern language processing applications.
A growing body of these applications, including
code generation, conversational assistants, or data
processing automatization, require Transformers to
exhibit robust reasoning, i.e., an ability to identify
and combine relevant pieces of information to infer
new information (Yu et al., 2024).

The Attention mechanism (Bahdanau et al.,
2014) is a critical component for Transformer
reasoning, uniquely enabling information mixing
across token streams, which is an important process
for long-form reasoning. However, its effectiveness
often degrades, especially with increasing sequence

'See the supplementary material

6 6535190+ 62373990=<><><><><>292802970291

9WTCwZghbRe R9 gwTo=<<wwoe Wb Z C

i00fOOWO0iOO0fO00il1lwl0ilO0f11i00i00fO01r0<<<><><>0

Figure 1: Examples of attention visualizations used to
evaluate model reasoning patterns. Each panel displays
normalized attention scores (post-softmax), aggregated
across heads and layers via attention rollout, overlaid
with a reference mask highlighting essential tokens in
red. Visualizations are shown for the addition, value
assignment, and FFML tasks (top to bottom).

lengths (Velickovi¢ et al., 2025). Despite the theo-
retical expressivity of Transformers in modelling
even complex reasoning tasks (Lin et al., 2021;
Merrill and Sabharwal, 2024), Transformers often
depend on oversimplified, non-robust, or spurious
features of data (Mikula et al., 2024) causing even
high-end models to fail in unexpected scenarios.
This unreliability currently presents a critical bot-
tleneck across a variety of applications. However,
bridging this gap requires fundamental improve-
ments not only in architecture (Ye et al., 2025;
Velickovi¢ et al., 2025) but also evaluation to rigor-
ously assess how robust is the reasoning process of
our models.

In this work, we contribute to bridging this gap
by creating AttentionSpan, a new evaluation suite
focused on assessing fundamental reasoning capa-
bilities of language models in out-of-distribution
scenarios.

Each task in our benchmark has a solver algo-
rithm, which generates a step-by-step solution and
traces which past tokens are necessary for correctly
generating the next one. This allows us to con-

struct a benchmark enabling deeper analyses of the
model’s reasoning behavior that were not possible
with existing resources:

* Provision of reference attention masks rep-
resenting the ground truth reasoning patterns
that a successful model has to follow in order
to achieve a correct prediction.

e Parametrization of distribution shifts, i.c.
systematic changes in the constructed dataset
that allow for a reliable assessment of the ro-
bustness of models’ reasoning.

First, we apply our benchmark to evaluate two
different facets of generalization of existing lan-
guage models: (i) an ability to learn to accurately
combine the information necessary for the task in-
distribution, uncovering the models ability to fit
an algorithm explaining perturbations of the input
samples, and (ii) an ability to generalize to out-of-
distribution data, exploiting the inherent limitations
of existing architectures. We find that Transformer
models can learn to robustly execute algorithms
on arbitrary in-distribution inputs. Based on our
evaluation, models explain ID data by a seemingly
correct algorithm, but despite that fail to generalize
on new, out-of-distribution (OOD) inputs.

Based on this finding and previous work, we
hypothesize that out-of-distribution (OOD) errors
stem from attention misalignments. Intervening to
align attention with reference masks during OOD
inference causally verified this: OOD accuracy in-
creased by up to 90 percentage points (absolute)
and, crucially, remained stable across increasing
sequence lengths. This establishes a direct causal
link between attention failures and poor generaliza-
tion, pinpointing attention as a key bottleneck for
length extrapolation.

The presented benchmark will empower future
work by a toolset for deeper analyses of models’ in-
ternal functioning, cleansed from other covariates
such as memorization. Our findings also motivate
future work in architectural refinements, particu-
larly those addressing limitations of the current
Attention mechanism.

2 Related Work

Closest to our work, CRLS-Text (Markeeva et al.,
2024) is a benchmark specialising in algorith-
mic reasoning implementing many traditional al-
gorithms and trains and evaluates recent state-of-
the-art LLMs. We build upon the methodology of

CRLS-Text and extend it to allow for, not only ac-
cessing the performance, but also to provide means
for interpretation and investigation of the results by
means of the reference attention masks.

BIG-Bench (Srivastava et al., 2023) is a mas-
sive benchmark comprised of more than 200 tasks,
many of which specialize in evaluating algorithmic
reasoning, e.g. addition or dyck languages. How-
ever, as a fixed test set, it is hard to use it to robustly
evaluate models on extrapolation, while the recent
work finds that BIG-Bench was indeed leaked into
the training data of recent models (Fajcik et al.,
2024), including Qwen. We extend the tasks from
BIG-Bench into configurable generators capable
of generating infinite data, allowing training and
evaluation while avoiding data contamination.

Flip-Flop Language Modeling is a synthetic task
introduced by Liu et al. (2023). Authors introduce
this simple algorithmic task to analyze hallucina-
tions caused by attention glitches. We extend this
idea and implement novel analysis of attention on
a number of diverse algorithmic tasks.

3 AttentionSpan: Dataset and Evaluation

Suite
Model Task ID Acc. OOD (00))]
Acc. Partial
Acc.
~ String Reversal 95.83 53.83 96.18
e Long Addition 96.87 1.61 64.76
g Long Multiplication ~ 86.00 0.00 73.87
5 FFML 100.00 99.20 99.79
Value Assignment 93.95 0.52 65.26
String Reversal 98.95 21.77 76.26
a Long Addition 100.00 44.75 92.77
§ Long Multiplication 56.25 0.00 80.14
& FFML 100.00 88.50 96.71
Value Assignment 76.04 1.04 81.06
String Reversal 96.87 6.04 37.64
s Long Addition 100.00 2.62 67.85
E Long Multiplication 89.58 0.00 77.16
& FFML 100.00 90.12 96.71
Value Assignment 98.95 0.00 19.35

Table 1: Table shows the accuracy of finetuned Llama-
3.2-1B-Instruct, Qwen2.5-1.5B-Instruct and gemma-3-
1b-it on various tasks with uniformly generated in-
distribution and out-of-distribution datasets. We find
that while models are able to generalize well even to
unseen in-distribution data. Despite a sharp decline in
overall OOD accuracy in almost all cases, the OOD par-
tial accuracy (average percentage of correctly predicted
target tokens for each data sample) reveals that models
correctly predict a large proportion of target tokens, in-
dicating some extrapolation abilities are present.

To evaluate the reasoning robustness of Trans-
formers, we introduce AttentionSpan, a framework
for analyzing models’ attention patterns in step-by-
step reasoning tasks.

AttentionSpan is composed of synthetic tasks
with a highly controlled setting such as string re-
versal, addition or multiplication. See Appendix A
for detailed description of each task. Examples of
inputs and outputs can be found in Table 3. Task
instances (problems) can be randomly generated in
arbitrary quantity and with configurable difficulty.
The configuration also allows for systematic ID/IID
splits that we also apply in our evaluations, includ-
ing input lengths, ranges or domain. We detail
provided configurations of AttentionSpan’s tasks
in Appendix F.

3.1 Reference Attention Masks

A key contribution of this work is the inclusion of
a reference attention mask with every generated
data sample. This mask precisely identifies the
past tokens essential for correct next-token infer-
ence. Notably, these reference masks are designed
to be independent of any specific model’s algorith-
mic implementation. We utilize these masks as an
expected attention pattern for an ideal model and
subsequently measure the alignment of a model’s
learned attention with this reference. Our experi-
ments demonstrate that reference attention masks
are a powerful tool for diagnosing reasoning errors
in transformers. We propose that they could fa-
cilitate future research aimed at enhancing model
reliability through architectural modifications.
The reference attention mask is a discrete
boolean matrix. For each target token to be pre-
dicted, it identifies significant (reference) past to-
kens that the model should attend to for robust
problem-solving. An element in the matrix is set to
1 if the corresponding past token carries informa-
tion relevant to predicting the target token; other-
wise, it is set to 0, indicating the token is irrelevant
and should not be attended. We empirically vali-
date our reference masks by showing learned atten-
tion reflects these patterns and that interventionally
reinforcing these patterns boosts accuracy.

4 Experiments and Evaluation

Using the newly constructed benchmark, we aim to
understand to what extent recent language models
are capable of robustly representing and execut-
ing the underlying algorithms of our tasks. To-

wards this goal, we fine-tune and evaluate popu-
lar LLama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct
and gemma-3-1b-it on all tasks with instruction
prompt in a few-shot setting. While models trained
from random initialization struggled with conver-
gence and OOD generalization even with extensive
data, initializing from pre-trained weights signifi-
cantly improved convergence efficiency, yielding
non-trivial performance with minimal samples. As
detailed in Table 1, these fine-tuned models exhibit
difficulty generalizing to out-of-distribution (OOD)
data (See Appendix F for details on exact ID/OOD
parameters). However, their ability to correctly pre-
dict a majority of target tokens in each sample (See
OOD Partial Acc. in Table 1) suggests underlying
length extrapolation capabilities and potential for
future improvement. Training setup and hyperpa-
rameter search are described in Appendix E.

To inspect which tokens the model considers
in each reasoning step, we employ attention roll-
out (Abnar and Zuidema, 2020), a standard method
for aggregating attention across heads and lay-
ers. This allows us to visualize the attention pat-
terns (e.g., Figure 1) and assess whether the model
learned the expected attention patterns crucial for
generalization. Quantitatively, we leverage our
dataset’s reference attention masks to calculate the
proportion of attention scores assigned to tokens
identified as essential for correct prediction (see
Appendix C for details). We particularly analyze
these metrics by comparing model performance on
correct and incorrect test (token-level) predictions
to identify systematic attention patterns associated
with errors.

5 Results and Discussion: Attention is the
Bottleneck

Several tasks display errors in OOD evaluations
that are often associated with a marked reduction
in attention on reference tokens (see Table 2 and
Appendix B). This pattern suggests a class of errors,
where insufficient attention to reference tokens di-
rectly contributes to faulty predictions. We find
that this phenomena is consistent across different
pre-trained models and architectures, implying that
it is a general, naturally emergent problem.

5.1 Attention Reinforcement

To causally validate that attention deficits drive
out-of-distribution (OOD) failure, we first identi-
fied key attention heads (typically <10% of total,

-+ Llama-3.2 - Vanilla —— Llama-3.2 - Reinforced Attention -

String Reversal Task

0.6

Accuracy

0.4 \

0.2 3
N
- .

- - —o

~-
T % e T R me- O = P

500 1000

Input Length (tokens)

Loading [MathJax}/extensions/MathMenu.js

1500

* Qwen-2.5 - Vanilla —— Qwen-2.5 - Reinforced Attention

Value Assignment Task

—
i~ e -
- SNt ey

500 1000 1500

Input Length (tokens)

2000

Figure 2: We demonstrate that by intervening on models’ (Llama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct) ac-
tivations and directly adjusting their attention scores to reinforce our reference attention pattern, we are able
to drastically improve the length extrapolation performance over the vanilla models without invervention. This
intervention clearly attributes the failure to extrapolate to the attention mechanism.

Model Task OOD Attn Attn
Acc. Score Score
(Cor- (Error)
rect)
E String Reversal 53.83 0.0455 0.0236
H Value Assignment 0.52 0.0333 0.0126
% String Reversal 21.77 0.0307 0.0217
E] Value Assignment 1.04 0.0127 0.0120
3 String Reversal 6.04 0.0397 0.0230
5 Value Assignment 0.00 0.0504 0.0491

Table 2: Error in prediction largely correlates with
lower attention to reference tokens. Attn Score rep-
resents the mean (across samples and all target tokens)
proportion of attention scores attributed to the refer-
ence tokens (see Appendix C for details). We measure
this score separately for cases when the model makes
an correct/incorrect (token-level) prediction and find a
statistically significant shift, attributing the prediction
failures to low attention on reference tokens.

e.g., 3-40 out of 512) by summing their scores on
reference tokens during in-distribution inference
and selecting those that attended the most to these
reference tokens. We then selectively reinforced
this reference pattern during OOD inference by
directly increasing these heads’ post-softmax atten-
tion on reference tokens. This intervention (Fig-
ure 2) yielded up to a 90 percentage point (absolute)
increase in OOD accuracy, providing direct causal
evidence that insufficient attention to reference
tokens contributes to extrapolation failures. For
details on the implementation of the intervention,
see Appendix G.

While our intervention targets attention outputs,
the root cause of out-of-distribution (OOD) atten-

tion deficits may stem from deeper computational
issues, such as faltering key-query interactions un-
der distributional shift. Notably, we observed mis-
allocated attention shifting to distant, rather than
neighboring, tokens in OOD scenarios. This sug-
gests a potential breakdown in the generalization
of positional embeddings like RoPE. Future work
should investigate RoPE’s behavior under such
shifts and explore integrating these insights into
model training for more robust attention and posi-
tional encoding.

6 Conclusion

We introduced a novel algorithmic benchmark with
reference attention masks to robustly assess Trans-
former extrapolation and reasoning, minimizing
memorization effects. Our evaluations reveal that
while pre-training helps, models struggle with out-
of-distribution (OOD) generalization on these chal-
lenging tasks. Crucially, through attention analysis
and targeted interventions, we causally attribute
these OOD failures primarily to the attention mech-
anism’s inability to maintain focus on essential
tokens. Reinforcing correct attention patterns sig-
nificantly improved OOD accuracy and length ex-
trapolation, pinpointing attention as a critical bot-
tleneck. This work underscores the difficulty these
tasks pose for current architectures and highlights
the need for more robust attention mechanisms. By
releasing our benchmark and findings, we aim to
spur research towards more robust and reliable Al
systems.

Limitations

We identify several limitations of our work and
mention what we believe are the main ones be-
low. First, our interpretability of models’ inter-
nal functioning builds upon the assumption that
models robustly executing the correct algorithm
should fully attend only to tokens that are relevant
to the algorithm. Nevertheless, we note that even
a model with a systematic dispersion of attention
across irrelevant tokens might still be able to ro-
bustly execute algorithm, as long as the irrelevant
attended tokens do not significantly alter the atten-
tion’s output representations. Therefore, there is
not a necessary equivalence between the model’s
robustness and accuracy of attention with respect
to our references. However, in the situation where
the model does not attend the relevant tokens at all,
we can still claim that the model does not represent
the task’s correct/robust algorithm.

Finally, we note the limitation in using a sin-
gle interpretability method in our analyses in Sec-
tion 4 (Attention rollout). While we argue that
this method best represents the computation flow
within the transformer across tokens, it still does
not take into account some computation parts of the
model, such as the impact of feed-forward layers
which might, theoretically, exclude the impact of
even some attended tokens.

References

Samira Abnar and Willem Zuidema. 2020. Quantifying
attention flow in transformers.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural Machine Translation
by Jointly Learning to Align and Translate.
ArXiv:1409.0473v1.

Martin Fajcik, Martin Docekal, Jan Dolezal, Karel On-
drej, Karel Benes, Jan Kapsa, Pavel Smrz, Alexan-
der Polok, Michal Hradis, Zuzana Neverilova, et al.
2024. Benczechmark: A czech-centric multitask
and multimetric benchmark for large language mod-
els with duel scoring mechanism. arXiv preprint
arXiv:2412.17933.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.
Gormley, and Jason Eisner. 2021. Limitations of
autoregressive models and their alternatives. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5147-5173, Online. Association for Computational
Linguistics.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krish-
namurthy, and Cyril Zhang. 2023. Exposing attention
glitches with flip-flop language modeling.

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried
Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles Blun-
dell, Tom Goldstein, Avi Schwarzschild, and Petar
Velickovi€. 2024. The clrs-text algorithmic reasoning
language benchmark.

William Merrill and Ashish Sabharwal. 2024. The ex-
pressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

Luk43 Mikula, Michal Stefanik, Marek Petrovi¢, and
Petr Sojka. 2024. Think Twice: Measuring the Effi-
ciency of Eliminating Prediction Shortcuts of Ques-
tion Answering Models. In Proceedings of the 18th
Conference of the European Chapter of the ACL (Vol-
ume 1: Long Papers), pages 2179-2193, St. Julian’s,
Malta. ACL.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Velickovi¢, Christos Perivolaropoulos, Federico
Barbero, and Razvan Pascanu. 2025. softmax is not
enough (for sharp out-of-distribution).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proc. of the 2020 Conf. EMNLP: System Demonstra-
tions, pages 38—-45. ACL.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu,
Gao Huang, and Furu Wei. 2025. Differential trans-
former. In The Thirteenth International Conference
on Learning Representations.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou
Wang. 2024. Natural language reasoning, a survey.
ACM Comput. Surv.

A Task Descriptions
A.1 String Reversal

This task requires the model to generate the input
sequence in the reverse order. The task generator

http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2406.04229
http://arxiv.org/abs/2406.04229
http://arxiv.org/abs/2406.04229
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
https://aclanthology.org/2024.eacl-long.133
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=wMj6PgKVuJ
https://openreview.net/forum?id=wMj6PgKVuJ
https://openreview.net/forum?id=wMj6PgKVuJ
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN
https://doi.org/10.1145/3664194

Task Example Input Corresponding Output

String Reversal dh13h82hj283j23H= H32j382jh28h31hd
Long Addition 1240 + 4335 + 3440 = 8916

Long Multiplication | 9900 * 9900 = 1980 + 0198 + 0000 + 0000 = 1089
FFLM wllillf10r10f10rl 1

Value Assignment B1EODI1 A1 CO ABBEDACABCD | 11101101101

Table 3: Example instances of our tasks. The spacing is adjusted for clarity and does not denote a separator of
tokens. How the tasks handle tokenization is described in greater detail in Appendix D

can be configured by the character set and the range
of the input length.

A.2 Long Multiplication

Long multiplication is parametrized by the digit
length of two operands and optional padding. The
solution contains a sequence of intermediate prod-
ucts, which are then summed together into the final
result. The digit ordering is consistent with the
long addition task.

A.3 Long Addition

This task consists of adding several multi-digit
numbers. The digits are ordered from the least sig-
nificant to the most significant. The ordering of the
digits is given by the standard addition algorithm
where we compute the lower order digits first in or-
der to be able to propagate the carry to the topmost
digit. The problem generator can be parametrized
by the number of operands, their length in digits,
and whether short numbers are padded with zeros.
As a subtask of long multiplication, it provides fur-
ther insight into the inner functioning of models on
these arithmetic tasks.

A.4 Value Assignment

In this task, the problem specifies a translation table
from an input alphabet to an output alphabet. The
model is then required to translate an input string,
symbol by symbol. The character sets, and the
string length can be configured. Value assignment
is a subtask of many algorithmic tasks where we
work with symbolic representations.

A.5 Flip Flop Language Modeling

Flip Flop Language Modeling, as introduced by
(Liu et al., 2023) represents a simulation of mem-
ory composed of a single one-bit registers. We
extend this into multiple registers problem, adding
a new flip command that flips the value of the spe-
cific register. The input is a sequence of read, write,
ignore, and flip instructions, each with the register

Figure 3: In String Reversal, the model must learn a
diagonal attention pattern. In ID evaluation (left), the
model attributes high scores to all reference tokens. In
OQOD (right), it fails to do so for some tokens (high-
lighted in red), leading to prediction errors.

index specified as a first operand. The sequence
ends with a read instruction, and the solution is the
bit value currently stored at the selected register.
The parameters of the task can specify how many
registers are used, the length of the instruction se-
quence, and whether flip commands are used.

B OOD Evaluation of String Reversal

Figure 3 illustrates the correlation between low
attention on reference tokens and prediction errors.

C Attention Score on Reference Tokens

The proportion attention score attributed to refer-
ence tokens is computed per each row of the ag-
gregated attention, that is for each predicted token,
separately. This attributes to the need to investigate
the proportion of information that has influenced
a given output representation or output token. The
result is then averaged across the whole sample or
the whole batch to get an idea of how the model
attributes attentions score on a given distribution of
data.

D Tokenization of training and evaluation
samples

With the exclusion of the instruction prompt, we
tokenize the few-shot examples and the data points
themselves into single character-level tokens. This
is important to prepare the reference attention
masks. Without tokenizing like this it would be
possible to evaluate the attention patterns because
different tokenization schemes wildly change the
nature of the task and distribution of critical infor-
mation between tokens. However, the fine-tuned
models were able to parse this representation and
fit the task as can be seen in the resulting accuracies
after training.

E Training Hyperparameters

The following configuration summarizes the setup
used for fine-tuning (or training from scratch) of
our models.

Model:

¢ Name: meta-llama/Llama-3.2-1B-Instruct

* Architecture Configuration:

— Attention Dropout Probability: 0.0
— Hidden Dropout Probability: 0.0

Training Hyperparameters:
* Epochs: 1

 Batch Size: 4

* Optimizer: AdamW

¢ Optimizer Parameters:

— Learning Rate: 5 x 1076
- £1: 0.95

- (£2:0.999

— Weight Decay: 0.2

These hyperparameters are chosen on the basis
of a hyperparameter search that was executed on
String Reversal and Addition tasks, the results of
the search was averaged over these two tasks. The
hyperparameter search can be reproduced by run-
ning the prepared script in our codebase.

The conclusion of the hyperparameter search
was that, for both tasks, smaller batch size, smaller
learning and weight decay were effective in in-
creasing accuracy in OOD. The effect of using
dropout in attention or hidden layers was highly

task-dependent and inconclusive, so we decided
not to use it.

All our experiments were run on a single Nvidia
A100 GPU card and required less than 12 hours to
converge. As we document in our codebase, our
experiments employ HuggingFace Transformers
library (Wolf et al., 2020) v4.48.1 and PyTorch
v2.5.1.

F OOD Evaluation

F.1 Long Addition Task Evaluation
Parameters

The following configuration details the evaluation
setup for the Long Addition task.
In-distribution:

* 2 operands

* Each number is 1-4 digits long
Out-of-distribution:

* 2 operands

* Each number is 5-10 digits long

F.2 FFML Task Evaluation Parameters

The following configuration details the evaluation
setup for the FFML task.
In-distribution:

* Use the flip command

 Each string is composed of 10 commands

* Each instance works with 2 different registers
Out-of-distribution:

* Use the flip command

* Each string is composed of 11-100 commands
* Each instance works with 2 different registers

F.3 Long Multiplication Task Evaluation
Parameters

The following configuration details the evaluation
setup for the Long Multiplication task.
In-distribution:

* Each number is 1-3 digits long
Out-of-distribution:

* Each number is 4-6 digits long

F.4 String Reversal Task Evaluation
Parameters

The following configuration details the evaluation
setup for the String Reversal task.
In-distribution:

* Each string is 1-10 characters long

* The character set is composed of at least 50
unique characters

Out-of-distribution:
 Each string is 11-50 characters long

» The character set is composed of at least 50
unique characters

F.5 Successor Task Evaluation Parameters

The following configuration details the evaluation
setup for the Successor task.
In-distribution:

* The starting number is between 1 and 90

* The length of the series is 2-4 numbers
Out-of-distribution:

* The starting number is between 100 and 900
* The length of the series is 5-6 numbers

F.6 Value Assignment Evaluation Parameters

The following configuration details the evaluation
setup for the Value Assignment task.
In-distribution:

* The number of unique tuples in the translation
table is 5

* The length of the string to be translated is 5
Out-of-distribution:

* The number of unique tuples in the translation
table is 10-50

* The length of the string to be translated is
10-20

G Attention Intervention Details

Our intervention method aims to causally link at-
tention deficits to out-of-distribution (OOD) per-
formance degradation by selectively reinforcing
attention to reference tokens. The process involves
two main stages: identifying key attention heads
and applying the intervention.

1. Identifying Key Attention Heads: To pinpoint
the attention heads most responsible for im-
plementing the desired reference attention pat-
tern, we perform the following steps:

* We run inference on multiple in-
distribution (ID) data samples (typically
30 in our experiments).

e For each attention head, we calculate the
sum of its post-softmax attention scores
on the pre-defined reference tokens. This
sum is accumulated across all ID sam-
ples.

* This cumulative scoring helps identify
heads that consistently attend to refer-
ence tokens, as well as those that might
activate for specific patterns present only
in a subset of samples (e.g., particular
carry operations in addition tasks).

* Heads are then ranked in descending or-
der based on this cumulativ e score.

* We select the top N heads for interven-
tion. N is a hyperparameter optimized to
achieve significant performance improve-
ment on the end-to-end task (e.g., string
reversal) post-intervention.

2. Applying the Intervention during OOD Infer-
ence: The intervention is applied exclusively
to the N selected heads during OOD inference.

* Standard Intervention (e.g., for String Re-
versal): For each selected head, we di-
rectly modify its post-softmax attention
scores. A constant value C (a hyperpa-
rameter, typically ranging from 0.3 to
2.0) is added to the attention score of ev-
ery token position corresponding to a ref-
erence token. These modified attention
scores are then propagated through the
network. This approach proved effective
for tasks like string reversal.

* Conditional Intervention (e.g., for Value
Assignment): For more complex tasks

like value assignment, we observed that
the reference attention pattern was often
distributed across multiple heads, and a
simple global reinforcement was ineffec-
tive. Instead, we adopted a conditional
reinforcement strategy:

— For each selected head, we add the
constant C to the post-softmax atten-
tion score at a reference token po-
sition only if the original attention
score at that specific position already
exceeds a certain threshold (another
optimizable hyperparameter).

— This approach reinforces existing, al-
beit potentially weak, attention sub-
patterns within a head, rather than
imposing the entire reference pattern
uniformly.

— The conditional intervention for
value assignment, while improving
performance, sometimes results in a
slightly lower accuracy boost com-
pared to the standard intervention on
simpler tasks. This is because if the
initial activation for a crucial refer-
ence token falls below the threshold,
our intervention, by design, will not
reinforce it, even if doing so would
be beneficial.

