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ABSTRACT

Coordination tasks traditionally performed by humans are increasingly being
delegated to autonomous agents. As this pattern progresses, it becomes critical
to evaluate not only these agents’ performance but also the processes through
which they negotiate in dynamic, multi-agent environments. Furthermore, different
agents exhibit distinct advantages: traditional statistical agents, such as Bayesian
models, may excel under well-specified conditions, whereas large language models
(LLMs) can generalize across contexts. In this work, we compare humans (N =
216), LLMs (GPT-4o, Gemini 1.5 Pro), and Bayesian agents in a dynamic
negotiation setting that enables direct, identical-condition comparisons across
populations, capturing both outcomes and behavioral dynamics. Bayesian agents
extract the highest surplus through aggressive optimization, at the cost of frequent
trade rejections. Humans and LLMs can achieve similar overall surplus, but
through distinct behaviors: LLMs favor conservative, concessionary trades with
few rejections, while humans employ more strategic, risk-taking, and fairness-
oriented behaviors. Thus, we find that performance parity—a common benchmark
in agent evaluation—can conceal fundamental differences in process and alignment,
which are critical for practical deployment in real-world coordination tasks.

1 INTRODUCTION

Historically, bespoke statistical models have excelled in structured economic exchanges with well-
defined action spaces (Sun and Müller, 2013; Dehghanpour et al., 2016). More recently, the general-
izability and flexibility of large language models (LLMs) have enabled delegation in unstructured
contexts: negotiating supply chain contracts (Van Hoek et al., 2022), coordinating international
trading (Corvin, 2024), and facilitating online commerce transactions (PYMNTS, 2025; Gaarlandt
et al., 2025). Unlike more structured models, LLMs can generalize under uncertainty and partial
information, reducing the need for task-specific customization. As AI agents grow more sophisticated
and are entrusted with higher-stakes decisions, understanding how different types of agents behave
in dynamic, multi-agent settings becomes essential. In particular, navigating the trade-offs between
agent types—not only in terms of negotiated outcomes, but also in their alignment with human
strategies and norms—is critical for responsible delegation.

A barrier to understanding delegation tradeoffs has been the difficulty of evaluating disparate agent
types in comparable interactive settings. Static QA-style benchmarks fail to capture the dynamic,
multi-agent interactions that characterize real-world negotiation. Indeed, recent work has called for
more realistic evaluation environments that reflect the social and strategic complexities faced by
deployed AI agents (Raman et al., 2024; Goktas et al., 2025).

We address this challenge by introducing a novel multi-player bargaining game that enables direct
comparison of populations (e.g., humans, LLMs, and statistical models) under identical conditions.
In our game, players receive endowments of colored chips with private valuations and negotiate
trades to maximize their individual surplus. Bargaining is an ideal testbed for dynamic, multi-agent
evaluations, as it inherently exposes tensions between social norms, individual preferences, and
strategic reasoning, reflecting the complexities of many real-world environments. Moreover, from a
theoretical perspective, bargaining under partial information admits no Pareto efficient, incentive-
compatible solutions (Myerson and Satterthwaite, 1983), forcing agents to navigate trade-offs between
individual gain and mutually beneficial cooperation.
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We conduct an empirical study of our game across three populations: (i) human participants (N =
216), (ii) LLM-based agents, and (iii) specialized Bayesian agents, all facing identical randomized
endowments. The Bayesian agents achieved the highest surplus, proposing aggressive bargains at the
cost of frequent rejections. LLMs matched human surplus in certain game conditions but exhibited
fundamentally different behaviors: where humans made fairness-driven concessions, LLMs favored
conservative, low-variance trades with high acceptance rates.

More broadly, these findings expose a limitation of outcome-based evaluation: aggregate surplus
can mask important differences in behavior and alignment. As AI systems increasingly mediate
real-world negotiations, it becomes essential to assess not just what agents achieve, but how they
navigate trade-offs, adjust to strategic dynamics, and engage with social norms.

2 RELATED WORK

AI agents have excelled in well-defined tasks with explicit objectives, preferences, and constrained
action spaces (Sun and Müller, 2013; Dehghanpour et al., 2016). Recent advances in LLMs have
broadened the scope of delegation to include tasks requiring broader social reasoning, such as
preference elicitation, strategic pricing, natural-language negotiation, and alliance formation in
multi-agent games like Diplomacy (Fish et al., 2024; Soumalias et al., 2025; Tessler et al., 2024;
Vaccaro et al., 2025; Lubars and Tan, 2019; Bakhtin et al., 2022; Kramár et al., 2022). Beyond
social reasoning, LLMs exhibit emergent capabilities in economic computation and human alignment,
replicating behaviors in bargaining, auctions, and other economic games (Horton, 2023; Aher et al.,
2022; Argyle et al., 2022), and reflecting human subgroup-specific patterns when conditioned on
demographic traits (Manning et al., 2024; Xie et al., 2024; Zhu et al., 2024; Park et al., 2023).

However, successful deployment depends not just on capabilities (Jahani et al., 2025), but also on user
expectations, skills, and alignment with social norms; users may suboptimally delegate when system
behavior violates these expectations (Mozannar et al., 2023; Agarwal et al., 2023; Mullainathan and
Obermeyer, 2021; Palminteri et al., 2024; Kapania et al., 2022; Qian and Wexler, 2024). Addressing
alignment gaps requires evaluating both capabilities and behavior in dynamic, social contexts—a
need recognized by recent calls for rigorous methods to steer and assess agent behavior in strategic
multi-agent settings (Raman et al., 2024; Goktas et al., 2025). To concretely examine these challenges,
we study how humans, LLM-based agents, and Bayesian models behave in a dynamic bargaining
task, offering a comparative lens on alignment in strategic social interactions.

3 THE BARGAINING GAME

We introduce a multi-player bargaining game which captures strategic trade-offs, social signaling,
and coordination challenges found in real-world negotiations. Figure 1 presents an overview of the
game, in which three players aim to maximize individual surplus over nine turns. Each begins with
ten chips of each color. Green chips act as a shared numeraire valued at $0.50 by all; other chip colors
(red, blue, purple) have private values, drawn uniformly between $0.10 and $1.00. Game complexity
is varied by incrementally adding chip types: red, then blue, then purple, with green always present.1

Gameplay. In a fixed, random order, players propose trades by offering chip(s) of one color in
exchange for another. The two non-proposers simultaneously decide whether to accept or decline the
proposal; if both accept, one is chosen at random to clear the transaction. Players can only propose
and accept offers that they have sufficient inventory to fulfill. All players observe transactions and
chip holdings, but not others’ chip valuations. At the end of the game, each player receives a payout
based on the surplus generated from their final chip holdings.

4 A PARETO OPTIMAL UPPER BOUND

Before exploring empirical outcomes, we provide a theoretical upper bound analysis. Although our
bargaining game lacks a tractable exact game-theoretic solution, we can compute a Pareto-optimal
allocation via linear programming to benchmark agent performance in our empirical results.

1We show in Appendix A.2 that decision complexity grows with the number of chip colors.
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Figure 1: This provides a broad overview of the bargaining game. Left: Game setup. Center:
Simplified version of gameplay. Right: The agent populations evaluated in this study.

4.1 NOTATION

Consider a game M = (I, G, v, a) with a set of agents I and chips G. Each agent i has a personal
valuation vig for each good g. These valuations are static, independent across agents, and complete
for each agent-good pair. All agents have an initial allocation a0ig of each chip, which indicates the
amount of chip g allocated to agent i. Given these allocations, an agent’s welfare wi is the sum of
their valuations weighted by their allocations: wi =

∑
g∈G vigaig. The total welfare w is thus the

sum of all individual welfare: w =
∑

i∈I wi =
∑

i∈I

∑
g∈G vigaig. We will refer to the difference

between initial and post-trade welfare as surplus gain in the following analysis.

4.2 EFFICIENT ALLOCATIONS

In our game, agents trade chips to improve their welfare. Given their initial endowments a0ig , mutually
beneficial trades may exist that increase total welfare. We provide an upper bound to the obtainable
total welfare, assuming the Pareto condition that no player ends with worse utility than they began.

Definition 1. (Optimal Allocation of Chips). An optimal allocation of chips is any set of allocations
A∗ = {a∗ig | i ∈ I, g ∈ G} that solves:

argmax
A

∑
i∈I

∑
g∈G

vigaig

subject to:

(i) Conservation of goods:
∑

i∈I aig =
∑

i∈I a
0
ig,∀ g ∈ G

(ii) Pareto improvement:
∑

g∈G vigaig ≥
∑

g∈G viga
0
ig,∀ i ∈ I .

(iii) Non-negativity: aig ≥ 0∀ i ∈ I, g ∈ G.

Intuitively, in a centralized setting with full information, A∗ represents a Pareto-efficient allocation
that maximizes aggregate utility without making any agent worse off. While this optimal allocation

3
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A∗ may not be unique, the maximum total welfare w∗ achieved at the optimum is unique. This
optimization problem can be solved efficiently using interior point methods. Its computational
complexity is bounded by O

(
(|I||G|)3.5

)
.

Note that this upper bound is unlikely to be achieved in practice, as no mechanism for decentralized
bargaining with private information can guarantee both Pareto efficiency and incentive compatibility
Myerson and Satterthwaite (1983).2

5 EXPERIMENTAL SETUP

In our design, human participants first completed games in groups of three. We then replicated each
game (identical initial chip endowments) with LLM- and Bayesian- agent groups, enabling direct
comparison across populations.3

5.1 HUMAN SUBJECTS

We recruited 216 U.S.-based participants from Prolific to complete the bargaining game on Deliberate
Lab (Tsai et al., 2024).4 Participants completed two games over a 30-minute session, which included
time waiting for two others to join a live game. To incentivize strategic play, participants received
the surplus value of their final chip holdings in addition to a $4 base payment. The average total
payout was $12.24 ± $6.12. Each participant completed two games with different chip valuations
and profiles. For each of the 2-, 3-, and 4-chip game variants, 24 groups of three players played 2
games each, yielding N = 3× 24× 3× 2 = 432 effective participants across 144 total games.5

5.2 LLM AGENTS

We then replicated each human game with LLM agents. At each turn, an LLM agent received the
same information as its human counterpart, including private chip valuations, public chip holdings,
and trade history. One agent proposed a trade per round; the others evaluated it.

We created two types of agents. As our primary goal was to evaluate baseline performance under
minimal optimization, we first constructed an out-of-box agent used simple prompts adapted from the
human instructions. To assess the benefit of lightweight refinement, we also implemented a refined
agent which generated candidate proposals and selected one using “type-2” reasoning, mimicking
slower, more deliberate decision-making (Furniturewala et al., 2024).

To generalize our findings, we constructed LLM populations using two model families: OpenAI’s
GPT-4o (OpenAI et al., 2024) and Google’s Gemini 1.5 Pro (Team et al., 2024), which were
the latest full-capacity models from each family at time of writing.6 We set prompt temperature to
0.5, following mid-range recommendations for structured reasoning tasks that require coherence and
variability (Arora et al., 2024). Prompts were scaffolded using a chain-of-thought strategy through
the open-source EDSL library (Wei et al., 2022; Horton et al., 2024).

5.3 BAYESIAN AGENTS

The Bayesian agents were programmed specifically to play this bargaining game. Their strategy is
formalized as follows. Each agent i forms a joint belief about the valuations of all other players, v−i.
When agent i proposes a trade (xg, yr) – offering x chips of type g in exchange for y chips of type r –
they choose a trade to maximize their expected payoff:

2A proof that players of the bargaining game lack a dominant strategy is provided in AppendixA.1.
3For reproducibility, details on the human game interface are provided in Appendix B.1. Full LLM prompts

are provided in Appendix G, and the Bayesian agent algorithms are detailed in Appendix A.3.
4IRB approval and informed consent were obtained; we applied no inclusion criteria for recruitment.
5The two games are evaluated independently, as ordering and learning effects were minimal.
6For robustness, we also benchmarked the latest lightweight models (Gemini 2.5 Flash,

GPT-o4-mini), but they failed to execute basic surplus-maximizing trades. We therefore restrict our main
analysis to full-capacity models; see Appendix F for additional context.
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max
(x,y)

∑
v−i

1
{
∃ j ̸= i : accept

(
vj , xg, yr

)}
× ∆ui(vi, xg, yr) × Bi

(
v−i

)
, (1)

where accept
(
vj , xg, yr

)
indicates that player j with valuation vj would accept the trade,

∆ui(vi, xg, yr) = vi,ryr − vi,gxg is player i’s change in utility and Bi(v−i) is player i’s belief
(probability) that the other players’ valuations are v−i. This agent assumes that their opponent’s
acceptance decision is myopically rational, i.e. a receiver with valuation vj accepts if and only if they
have sufficient chips for the trade and their expected utility is positive, i.e. vj,gxg − vj,ryr > 0.

All players update their priors after observing acceptance decisions. A player discards valuation states
{vj} that contradict the observed event, assuming myopically rational opponents, and re-normalizes
the remaining probabilities. When the trade is accepted, the proposer keeps only valuations that
would be accepted in its distribution over the chosen receiver; the receiver keeps only valuations that
would be accepted in its distribution over the proposer. Bystanders update priors for both accordingly.
When there is no trade, all players discard valuations that conflict with the observed non-acceptance.

6 RESULTS

6.1 PERFORMANCE
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Figure 2: Surplus trajectories for human, LLM, and Bayesian-learning agent simulations across game
complexities. Each unique game yields a blue line corresponding to the ratio of surplus achieved
relative to the computed optimal allocation. Means and 95% confidence intervals are highlighted and
listed in Appendix 3. All populations generated positive aggregate surplus.

Figure 2 shows surplus trajectories by agent types and game variation. In the upper right panel, we see
that Bayesian agents reached 74% of the Pareto-efficient optimum in the two-chip game. Across all
variations, Bayesian agents achieved the highest surplus. GPT-4o performed comparably to human
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participants; however, humans statistically outperformed Gemini 1.5 Pro.7 Refined LLMs did
not significantly impact surplus compared to out-of-the-box LLMs (statistical tests in Appendix E).

6.2 PROCEDURAL ALIGNMENT

In addition to performance, we analyze procedural alignment, how the agents engage in the mechanics
of negotiation, through two lenses: 1) observed trading patterns, and 2) regret minimization strategies.

6.2.1 TRADING PATTERNS AND VOLUME DYNAMICS

Figure 3: Trading patterns in the 3-chip game, visualizing (i) net surplus change for the proposer and
(ii) trade ratio. Accepted trades in green, rejections in red. Marginal distributions across each axis are
adjacent to the plots. The vertical dashed line marks zero net surplus (no net value created), and the
horizontal solid line marks balanced exchange (1:1 ratio of chips). Figure values are in Table 5.

Humans and social norms. Figure 3 plots individual trade proposals for the three-chip game for
each agent type. Results for the two- and four-chip games are qualitatively similar (see Appendix F.2).
The vertical balanced value line indicates proposals that generated no net surplus, while the horizontal
balanced ratio line corresponds to 1:1 exchanges of chips. In the left panel, we see that the human
proposals cluster around the balanced ratio line: that is, humans often offer a similar number of chips
as they are requesting. Most trade proposals lie to the right of the balanced value line (i.e., provide
positive surplus to the proposer), though some reduce total surplus.

LLMs and concessionary exchanges. Both LLM populations propose trades near the vertical
balanced net value line (yielding little total surplus), with no anchoring to balanced trade ratios. A
noticeable vertical tail of proposals extends above the 1:1 balanced ratio line, indicating a tendency
to offer more chips than requested (even up to 5:1). Many proposals also incur a net surplus loss.

Bayesian agents and rational surplus maximization. By construction, Bayesian agents strictly
maximize surplus and avoid net-loss trades (no points left of the balanced value line). Their proposals
reach deep into the positive surplus region. Rather than the 1:1 balanced ratio exhibited in human
proposals, the Bayesian offers cluster below the parity line (ratio < 1), meaning they ask for more
chips than they give. Proposal rejections are high.

In sum, these trading patterns reveal clear strategic differences: humans offer trades suggesting a
consideration for balanced, fair exchanges (Danz et al., 2022), LLMs adopt a “concessionary posture”
with high proposal acceptance rates, and Bayesian agents adopt a value-extractive strategy (Fisher
et al., 2011), asking to receive more than they give and incurring higher rejection rates. To evaluate
whether any of these strategies were more optimal ex-post, we next evaluate these trades using a
regret-minimization framework.

7This may reflect the recency of such capabilities; Gemini 1.5 Pro was released three months prior to
GPT-4o and represented an earlier generation of model development.
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6.2.2 STRATEGIC ALIGNMENT AND REGRET MINIMIZATION

At each turn, a participant might take an action of proposing, accepting, or declining a trade. In no
regret actions, no feasible later alternative would yield a better valuation for the target chip. Forced
regret occurs when a higher-surplus option arises later, but the agent’s earlier decisions—such
as premature trades or overcommitting inventory—prevent acting on it. Finally, unforced regret
captures scenarios where a better option becomes available, yet the agent fails to take it.

To avoid speculative modeling of unobserved strategies, we limit the scope of our analysis. First,
we only consider myopically rational transactions (i.e., positive surplus) for proposers, acceptors,
or decliners.8 Interpreting irrational trades, which may be driven reciprocity, signaling, or cognitive
error, would require assumptions we cannot credibly test. Second, when evaluating proposer behavior,
we focus on accepted trades; rejected offers may result from strategic signaling by either party or
proposer misjudgment of demand.9Third, “acceptors” include those who intended to accept a trade,
not only those who were selected to trade.10 This preserves the behavioral signal of willingness to
accept, without conflating risk tolerance or random assignment.

Figure 4 shows an example of a player’s valuations as they trade over the course of a single game.11

On turn 1, Player 3 exhibited a forced regret action as an acceptor: they accepted a trade which
resulted in their having insufficient chips to accept a more profitable offer in turn 2. On turn 7, Player
2 exhibited an unforced regret action as a decliner; they declined a profitable trade and did not
recover the profits later. On Turn 8, Player 2 made a no regret proposal; this was the best deal they
could have made, as there were no better future trades.12

Figure 4: Example of player chip value trajectories over nine turns of a trading game (3-Chip). To
avoid speculation, we do not analyze analyze Player 1’s proposal on Turn 4 (an unaccepted trade), or
Player 3’s acceptance on Turn 5 (accepting a negative surplus offer).

Figure 5 shows the classifications of actions across games and populations.13 The relative performance
of Bayesian agents improves as game complexity increases. Combined with the surplus outcomes in
Figure 2, this suggests that Bayesian agents are not necessarily improving, but rather that LLM and
human performance degrades as the action space expands.

Bayesian agents generate a higher proportion of optimal (no regret) proposals and fewer regrettable
ones compared to LLMs and humans, reflecting more effective surplus-maximizing calculations.
However, Bayesian agents also register the most declines—both regrettable and non-regrettable. This
indicates that their proposal strategies prioritize their own advantage, without necessarily considering
whether those offers will be accepted by others.

In contrast, humans and LLMs exhibit more regrettable proposals and acceptances relative to Bayesian
agents. They also exhibit fewer declines overall, indicating that they propose more agreeable offers at

8Bayesian agents satisfy this by design.
9This analysis is distinct from evaluations conducted from the perspective of decliners.

10This occurs when both accept the trade and one is randomly chosen.
11The sum of all players’ surplus changes at each turn correspond to the blue lines in Figure 2.
12More detailed explanations are provided in Appendix D.
13We exclude refined LLMs as they behave similarly to out-of-the-box models; see Appendix F.1.
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Figure 5: Counts of strategic actions across games. Bayesian agents performed more optimal, no-
regret actions relative to other populations as game complexity increased. Declining a proposal
would not cause forced regret, as this action does not commit any chips. The total number of
actions naturally increases with game complexity, reflecting the larger solution space, not necessarily
improved decision-making.

the cost of making less optimal actions. Differences in forced regret actions are relatively modest,
though LLMs show slightly higher forced regret counts.

7 DISCUSSION

Humans reflect economic and social reasoning. Humans offered trades consistent with classical
fairness norms, proposing a balanced trade ratio. While these proposals were less frequently optimal
than that of Bayesian agents, they were also accepted more often. Post-game survey responses
consistently emphasized fairness and cooperation as decision drivers, suggesting that humans priori-
tize social norms, even in one-shot interactions where long-term reputation effects would not affect
payoff.14 However, nuanced human social motivations are difficult to formalize into algorithms,
posing a fundamental challenge when delegating coordination and negotiation to artificial agents.

LLMs can perform on-par, but may be concessionary by design. The latest model, GPT-4o,
achieved human-level surplus with minimal prompting, demonstrating flexibility when applied to
novel tasks. However, their behavior was compromising and reactionary: they favored value-balanced
proposals which were less optimal than Bayesian proposals but more likely to be accepted, and
exhibited high rates of forced regret trades, suggesting limited strategic foresight in dynamic scenarios.
This conservative play style may arise from several factors: (i) training on cooperative, information-
sharing dialogues, where minimizing friction is implicitly rewarded (Wei et al., 2022); (ii) a tendency
to generate risk-averse, passive responses compounded by a lack of outcome-driven feedback (Ouyang
et al., 2022); and/or (iii) a possible learned aversion to asymmetric outcomes, where generous offers
serve as a coordination strategy to secure agreement (Fisher et al., 2011). In adversarial or zero-sum
negotiations, this overly concessionary tendency could lead LLMs to systematically overcompromise.

Bayesian agents outperform, but lack social adaptability. Bayesian agents excelled at surplus-
maximizing proposals, aggressively extracting value. This strong performance was constructed
through a hand-crafted algorithm specifically aligned to the game’s incentives. In contrast, humans
and LLMs relied on their flexible “out of the box” capabilities, lacking such tailored inductive biases.

In practice, Bayesian agents’ extractive, rejection-tolerant strategy might fail in real-world negotia-
tions, especially in repeated interactions requiring trust and reciprocity. Extending Bayesian agents to
more socially compatible trading would require richer models of preferences, fairness, and adaptive
behavior, which could increase complexity and decrease robustness.

14Post-game survey questions and quantitative responses are in Appendix C.
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Hybrid models offer promise, but need social reasoning. We find that humans consider social
factors, LLMs favor safe, consensus-seeking strategies, and Bayesian agents excel through narrow,
task-specific optimization. These contrasting strengths suggest potential for complementary ap-
proaches, where LLMs are augmented with Bayesian tools or planning modules to improve foresight,
such as inventory management and lookahead reasoning. However, negotiation is not just a planning
problem; success also depends on modeling others’ intentions, social norms, and the unwritten rules
of cooperation. Without explicit social reasoning, even hybrid agents will struggle with the social
nuances that humans navigate instinctively.

Procedural alignment matters for human-AI interaction. Furthermore, how agents negotiate is as
important as what they achieve. Despite humans and LLMs yielding similar aggregate surplus in some
contexts, they exhibited distinct strategies. Crucially, these differences only became visible through
a custom experimental design that enabled matched, one-to-one comparisons across populations;
simple outcome-level aggregation would have obscured these divergences. As AI agents increasingly
participate in human-facing decision-making, focusing solely on efficiency metrics risks missing
misalignments in process, intent, and social compatibility.

Efficiency and scale advantages. A final consideration beyond strategy is scale. LLMs and
Bayesian models can resolve negotiations near-instantaneously, unaffected by cognitive load or
decision fatigue. LLMs, in particular, are faster to deploy out-of-the-box compared to bespoke
Bayesian models; in our case, our out-of-the-box agents required minimal prompt scaffolding around
the human instructions, whereas we constructed a custom algorithm for the Bayesian agents. These
efficiency gains make automation attractive for high-volume or time-sensitive negotiations, even if
strategic or social limitations remain.

Social impacts and risks. Agents that achieve surplus-yielding outcomes through fundamentally
different negotiation styles pose risks for trust, fairness, and social acceptance. If deployed in
real-world negotiations, models like LLMs may default to safe, concessionary behavior, leading
to suboptimal deals and reinforcing status-quo power dynamics. Conversely, optimization-focused
agents like Bayesians may extract disproportionate value, undermining perceptions of fairness and
cooperation. These dynamics may lead to unexpected interaction effects in mixed-agent environments.
Designing AI agents that are not only strategically capable but also socially compatible will be critical
for their long-term acceptance and responsible deployment.

8 LIMITATIONS AND FUTURE WORK

Our study focuses on a single, stylized negotiation game with static valuations and single shot
interactions, conditions that align well with Bayesian agents’ task-specific optimization and may
exaggerate their advantage. While humans and LLMs bring general-purpose reasoning to the
task, their broader capabilities in dynamic, multi-round, or reputation-driven negotiations remain
unexplored. Furthermore, our LLMs used minimal prompting, reflecting realistic deployment but
limiting exploration of more strategic behaviors from alternative prompts or fine-tuning.

Beyond performance metrics, our analysis reveals distinct behavioral profiles but does not disentangle
whether these arise from reasoning limitations, social norms, or inductive biases inherent to each
system. Future work should investigate how humans perceive and trust AI negotiators with different
procedural styles. Another promising avenue for future work is to allow agents to communicate with
natural language. Finally, developing methods to steer LLM agents towards desired procedural norms
explicitly represents a significant ongoing challenge and opportunity.

9 CONCLUSION

This study demonstrates an empirical approach for comparing agents in dynamic, social settings.
By examining human, LLM, and Bayesian behavior in a structured bargaining game, we show how
performance measures can conceal fundamentally different strategic approaches. As AI systems
are increasingly delegated complex tasks, understanding how their decision-making processes align
with human expectations and social values is critical to fostering trust, effective cooperation, and
responsible deployment in real-world applications.

9
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A ALGORITHMS AND PROOFS

A.1 PROOF OF NO DOMINANT STRATEGY

Claim. No agent i ∈ I in the gameM has a dominant strategy.

Setup. Let I be the set of agents, G be the set of goods. For each agent i ∈ I and good g ∈ G,
there is a valuation vig ∈ R≥0. The (feasible) allocations are given by aig, the amount of good g
allocated to agent i.

The welfare of agent i is
wi =

∑
g∈G

vig aig.

The total social welfare is
w =

∑
i∈I

wi =
∑
i∈I

∑
g∈G

vig aig.

Let each agent i have a strategy space Si. A (pure) strategy si ∈ Si is a complete description of
agent i’s behavior in the market (e.g., how they propose, reject, accept, etc.). We write s−i for a
strategy profile of all agents other than i. Let ui(si, s−i) denote agent i’s resulting payoff (or final
utility/welfare) under strategy si against opponents’ strategies s−i. A strategy s∗i is called dominant
for agent i if, for all s−i ∈ S−i,

ui

(
s∗i , s−i

)
≥ ui

(
si, s−i

)
for all si ∈ Si.

In other words, s∗i guarantees the highest possible utility for i, irrespective of what other players do.

Proof. Assume, by way of contradiction, that there exists a dominant strategy s∗i for some agent i.
By the definition of dominance, s∗i must satisfy

ui

(
s∗i , s−i

)
≥ ui

(
si, s−i

)
for all si ∈ Si and for all s−i ∈ S−i.

Construct two different scenarios of other agents’ strategies and valuations, denoted by sA−i and sB−i.
These scenarios can differ in 1) how other agents value the goods {vjg : j ̸= i}, and 2) the demands
or offers they make (i.e. how s−i translates into allocations ajg).

• In scenario A, suppose the other agents are willing to trade or allocate a certain good g∗ to
agent i only if i offers a high price or concedes in some manner. A specialized alternative
strategy sAi (instead of s∗i ) might yield a strictly higher payoff if i trades aggressively for g∗.

• In scenario B, suppose the others behave differently (e.g., they no longer place much value
on g∗ but highly value some other good). Now a different specialized strategy sBi might
yield a strictly higher payoff (because trading strategy for g∗ in scenario A is no longer
beneficial here).

Contradiction of dominance: Because scenarios A and B are both feasible profiles of opponents’
behavior (sA−i and sB−i), there is no single strategy s∗i that can simultaneously guarantee at least as
high a payoff as both sAi and sBi across those distinct opponent profiles. Formally,

∃ sA−i : ui

(
sAi , s

A
−i

)
> ui

(
s∗i , s

A
−i

)
, and ∃ sB−i : ui

(
sBi , s

B
−i

)
> ui

(
s∗i , s

B
−i

)
.

This contradicts the definition of s∗i as a dominant strategy.

Because the above argument does not rely on any special assumption beyond the existence of at least
two different plausible profiles sA−i and sB−i, we conclude that no strategy for agent i can be dominant.
Since i was arbitrary, no agent in the game has a dominant strategy. □
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A.2 EMPIRICAL COMPUTATION OF INCREASING GAME COMPLEXITY

Claim. The decision space increases quadratically as the number of chip colors increases.

Proof. This is a simple consequence that in games with k different colors of chips, there are
(
k
2

)
possible pairs of chips to transact. Since the distribution of opponents’ valuations is symmetric across
chips (except the green numeraire chip), each proposer must consider O(k2) different feasible trades.
Indeed, if we empirically compute the expected number of myopically rational trades15 in the starting
configuration of the 2, 3, and 4-chip game, we arrive at 37.1, 120.7, 250.7 respectively. That is the
3-chip game has approximately

(
3
2

)
as many myopically rational trades in expectation as the 2-chip

game, and the 4-chip game has approximately
(
4
2

)
. This approximation becomes more exact as the

number of chips increases due to the reduced relative impact of the numeraire.

A.3 MULTI-AGENT TRADING ALGORITHM WITH BAYESIAN LEARNING

Algorithm 1 Multi-agent Trading Algorithm with Bayesian Learning

Inputs:
I: set of players
G: set of goods
A0: initial allocation {aig} for all i ∈ I, g ∈ G
{Bi(v−i)}i∈I: each player’s prior belief over other players’ valuations

1: A← A0 ▷ Initialize current allocation
2: for all i ∈ I do
3: initialize Bi(v−i) ▷ Each agent’s prior over other agents’ valuations
4: end for
5: possible_trades← true
6: while possible_trades do
7: trades_found← false
8: Ishuffled ← RandomShuffle(I)
9: for k = 1 to |Ishuffled| do

10: for l = k + 1 to |Ishuffled| do
11: (i, j)← (Ishuffled[k], Ishuffled[l])

12: (A∗
ij, outcome, r)← SOLVEA∗

(
i, j, G, {aig, ajg}g∈G, Bi, Bj

)
▷ Proposer i

finds best trade; r is the responding agent (who accepts/rejects)
13: if outcome = ACCEPT then ▷ Trade executed
14: {aig, ajg}g∈G ← A∗

ij

15: trades_found← true
16: end if
17: BAYESIANUPDATE

(
i, j, r, outcome, Bi, Bj , {Bk}k ̸=i,j

)
▷ All players update

beliefs based on accept/reject
18: end for
19: end for
20: possible_trades← trades_found
21: end while
22: return A

Explanation of key subroutines:

• SOLVEA∗(i, j, . . . ):
– Proposer’s optimization. Agent i (the proposer) solves

max
(x,y)

∑
v−i

1
{
∃ receiver r ̸= i : ACCEPT

(
vr;x,y

)}
×
(
ui

(
hi−x+y

)
−ui

(
hi

))
×Bi(v−i),

15We define a myopically rational trade to be one where the proposer gains surplus and assigns some probability
that at least one opponent would gain surplus by accepting the trade.
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where x are the chips given up by i and y are the chips requested, hi denotes i’s current
holdings, and Bi is i’s belief over others’ valuations.

– Receiver’s acceptance criterion. A potential responder r accepts the trade (x,y)
myopically if

ur

(
hr − y + x; vr

)
> ur

(
hr; vr

)
.

The subroutine returns A∗
ij (the updated allocation for i and j), the outcome (ACCEPT

or REJECT), and the identity of the actual responder r (in case multiple receivers are
considered, or if j is always the designated responder, r = j).

• BAYESIANUPDATE
(
i, j, r, outcome, Bi, Bj , {Bk}k ̸=i,j

)
:

– On ACCEPTANCE: All agents discard any valuation states inconsistent with r accepting
(x,y). Specifically,

vr is retained only if ur(hr − y + x; vr) > ur(hr; vr).

– On REJECTION: All agents discard any valuation states for r that would have accepted
(x,y), since that contradicts the observed rejection.

– Then, each agent renormalizes its belief distributions Bk to sum to 1 over the remaining
(still-plausible) valuations.

This procedure repeats until no further beneficial trades can be found. The Bayesian updates ensure
that, over time, agents refine their beliefs about each other’s valuations based on observed accept/reject
decisions, thereby learning which trades are more likely to succeed.

B HUMAN DATA COLLECTION

B.1 IMPLEMENTATION ON DELIBERATE LAB

Platform. The bargaining game was implemented via Deliberate Lab (Tsai et al. (2024)), an open-
source platform for conducting group human-LLM social science experiments. We will publish the
bargaining game implementation within the platform upon acceptance.

Participant interface. Upon entering Deliberate Lab through a web link, participants proceed
through a multi-stage experiment including informed consent, game instructions, comprehension
checks, and payout information. Upon completing the final comprehension check, they wait in
a “Lobby” stage for other participants. When three participants are in the lobby, they are sent an
invitation to join a live bargaining game (Fig 6). Following the game, there is a post-game survey. For
anonymity, we used a Deliberate Lab feature that assigns participants an anonymous animal avatar
(e.g., “Bear”) as they join the experiment.

Bargaining game user interface. To submit trade proposals, participants used text and selection
fields to specify number and type of chip, respectively. The interface automatically calculated and
displayed projected total chip value if the proposal were to be accepted (Fig 6); it also prevented
players from submitting invalid offers by disabling the "submit" button.

Experimenter interface. To conduct experiments, the experimenter used Deliberate Lab’s dash-
board (Fig 8) to monitor participants as they progressed through the experiment’s information and
comprehension check stages, then manually transferred participants into groups of three to play the
bargaining game once the player was ready to be transferred. The experimenter was also able to send
attention checks to participants (e.g., if several minutes elapsed without any visible progress) and
remove them from the experiment (e.g., if attention checks went unanswered).
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Figure 6: The game interface shown to participants. This shows a participant’s game state. The top
left indicates that they are currently the Proposer, offering an interface to propose an offer. A table
below displays all players’ chip volumes. To the right, the public ledger shows a history of game
rounds, turns, and trade statuses.

For accepting or rejecting proposals, the inter-
face calculated and displayed the projected total
chip value if the player were to accept the pro-
posal. It also disabled acceptance for offers the
player could not fulfill (Fig 7, bottom). All par-
ticipants were shown a table of all players’ chip
quantities and a log of actions (i.e., when trades
were proposed, accepted, and rejected, and when
each round and turn of the game changed). Turn
order was determined randomly.

Figure 7: Accepting or rejecting a trade. The
bottom image shows a disabled “accept” option.

Figure 8: Experiment dashboard for managing participants. On the left, experimenters can view
participants as they enter the experiment, send attention checks, and/or remove participants. On the
right, experimenters can monitor the status of a selected participant and assign them to a cohort of
three for gameplay.
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C POST-GAME PARTICIPANT SURVEY

C.1 SURVEY QUESTIONS

Table 1: Post-game survey questions.

Survey question Response format
1 Please describe your strategy in the game in a few sentences. Freeform text

2 Please describe any experiences or background that may have influenced
your performance in the game.

Freeform text

3 On a scale from 1 to 10, how would you rate your trading strategy, where
1 is highly competitive (focused mainly on your own gains) and 10
is highly collaborative (focused on other players’s potential gains and
mutual benefits?

1 through 10 scale;
1: "Not at all aggressive",
10: "Very aggressive"

4 On a scale from 1 to 10, how certain are you that you made the best
possible trades during the experiment?

1 through 10 scale;
1: "Not at all confident",
10: "Very confident"

5 On a scale from 1 to 10, how satisfied are you with your final trading
outcomes?

1 through 10 scale;
1: "Not at all satisfied",
10: "Very satisfied"

6 On a scale of 1 to 10, how would you rate the mental effort you put into
today’s trading games, where 1 means ’I barely engaged in any thinking’
and 10 means ’I put in significant mental effort’?

1 through 10 scale;
1: "No mental exertion at all",
10: "Very high mental exertion"

7 Please provide any additional context on your answers above. Freeform text

8 Please help us to improve this experiment. How was your experience
today? Were there any elements of the instructions or gameplay that you
found confusing?

Freeform text

C.2 QUANTITATIVE SURVEY RESPONSES

Table 2: Summary statistics of self-assessment variables (mean and standard error). There was no
significant change in certainty or exertion as game complexity increased.

Game variation Competitive Certainty Satisfaction Exertion

2 chip 5.57 (0.34) 5.57 (0.33) 6.68 (0.31) 7.11 (0.24)
3 chip 5.32 (0.34) 5.92 (0.33) 7.07 (0.30) 7.10 (0.25)
4 chip 5.75 (0.34) 6.04 (0.33) 7.46 (0.26) 7.46 (0.19)

D ADDITIONAL CLARIFICATION ON STRATEGIC REGRET CLASSIFICATIONS

Here, we utilized counterfactual analysis to visually dissect the three kinds of regret behavior
previously discussed in Section 6.2.2, as illustrated in Fig 9. In these visualizations, the player’s actual
path of total chip value is depicted by a solid colored line, while the counterfactual path—representing
the outcome had a different decision been made — is indicated by a gray dashed line.

Counterfactual definition: The counterfactual path is constructed by simulating an alternative
decision at a critical juncture (e.g., accepting a declined offer, declining an accepted offer, or making a
different proposal) and projecting the subsequent value trajectory. This allows for a direct comparison
between the actual outcome and what could have been.

No regret scenarios. This scenario is demonstrated by Player 2 (P2) in the role of a proposer,
as shown in the upper-right panel of Fig 9, focusing on Turn 9. Player 2 makes a proposal that is
accepted, leading to an actual chip value of 15.3. The counterfactual path, representing a scenario
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Figure 9: Regret behavior visualization: The top-left panel shows an overview trajectory in Fig 4.
The top-right panel illustrates a “No Regret” scenario for P2 as a proposer. The bottom-left panel
depicts “Forced Regret” for P3 as an acceptor. The bottom-right panel shows “Unforced Regret”
for P2 as a decliner at Turn 8. Solid lines represent actual player paths, while dashed lines indicate
counterfactual paths.

where P2 might not have made this proposal or made a less optimal one, results in a lower value
of 14.9. In this “No Regret” instance, the player’s actual total value path is superior to or equal to
the evaluated counterfactual path, indicating that the decision made was optimal given the available
information and subsequent events.

Forced regret scenarios. The lower-left panel of Fig 9 illustrates “Forced Regret” experienced by
Player 3 (P3) as an acceptor from Turn 1 to Turn 2. P3 initially accepts an offer from P1 at Turn
1, resulting in an actual value of 10.8. However, a more lucrative offer from P2 becomes available
in Turn 2. Due to the commitment made in Turn 1 (e.g., changed chip inventory), P3 is unable to
capitalize on this subsequent, better opportunity. The counterfactual path shows that had P3 declined
P1’s initial offer, they could have potentially accepted P2’s offer, leading to a higher value of 11.0.

Unforced regret scenarios. The lower-right panel of 9 demonstrates Player 2 (P2) in the role
of a decliner from Turn 8 to 9. P2 is presented with a profitable trade offer but chooses to decline
it. P2’s actual chip value remains at 14.9 after this decision. The counterfactual path, however,
demonstrates that had P2 accepted this profitable offer, their chip value would have increased to 15.0.
This highlights an avoidable error: a superior option was available and actionable, but the agent failed
to select it, leading to a sub-optimal outcome. Unlike forced regret, no prior decision prevented P2
from taking the better option; the regret stems directly from the choice made at that specific juncture.

E SURPLUS VALUES AND SIGNIFICANCE

Table 3: Scaled final surplus gain (mean and standard error). This is the ratio of observed total surplus
to optimal surplus.

Game variation Human GPT-4o GPT-4o refined Gemini Gemini refined Bayesian agent

2 chip 0.60 (0.06) 0.69 (0.03) 0.68 (0.04) 0.42 (0.04) 0.45 (0.05) 0.74 (0.04)
3 chip 0.59 (0.04) 0.62 (0.03) 0.64 (0.03) 0.42 (0.03) 0.43 (0.03) 0.80 (0.03)
4 chip 0.54 (0.03) 0.54 (0.02) 0.58 (0.02) 0.37 (0.02) 0.33 (0.02) 0.73 (0.02)
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Table 4: Two-sided t-test p-values comparing surplus values across populations (N=144 per game).
Arrows indicate whether the column’s mean surplus was higher (↑) or lower (↓) than the row’s.

Human GPT-4o GPT-4o refined Gemini Gemini refined Bayesian agent

2 chip

Human – 0.491 ↑ 0.597 ↑ 0.263 ↓ 0.066 ↓ 0.654 ↑
GPT-4o – – 0.302 ↓ 0.000 ↓ 0.000 ↓ 0.141 ↑
GPT-4o refined – – – 0.000 ↓ 0.000 ↓ 0.414 ↑
Gemini – – – – 0.359 ↑ 0.000 ↑
Gemini refined – – – – – 0.000 ↑
Bayesian agent – – – – – –

3 chip

Human – 0.525 ↑ 0.021 ↑ 0.001 ↓ 0.000 ↓ 0.000 ↑
GPT-4o – – 0.164 ↑ 0.000 ↓ 0.004 ↓ 0.000 ↑
GPT-4o refined – – – 0.000 ↓ 0.000 ↓ 0.001 ↑
Gemini – – – – 0.799 ↑ 0.000 ↑
Gemini refined – – – – – 0.000 ↑
Bayesian agent – – – – – –

4 chip

Human – 0.601 0.258 ↑ 0.000 ↓ 0.000 ↓ 0.000 ↑
GPT-4o – – 0.270 ↑ 0.000 ↓ 0.000 ↓ 0.000 ↑
GPT-4o refined – – – 0.000 ↓ 0.000 ↓ 0.000 ↑
Gemini – – – – 0.003 ↓ 0.000 ↑
Gemini refined – – – – – 0.000 ↑
Bayesian agent – – – – – –

F ASIDE ON SMALLER MODEL PERFORMANCE

We tested smaller models from both the Gemini and GPT families— Gemini-2.5-Flash and
GPT-o4-mini—and found that their overall performance falls short of both human participants
and larger models such as GPT-4o, particularly in terms of surplus generation. Even with prompt
refinement, the average surplus gain remains substantially lower.

Procedurally, these small models also behave quite differently from their larger counterparts. As
shown in Figure 10, proposals by Gemini-2.5-Flash and GPT-4-mini are heavily concentrated around
a narrow region: nearly zero net surplus gain and a 1:1 trade ratio. Roughly 90% of offers consist of
exchanging one chip for exactly one of another type (e.g., 1 red for 1 green). Loss-incurring proposals
are virtually nonexistent—but so are high-surplus trades (e.g., net surplus > 2). Prompt refinement
slightly broadens the distribution but fails to shift the models away from this dominant 1:1 pattern.

This low-variance, risk-averse behavior is characteristic of the “lazy generation” effect reported in
small language models (Lambert and Calandra, 2023), and reflects the narrow, template-driven action
spaces observed in recent bargaining benchmarks for sub-10B parameter agents (Xia et al., 2024).

Figure 10: Comparison of the trade space (3-Chip) between small LLM agents (GPT-o4-mini and
Gemini-2.5-flash).
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F.1 FULL STRATEGIC ANALYSIS VISUALIZATION

Figure 11: This visualization follows the same structure as Figure 5, with additional Refined LLMs.
Strategic differences between refined and out-of-the-box LLMs are empirically similar.

F.2 SUPPLEMENTARY TRADE SPACE VISUALIZATIONS

Summary statistics of trade space values are in Table 5, with the 2-chip visualization in Figure 12 and
4-chip visualization in Figure 13. They exhibit similar behaviors as discussed in Section 6.2.1.

Figure 12: Comparison of the trade space (2-Chip) between Human participants, LLM agents (GPT-
4o and Gemini-1.5 Pro), and Bayesian agents.

Figure 13: Comparison of the trade space (4-Chip) between Human participants, LLM agents (GPT-
4o and Gemini-1.5 Pro), and Bayesian agents.
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Table 5: Summary statistics from trade space visualizations.

Game Player Acceptance Surplus Mean (SD) Ratio Mean (SD) Median [Surplus, Ratio]

2-chip

Human Accepted 0.611 (1.031) 1.147 (0.652) [0.500, 1.000]
Rejected 1.088 (1.313) 0.735 (0.368) [0.800, 0.667]

GPT-4o Accepted 0.148 (0.617) 1.711 (0.976) [0.100, 1.500]
Rejected 0.414 (1.031) 0.715 (0.393) [0.100, 0.667]

Gemini-1.5 Pro Accepted -0.305 (0.913) 1.508 (0.721) [-0.100, 1.500]
Rejected 0.230 (1.317) 1.048 (0.475) [0.100, 1.000]

Bayesian Accepted 2.245 (1.252) 0.867 (0.315) [2.300, 0.900]
Rejected 2.058 (1.904) 0.636 (0.372) [1.500, 0.526]

3-chip

Human Accepted 1.211 (1.317) 1.039 (0.387) [1.100, 1.000]
Rejected 1.830 (1.803) 0.840 (0.325) [1.300, 1.000]

GPT-4o Accepted 0.437 (0.838) 1.765 (0.945) [0.200, 1.600]
Rejected 0.345 (0.963) 0.918 (0.501) [0.200, 0.800]

Gemini-1.5 Pro Accepted 0.329 (0.899) 1.394 (0.610) [0.400, 1.500]
Rejected 0.528 (1.819) 1.075 (0.497) [0.600, 1.000]

Bayesian Accepted 3.173 (1.853) 0.944 (0.274) [3.200, 0.900]
Rejected 3.385 (2.725) 0.783 (0.355) [2.800, 0.700]

4-chip

Human Accepted 1.331 (1.214) 1.173 (0.562) [1.200, 1.000]
Rejected 1.757 (1.438) 0.863 (0.288) [1.500, 1.000]

GPT-4o Accepted 0.369 (0.929) 1.745 (0.831) [0.200, 1.600]
Rejected 0.534 (0.981) 1.262 (0.518) [0.300, 1.250]

Gemini-1.5 Pro Accepted 0.403 (0.858) 1.438 (0.540) [0.400, 1.500]
Rejected 0.650 (1.187) 1.022 (0.377) [0.600, 1.000]

Bayesian Accepted 3.536 (1.793) 0.965 (0.251) [3.400, 0.900]
Rejected 4.251 (2.824) 0.738 (0.303) [3.500, 0.700]

G LLM SIMULATION PROMPTS

G.1 RULE EXPLANATION

How the game works:
The game consists of 3 rounds of trading. During each round, each player will have a turn to

propose 1 trade. These turns are pre-determined in a random order and the order stays
the same in each round.

Trade proposals:
To propose a trade, a player must:
1. Request a certain quantity of chips of a single color from any other player to get.
2. Specify a certain quantity of chips of a different color to give in return.

Trade rules:
Players cannot offer more chips than they currently hold. For example, if you only have 5 red

chips, you cannot offer 6 red chips.
Players cannot trade chips of the same color. For example, you cannot trade red chips for red

chips.

Trade completion:
When an offer is presented, all other active participants get a chance to accept or decline.

Note: Active participants are those not currently making the offer.

Participants make their decisions simultaneously and privately. The participant who receives
the offer is not dependent on who accepts the trade first. Some possible outcomes:

If no one accepts, the trade does not happen, and the turn ends.
If multiple participants accept, one accepting participant is chosen at random to complete

the trade with the offering participant. This means that participants cannot choose who
they trade with.

If only one participant accepts, the trade will happen.

Key points to remember:
In each round, each player gets to propose one trade and respond to other player’s trades
You can only propose trades between different colored chips, and cannot offer to give a chip

amount that you do not have
When multiple players accept a trade, the trading partner is randomly selected
"""
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G.2 PROPOSER’S PROMPT

We used a Chain-of-Thought approach to elicit LLM agent’s trade proposals:

You are {{name}}.
Your valuations of the different types of chips are: {{preference_description}}.
You now have the following amounts of each chip: {{item}}.
The conversation history so far is {{history}}.

REMEMBER, to propose a trade, you must:
Request a certain quantity of chips of a single color from any other player to get
Specify a certain quantity of chips of a different color to give in return

REMEMBER you have the following amounts of each chip: {{item}}.
Your goal is to make as much money as possible. The trades, you choose to make to accomplish

this, are up to you.
As a part of making money you must be rational - do not propose a trade in which you lose

money. The value of a trade to you is the difference between the total value of chips
you receive (quantity x your valuation) minus the total value of chips you give up
(quantity x your valuation). Only propose trades that give you positive value.

In short, your trades should be both incentive compatible and incentive rational.
Your response must use these EXACT tags below. The response should include nothing else

besides the tags, your trade offer, and your reasoning. The text between tags should be
concise.

‘‘‘
<REASONING>
[Provide your concise reasoning in a few sentences, e.g. To gain more surplus, I want more

xxx chips]
</REASONING>

<CHECK>
[check if you have sufficient chips to trade. If you have n green chips, you can at most give

n green chips. If you don’t want to trade, you can ask for a large amount of chips that
no one can afford]

<\CHECK>

<GET_COLOR> Color, e.g. red</GET_COLOR>
<GET_QUANTITY> quantity, e.g. n </GET_QUANTITY>
<GIVE_COLOR> Color, e.g. red</GIVE_COLOR>
<GIVE_QUANTITY> quantity, e.g. n </GIVE_QUANTITY>
‘‘‘

G.3 RECEIVER’S PROMPT

You are {{name}}.
Your valuations of the different types of chips are: {{preference_description}}.
You now have the following amounts of each chip: {{item}}.
The conversation history so far is {{history}}.

You have an offer. {{proposer}} is offering to give {{give}} and get {{get}} in return.
If you make this trade, your total wealth will change by: {{delta_surplus}}

Now, you need to decide whether to accept or decline.
Your response must use these EXACT tags below. The response should include nothing else

besides the tags, your choice to accept or decline, and your reasoning. The text between
tags should be concise.

‘‘‘
<REASONING>
[Provide your concise reasoning in a few sentences.]
</REASONING>

<CHOICE>Yes or No </CHOICE>

G.4 REFINED PROPOSING PROMPT

The refined prompt first generates multiple trades proposals and uses another LLM query to choose
the best one among them.

G.4.1 MULTIPLE PROPOSAL GENERATION PROMPT

You are {{name}}.
Your valuations of the different types of chips are: {{preference_description}}.
You now have the following amounts of each chip: {{item}}.
The conversation history so far is {{history}}.
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REMEMBER, to propose a trade, you must:
Request a certain quantity of chips of a single color from any other player to get
Specify a certain quantity of chips of a different color to give in return

REMEMBER you have the following amounts of each chip: {{item}}.
Your goal is to make as much money as possible. The trades, you choose to make to accomplish

this, are up to you.
As a part of making money you must be rational - do not propose a trade in which you lose

money. The value of a trade to you is the difference between the total value of chips
you receive (quantity $\times$ your valuation) minus the total value of chips you give
up (quantity $\times$ your valuation). Only propose trades that give you positive value.

In short, your trades should be both incentive compatible and incentive rational.
You can trade as many chips as you want in a single turn, assuming you have that many. Do not

feel constrained to only trade a single chip at a time.
Propose 3 different good trade ideas, so a next step can decide on the best trade of the ones

you propose here.
Your response must use these EXACT tags below. The response should include nothing else

besides the tags, your trade offer, and your reasoning. The text between tags should be
concise.

Repeat the below tags once for each of the trade ideas you propose.
‘‘‘
<REASONING>
[Provide your concise reasoning in a few sentences, e.g. To gain more surplus, I want more

xxx chips]
</REASONING>

<CHECK>
[check if you have sufficient chips to trade. If you have n green chips, you can at most give

n green chips. If you don’t want to trade, you can ask for a large amount of chips that
no one can afford]

<\CHECK>

<GET_COLOR> Color, e.g. red</GET_COLOR>
<GET_QUANTITY> quantity, e.g. n </GET_QUANTITY>
<GIVE_COLOR> Color, e.g. red</GIVE_COLOR>
<GIVE_QUANTITY> quantity, e.g. n </GIVE_QUANTITY>
‘‘‘

G.4.2 CHOOSING FROM MULTIPLE POSSIBLE PROPOSALS PROMPT

You are {{name}}.
Your valuations of the different types of chips are: {{preference_description}}.
You now have the following amounts of each chip: {{item}}.
The conversation history so far is {{history}}.

REMEMBER, to propose a trade, you must:
Request a certain quantity of chips of a single color from any other player to get
Specify a certain quantity of chips of a different color to give in return

REMEMBER you have the following amounts of each chip: {{item}}.
Your goal is to make as much money as possible. The trades, you choose to make to accomplish

this, are up to you.
As a part of making money you must be rational - do not propose a trade in which you lose

money. The value of a trade to you is the difference between the total value of chips
you receive (quantity $\times$ your valuation) minus the total value of chips you give
up (quantity $\times$ your valuation). Only propose trades that give you positive value.

In short, your trades should be both incentive compatible and incentive rational.
You can trade as many chips as you want in a single turn, assuming you have that many. Do not

feel constrained to only trade a single chip at a time.

Below are three trade ideas you have proposed. Please pick the best trade proposal from the
ones below that you will propose to the group.

Do not change anything about the trade you have selected from the ideas below.
Your response must use these EXACT tags below. The response should include nothing else

besides the tags and content of your selected trade offer including its reasoning.
‘‘‘
<REASONING>
[Provide your concise reasoning in a few sentences, e.g. To gain more surplus, I want more

xxx chips]
</REASONING>

<CHECK>
[check if you have sufficient chips to trade. If you have n green chips, you can at most give

n green chips. If you don’t want to trade, you can ask for a large amount of chips that
no one can afford]

<\CHECK>

<GET_COLOR> Color, e.g. red</GET_COLOR>
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<GET_QUANTITY> quantity, e.g. n </GET_QUANTITY>
<GIVE_COLOR> Color, e.g. red</GIVE_COLOR>
<GIVE_QUANTITY> quantity, e.g. n </GIVE_QUANTITY>
‘‘‘

Proposed trade ideas to choose from:
{{proposed}}
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H REPRODUCIBILITY STATEMENT

We’ve provided screenshots of the interface for human experiments and cited all used tools (Ap-
pendix B.1), and will release this game for public usage upon acceptance. The algorithm for the
Bayesian agent is provided in Appendix A.3, with code provided as supplemental material. The
prompts for the LLM agents are provided in Appendix G, with model specifications in Section 5.2.

For reproducibility, the Bayesian agent algorithms are detailed in Appendix A.3, and full LLM
prompts are provided in Appendix G with supplemental code. The platform used for human experi-
ments with the bargaining game implementation is open-sourced and provided in Appendix B.1.

I ETHICS STATEMENT

All human participant research adhered to IRB-approved protocols, with informed consent provided
and fair compensation above regional minimum wage (Section 5.1) of over $24 USD per hour.
We used no personally identifiable data and anonymized participant references with a cohort hash
following data collection. The work poses minimal foreseeable risk of harm or misuse. Potential
safety implications of the work are discussed in Section 7.

A detailed description of the custom interface is provided in Appendix B.1, with the full text of
instructions for Deliberate Lab instructions provided as supplemental material. IRB approval and
informed consent by all participants were received prior to the study. Compensation is directly
addressed in Section 5.1.
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