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ABSTRACT

Innovation is a key driver of economic and social progress, with Intellectual Prop-
erty (IP) protection through patents playing a crucial role in safeguarding new
creations. For businesses actively producing goods, detecting potential patent in-
fringement is vital to avoid costly litigation and operational disruptions. However,
the significant domain gap between products and patents—coupled with the vast
scale of existing patent databases—makes infringement detection a complex and
challenging task. Besides, the machine learning (ML) community has not widely
addressed this problem, partly due to the lack of comprehensive datasets tailored
for this task. In this paper, we firstly formulate a new task: detecting potentially
infringing patents for a given product represented by multi-modal data, includ-
ing images and textual descriptions. This task requires a deep understanding of
both technical and legal contexts, extending beyond simple text or image match-
ing to assess functional similarities that may not be immediately apparent. To
promote research in this challenging area, we further introduce the ERiC-UP3

(E-Commerce Risk intelligence Classifier on Utility Patent and Product Pairs)
benchmark, a large-scale, well-structured dataset comprising over 13-million
patent samples and 1 million product samples. It includes 11,000 meticulously
annotated infringement pairs for training and 2,000 for testing, all rigorously re-
viewed by patent experts to ensure high-quality annotations. The dataset reflects
real-world scenarios with its multi-modal nature and the necessity for deep func-
tional understanding, offering unique characteristics that set it apart from existing
resources. As a case study, we provide results from a series of baseline methods
and propose a simple yet effective infringement detection pipeline. We also ex-
plore additional approaches that may enhance detection performance, such as text
style rewriting, cross-modal matching effectiveness, and image domain alignment.
Overall, the ERiC-UP3 benchmark is the first strictly annotated product-patent in-
fringement detection dataset and stands as the largest multi-modal patent dataset,
as well as one of the largest multi-modal product datasets available. We aim to
advance research extending language and multi-modal models to diverse and dy-
namic real-world data distributions, fostering innovation and practical solutions in
IP infringement detection.

1 INTRODUCTION

Intellectual property (IP) protection through patents is essential for safeguarding innovations across
industries, granting companies and individuals exclusive rights over their creations (Reitzig & Pu-
ranam, 2009; Maskus, 1998). However, the misuse of the patent system—notably by “patent trolls”
who file lawsuits for compensation without ever producing the patented products—places signifi-
cant legal and financial burdens on legitimate manufacturers (Golden, 2006). For businesses actively
producing goods, avoiding IP infringement is critical to prevent costly litigation and operational dis-
ruptions. Proactively detecting and mitigating potential infringements is key to minimizing these
risks, ensuring smoother operations, and fostering continued innovation.

A major challenge in detecting patent infringement lies in the significant domain gap between prod-
ucts and patents. As illustrated in Figure 1, patent documents contain technical text and schematic
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Figure 1: Two pages of an example patent document (left, Plank support exercise apparatus and
related methods, Publication No.US10286245B2) and website of an example product (right, planks
core trainer abdominal board lcd display strength training fitness). The highlighted sections show
subsets of data fields that mainly function and we put zoomed-in example in in Appendix A.

diagrams, while product data typically consist of images and textual descriptions. This multi-modal
nature results in stark differences in both visual and textual representations, complicating cross-
modal matching and functional similarity assessment. Moreover, patents often describe abstract
ideas, technical processes, and innovative designs that require a deep understanding of both le-
gal and technical contexts. On the other hand, the vast number of existing patents—tens of mil-
lions—further exacerbates the difficulty, creating an immense search space where accurately re-
trieving relevant patents for a given product becomes a daunting task. Beyond the sheer volume, the
ambiguity in language and variation in the way inventions are described add layers of complexity.
Functional overlap between products and patents may not be immediately apparent from surface-
level similarities, meaning infringement may occur based on underlying mechanisms rather than
visible features, which necessitates deeper analysis beyond simple text or image matching.

Usually, patent infringement detection has been a labor-intensive process requiring substantial time
and expertise from specialists well-versed in both legal and technical fields (Bergmann et al., 2008).
This reliance on manual assessments not only makes the process costly but also limits its accessibil-
ity, particularly for small and medium-sized enterprises. While leveraging ML (Goodfellow et al.,
2016) to automate this process presents a promising solution to reduce costs and enhance accessi-
bility, the absence of well-annotated datasets specifically designed tailored for this task has signifi-
cantly impeded progress. Therefore, the field has not yet attracted widespread attention within the
ML community, hindering the development of accurate and functional automated detection models.

This paper focuses on bridging this gap and advancing related research, where we first formulate
the task of patent infringement detection and subsequently introduce two benchmark datasets tai-
lored for it: ERiC-UP3-Base and ERiC-UP3-Large (E-Commerce Risk intelligence Classifier on
Utility Patent and Product Pairs). The former includes a smaller set of samples designed to pro-
vide researchers with a platform for rapid testing and prototype development, while the latter offers
broader data coverage, suitable for testing model robustness and effectiveness in more complex and
diverse real-world scenarios. On these benchmarks, we conduct extensive experiments and provide
a series of baseline results to demonstrate the task’s challenges and to serve as a reference for sub-
sequent research. Additionally, we develop a straightforward yet effective text-based method for
infringement detection, which includes a classifier for potential patent infringements and a product-
patent-specific retriever. Crucially, our framework shows strong baseline results and significantly
enhances the performance of infringement detection. We further conduct a series of meaningful ex-
periments on this dataset to improve the success rate of infringement detection, including text style
rewriting, the incorporation of image knowledge to aid detection performance, and the alignment of
image modal features. Through these contributions, we not only advance the application of ML in
the field of IP protection but also provide valuable resources for the research community.

2 ERIC-UP3 BENCHMARK

2.1 TASK FORMULATION

A product item Pi = (IPi , TP
i ) consists of a set of images IPi = {IPi,1, IPi,2, · · · } and a corresponding

textual structure TP
i , which includes a title and a description. Given a gallery set of patent samples
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Table 1: Statistics of ERiC-UP3-Base and ERiC-UP3-Large.
Support Product Set Gallery Set of Patents Patent CPC Main Classes Training Paris Test Parins

Base 979,438 2,551,842 5 7.349 454
Large 13,410,443 137 11,000 2,000

Q = {Qj |Qj = (IQj , TQ
j )}, where each patent Qj includes a set of images IQj = {IQj,1, I

Q
j,2, . . . }

and a corresponding complex textual structure TQ
j , typically comprising a title, abstract, back-

ground, claims, and other sections, the task is to retrieve the most functionally similar patent Qk ∈ Q
that may be infringed upon by the query product item Pi. For example, the goal is to predict a ranked
list Ri = [id1i , id

2
i , . . . , id

k
i , . . . , id

N
i ] ∀idj ∈ Q, where N indicates the size of querying patent

pool and idki corresponds to a specific patent in Q, ordered by their relevance or likelihood of in-
fringement with respect to the product item Pi. The task is to ensure that the most functionally
similar and potentially infringing patent is optimally ranked highest on the list.

2.2 DATASET CONSTRUCTION AND SIZE

As shown in Table 1, we initially introduce ERiC-UP3-Large benchmark, which includes 11,000
pairs of product-patent infringements for training and 2,000 pairs for test. The large version also in-
cludes a gallery set of 13-million patents, complete with technical texts and diagrams. To facilitate
fast validation of algorithm development while reducing training costs, we create ERiC-UP3-Base
as a subset of the Large version. The Base version comprises 7,300 training pairs, 454 test pairs,
and a reduced patent retrieval pool of 2.55 million patents, focusing on five specific patent CPC1

categories (i.e., A45, A47, A63, B65 and H01). Each infringement pair in both versions is meticu-
lously labeled by patent experts through three rounds of cross-validation, ensuring the identification
of clear infringement cases. In addition, we collect of 1M multi-modal product samples, designed to
support effective product representation learning through diverse image and textual descriptions. All
patent and product samples are collected from the US Patent and Amazon websites2. The process
of obtaining these samples, standardizing data formats, filtering out missing and erroneous entries,
deduplicating, and merging the datasets into a user-friendly format is nontrivial. We highlight the
several significant differences between our benchmark with previous related datasets in Appendix B.

2.3 CHALLENGE OF LABELING PRODUCT-PATENT INFRINGEMENT PAIRS

Labeling product-patent infringement pairs is a complex and demanding task due to the inherent
difficulties in accurately linking products to the patents they may infringe upon. One of the primary
challenges stems from the use of Virtual Patent Marking (VPM) (Patent & Office, 2014), a method
mandated by US law requiring companies to disclose product-patent information. However, com-
pliance is minimal, and the data provided is often sparse and unevenly distributed across industries.
Manufacturers frequently list only product model numbers without detailed descriptions, making it
arduous to ascertain the exact product specifications and associated patents. Patent experts in our
IP team have dedicated considerable effort to meticulously verify and establish the relationships
between these model numbers, the corresponding products, and their relevant patents. In addition
to VPM data, a significant portion of our infringement pairs has been compiled through the dili-
gent work of our IP team during pre-listing IP audits. Their deep understanding of patent databases
and manual search methodologies enables them to identify and match patents with high precision.
Furthermore, we have incorporated data from historical infringement cases, reflecting a wealth of
knowledge accumulated over time. These comprehensive efforts underscore not only the challenges
in assembling accurate product-patent pairs but also highlight the critical role of specialized exper-
tise in navigating the intricacies of IP law and enforcement.

2.4 DATASET PRE-PROCESSING AND ATTRIBUTE

For data preprocessing, we first tackle textual data by structuring it. Each section of the text is
parsed and de-duplicated individually, irrelevant characters are filtered using the duplicated n-gram
coverage ratio (Rae et al., 2021), and the cleaned text is stored in a structured JSON format. For
images, both product and patent datasets contain substantial noise, such as partial product images

1IPC was established by the 1971 Strasbourg Agreement. CPC, an extension of IPC, has been used by the
USPTO since 2013, offering broader coverage and including a “Y” section for newer technologies.

2As specified by US law and Amazon, all patent and product data is publicly accessible.
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Table 2: Statistics of textual sections.
Section ERiC-UP3-Base ERiC-UP3-Large

Avg # Words Avg # Words

Gallery
set of
Patent

Title 7.6 7.77

Abstract 111.01 104.28

Claims 894.48 946.61

Background 99.65 96.83

CPC Code - -

Publication Number - -

Publication Month - -

#imgs / sample 21.01 20.51

Support
set of

Product

Title 11.72

Description 122.83

#drawings / sample 10.77

Table 3: Comparison with previous datasets.
Dataset #Samples Modality Domain

RPC checkout 30,000 Image

Product
Twitter100k 100,000

Image-TextINRIA-Websearch 71,418
Dress Retrieval 20,200
Product1M 1,182,083

WIPO-alpha 75,250

Text Patent
CLEF-IP 1,500,000
USPTO-2M 2,000,147
BIGPatent 1,341,362
HUPD 4,518,263

Support Product Set 979,438 Image-Text Product
Gallery Patent Set 13,410,443 Image-Text Patent

and technical diagrams unrelated to infringement detection as shown in Figure 5 in Appendix C.
These irrelevant images not only lack value, but also complicate the task, making the filtering and
pre-processing of the image data crucial to improving the overall effective model training and de-
tection accuracy. Here, we propose a simple yet effective model-based iteratively filtering method
based on KNN (K-nearest neighbor), where our strategy achieves an overall recognition accuracy of
93% to successfully identify true noisy images, with a recall of 82.71% and a precision of 90.54%.
Detailed pre-processing design can be found in Appendix C. In general, we provide statistics about
the text and image sections as specified in Table 2, where more detailed description to each textual
attribute can be found in Table 10 in Appendix. In addition, we highlight considerations, limitations,
potential biases and ethic statement in Appendix E.

2.5 DATASET CHARACTERISTICS

Significant Domain Gap. One of the most prominent challenges in our dataset is the significant
domain gap between both vision and text representation. As shown in Figure 2, product images are
typically captured as natural RGB photos, showcasing the items in real-world contexts. In contrast,
patent illustrations often consist of black-and-white line drawings or schematics, which starkly dif-
fer in visual representation. This inherent discrepancy complicates cross-modal matching efforts. In
terms of textual descriptions, product texts are generally brief and focused on essential attributes,
while patent documents provide extensive structural information, including claims, backgrounds,
and technical descriptions. This disparity in length and complexity makes direct similarity calcu-
lations between the two types of text particularly challenging, as shown in Table 2. Overall, these
domain gaps necessitate robust methodologies to effectively bridge the differences, further enhance
cross-domain representation learning and finally improve the accuracy of infringement detection.

Large scale and Multi-purpose. In addition to tackling the product-patent infringement detection
task, our dataset surpasses the size and diversity of previously available datasets in patent domains
and achieve comparable size in product domains. As illustrated in Table 3, our collection marks
a significant leap in scale. This expansive dataset not only facilitates comprehensive training for
automated detection models but also supports a broader range of tasks, including multi-modal rep-
resentation learning and language modeling (Radford et al., 2021; Devlin et al., 2019), patent clas-
sification (Larkey, 1999), product instance retrieval (Zhan et al., 2021) and etc. The substantial size
of our dataset provides a robust foundation for developing models that generalize more effectively,
addressing limitations in earlier datasets that were constrained by domain coverage.

Consistency with Real-World Scenarios: The extensive 13-million patent retrieval pool in the
Large version of our benchmark closely aligns with real-world conditions, presenting a formidable
challenge for large-scale patent search and retrieval. This provides a realistic framework for eval-
uating the effectiveness of infringement detection models. Furthermore, both products and patents
are accompanied by multiple images and drawings, along with complex textual structures as shown
in Table 2. Leveraging all available visual and textual information for representing a product or
patent can lead to substantial computational overhead. Therefore, selecting the most representative
information is crucial for facilitating effective infringement detection. Additionally, we observe that
number of samples in CPC main classes (gallery set of patent in ERiC-UP3-Large dataset) follows a
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Visually obvious infringements Hidden infringements

Patent

Product

Figure 2: The significant domain gap between patent images (top row) and product images (bottom
row) is evident, as patent images are typically black-and-white line drawings while product images
are natural RGB photographs; some infringements are visually obvious, while more necessary the
involvement of textual description for accurate detection.

heavily long-tail distribution as shown in Figure 6 in Appendix D, further indicating that our dataset
effectively reflects real-world scenarios.

2.6 EVALUATION METRICS

To assess the performance of our infringement detection model, we focus primarily on two eval-
uation metrics: mean Average Top-K matching Recall (mAR@K) and mean Rank of Matches
(mRoM). Given that a single product may infringe on multiple patents, we adopt a hit-one strategy
for recall evaluation. This means that if at least one infringing patent is present within the Top-K
matches, the detection is considered successful. Our objective is to achieve a lower average rank,
indicating that relevant patents are retrieved more efficiently and effectively within the top results.

3 METHOD

In this section, we present a straightforward and effective pipeline for detecting potential patent
infringements based on the textual modality. Given the enormous size of the patent retrieval pool
(i.e., 13-million in ERiC-UP3-Large), our primary concern is how to effectively reduce the search
space. To address this, we design to employ a classifier to identify potential patent infringement
categories related to products, thereby narrowing down the pool of relevant patents. Next, we design
to train an encoder using supervised contrastive learning (SCL) (Khosla et al., 2020) on product-
patent pairs, which generates reliable text embeddings, allowing us to compute similarity scores for
infringement detection.

3.1 PATENT INFRINGEMENT CATEGORY CLASSIFIER

To handle the vast number of patents, our first step is to narrow down the search space, which can be
achieved through a classifier that categorizes potential patent infringement types related to the given
product. Formally, given a query product Pi, before retrieving potentially infringing patents, we first
classify it into the relevant CPC main classes (137 in total) where potential infringing patents are
likely to be found. This preliminary classification significantly reduces the search space, making the
retrieval process more efficient.

Considering that a single product may potentially infringe upon multiple patents and that a patent can
belong to multiple CPC main classes, we model this classification task as a multi-label classification
problem. Specifically, for each product, we aim to predict the Top-k CPC main classes that are most
relevant. Let C = {c1, c2, . . . , cN} be the set of all CPC main classes, where N is the total number
of classes. Denote Ti as the textual description of a product Pi and yi = [yi1, yi2, . . . , yiN ]⊤ as the
ground truth label vector for product Pi, where yij = 1 if class cj is relevant to Pi, and yij = 0
otherwise. We use a neural network classifier fθ parameterized by θ to predict the relevance scores
for each class, ŷi = fθ(Ti) = [ŷi1, ŷi2, . . . , ŷiN ]⊤, where ŷij ∈ [0, 1] represents the predicted
probability that class cj is relevant to product Pi. fθ can be optimized by minimizing a binary
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cross-entropy (BCE) loss within a mini-batch B suitable for multi-label classification as below:

argmin
θ

− 1

|B|

|B|∑
i=1

N∑
j=1

[yij · log(ŷij) + (1− yij) · log(1− ŷij)] . (1)

During inference, for each product Pi, we compute the predicted probabilities ŷi = fθ(Ti), where
Ti is the textual description of Pi and fθ is the trained classifier. To determine the set of predicted
CPC main classes, we employ both Top-K selection and thresholding to ensure that only the most
relevant and confidently predicted classes are considered.

Firstly, we select the Top-K classes with the highest predicted probabilities, denoted as CTop-K
i .

Simultaneously, we apply a probability threshold λ ∈ [0, 1] to include classes where the predicted
probability meets or exceeds λ, forming the set Cλ

i = {cj ∈ C | ŷij ≥ λ}. The intersection

of these two sets yields the final predicted classes: CFinal
i =

{
CTop-K

i ∩ Cλ
i , if non-empty.

CTop-K
i , otherwise.

This

combined approach leverages the consistency of Top-K selection and the confidence provided by
thresholding, enhancing both efficiency and accuracy. Using the final predicted classes CFinal

i , we
reduce the patent retrieval pool for each product Pi to patents classified under corresponding CPC
main classes. By focusing on these subsets of the entire patent database, we significantly decrease
computational requirements, improve the efficiency of subsequent retrieval steps and effectively
narrows down the search space, facilitating the retrieval with higher mAR@K and lower mRoM.

3.2 PRODUCT-PATENT EMBEDDING RETRIEVER

To effectively detect potential patent infringements based on textual content, we develop a Product-
Patent Embedding Retriever that generates robust embeddings for both products and patents.
Leveraging our training data consisting of product-patent pairs—where each pair includes a query
product and a positive sample (an infringing patent)—we train our model to capture semantic simi-
larities indicative of infringement relationships. By calculating the similarity between these embed-
dings, we can efficiently identify potential infringements.

Let D = {(Pi, Q
+
i )} denote the set of product-patent pairs in our training data, where Pi is a product

with textual description TPi
and Q+

i is the corresponding infringing patent (positive sample) with
textual content TQ+

i
. We employ a shared encoder Eϕ, parameterized by ϕ, to map textual inputs

into a latent embedding space hPi
= Eϕ(TPi

) ∈ Rd and hQ+
i
= Eϕ(TQ+

i
) ∈ Rd, where d is the

dimensionality of the embedding space. Usually, Eϕ can be initialized by well pre-trained language
model such as BERT (Devlin et al., 2019) and RoBERTa (Liu, 2019).

Given that our training data consists of positive product-patent pairs, we aim to train the encoder
such that embeddings of positive pairs are close in the latent space, while embeddings of negative
pairs are pushed apart. Negative samples are crucial for effective training; we generate them by
pairing each product with patents not associated with it. For each product Pi, we construct negative
patents Q−

i,j by sampling from the reduced search space (obtained from the Patent Infringement Cat-
egory Classifier), such that Q−

i,j /∈ {Q+
i }. Finally, we employ a SCL approach using the InfoNCE

loss (Oord et al., 2018) to effectively optimize the encoder Eϕ as follows:

argmin
ϕ

− 1

|B|

|B|∑
i=1

− log
exp(sim(hPi

,hQ+
i
)/τ)

exp(sim(hPi
,hQ+

i
)/τ) +

∑
j exp(sim(hPi

,hQ−
i,j
)/τ)

, (2)

where sim(hPi ,hQ) =
h⊤

Pi
hQ

∥hPi
∥·∥hQ∥ is the cosine similarity between embeddings and τ is a tempera-

ture hyper-parameter controlling the concentration level of the distribution. Furthermore, inspired by
hard-sample mining (Karpukhin et al., 2020) we design to periodically update the negative samples
with patents that the model currently finds challenging, enhancing discrimination.

During inference, we firstly generate all candidate patent embeddings {hQj
} for all patents Qj in the

reduced search spac, where the pre-computing and indexing these embeddings accelerates retrieval.
Then for each product Pi, we can compute the product embedding hPi

= Eϕ(TPi
) and calculate

the cosine similarity between hPi and each hQj by si,j = sim(hPi ,hQj ). As a result, we can
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Table 4: Retrieval performance for different combinations of product and patent textual sections on
the validation set of the A63 CPC main classes. We mainly focus on higher mAR@500 and then
lower mRoM. More comprehensive results can be found in Appendix F.1.

Product
Patent Tit. Abs. Bkg. CL. Abs. + CL. Tit. + Abs. + CL. + Bkg.

mAR@500/ mRoM mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM

Tit. 23.21 / 116.57 57.14 / 238.33 19.64 / 383.01 30.36 / 215.07 48.21 / 283.01 33.93 / 146.17
Desc. 30.36 / 156.67 57.14 / 188.76 21.43 / 279.88 41.07 / 280.21 58.93 / 254.79 57.14 / 265.14

Tit. + Desc. 42.86 / 271.44 53.57 / 208.28 26.79 / 220.38 50.00 / 272.82 60.71 / 235.34 60.71 / 238.11

finally obtain a ranked list Ri based on similarity scores si,j in descending order and evaluate the
effectiveness of the method by checking whether ground truth patent in Top-K of Ri.

By fine-tuning an encoder using supervised contrastive learning on our annotated product-patent
pairs, we effectively capture the semantic relationships necessary for infringement detection. The
embeddings generated by our Product-Patent Embedding Retriever enable efficient and accurate
identification of potential infringements based on textual similarity.

4 EXPERIMENTS AND ANALYSIS

In this section, we conduct comprehensive experiments on our datasets. Due to the substantial
training costs and computational demands, we focus on conducting a series of baseline experiments
on ERiC-UP3-Base, and ultimately provide results on ERiC-UP3-Large. Unless otherwise specified,
our experimental results are primarily based on the text modality, where we consider mean Average
Top-500 matching Recall (mAR@500) and mean Rank of the Matches (mRoM). We highlight the
best performance in red and the second one in blue.

4.1 WARMINGUP: SELECTION OF TEXTUAL SECTIONS AND ENCODER

To establish a strong baseline for our retrieval model, we begin by exploring the optimal combination
of textual sections from patents and products, as well as selecting the most suitable encoder for our
task. This preliminary step is crucial to ensure that subsequent experiments would be built upon the
most informative and effective data representations. Patents and products contain various textual
components that provide different levels of detail and specificity.

As shown in Table 2, both patent and product include several textual sections. We hypothesize that
certain combinations of these sections might offer better retrieval performance due to the richness
of information they contain. Therefore, we examine performance of different combinations of these
sections as shown in Table 4, which experimentally demonstrate that the combination of Abstract +
Claims for patents and Title + Description for products is optimal by achieving a highest mAR@500
score of 60.71 and an mRoM of 235.34. This combination can effectively capture essential legal and
technical aspects, and finally enhance the retrieval system’s effectiveness. We put implementation
details and analysis in Appendix F.1.

By following common practice of text multi-class classification, we employ a pre-trained language
model and a linear layer to serve as fθ. For initialization of encoder used in classifier fθ and re-
triever Eϕ, we examine several popular pre-trained models, including BERT (Devlin et al., 2019),
RoBERTa (Liu, 2019), T5 (Raffel et al., 2020), MPNET (Song et al., 2020), BGE (Xiao et al.,
2023) and LlaMa2-7B (Dubey et al., 2024). As shown in the top cell of Table 5, we find that
both RoBERTa-large and BGE-large achieved comparable and satisfactory performance with simi-
lar parameter sizes and structures (around 350M). It is not surprising that T5-large achieves a more
significant mAR@500, due to about 770M parameters and an encoder-decoder structure. Here, ALL
indicates that we use all five categories of patents as the retrieval pool to evaluate the performance
of matching. The remaining results represent the performance under the assumption that we already
know the main CPC classes of the patent infringed by the current product. Ultimately, considering
the model structure, efficiency and performance, we employ BGE to initialize encoders in fθ and
Eϕ. More details and discussion can be found in Appendix F.1.

4.2 HOT TO EFFECTIVELY REDUCE PATENT SEARCH SPACE?

One of the biggest challenges in training a robust Infringement Category Classifier is the lack of a
large-scale training set with labels from product to patent CPC main classes, which may result in
the classifier overfit and lack of enough generalization ability due to the scarcity of training data.
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Table 5: mAR@500 of different pre-trained (top) and fine-
tuned encoders (bottom).

Encoder ERiC-UP3-Base
ALL A45 A47 A63 B65 H01

BERT-large 8.81 14.29 26.92 14.49 17.07 11.57
RoBERTa-large 16.08 22.69 18.12 17.14 12.20 23.14
T5-large 22.47 31.73 31.16 25.71 17.07 28.93
MPNET-large 13.42 12.50 26.09 15.71 13.41 25.62
BGE-large 16.08 14.42 26.81 20.00 18.54 29.01
LLaMa2-7B 5.73 2.88 7.23 5.71 13.41 9.09

OURS (RoBERTa) 45.81 66.35 63.04 40.00 50.00 40.50
OURS (T5) 64.54 92.31 68.12 60.00 59.76 56.20
OURS (BGE) 68.32 75.00 73.19 62.86 75.61 59.60

Table 6: Performance of different train-
ing datasets on CPC classification

Test Dataset ERiC-UP3-Base
Partial Accuracy (%) Top-1 Top-2 -

Infringement Pairs 85.01 88.87 -
GPT-4 Generation 75.22 82.01 -

Patent Classification 90.01 95.81 -

Test Dataset ERiC-UP3-Large
Partial Accuracy (%) Top-1 Top-2 Top-5

Infringement Pairs 33.79 50.06 61.28
GPT-4 Generation 57.67 70.63 78.12

Patent Classification 73.87 85.60 91.01

Therefore, we propose two new methods to construct the labels for the product to patent CPC main
classes, 1) based on GPT-4 to generate the training set; 2) based on patent CPC classification. We
set Top-K = 5 and λ = 0.2 during the evaluation, and provide construction details, ablation study
and discussions in Appendix F.2. As illustrated in Table 6, we primarily consider Top-1&2 accuracy
on the Base test set (including 5 classes) , while on the Large test set (137 classes), we consider Top-
1,2&5. It is evident that classifiers trained on infringement pairs often do not perform optimally,
and classifiers trained on the GPT-4 generated training set also fail to effectively map products to
the infringement patent CPC main classes. Interestingly, we find that classifiers trained on patent
data (mapping patent text to corresponding CPC main classes) exhibit excellent transferability and
generalization capabilities, which can effectively categorize products into main classes of poten-
tially infringing patents, demonstrating a highly effective and stable method of reducing the patent
search space. This discovery underscores the importance of leveraging patent data in training robust
classifiers, where the inherent structure and rich information contained in the patent provide a solid
foundation for the classifier to learn meaningful mappings from products to patent classes.

4.3 TRAINING AN EFFECTIVE PRODUCT-PATENT EMBEDDING RETRIEVER

To evaluate the effectiveness of our proposed product-patent embedding retriever, we conduct a
series of experiments. The objective of these experiments is to understand how well our model can
learn meaningful embeddings that capture the relationship between products and patents and how
these embeddings can be used to identify potential patent infringements. The results in bottom block
of Table 5 show that with the help of supervised contrastive learning by minimizing Equation 3.2,
our fine tuned model is able to effectively learn meaningful embeddings that capture the relationship
between products and patents, outperforming several baseline methods by 29.73% on RoBERTa,
42.07% on T5 and 52.24% on BGE. Furthermore, the embeddings can be used to efficiently retrieve
relevant patent documents for a given product description, demonstrating the potential of our model
for automated patent infringement detection. These experiments demonstrate the effectiveness of our
proposed product-patent embedding retriever. Our model not only provides a way to automatically
detect potential patent infringements but also opens up new possibilities for further research in the
field of patent analysis and classification. Finally, we report the performance of our pipeline in
Table 7, from which we can observe that with the help of Classifier and Retriever, our pipeline can
effectively improve mAR@500 by 24.05% and 28.37%, where mRoM also significantly decreases
from 110.00 to 102.28 and 124.75 to 93.15, respectively.

4.4 ANALYSIS

Rewritten for Better Textual Matching. In the context of product and patent retrieval, effective
text matching is crucial for identifying semantically similar content across different documents.
However, challenges such as varying text lengths, redundant information, and significant stylis-
tic differences between patent and product descriptions can hinder the performance of embedding
models. To address these issues, we employ two rewriting strategies: (1) summarizing long texts
into shorter, more focused contexts, and (2) aligning the stylistic differences between patent and
product texts. We utilize several open-source Large Language Models (LLMs) for these rewriting
tasks. Experimental results for mAR@500 are presented in Table 8, with additional results and anal-
yses provided in Table 14 in Appendix F.3. Through these experiments, we find that rewriting is an
effective strategy for improving text matching, with summarization proving to be more robust than
stylistic alignment. These findings indicate that further exploration of these techniques could lead
to even better outcomes, offering an alternative approach for researchers to consider.
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Table 7: Final results on both Large and
Base test set.

Pool mAR@500 mRoM

Base Test 1300W 39.38 110.00
OURS 63.43 102.28

Large Test 1300W 26.22 124.75
OURS 54.59 93.15

Table 8: mAR@500 results of various LLMs on the three
rewritten subsets based on pre-trained BGE-large.

Subset Base Summary Stylistic-Align.
Qwen2-0.5B Qwen2-7B Llama3-8B Qwen2-0.5B

A45 14.42 27.88 14.42 31.73 8.65
A47 26.81 32.61 31.88 34.06 27.54
A63 20.00 32.86 35.71 31.43 34.29

Patent

Product

Stretch Detectionsubstantial domain disparities similar visual styles

Figure 3: Visualizations of stretch extraction for both patent and product images. This strategy
significantly mitigates domain shift, leading to improved image retrieval performance.

Table 9: mAR@500 results of image-
retrieval and cross-modal retrieval.

Method mAR@500↑

Raw natural-style 12.50
Stretch-based-style (OURS) 33.92

Text-to-Image (OURS) 42.85
Cross-Modality (OURS) 57.14

Image-Retrieval Based on Stretch. As shown in Fig-
ure 3, we propose a simple yet effective style-transfer
method based on stretch detection (Zhou et al., 2024)
to alleviate the domain shift between patent and prod-
uct images, and then utilize the powerful CLIP (Rad-
ford et al., 2021) model to extract unified feature rep-
resentations for similarity measurement. Results in Ta-
ble 9 demonstrate that, benefiting from stretch-based style
transfer, we achieve a mAR@500 of 33.92%, marking a 21.42% improvement over using raw nat-
ural images. Considering the remarkable performance and low computational cost of text-based
retrieval, we further propose a hierarchical text-to-image retrieval strategy. In the first stage, we
utilize text matching to filter the Top-h most likely patent candidates for each product. Next, we
perform image-based retrieval within the selected Top-h candidates. With this approach, we further
enhance image-based retrieval performance, increasing mAR@500 from 33.92% to 42.85%. Details
can be found in Appendix F.4.

Cross-Retrieval Based on CLIP. Following the hierarchical text-to-image retrieval framework, we
first employ text matching to select the Top-h most likely patent candidates for each product. Sub-
sequently, rather than using stretch-based image retrieval, we further explore the effectiveness of
cross-modal retrieval using the CLIP model by computing the similarity between the encoded text
features of product and the stretch image features of patent candidates. As showcased in Table 9,
the cross-modal text-to-image retrieval performance, enabled by CLIP’s robust text-image align-
ment capabilities, achieves a mAR@500 of 57.14%, surpassing the sketch-based image retrieval
by a notable 14.29% margin. This result indicates that adaptively selecting the optimal retrieval
modality and multi-modal fusion mechanism for each sample may be critical to achieving effective
patent-product infringement detection.

Does Cosine Similarity Best Capture Semantic Relevance? Several works (Khattab & Zaharia,
2020; Lu et al., 2021; Steck et al., 2024) have highlighted that simple dot-product (or cosine sim-
ilarity) between embeddings may not be sufficient to capture semantic relevance. To address this,
we propose an alternative metric to replace naive cosine similarity as the detector. Inspired by su-
pervised fine-tuning (SFT), we use paired product-patent embeddings with binary labels to train a
two-category classifier. During inference, the output logits are used as the metric to measure the
semantic relevance between the paired product and patent embeddings. The experimental results
and detailed analyses presented in Appendix F.5 also suggest that cosine similarity may not be the
most effective detector for patent infringement.

Visual-Enhanced Multi-Modality Infringement Detection. In this section, we present an effec-
tive analysis on how to fuse textual features and visual features to achieve efficient infringement
detection. The details and experimental analysis are provided in the Appendix F.6. Our final con-
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clusion is that visual and textual information complement each other in the detection, leading to
better results. However, naive fusion cannot achieve the best performance, necessitating the design
of superior fusion or voting methods to balance the importance of visual and textual features.

5 RELATED WORK

Information Retrieval. Information retrieval, encompassing both intra-modal and cross-modal
techniques, plays a pivotal role in efficiently accessing relevant data from vast information sources.
Intra-modal retrieval (Qi et al., 2016; Bai et al., 2018) has been thoroughly explored in various
domains, such as keyword-based web document search (Ensan & Bagheri, 2017), content-driven
image retrieval (Noh et al., 2017) and product recommendation systems (Kang et al., 2017). On the
other hand, cross-modal retrieval (Feng et al., 2014; Wang et al., 2017) has emerged as a compelling
solution for efficiently indexing and retrieving data across different modalities, making it particu-
larly useful in large-scale applications like search engines (Harman et al., 2019) and E-commerce
platforms (Corbiere et al., 2017), among others. Nevertheless, these techniques (Nurmi et al., 2008;
Wang et al., 2016; Lin et al., 2018) often rely on single-modal inputs, limiting their effectiveness in
real-world scenarios where both queries and targets involve multi-modal information.

Patent Analysis. Previous research in Natural Language Processing (NLP) related to patent anal-
ysis has largely concentrated on two key tasks: patent classification and summarization. Patents
are typically classified using hierarchical systems such as the IPC and CPC, with various studies
predicting IPC/CPC codes at different levels using statistical methods (Chu et al., 2008; Tran &
Kavuluru, 2017; Gomez, 2019) and neural networks (Grawe et al., 2017; Li et al., 2018; Zhu et al.,
2020), including Transformer-based models like BERT (Devlin et al., 2019) and BIGBIRD (Zaheer
et al., 2020). Datasets such as CLEF-IP (Piroi et al., 2011) and USPTO-2M (Li et al., 2018) have
been commonly used for training models in this area, though they are limited in scope and flexibil-
ity, which the more comprehensive HUPD (Suzgun et al., 2024) dataset addresses. In the area of
patent text generation and summarization, the introduction of the BIGPATENT (Sharma et al., 2019)
dataset marked a significant step forward. This work introduces a novel task by focusing on patent
acceptance prediction, using textual analysis to identify characteristics that differentiate accepted
from rejected patents, thus contributing a new dimension to patent decision classification.

Patent Infringement Detection. Patent infringement detection is a crucial process aimed at iden-
tifying the unauthorized use of patented technology, thus safeguarding IP rights. Traditionally, this
task has been carried out manually, requiring detailed comparisons of patent claims—a method
that is both time-consuming and susceptible to human error (Schoen et al., 1993; Majewski &
Williamson, 2004). In recent years, keyword-driven text mining techniques have become a preva-
lent approach for detecting infringements (Yoon, 2008; Lee et al., 2013). However, these techniques
are limited by their dependence on predetermined keywords, which constrains their ability to cap-
ture nuanced technological insights and complex structural relationships between components. To
address these limitations, Park & Yoon (2014) proposed a semantic similarity approach based on
the Subject-Action-Object (SAO) framework, utilizing WordNet (Miller, 1995) to identify patent in-
fringements by measuring technological similarities. More recently, with the advancement of deep
neural networks, Liu & Pei (2023) leverages text vectorization and convolutional neural networks
to extract and represent patent infringement features, capturing semantic information from multiple
layers of patents.

6 CONCLUSION

In this paper, we introduce a new task of detecting potentially infringing patents for given products
represented by multi-modal data, including both images and textual descriptions. To support this,
we develop ERiC-UP3, the largest and most comprehensive dataset for this task. Our experiments
highlight the complexity of the problem and demonstrate the potential of our detection pipeline,
along with techniques like text style rewriting and cross-modal matching, to improve results. This
work establishes a foundation for advancing automated IP infringement detection, helping mitigate
legal risks and foster innovation across industries.
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annotated data for fashion image retrieval and label prediction. In Proceedings of the IEEE inter-
national conference on computer vision workshops, pp. 2268–2274, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associ-
ation for Computational Linguistics, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Faezeh Ensan and Ebrahim Bagheri. Document retrieval model through semantic linking. In Pro-
ceedings of the tenth ACM international conference on web search and data mining, pp. 181–190,
2017.

Fangxiang Feng, Xiaojie Wang, and Ruifan Li. Cross-modal retrieval with correspondence autoen-
coder. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 7–16, 2014.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
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Figure 4: Example of a patent (No.US10286245B2, page one).

A ZOOMED-IN EXAMPLE

B DIFFERENCE WITH PREVIOUS RELATED DATASETS

The ERiC-UP3 dataset showcases significant advantages from the perspectives of patents, products,
and annoatated infringement pairs. Firstly, the patent data is more comprehensive and larger in scale,
encompassing a vast amount of technical texts and diagrams, which provide rich technical details
for models. Secondly, the product data is more diverse and abundant, containing a large number
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of product images and descriptions. This not only allows for the completion of tasks supported
by previous datasets but also enables more complex applications. Thirdly, the infringement pairs
are meticulously annotated and have undergone multiple rounds of expert validation, ensuring the
accuracy and reliability of the data.

Most importantly, ERiC-UP3 focuses on the new task of infringement detection, filling a gap
present in existing datasets. By providing more comprehensive, larger-scale, and high-quality
patent-product paired data, we offer robust support for researchers and practitioners working at the
intersection of e-commerce and IP law, thereby advancing research and application development in
this field.

B.1 COMPARISON WITH PATENT-RELATED DATASETS

When comparing our dataset to existing patent datasets such as HUPD (Suzgun et al., 2024) and
BIGPATENT (Sharma et al., 2019), several key distinctions highlight the unique contributions of
our work.

Scope and Purpose: Our dataset is specifically designed for the task of patent infringement de-
tection, providing data tailored to this complex and nuanced challenge. In contrast, BIGPATENT
is primarily aimed at abstractive summarization tasks and includes only a limited selection of data
fields—specifically, publication number, application number, abstract, and description. It notably
lacks the claims section, which is critical for understanding the specific legal and technical asser-
tions of a patent. HUPD offers more fields than BIGPATENT but is still not tailored for infringement
detection.

Data Richness and Comprehensiveness: Our dataset includes a much richer set of bibliographic
metadata and full patent documents, encompassing all essential sections such as abstracts, descrip-
tions, claims, summary, CPC code and publication month. This comprehensive inclusion supports a
wide array of analyses and facilitates more in-depth research into patent infringement.

Introduction of Multi-modal Data—A Major Breakthrough: A significant advancement of our
dataset is the incorporation of multi-modal data. Unlike HUPD and previous datasets that are solely
text-based, we have collected and cleaned the figures and drawings from patents. This is a substantial
contribution, as it enables models to learn from both textual and visual information, providing a
more holistic understanding of patents. The inclusion of images opens up new research possibilities
in multi-modal machine learning applications within the patent domain.

Largest Scale and Broad Applicability: Our dataset is the largest available, surpassing previous
datasets in both size and depth of information, where we release 13 million patent data and that is
4.5 million in HUPD and 1.3 million in BIGPATENT. This extensive scale supports the development
of more robust and generalizable machine learning models.

Data Processing Flexibility: Some existing datasets provide text that has been pre-tokenized or
processed in ways that may inadvertently introduce issues, especially with complex content like
chemical formulas or mathematical equations—BIGPATENT, for example, is pre-tokenized using
NLTK. Our dataset, however, provides the raw patent text, allowing researchers to apply custom
tokenization and preprocessing techniques suitable for accurately handling specialized technical
content.

Task Enablement: The richness and structure of our dataset enable new research directions and
tasks that were previously challenging or unattainable. This includes fine-grained classification,
temporal analysis of patent texts, and more sophisticated infringement detection methods that lever-
age the full depth of information contained within patents.

Our dataset overcomes the limitations of existing resources like HUPD by providing a more compre-
hensive, multi-modal resource that includes crucial sections like the claims and incorporates cleaned
figures and drawints from patents. It stands out as the largest and most versatile dataset, supporting
all existing tasks and introducing new ones, such as patent infringement detection. This combination
of scale, depth, and the groundbreaking inclusion of visual data represents a significant leap forward
in patent analysis and machine learning applications in this field.
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Table 10: Descriptions and statistics of patent and product textual sections, and average number of
images / drawings per sample.

Section Brief Description ERiC-UP3-Base ERiC-UP3-Large
Avg # Words Avg # Words

Gallery
set of
Patent

Title Succinctly describes the invention. 7.6 7.77

Abstract Provides a brief summary of the invention’s key points. 111.01 104.28

Claims Define the scope of the patent protection. 894.48 946.61

Background Explains the context and prior art related to the invention. 99.65 96.83

CPC Code CPC code categorizes the patent. - -

Publication Number A unique identifier assigned to the published patent application. - -

Publication Month Indicates when the patent application was published. - -

#imgs / sample Average number of images per patent. 21.01 20.51

Support
set of

Product

Title Provides a concise name for the item. 11.72

Description Detailed information about the product’s features and benefits. 122.83

#drawings / sample Average number of drawings per product. 10.77

B.2 COMPARISON WITH PRODUCT-RELATED DATASETS

When comparing our dataset to existing product datasets such as RPC (Wei et al., 2019), Twit-
ter100k (Hu et al., 2017), INRIA-Websearch (Krapac et al., 2010), Dress Retrieval (Corbiere et al.,
2017), and Product1M (Zhan et al., 2021), several key distinctions highlight the unique contributions
of our work:

Focus on Product-Patent Infringement Detection: ERiC-UP3 is the first dataset specifically de-
signed for product-patent infringement detection, addressing a critical need at the intersection of
e-commerce and IP law. Other datasets focus on related but fundamentally different tasks: RPC
focuses on product recognition in retail checkout scenarios without involving patent data or in-
fringement detection. Twitter100k contains informal image-text pairs for cross-media retrieval but
does not involve products in a legal context or any patent information. INRIA-Websearch deals with
general cross-modal retrieval related to broad queries like actors and films, lacking a focus on prod-
ucts or patents. Dress Retrieval targets fashion image retrieval with associated textual attributes but
does not address patent data or infringement issues. Product1M is designed for instance-level, multi-
modal product retrieval in e-commerce but does not encompass patent information or infringement
detection.

Scale and Diversity with Practical Relevance: Our dataset offers an additional 1 million multi-
modal product samples to support effective product representation learning. This scale and speci-
ficity is one of the largest product-related datasets.

C NOISY IMAGES CONTAINED IN BOTH PATENT AND PRODUCT SAMPLES

This section highlights the importance of differentiating between essential drawings and images for
infringement detection, represented by the “Greed Box” and less relevant technical illustrations or
background images in the “Red Box”. The former showcases key design features, while the latter
includes structural diagrams that do not contribute to infringement analysis and should be excluded
from consideration.

To this end, we propose a simple yet effective model-based iteratively filtering method based on
KNN (K-nearest neighbor), where we firstly employ DINO (Oquab et al., 2023), a widely recognized
unsupervised pre-training method, to train a robust feature extractor on large-scale patent/product
images. Next, we curate a small hand-labeled dataset, denoted as ϕ, with labels indicating whether
images are noisy or valid, and generate the feature embedding for the set ϕ using DINO. Upon com-
pleting these preparations, for each image to be classified, we compute its feature embeddings and
retrieve the Top-K most similar instances from ϕ. By voting on the labels of the Top-K instances,
we predict whether an image is noisy. The predicted noisy and valid images are then added to ϕ,
iteratively expanding the labeled dataset and enabling more robust noise prediction. To validate the
effectiveness of our approach, we construct a test set containing 81 noisy images and 219 valid im-
ages. Our KNN strategy achieves an overall recognition accuracy of 93%, successfully identifying
67 true noisy images, with a recall of 82.71% and a precision of 90.54%.
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Product Patent

Figure 5: Greed Box: drawings that significantly help infringement detection, showing the core
design and functional features. Red Box: drawings of partial structures or technical flow diagrams,
which, despite being prominent in the patent images, are not valuable for infringement detection and
should be filtered out.

D ANALYSIS OF SAMPLE DISTRIBUTION IN CPC CLASSES

Table 11: Number of samples in the gallery set of patent in ERiC-UP3-Large and ERiC-UP3-Base.

Version ERiC-UP3-Large
A B C D E F G H Y

Number of Samples 3,476,219 3,225,770 2,636,832 169,288 453,190 1,571,989 6,456,432 6,149,238 1,025,546

Version ERiC-UP3-Base
A45 A47 A63 B65 H01 -

Number of Samples 63,681 217,970 190,675 307,749 1,771,767 -

This section presents a comprehensive analysis of the distribution of samples across various CPC
main classes. The bar chart (a) illustrates the number of samples sorted by ID, highlighting the con-
centration of samples in specific classes. The pie charts (b) and (c) depict the proportions of different
CPC sections for the ERiC-UP3-Large and ERiC-UP3-Base datasets, respectively, showcasing the
relative significance of each section in the overall dataset. Specific number of samples of Figure 6
(b) and Figure 6 (c) are shown in Table 11.

E CONSIDERATIONS AND ETHICAL INSIGHTS

The dataset was created to build new and useful benchmarks for IP experiments, facilitate research
on IP protection, patent-product infringement, patent and product analysis, and eventually help small
entities and businesses proactively detect and mitigate potential infringements to minimizing risks,
ensuring smoother operations and fostering continued innovation. We highlight our limitations,
potential biases, ethical statements and distribution of the dataset as below.

Limitations: Methodologically, our dataset is confined to English and omits certain textual sections,
such as the inventor information in patents and product categories. Additionally, some textual ele-
ments exceed the processing limits of current NLP models, and specialized vocabulary in specific
fields can pose challenges for existing tokenizers. In addition, as shown in Figure 5, some noisy
images are not avoidable in the process of data collection.

Potential Biases: The labeling process for training and test pairs relies heavily on the expertise
of patent specialists, which introduces the possibility of erroneous annotations. Although we im-
plemented a multi-expert review process with multiple rounds of discussion to ensure data quality,
some inaccuracies may still persist.
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Figure 6: Illustration of the distribution of samples within CPC main classes and the proportions
of various CPC sections for two datasets, ERiC-UP3-Large and ERiC-UP3-Base. The bar chart (a)
shows the number of samples per class, while the pie charts (b) and (c) provide a breakdown of the
proportions of different CPC sections, highlighting the varying representation within the datasets.

Ethical Statements: In constructing the ERiC-UP3 benchmark and dataset, we follow the data
statement guidelines outlined by Gebru et al. (2021); Bender & Friedman (2018), which includes
discussing our motivations, objectives, collection processes, workflows, use cases, distribution, po-
tential contributions, and any associated challenges.

Distribution and Maintenance: We will publicly release all the data, along with code and fine-
tuned models upon acceptance.

F DETAILED EXPERIMENTS AND ANALYSIS

We conduct all the experiments on 2*8 Tesla V100 GPU cards except for rewritten task, which are
conducted on 2*8 Tesla A100 GPU cards.

F.1 WARMINGUP: SELECTION OF TEXTUAL SECTIONS

Based on the A63 subclass that includes 56 infringement test pairs as a validation, we evaluate the re-
trieval performance of different section combinations measured by mAR@500 and mRoM as shown
in Table 4. The results demonstrate that combining the Abstract and Claims sections of patents with
the Title and Description of products yield the best results, achieving a highest mAR@500 score of
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60.71 and an mRoM of 235.34. While including all patent sections (Title, Abstract, Background,
and Claims) also reachs the same mAR@500 score and similar mRoM, it results in significantly
longer inputs that often exceeded the encoder’s processing capacity and introduced additional noise.
Therefore, considering both performance and computational efficiency, we conclude that the com-
bination of Abstract + Claims for patents and Title + Description for products is optimal, effectively
capturing essential legal and technical aspects and enhancing the retrieval system’s effectiveness.
This conclusion is also supported by the results on A47 CPC main classes as shown in Table 12.

Table 12: Retrieval performance for different combinations of product and patent textual sections on
the test set of A63 (top) and A47 (bottom) CPC main classes. We mainly focus on higher mAR@500
and then lower mRoM.

Product
Patent Tit. Abs. CL. Abs. + CL. Tit. + Abs. + CL. + Bkg.

mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM mAR@500 / mRoM

Title 11.43 / 160.38 8.57 / 215.33 28.57 / 163.8 22.86 / 247.63 24.29 / 217.94
Description 22.86 / 186.13 4.29 / 149.67 32.86 / 196.22 22.86 / 187.63 35.71 / 232.72

Title + Description 28.57 / 228.15 8.57 / 272.67 24.29 / 186.65 37.14 / 236.46 31.43 / 203.96

Title 29.71 / 222.88 13.77 / 238.00 26.09 / 218.22 26.09 / 297.11 21.74 / 196.87
Description 15.94 / 202.05 23.19 / 184.78 23.19 / 228.57 23.19 / 228.56 23.91 / 248.85

Title + Description 27.54 / 206.42 15.22 / 183.43 26.09 / 196.28 31.88 / 168.27 24.64 / 177.38

F.2 DETAILS OF TRAINING A ROBUST INFRINGEMENT CATEGORY CLASSIFIER

In this context, all indicates that we use all five categories of patents as the retrieval pool to evaluate
the performance of our classifier. The remaining results represent the performance under the as-
sumption that we already know the main CPC classes of the patent infringed by the current product.
This distinction is crucial as it simulates two different real-world scenarios. The first scenario (all) is
more challenging as it requires the classifier to correctly identify the relevant patent category among
all available categories. The second scenario is less challenging as it assumes prior knowledge of
the correct patent category, thus narrowing down the search space and potentially improving the
classifier’s performance.

Here, we firstly provide ablation study on using patent classification as patent infringement cate-
gory classifier. The Table 13 presents the performance of PATENT INFRINGEMENT CATEGORY
CLASSIFIER trained with varying ratios of 13 million patents. The metrics used to evaluate the per-
formance include Partial Intersection Accuracy, Recall, Precision, and F1 score. We set Top-K = 5
and λ = 0.2.

Table 13: Performance of the Cooperative Patent Classification (CPC) classifier at different training
data ratios. The table shows the Partial Intersection Accuracy, Recall, Precision, and F1 score for
the classifier trained with different ratio of 13 million patents. The results highlight the positive cor-
relation between the amount of training data and the performance of the classifier, with a particular
emphasis on the Partial Intersection Accuracy metric.

Ratio Partial Intersection Accuracy Recall Precision F1

1% 59.90 26.89 27.22 27.01
5% 72.78 28.80 30.79 27.87
10% 85.60 57.87 50.21 53.77
30% 91.01 56.16 62.32 59.08

• Positive Correlation between Ratio and Performance: The table clearly demonstrates a
positive correlation between the ratio of data used for training and the performance of the
classifier. As the ratio increases, all performance metrics improve. This suggests that the
classifier benefits from more training data, which allows it to learn more complex represen-
tations and make more accurate predictions.

• Focus on Partial Intersection Accuracy: The primary metric of interest in this experiment
is Partial Intersection Accuracy. This metric measures the accuracy of the classifier when
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the prediction and the ground truth label share at least one common element (i.e., have a
non-empty intersection). This is a more lenient measure of accuracy, as it allows for partial
matches between the predicted and actual labels. It is particularly useful in multi-label
classification tasks, where each instance can belong to multiple classes, and a prediction is
considered correct as long as it identifies at least one correct class.

The results show that even with only 1% of the data, the classifier can achieve a Partial Intersection
Accuracy of nearly 60%. This accuracy improves to over 91% when 30% of the data is used.
These findings highlight the importance of having a large amount of training data for improving the
performance of the CPC classifier, especially when evaluated using Partial Intersection Accuracy.
They also underscore the utility of the Partial Intersection Accuracy metric for evaluating multi-label
classification tasks.

Further, we investigate the impact of different Top-K and λ values on the final classification perfor-
mance. The Top-K parameter refers to the number of most likely classes that the classifier outputs.
It is a key parameter in multi-label classification tasks, as it determines the granularity of the pre-
dictions. A larger K means that the classifier will predict more classes for each instance, potentially
increasing recall but possibly decreasing precision if many of the extra predicted classes are incorrect
as shown in Figure 7.

λ is a threshold parameter that determines the number of activations required for a class to be con-
sidered as a potential prediction. A higher λ means that more activations are needed for a class to be
considered, which can increase precision (since only the most activated classes are considered), but
may decrease recall (since some less activated but still relevant classes might be missed), as shown
in Figure 8. As for the Top-K parameter, increasing it will indeed increase recall, as the model
is allowed to predict more classes per instance. However, this can also decrease precision, as the
likelihood of predicting incorrect classes also increases.

Given the differing preferences of Top-K and λ (with the former favoring recall and the latter favor-
ing precision), we propose an intersection method that considers both parameters for the final CPC
classification prediction. This method aims to strike a balance between recall and precision, provid-
ing a limited yet reliable set of classification results. By tuning both Top-K and λ, we can optimize
the trade-off between including as many relevant classes as possible (high recall) and minimizing
the inclusion of irrelevant classes (high precision).
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Figure 7: Influence of Top-K inference in CPC classifier.

F.3 DETAILED RESULTS AND ANALYSIS OF REWRITTEN

As mentioned in Section 4.4, we briefly described the rewriting method; in this section, we present
detailed experimental results and analysis.
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Figure 8: Influence of Thresholding inference in CPC classifier.

Table 14: Matching results of various models on the rewritten A45, A47 and A63 subsets. BGE-
large was employed as the encoder model, with Top-500 matching recall (mAR@500) used for the
final matching. mPaL refers to the mean length of patent texts, and mPrL refers to the mean length
of product texts. The best two mAR@500 and mRoM results are highlighted in red and blue.

Metric Subset Base Summary Stylistic-Align.
Qwen2-0.5B Qwen2-7B Llama3-8B Qwen2-0.5B

mAR@500↑
A45 14.42 27.88 14.42 31.73 8.65
A47 26.81 32.61 31.88 34.06 27.54
A63 20.00 32.86 35.71 31.43 34.29

mRoM↓
A45 268.38 277.68 202.61 301.77 238.60
A47 177.31 220.26 159.68 184.08 198.06
A63 125.65 189.09 206.49 240.58 148.06

mPaL
A45 934.34 383.74 238.85 149.64 348.42
A47 995.84 391.11 244.93 151.19 357.89
A63 1109.23 375.92 233.34 149.27 357.13

mPrL
A45 575.67 245.36 183.97 126.24 179.67
A47 332.56 189.30 165.85 128.65 162.10
A63 329.53 169.44 175.34 132.47 173.64

Summarizing Long Contexts to Short Contexts. In our retrieval task, both patents and product
descriptions often contain lengthy sections with extraneous details, making it challenging for an
encoder model to focus on the most relevant information. On the other hand, most of SOTA embed-
ding models (e.g., BERT, BGE, T5 and etc) can only handle input text of limited length, which is
obviously lower than the length of the original text. Since the part that exceeds the length will be di-
rectly truncated, this will obviously cause the loss of information, thus reducing the effectiveness of
detection. To address this, we implement a summarization to condense long-form text into shorter,
more focused contexts using several LLMs. The goal of the summarization process was to preserve
key technical details while eliminating redundant or irrelevant information. This condensed version
of the text allows the embedding model to more effectively capture the core semantics of the content,
leading to better retrieval accuracy.

We experiment with the A45, A47 and A63 subsets, using Qwen2-0.5B (Yang et al., 2024), Qwen2-
7B (Yang et al., 2024), and Llama3-8B (Dubey et al., 2024) instruct models for summarization. To
better align these models with our requirements, we used GPT-4o to generate high-quality abstrac-
tive summarizing examples, which served as few-shot prompts to guide the models. Details on the
use of GPT-4o and querying LLMs can be found in Appendix G. The matching results are shown
in Table 14. As shown in the results, all models except Qwen2-7B on the A45 subset outperform
the baseline mAR@500 scores, with Qwen2-7B on A45 achieving the same results as the base-
line. Additionally, all models significantly reduce the patent and product text lengths (mPaL and
mPrL) compared to the original. Furthermore, they exhibit comparable or improved mRoM values,
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highlighting the necessity and effectiveness of summarizing patent textual descriptions in helping
boost the detection accuracy. Qwen2-0.5B is proved to be significantly faster and more efficient in
practical use, achieving a balance between speed and summarization quality, making it the preferred
model for this task.

Rewriting Patent and Product Texts for Similar Stylistic Alignment. Another key challenge
in product and patent retrieval is the stylistic and linguistic differences between patent texts and
product descriptions. Patent documents are often written in a formal, legalistic style, while product
descriptions tend to be more commercial and user-friendly. These stylistic discrepancies can create
a semantic gap, making it difficult for the embedding model to effectively match similar concepts
across the two domains. To address this, we apply a rewriting strategy for stylistic alignment, bridg-
ing the semantic gap and enabling the embedding model to better recognize and match concepts
across both patent and product description domains.

After determining that Qwen2-0.5B may be optimal for the summarization task, we apply it ex-
clusively for the stylistic alignment task. The matching results are shown in Table 14. By using
Qwen2-0.5B for this rewriting task, we observed a significant improvement in matching results for
the A63 subset and a slight improvement for the A47 subset. The rewritten texts allowed the embed-
ding model to bridge the semantic gap between patents and product descriptions, resulting in more
accurate cosine similarity scores and higher-quality Top-n retrieval results. However, for the A45
subset, we found that the results were lower than the base results. This discrepancy likely arises
because, in this case, the models were given either patent texts or product texts individually. The
stylistic alignment task heavily relies on the quality of examples provided by GPT-4o, and without
strong examples, the models struggled to handle this task effectively using their own knowledge
alone. This suggests that the models’ intrinsic ability to perform stylistic alignment may need fur-
ther refinement. Nevertheless, the rewritten method still resulted in shorter mPaL and mPrL values,
as well as comparable or improved mRoM scores. While our experiments were conducted on three
subsets (A45, A47 and A63), more extensive testing on the entire dataset may require additional
resources. We hope that future research will build on these insights and develop more efficient and
scalable methods for this task.

F.4 DETAILED IMPLEMENTATIONS AND ANALYSIS ABOUT STRETCH MATCHING

While textual information offers a comprehensive description of patents and products, corresponding
images often provide more fine-grained and intuitive visual cues, which can serve as crucial supple-
mentary evidence in detecting product-patent infringements. However, as previously mentioned,
the significant domain gap between patent and product images makes direct similarity measurement
highly challenging. To address this issue, in our work, we propose a simple yet effective style-
transfer method based on stretch detection to alleviate the domain shift, and then utilize the pow-
erful CLIP model to extract unified feature representations. Specifically, as shown in Figure 3, we
transform the original patent and product images, which exhibit substantial domain disparities, into
a similar visual style using stretch detection (Zhou et al., 2024). Subsequently, CLIP is employed
to extract feature embeddings for each image. For instances with multiple associated images, we
compute the average of their embeddings to form a unified representation. By calculating the cosine
similarity between feature representations, we retrieve potentially infringing patents for each prod-
uct. Results in Table 9 demonstrate that, benefiting from stretch-based style transfer, we achieve a
mAR@500 of 33.92%, marking a 21.42% improvement over using raw natural images. Considering
the significant performance and low computational cost of text-based retrieval, we further propose
a hierarchical text-to-image retrieval strategy. In the first stage, we utilize text matching to filter
the Top-h most likely patent candidates for each product, thus narrowing the retrieval pool from
a vast, shared collection to a tailored, more-focused subset, which not only reduces computational
complexity but also simplifies the matching process. Next, we perform image-based retrieval within
the selected Top-h candidates. With this approach, we further enhance image-based retrieval perfor-
mance, increasing mAR@500 from 33.92% to 42.85%. h is set to 5000 in our experiments, as the
mAR@5000 for text-based retrieval achieves approximately 97%, ensuring the inclusion of almost
all potentially infringing patents.
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F.5 DETAILS OF ALTERNATIVE METRICS TO COSINE SIMILARITY

In this section, we compare the performance of the SFT-based metric against the standard cosine
similarity approach. As discussed in Section SFT, cosine similarity may have limitations in capturing
deeper semantic relevance between product and patent embeddings. To address this, we explore two
variants of the SFT-based method:

• SFT Classifier Only: In this setup, we use the pretrained embeddings from the encoder
and apply SFT to train a binary classifier based on the product-patent pairs. The classifier’s
output logits are used as the metric for measuring semantic relevance.

• SFT Encoder and Classifier: This approach trains the entire model, including both the en-
coder and the classifier, in an end-to-end fashion during fine-tuning. By jointly optimizing
both components, this paradigm allows the model to learn more task-specific representa-
tions of product and patent embeddings. The output logits from the classifier serve as the
metric for semantic relevance between paired products and patents.

Table 15: Matching results comparing cosine similarity and SFT-based approaches (SFT Classifier
Only and SFT Classifier & Encoder). mAR@500 are reported across various subsets and the best
“ALL” results for BGE-large (vanilla) and BGE-large (fine-tuned) are highlighted separately.

Method ALL A45 A47 A63 B65 H01

BGE-large (vanilla)
Cosine. 16.08 14.42 26.81 20.00 18.54 29.01
SFT Cls. Only 48.02 95.19 61.59 50.00 50.00 29.75
SFT Cls. & Enc. 27.97 88.46 50.00 58.57 39.02 40.50

BGE-large (finetuned)
Cosine. 65.32 75.00 73.19 62.86 75.61 59.60
SFT Cls. Only 52.86 82.69 70.29 47.14 57.32 46.28
SFT Cls. & Enc. 37.22 96.15 68.84 60.00 45.12 16.53

From the results presented in Table 15, several key observations can be made regarding the perfor-
mance of the different methods:

• SFT Classifier Only vs. SFT Classifier and Encoder: Generally, the SFT Classifier
Only approach outperforms the SFT Classifier and Encoder across most subsets. This
suggests that fine-tuning the classifier alone yields better semantic matching performance,
while involving the encoder in the fine-tuning process may hinder the model’s ability to
capture useful semantic information. One possible explanation is that the SFT objective,
which optimizes the model for a binary classification task, may interfere with the encoder’s
original capacity to represent semantic relationships. By focusing on this specific task,
the encoder might lose some of its generalizability, leading to a reduction in the ability to
capture more nuanced semantic features.

• Vanilla BGE v.s. Fine-tuned BGE: Another notable observation is the comparison be-
tween the vanilla and fine-tuned BGE models. For the vanilla BGE, the SFT-based ap-
proach (especially the SFT Classifier Only) performs significantly better than cosine sim-
ilarity. This indicates that applying SFT enhances the model’s ability to identify relevant
product-patent pairs. However, in the case of fine-tuned BGE, cosine similarity performs
better than the SFT-based metrics. This could be because the fine-tuned BGE model has
already been optimized for specific task-related semantic matching during its fine-tuning
process. In this case, the simple cosine similarity metric might be more effective in captur-
ing the representations learned by the model, whereas the SFT-based approach introduces
additional complexity that may not be necessary or helpful after the encoder has already
undergone task-specific fine-tuning.

Based on these observations, several potential directions can be explored:

• Designing a more complex classifier network: The current binary classifier could be
enhanced by introducing more sophisticated architectures, such as deeper neural networks
or attention-based mechanisms, to better capture semantic relevance between product and
patent pairs.

11



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Finding a better loss function: The current loss function used in the SFT training might
not fully optimize the model’s ability to differentiate between semantically relevant and
irrelevant pairs. Exploring alternative loss functions, such as contrastive loss or triplet loss,
could help improve the model’s ability to measure semantic relevance more effectively.

• Exploring better objectives to replace cosine similarity: Since cosine similarity may not
always capture the full complexity of semantic relationships, particularly after fine-tuning,
it might be beneficial to investigate alternative metrics or objectives for evaluating the rel-
evance between embeddings. This could include metrics that account for the contextual
nuances of product and patent texts.

F.6 VISUAL-ENHANCED MULTI-MODALITY INFRINGEMENT DETECTION

Product Textual 
Input

Patent Textual 
Feature Pool

Language

Patent Visual 
Feature Pool

Vision

Product Visual
Input

Text 
Encoder

Language Vision

Cosine Similarity

Vision 
Encoder

Concatenate

ConcatenateConcatenate

Figure 9: Our visual-enhanced multi-modality infringement detection framework.

In this section, we delve into an effective analysis on the fusion of textual and visual features to
achieve efficient infringement detection. The integration of these two types of features has been
a challenging task due to their inherently distinct natures. However, our study indicates that they
can complement each other in the context of patent infringement detection, potentially leading to
improved results over using either modality alone.

Textual features provide a detailed account of the patented technology. They capture the nuances
of the technology’s functionality, design, and implementation. However, they may not effectively
represent the visual aspects of the technology, such as its physical design, color, or shape, which are
often crucial in determining infringement. On the other hand, visual features, extracted from patent
drawings or product images, can capture these visual aspects. They can effectively represent the
physical appearance of the technology, which can be crucial in some infringement cases. However,
they may not capture the functional or implementation details that are often described textually.

Therefore, a comprehensive infringement detection system should ideally incorporate both textual
and visual features. As shown in Figure 9, we design a multi-modality infringement detection frame-
work based on concatenation between visual features and textual features.

We conduct experiments in A63 subset and the experimental results are summarized in Table 16,
from which we obtain several key insights and analysis:

• Performance of Pure Modalities: The pure text modality, without any rewriting, signifi-
cantly outperforms the image-based approach in terms of mAR@500. This indicates that
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Table 16: Comparative performance of different infringement detection methods. The table shows
the mAR@500 and mRoM for various methods, including pure text, pure image, simple concate-
nation of the two, and more sophisticated fusion and voting methods. The results highlight the
potential of multi-modal fusion and voting for improving infringement detection.

Method mAR@500 mRoM

Pure Text Baseline 71.43 235.34
Pure Image Baseline 57.14 71.32
Concatenation 69.64 144.46

Concatenation Should 73.78 -
Text-to-Image and then Vote Should 87.59 -

textual data provides a more comprehensive and detailed description of the patent, allowing
for more accurate detection of infringements. However, the image modality has a higher
mRoM, meaning that the patents it does detect as infringements are more likely to be truly
infringing. This suggests that images can capture certain aspects of patents that text may
miss, making them valuable for infringement detection.

• Concatenation of Modalities: A simple concatenation of the two modalities does not
yield optimal results. While it does perform better than the image baseline, it falls short
of the performance of the pure text approach. This suggests that a naive fusion of the two
modalities is not sufficient to fully leverage their complementary strengths.

• Potential of Fusion: Our analysis reveals that images can detect some infringing patents
that text fails to identify. Ideally, if these unique detections could be perfectly combined, the
mAR@500 could reach 73.78. This underscores the need for a more sophisticated fusion
method that can effectively harness the complementary aspects of the two modalities. It
also reaffirms that the perfect infringement detector would rely on both image and text
modalities.

• Further Improvement with Voting: When we further apply our proposed text-to-image
hierarchical detection method and compare the results of image and text detections, we find
that even more infringing samples can be identified, with the mAR@500 potentially reach-
ing 87.59. This highlights two key points: firstly, our text-to-image hierarchical detection
method is effective; and secondly, applying a voting-style post-processing to the results of
different modalities can yield improved detection results.

In summary, these results stress the importance of developing a more sophisticated method for fusing
text and image modalities and applying a suitable voting mechanism to balance their contributions
and demonstrates that such a multi-modal approach can indeed lead to better infringement detection
results. However, our study also reveals that simply combining these features in a naive way, such
as by concatenation or averaging, does not achieve optimal results. This leads us to the conclusion
that a more sophisticated fusion or voting method is needed to balance the prominence of visual
and textual features. This method should be capable of weighing the contributions of each modality
according to its relevance to the specific infringement case at hand.

G PROMPTS FOR UTILIZING GPT-4O AND QUERYING LLMS

Recall in Section 4.4 and Appendix F.3, we used GPT-4o to generate high-quality summarization
examples. Below is the specific template used to query GPT-4o.

For summarization:
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### System Prompt: You are a helpful assistant to help summarize the context of a patent
abstract along with the corresponding claim. Ensure that the summary of patent contexts
captures the essence of both the abstract and the claim.
### User: Patent Abstract: {Abstract}
Patent Claim: {Claim}
### Assistant:

### System Prompt: You are a helpful assistant to help summarize the context of a product
description.
### User: Product Description: {Desc}
### Assistant:

For stylistic alignment:

### System Prompt: You are a helpful assistant to help summarize the context of a patent
abstract along with the corresponding claim or a product description. Ensure that the
summary of patent contexts captures the essence of both the abstract and the claim.
Furthermore, ensure the summarization of patent contexts and product contexts have the
same style. In each communication, you will receive either the patent contexts or product
contexts separately.
### User: Patent Abstract: {Abstract}
Patent Claim: {Claim}
### Assistant:

### System Prompt: You are a helpful assistant to help summarize the context of a patent
abstract along with the corresponding claim or a product description. Ensure that the
summary of patent contexts captures the essence of both the abstract and the claim.
Furthermore, ensure the summarization of patent contexts and product contexts have the
same style. In each communication, you will receive either the patent contexts or product
contexts separately.
### User: Product Description: {Desc}
### Assistant:

After obtaining examples from GPT-4o, these examples serve as few-shot prompts. Below is an
example of summarizing a patent (the structure is similar for others):

### System Prompt: You are a helpful assistant to help summarize the context of a patent
abstract along with the corresponding claim. Ensure that the summary of patent contexts
captures the essence of both the abstract and the claim. I will give you some examples as
follows.
Example 1:
Patent Abstract: {Abstract}
Patent Claim: {Abstract}
Summary: {Summary from GPT-4o}
Example 2:
Patent Abstract: {Abstract}
Patent Claim: {Abstract}
Summary: {Summary from GPT-4o}
### User: Patent Abstract: {Abstract}
Patent Claim: {Abstract}
### Assistant:
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Figure 10: Example of patent text summarization.

H EXAMPLES OF REWRITTEN

Figures 10 through 12 provide examples demonstrating the effectiveness of the summarization and
stylistic alignment methods. Both patent and product texts often contain redundant information, and
the summarization process significantly reduces their length while preserving key content.
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Figure 11: Example of product text summarization.
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Figure 12: Example of summarizing and aligning patent and product texts to maintain consistency
in style.
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