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ABSTRACT

A fundamental challenge in physics-informed machine learning (PIML) is the
design of robust PIML methods for out-of-distribution (OOD) forecasting tasks,
where the tasks require learning-to-learn from observations of the same (ODE) dy-
namical system with different unknown parameters, and demand accurate forecasts
even under initial conditions outside the training support. In this work we propose
a solution for such tasks, which we define as a meta-learning procedure for causal
structural discovery (including invariant risk minimization). Using three differ-
ent OOD tasks, we empirically observe that the proposed approach significantly
outperforms existing state-of-the-art PIML and deep learning methods.

1 INTRODUCTION

Physics-informed machine learning (PIML) (e.g., (Willard et al., 2020; Xingjian et al., 2015; Lusch
et al., 2018; Yeo & Melnyk, 2019; Raissi et al., 2018; Kochkov et al., 2021)) seeks to combine the
strengths of physics and machine learning models and has positively impacted fields as diverse as
biological sciences (Yazdani et al., 2020), climate science (Faghmous & Kumar, 2014), turbulence
modeling (Ling et al., 2016; Wang et al., 2020a), among others. PIML achieves substantial success in
tasks where the test data comes from the same distribution as the training data (in-distribution tasks).

Unlike the PIML work described above, this paper considers an out-of-distribution (OOD) change in
the initial system state of the dynamical system, possibly with different train and test distribution
supports (illustrated in Figure 1(a,b)). In this setting, we observe that existing state-of-the-art PIML
models perform significantly worse than their performance in-distribution, even in PIML methods
designed with OOD robustness in mind (Wang et al., 2021b; Kirchmeyer et al., 2022). This is because
the standard ML part of PIML, which tends to learn spurious associations, will perform poorly
in our OOD setting. We then propose a promising solution: Combine meta learning with causal
structure discovery to learn an ODE model that is robust to OOD initial conditions. In our OOD tasks,
OOD robustness means that the robustness is tied to interventions over the initial conditions of the
system, not on arbitrary interventions as the system evolves from the initial state. This is an important
distinction. There can be multiple ODE models that will be equally OOD robust, and robust ODEs
may not correctly predict system trajectories under arbitrary system interventions besides the initial
state (Rubenstein et al. (2016) discusses the effect of arbitrary interventions in physics models).
Contributions This work proposes a hybrid transductive-inductive modeling approach learning
for more robust ODEs using meta learning and causal structure discovery (e.g., via L1 regulariza-
tion (Zheng et al., 2018), which can be combined with invariant risk minimization (Arjovsky et al.,
2019; Krueger et al., 2021)). More precisely, our contributions are:

1. We show that state-of-the-art PIML and deep learning methods fail in test examples with OOD
initial conditions. Prior work (Wang et al., 2021a) showed that deep learning-only methods fail in
OOD tasks, and argued physics models and PIML methods would succeed, including a proposed
OOD solution (Wang et al., 2021b). Here we show that PIML methods also fail (or perform
poorly) OOD, including the solution in Wang et al. (2021b).

2. We proposed a hybrid transductive-inductive learning framework for ODEs via meta learning: As
in transductive methods, we will consider each training and test examples as separate tasks, but
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like inductive methods, the tasks are dependent and knowledge can be transferred between the
learned ODEs. By meta learning we mean the definition in (Thrun & Pratt, 1998, Chapter 1.2),
where given: (a) a family of M tasks (a task is a single experiment in our setting), i = 1, . . . ,M ;
(b) training experience for each task i ∈ {1, . . . ,M}, which for us are the time series observations
of an experiment X(i)

t0 , . . . ,X
(i)
tT , and; (c) a family of performance measures (e.g., one for each

task) described by the risk function R(i); our algorithm will meta learn such that performance at
each task improves with experience (more observations) and with the number of tasks (number
of experiments). For an algorithm to fit this definition, there must be a transfer of knowledge
between multiple tasks that has a positive impact on expected task performance across all tasks.

3. Learning ODEs as structural causal discovery. In order to learn an ODE that is robust OOD
changes in initial conditions (with possibly non-overlapping training and test distribution supports),
we define a family of structural causal models and perform a structural causal search in order
to find the correct model for our task (which is assumed to be in the family). We test common
structural causal discovery approaches for linear models: ℓ1-regularization with and without an
invariant risk minimization-type objective, which we observe achieve similar empirical results.

The proposed method is then empirically validated using three commonly-used simulated physics
tasks (with measurement noise): Damped pendulum systems (Yin et al., 2021), predator-prey sys-
tems (Wang et al., 2021a), and epidemic modeling (Wang et al., 2021a), all under both constant ODE
parameters and varying ODE parameters per experiment. ODE parameters between train and test
experiments have the same distribution but non-overlapping (OOD) initial condition distributions.

2 DYNAMICAL SYSTEM FORECASTING AS A META LEARNING TASK

In this section we formally describe the task of forecasting a dynamical system with a focus on the
out-of-distribution initial condition scenario.

Definition 1 (Dynamical system forecasting task) In what follows we describe our task:

1. Training data (depicted in Figure 1(a)): In training, we are given a set of M experiments, which
we will denote as M tasks. Task i ∈ {1, . . . ,M} has an associated (hidden) environment e(i).
Different tasks can have the same environment. Let T (i) := X

(i)
t0 , . . . ,X

(i)
t
T (i)

denote the noisy

observations of our dynamical system, with X
(i)
t := x

(i)
t + ε

(i)
t , where

dx
(i)
t

dt
= ψ(x

(i)
t ;W (i)∗, ξ∗) , (1)

{t0, . . . , tT (i)} are regularly-spaced discrete time steps, x(i)
t ∈ Rd is the (hidden) state of the

system at time t during experiment (task) i, ε(i)t are independent zero-mean Gaussian noises, ψ is
an unknown deterministic function with hidden ground truth parameters W (i)∗ ∼ P (W ∗) and
ξ∗, where the global task-independent parameters W ∗ and ξ∗ are also hidden. Regularly spaced
intervals are not strictly necessary for our method, but it makes its implementation simpler. Initial
conditions: The distribution of initial conditions X(i)

t0 ∼ P (Xt0 | E = e(i)) of task i may depend
on its environment. The unknown parameters ξ∗ remain constant across environments.

2. Test data ((depicted in Figure 1(b)): At test, we are given an observed initial sequence
T̃ (M+1) := X

(M+1)
t0 , . . . ,X

(M+1)
tr , where r is generally small, of the dynamical system

dx
(M+1)
t

dt
= ψ(x

(M+1)
t ;W (M+1)∗, ξ∗)

with initial condition X
(M+1)
t0 ∼ P (Xt0 | E = e(M+1)) and (unknown) system parameters

W (M+1)∗ ∼ P (W ∗) and hidden global parameters ξ∗ the same as in training. Our task is
to predict X(M+1)

tr+1
, . . . ,X

(M+1)
t
T (M+1)

from the initial observations T̃ (M+1), using the inductive
knowledge obtained from the training data.
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3. Out-of-distribution initial conditions: Initial conditions in training {P (Xt0 | E = e(i))}Mi=1, can
be different from initial conditions in test P (Xt0 | E = e(M+1)) with possibly non-overlapping
support due to the presence of an unseen environment in training.

In training, we are given trajectories that may have (a) different initial conditions, and (b) different
unknown ODE system parameters. We observe a test trajectory (indexed by M + 1) from time
t = t0, . . . , tr and we wish to forecast its future after time tr. The test trajectory can have an OOD
initial condition but in-distribution ODE parameter W (M+1)∗ with an unknown value.

Illustrative example. Figure 2a shows an example of an out-of-distribution task for forecasting the
motion of a pendulum with friction. (1.) The state Xt = [θt, ωt] ∈ R2 describes the angle made by
the pendulum with the vertical and the corresponding angular velocity at time t. The true (unknown)
function ψ describing this dynamical system is given by ψ([θt, ωt];W

∗) = [ωt,−α∗2 sin(θt)−ρ∗ωt]
with W ∗ = (α∗, ρ∗) denoting the parameters relating to the pendulum’s period and the damping
coefficient. (2.) In training, we observe M (noisy) trajectories of motion over discrete time steps t =
0, 0.1, . . . , 10 from experiments (tasks) where a pendulum is dropped with no angular velocity. (3.)
In training, each experiment is performed by dropping different pendulums (i.e., W (i)∗ ∼ P (W ∗))
from angles 0 < θt0 < π/2. (4.) In test, the experiment is repeated with a different distribution over
the initial dropping angles, π − 0.1 < θt0 < π (nearly vertical angles) with small angular velocities.
The test trajectory is observed over a smaller time window t = 0, 0.1, . . . , 3.3 and the forecasting
task is to predict the future states of the pendulum till time t = 10.

Transductive PIML Inductive PIMLStandard Neural Networks

(a) (b)

(c) (d) (e)

Task

Predict

Observations from unknown
dynamical system:

Predict future states of the same dynamical
system with OOD initial states.

PIML
Model

Fit at
test

Predict

Does not transfer knowledge
from training tasks to test task

Poor OOD approximation with
standard activations (ReLU, Tanh)

Pendulum motion: NeuralODE
predictions of        vs ground truth 

Task

Test Task

Physics model Neural Network

OOD initial
state

+

Training Test

Predict physics
parameters for

each task

Learn
corrections to

physics model 

Neural network term & physics
parameter prediction are not robust OOD

PIML model

Figure 1: Dynamical system OOD problem definition and traditional approaches to address it. (a) Training
data consists of multiple observations from the same dynamical system with different parameters W (i)∗. Each
training curve can be seen as a different task i where the goal is to predict X(i)

t+1 from X
(i)
t for all t. (b) At

test, we are given observations till tr (red solid) and the goal is to predict the future observations till tT (gray
dashed). (c) Shows OOD failure of a standard neural network (NeuralODE (Chen et al., 2018)) for dynamical
system forecasting. When trained to predict the motion of damped pendulum, the model predicts accurately in
the training domain (green shaded), but predicts a linear function outside the training domain. (d) Transductive
PIML methods (e.g., (Raissi et al., 2017a; Brunton et al., 2016)) are not able to transfer knowledge from training
tasks to a test task with different W ∗. Thus, these models can be fit only using test observations till time tr
ignoring the training data. (e) Inductive PIML methods (e.g., (Yin et al., 2021; Mehta et al., 2021)) use a known
(possibly incomplete) physics model ϕ( · ;ω) and inductively predict its parameters ω for each task, typically
using a neural network. However, predicting these physics parameters at test this way is not robust. Furthermore,
they use a neural network term to correct for the incomplete physics model and face the same robustness issue
discussed in (c).
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(b) In-distribution predictions of θ
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(c) OOD predictions of θ

Test NRMSE ↓
Constant W (i)∗ Varying W (i)∗

Methods ID OOD ID OOD

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.016 (0.008) 0.739 (0.056) 0.083 (0.033) 0.591 (0.119)
DyAd (Wang et al., 2021b) 0.012 (0.000) 0.695 (0.049) 0.078 (0.051) 0.834 (0.263)
CoDA (Kirchmeyer et al., 2022) 0.017 (0.011) 0.669 (0.365) 0.052 (0.032) 0.764 (0.201)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.047 (0.022) 0.803 (0.168) 0.097 (0.020) 0.970 (0.384)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗ NaN∗

MetaPhysiCa (ours) 0.028 (0.005) 0.078 (0.090) 0.049 (0.002) 0.070 (0.011)

(d) Normalized RMSE ↓ of test predictions from different methods in two cases: with W (i)∗ constant or varying
across environments i. NaN∗ indicates that the model returned errors during test-time predictions, for example,
because the learnt ODE was too stiff (numerically unstable) to solve.

Figure 2: (a) Predict pendulum motion from noisy observations: (i) in-distribution, when dropped from acute
angles and (ii) out-of-distribution, when dropped from nearly vertical angles. (b, c) shows example ground
truth curves (blue stars) in- and out-of-distribution along with predictions from different models. While most
tested methods perform well in-distribution, only MetaPhysiCa (orange) closely follows the true curve OOD and
all other methods are terribly non-robust. (d) Standard deep learning methods and physics-informed machine
learning methods fail to forecast accurately out-of-distribution. On the other hand, MetaPhysiCa outputs up to
8.5× more robust OOD predictions.

3 RELATED WORK & CHALLENGES WITH EXISTING APPROACHES
Next we describe different classes of existing approaches that are commonly used for the dynamical
system forecasting (Definition 1) and their inherent challenges out-of-distribution.
3.1 STANDARD NEURAL NETWORKS METHODS

Deep learning’s ability to model complex phenomena has allowed it to make great strides in a number
of physics applications (Lusch et al., 2018; Yeo & Melnyk, 2019; Kochkov et al., 2021; Dang et al.,
2022; Brandstetter et al., 2022b). However, standard deep learning methods are known to learn
spurious correlations and tend to fail when the test distribution of the inputs are different from that
observed in training (Wang et al., 2021a; Geirhos et al., 2020). Figure 2 depicts the out-of-distribution
failure of several deep learning methods from NeuralODE (Chen et al., 2018) to more complex meta
learning approaches (Wang et al., 2021b; Kirchmeyer et al., 2022) in our running damped pendulum
example (more details of the experiment is in Section 5).

In standard deep learning tasks, Xu et al. (2021) show that an MLP’s failure to extrapolate to out-of-
distribution can be traced to an absence of algorithmic alignment, which is an appropriate combination
of basis and activation functions within the architecture for the task. For example, the outputs of an
MLP with ReLU activations will be linear far from the training domain even when trained to predict
a sine/quadratic function. For dynamical system forecasting, our Figure 1(c) depicts the results of
a similar experiment for a standard sequence model (NeuralODE): the model can approximate the
target sine function in the training domain (green region) but predicts a linear function far outside the
training domain. This means that PIML also needs algorithmic alignment (i.e., to include appropriate
basis functions) in order to make accurate forecasts in OOD tasks.

3.2 PHYSICS-INFORMED MACHINE LEARNING (PIML) METHODS

To alleviate the challenges described above for standard neural networks, several physics-informed
machine learning (PIML) methods have been proposed (e.g., (Willard et al., 2020; Wang et al., 2020a;
Faghmous & Kumar, 2014; Daw et al., 2017)) that utilize physics-based domain knowledge about the
dynamical system in consideration for better predictions. The type of physics-based knowledge vary
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across methods, for example, (a) a dictionary of basis functions (e.g., sin, cos, d
dt ) (Schmidt & Lipson,

2009; Brunton et al., 2016; Martius & Lampert, 2016; Raissi, 2018; Cranmer et al., 2020a) related
to the task, (b) a completely specified physics model (Raissi et al., 2017a; Raissi, 2018; Jiang et al.,
2019) or with missing terms (Yin et al., 2021), and (c) different domain-specific physical constraints
such as energy conservation (Greydanus et al., 2019; Cranmer et al., 2020b), symmetries (Wang
et al., 2020b; Finzi et al., 2021; Brandstetter et al., 2022a). While these PIML methods improve upon
standard neural networks, Figure 2 shows that they are generally not designed for OOD forecasting
tasks. To precisely study the reasons for this failure, we categorize these methods into inductive and
transductive methods based on requirements over the dynamical system parameters W ∗.

Transductive PIML methods. Transductive inference focuses on predicting missing parts from the
training data. In PIML, transductive inference methods treat each training and test examples as
unrelated tasks, hence OOD generalization tends to be less of a challenge in transductive methods.
For instance, SINDy (Brunton et al., 2016), EQL (Martius & Lampert, 2016), and related methods
(Raissi, 2018; Chen, 2021), learn the ODE equation based on a dictionary of basis functions for a
specific parameter W (i)∗. These transductive methods, however, do not transfer knowledge learnt in
training to predicting test examples with a different in-distribution W (j)∗. This forces these methods
to forecast simply based on the initial observations of the test task alone, often leading to poor
performance. Figure 1(d) illustrates this case where a transductive method (unsuccessfully) tries to
learn the unknown parameter W (3)∗ of the test task from a few initial test observations. Another class
of transductive methods (Raissi et al., 2017a;b; Yu et al., 2022) assume all the physics parameters W ∗

of all experiments to remain constant across all training and test tasks, regularizing neural networks to
respect a given physics model. They have been shown to be challenging to train for harder differential
equations (Krishnapriyan et al., 2021) or return trivial solutions (Leiteritz & Pflüger, 2021). Recently,
Causal PINNs (Wang et al., 2022) mitigate some of these training challenges by ensuring that, for
any time t, predictions at time less than t are accurately resolved before predictions at time t. Not
only will these methods perform poorly in-distribution if different experiments have different physics
parameters, they also do not allow for causal interventions to variables in the dynamical system.

Inductive PIML. Taking the opposite approach, inductive inference focuses on learning rules from
the training data that can be applied to unseen test examples. Inductive methods dominate PIML
approaches but are fragile OOD, since the learned rules are learned within the scope of the training
data and are not guarantee to work outside the training data scope. For example, APHYNITY (Yin
et al., 2021) and NDS (Mehta et al., 2021) are such inductive methods that augment a neural network
to a known incomplete physics model where the parameters of the physics model are predicted
inductively using a recurrent network. As illustrated in Figure 1(e), these methods are able to learn
from training tasks with different true parameters W (i)∗. However, in our experiments, APHYNITY
often returns incorrect physics parameters OOD (see Figure 2c). Further, the augmented neural
network suffers from the same issues discussed in Section 3.1 leading to poor OOD performance as
seen in Figure 2.

With these key reasons identified for the fragility of existing methods to OOD initial conditions, next
we propose an approach (MetaPhysiCa) that is more robust to these challenges and outputs more
robust predictions out-of-distribution, while also giving accurate predictions in-distribution.

4 PROPOSED APPROACH: METAPHYSICA

Not causally related
to future states

Figure 3: Deterministic SCM for a dynam-
ical system with measurement noise. The
dynamics is defined via an unknown linear
combination of basis functions.

In what follows we describe MetaPhysiCa, our pro-
posed approach. We start with the description of
a family of causal models, then explain how meta
learning allows us to perform a hybrid transductive-
inductive approach for improved OOD accuracy.

4.1 STRUCTURAL CAUSAL MODEL

We describe the dynamical system using a determin-
istic structural causal model (Peters et al., 2022) with
measurement noise over the observed states and ex-
plicitly define the assumptions over the unknown
function ψ in Definition 1.
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The causal diagram is depicted in Figure 3 in the plated notation iterating over time t = t0, . . . , tT (i)

for each task T (i). As before, the state of the dynamical system is X(i)
t ∈ Rd for task i. We note

that our SCM may not necessarily be the true SCM, but rather a SCM that is indistinguishable from
the true one w.r.t. interventions limited to changes in the environment variable E that affects the
initial conditions X

(i)
t0 . We define the causal process at each time step t for i-th task as follows.

Let fk(·; ξk) : Rd → R, 1 ≤ k ≤ m, be m linearly independent basis functions each with a
separate set of parameters ξk

∗ acting on an input state x
(i)
t . Examples of such basis functions

include trigonometric functions like f1(x
(i)
t ; ξ1

∗) = sin(ξ1,1x
(i)
t,1 + ξ1,2), polynomial functions

like f2(x
(i)
t ; ξ2) = x

(i)
t,1x

(i)
t,2, and so on. The corresponding outputs from these basis are shown as

z
(i)
k,t := fk(x

(i)
t ; ξk) in Figure 3. The derivative dx

(i)
t,j/dt for a particular dimension j ∈ {1, . . . , d}

is only affected by a few (unknown) basis function outputs z(i)k,t (green arrows in Figure 3) and is a
linear combination of these selected basis functions with coefficients W (i)∗. However, these selected
basis functions and their corresponding parameters ξ are assumed to be invariant across all the tasks,
i.e., dx

(i)
t,j/dt, j ∈ {1, . . . , d}, is defined using the same basis functions for all i = 1, . . . ,M . Finally,

the derivatives dictate the next state of the dynamical system. We observe the dynamical system with
independent additive measurement noise X

(i)
t := x

(i)
t + ε

(i)
t , where ε

(i)
t ∼ N (0, σ2

εI).

We assume that we are given the collection of m possible basis functions fk(·; ξ), k = 1, . . . ,m,
m ≥ 2, with unknown ξ and no prior knowledge of which {fk}mk=1 causally influence dx

(i)
t /dt. The

need for basis functions stems from extensive experimentation and our analysis in Section 3.1, where
we show that appropriate basis functions must be incorporated within the architecture in order to
extrapolate to OOD scenarios (see Figure 1(c)).

4.2 META LEARNING & MODEL ARCHITECTURE

Given the training data {(x(i)
t )t}Mi=1 generated from the unknown SCM described above, our goal is

three-fold: (a) discover the true underlying causal structure, i.e., which of the edges zk,t → dxt,j/dt
exist for j = 1, . . . , d, (b) learn the global parameters ξ that parameterize the relevant basis functions,
and (c) learn the task-specific parameters W (i)∗ that act as coefficients in linear combination of the
selected basis functions. In the following, we propose a meta-learning framework that introduces
structure (gate) parameters Φ that are shared across tasks and task-specific coefficients W (i) that
vary across the tasks

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (2)

where ⊙ is the Hadamard product and

• F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
is the vector of outputs from the basis func-

tions with parameters ξ,
• Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal structure across all tasks

such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists in Figure 3,
• W (i) ∈ Rd×m are task-specific parameters that act as coefficients in linear combination of the

selected basis functions.

Next we describe a procedure to obtain the structure parameters Φ. Finding whether an edge exists or
not in the causal graph is known as the causal structure discovery problem (e.g., Heinze-Deml et al.
(2018)). We use a score-based causal discovery approach (e.g., Huang et al. (2018)) where we assign
a score to each possible causal graph. We wish to find the minimal causal structure, i.e., with the least
number of edges, that also fits the training data. This balances the complexity of the causal structure
with training likelihood, and avoids overfitting the training data. A sparse structure for Φ implies
fewer terms in the RHS of the learnt equation for the derivatives in Equation (2). Several causal
discovery approaches have been proposed that learn such minimal causal structure via continuous
optimization (Zheng et al., 2018; Ng et al., 2022). We use the log-likelihood of the training data with
ℓ1-regularization term to induce sparsity that is known to perform well for general causal structure
discovery tasks (Zheng et al., 2018). Note that since the direction of all the edges are known (i.e.,
zk,t → dxt,j/dt), we do not need the acyclicity constraints and the causal graph is uniquely identified
by its Markov equivalence class (Pearl, 2009, Chapter 2).
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The prediction error is given by R(i)(W (i),Φ, ξ) := 1
T (i)+1

∑t
T (i)

t=t0 ||X̂(i)
t −X

(i)
t ||22 where X̂

(i)
t =

X
(i)
t0 +

∫ t

t0
(W (i) ⊙ Φ)F (X̂

(i)
τ ; ξ)dτ are the predictions obtained using an ODE solver to integrate

Equation (2). In practice however, we found the squared loss directly between the predicted and
estimated ground truth derivatives, i.e., R̃(i)(W (i),Φ, ξ) = 1

T (i)+1

∑t
T (i)

t=t0 ||dX̂(i)
t /dt − dX(i)

/dt||22,
leads to a stable learning procedure with better accuracy in-distribution and OOD. As discussed
before, we use an ℓ1-regularization term ||Φ||1 to learn a causal structure with the fewest possible
edges zk,t → dxt,j/dt, j = 1, . . . , d, while minimizing the prediction error in training. We also use
ℓ1-regularization on the task-specific parameters, ||W (i)||1, to learn a simpler model within each task
i, if possible, than the one learnt globally for all tasks via Φ.

Our structure discovery task comes with an additional challenge as the training tasks could have
been obtained under different (hidden) environments (as defined in Definition 1). While there are
score-based (discrete optimization) approaches (Ghassami et al., 2018; Perry et al., 2022) for such
non-IID data, aforementioned approaches based on continuous optimization (e.g., (Zheng et al.,
2018)) are not guaranteed to learn the correct structure. For example, they may output a structure
that is optimal for one environment consisting of a large number of training tasks but suboptimal
for other environments. Our goal then is to learn a structure that minimizes the prediction error
across all environments simultaneously, similar to learning robust representations via invariant risk
minimization-type methods (Arjovsky et al., 2019; Krueger et al., 2021). Since the environment e(i)
of a particular task i is hidden to our approach, we use a modified V-REx regularization (Krueger
et al., 2021) that minimizes the variance of prediction errors across tasks instead of environments,
focusing on robustness to the worst-case scenario (that all tasks have unique environments).

Now we are ready to describe our final optimization objective. Similar to standard meta-learning
objectives (Finn et al., 2017; Franceschi et al., 2018; Hospedales et al., 2021), we propose a bi-level
objective that optimizes the structure parameters Φ and the global parameters ξ in the outer-level, and
the task-specific parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) + λW ||W (i)||1, ∀i = 1, . . . ,M , (3)

where λΦ, λW and λREx are hyperparameters. While the exact bi-level optimization in Equation (3)
is challenging to solve due to the lack of closed-form solution for the inner optimization, it can
be approximated by alternate SGD steps for (Φ, ξ) and {W (i)}Mi=1 in outer and inner loops re-
spectively (Borkar, 1997; Chen et al., 2021). In our experiments, jointly optimizing Φ, ξ and
W (i), i = 1, . . . ,M, instead resulted in comparable performance with considerable computational
benefits over alternating SGD. The discrete structure parameters Φ can be approximated using
(stochastic) Gumbel-Softmax variables (Jang et al., 2017; Ng et al., 2022) or using deterministic
binarization techniques (Courbariaux et al., 2015; 2016). We use the latter and reparameterize
Φj,k := 1(σ(Φ̃j,k) > 0.5) where Φ′ ∈ Rd×m, σ(·) is the sigmoid function, and the gradients are
estimated via a straight-through-estimator.

Hyperparameter selection: We choose the hyperparameters λΦ, λW , λREx that result in sparsest
model (i.e., with the least ||Φ̂||0) while achieving validation loss within 5% of the best validation
loss in held-out in-distribution validation data. The use of in-distribution data for validation is
key requirement since in OOD tasks one does not have access to samples from the test distribution.
Additional implementation details are provided in Appendix B.

4.3 TRANSDUCTIVE TEST-TIME ADAPTATION WITH INDUCTIVE REGULARIZATION

Finally, given a test task T̃ (M+1) = (X
(M+1)
t0 , . . . ,X

(M+1)
tr ) with the unknown ground-truth pa-

rameters W (M+1)∗ ∼ P (W ∗) as defined in Definition 1, we adapt the learnt model’s task-specific
parameters W (M+1) by optimizing the following while keeping Φ̂, ξ̂ fixed

Ŵ (M+1) = argmin
W (M+1)

1

tr + 1

tr∑
t=t0

||X̂(M+1)
t −X

(M+1)
t ||22 + λW ||W (M+1)||1 (4)
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Test Normalized RMSE (NRMSE) ↓
Constant W (i)∗ Varying W (i)∗

Methods ID OOD ID OOD

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.012 (0.002) 1.098 (0.108) 0.193 (0.024) 1.056 (0.141)
DyAd (Wang et al., 2021b) 0.016 (0.003) 1.213 (0.216) 0.244 (0.025) 1.088 (0.373)
CoDA (Kirchmeyer et al., 2022) NaN∗ NaN∗ NaN∗ NaN∗

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.047 (0.019) 0.301 (0.139) 0.421 (0.332) 3.937 (1.686)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.008 (0.001) 0.008 (0.000) 0.049 (0.008) 0.129 (0.030)

(a) Test NRMSE ↓ for different methods. NaN∗ indicates that the model returned errors during test.
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(b) In-distribution predictions
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(c) OOD predictions

Figure 4: (Predator-prey results) (a) MetaPhysiCa outputs 30× and 8× more robust OOD predictions
in constant W (i)∗ and varying W (i)∗ datasets respectively. (b, c) shows example ground truth curves (blue
stars) in- and out-of-distribution along with corresponding predictions. While most tested methods perform well
in-distribution, only MetaPhysiCa (orange) closely follows the true curve OOD.

where X̂(M+1)
t = X

(M+1)
t0 +

∫ t

t0
(W (M+1)⊙ Φ̂)F (X̂

(M+1)
τ ; ξ̂)dτ are the predictions obtained using

the optimal values Φ̂, ξ̂, and λW is the hyperparameter chosen during training. Note the following
two key aspects of the test-time adaptation in Equation (4): (a) Only the task-specific parameters
W (M+1) are adapted whereas the meta-model Φ̂ learnt during training is kept fixed, and (b) only
the observations from time t0, . . . , tr of the given test trajectory is used to adapt the parameters
W (M+1). The final predictions (X̂(M+1)

t )
t
T (M+1)

tr from the model are obtained with the test-time
adapted parameters Ŵ (M+1) and the fixed parameters with no adaptation Φ̂, ξ̂.

5 EMPIRICAL EVALUATION

We evaluate MetaPhysiCa in synthetic forecasting tasks based on 3 different dynamical systems
(ODEs) from the literature (Yin et al., 2021; Wang et al., 2021a) adapted to our OOD scenario,
namely, (i) Damped pendulum system, (ii) Predator-prey system and (iii) Epidemic model. We
compare against the following approaches: (a) NeuralODE (Chen et al., 2018), a deep learning
method for learning ODEs, (b) DyAd (Wang et al., 2021b) (modified for ODEs), a meta-learning
framework that adapts the forecaster to different training tasks with a weakly-supervised encoder,
(c) CoDA (Kirchmeyer et al., 2022), that learns to modify its parameters to each environment
with a low-rank adaptation, (d) APHYNITY (Yin et al., 2021), a PIML method that augments
a known incomplete physics model with a neural network, (e) SINDy (Brunton et al., 2016), a
transductive PIML method that uses sparse regression to learn linear coefficients over a given set of
basis functions, (f) EQL (Martius & Lampert, 2016), a transductive PIML method that uses sin, cos
and other activation functions within a neural network and learns a sparse model. Additional details
about the models is presented in Appendix B.
Dataset generation. As per Definition 1, for each dynamical system, we simulate the respective
ODE to generate M = 1000 training tasks each observed over regularly-spaced discrete time steps
{t0, . . . , tT }1 where ∀l, tl = 0.1l. For each training task T (i), i = 1, . . . ,M , we sample an initial
condition X

(i)
t0 ∼ P (Xt0 |E = e) where E = e is the training environment. We consider two

scenarios for the dynamical system parameters: (a) Constant W (i)∗, where W (i)∗ is constant for all
tasks i, and (b) Varying W (i)∗, where we sample a different W (i)∗ ∼ P (W ∗) for each task i. Note
however that none of the models have oracle knowledge of which of the two scenarios the data is

1In our experiments, we let T (i) = T constant for all tasks for simplicity of implementation but the proposed
method is not restricted to this case.
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observed from. At OOD test, we generateM ′ = 200 test tasks by simulating the respective dynamical
system over timesteps {t0, . . . , tr}, where again ∀l, tl = 0.1l. For each test task j = 1, . . . ,M ′, we
sample OOD initial conditions X(j)

t0 ∼ P (Xt0 |E = e′) where E = e′ is the test environment and can
induce a completely different support for the initial conditions X(j)

t0 than in training. The distribution
of the dynamical system parameters W ∗ is kept the same across training and test.

We consider three dynamical systems in our experiments, with 3 to 6 RHS terms in their respective
differential equations: a damped pendulum system (Yin et al., 2021), a predator-prey system (Wang
et al., 2021a), and an epidemic (SIR) model (Wang et al., 2021a), with following OOD shifts in
their initial conditions respectively: acute initial angles in training to nearly vertical initial angles
in OOD test, initial prey population 10× less in OOD test than in training, and initial population
susceptible to a disease 10× more in OOD test than in training. We generate the damped pendulum
dataset with 1% zero-mean Gaussian noise and the rest with no noise to show that OOD failure of
baselines is unrelated to noise: existing methods fail OOD even with clean observations. For methods
that require ground truth derivatives during training, we estimate them from noisy trajectories using
Total Variation Regularization (TVR) (Rudin et al., 1992; Chartrand, 2011) as done by Brunton
et al. (2016). Detailed description of the datasets is presented in Appendix A and experiments with
increasing amounts of noise is presented in Appendix C.4.

Results. We repeat our experiments 5 times with different random seeds and report in-distribution
(ID) and out-of-distribution (OOD) normalized root mean squared errors (NRMSE), i.e., RMSE
normalized with standard deviation of the ground truth observations. Figures 2, 4 and 5 show the
errors and example predictions from all models for the three datasets respectively.

The first two columns of Tables 2d, 4a, 5a show results when W (i)∗ is constant across tasks i.
NeuralODE, DyAd, CoDA and APHYNITY use neural network components and are able to learn
the in-distribution task well with low errors. However, the corresponding errors OOD are high
as they are unable to adapt to OOD initial conditions. Example OOD predictions (Figures 2c, 4c
and 7b) from these methods show that they have not learnt the true dynamics of the system. For
example, for epidemic modeling (Figure 7b), most models predict trajectories very similar to training
trajectories even though the number of susceptible individuals is 10× higher in OOD test. SINDy
and EQL cannot use the training data and are fit on the test observations alone (see Figure 1(d)).
Thus, they are unable to identify an accurate analytical equation from these few observations of the
test task, resulting in prediction issues due to stiff ODEs. MetaPhysiCa consistently performs the
best OOD across all datasets achieving 8.5× to 35× lower NRMSE OOD errors respectively in the 3
datasets than the best baseline. The last two columns of Tables 2d, 4a, 5a show results for the more
challenging scenario when W (i)∗ ∼ P (W ∗) is varying across tasks. The results follow the same
trend and MetaPhysiCa performs best OOD across all datasets achieving 8× to 28× lower NRMSE
OOD errors respectively in the 3 datasets than the best baseline. In Appendix C.1, we show that
MetaPhysiCa learns the ground truth ODE (possibly reparameterized) for all 3 dynamical systems.

6 CONCLUSIONS
In this work we considered the out-of-distribution (OOD) task of forecasting a dynamical system
(ODE) under new initial conditions. We showed that existing PIML methods do not perform well
in these tasks and proposed MetaPhysiCa that uses a meta-learning framework to learn the causal
structure for the shared dynamics across all environments, while adapting the task-specific parameters.
Results on three OOD (initial condition) forecasting tasks show that MetaPhysiCa is more robust
with 8× to 35× reduction in OOD error compared to the best competing baseline.

Limitations & future work. We believe that forecasting models should be robust to OOD shifts, and
that our work takes a step in the right direction with several potential avenues for future research:
(i) Partial differential equations (PDEs): Extending MetaPhysiCa to forecasting PDEs under OOD
scenarios is an interesting extension that requires an expanded set of basis functions that includes
differential operators (like the Laplace operator), and considering out-of-distribution boundary
conditions. (ii) More expressive structural causal models (SCMs): Our experiment on a complex
ODE task (in Appendix C.5) suggests that MetaPhysiCa with a more expressive SCM that allows for
composition of basis functions is able to forecast out-of-distribution better than competing baselines,
but suffers from learning stiff ODEs due to the complexity of a 2-layer learnable basis function
procedure. Better optimization techniques may help alleviate this problem.
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Supplementary Material of “MetaPhysiCa: Causality-aware
Robustness to OOD Initial Conditions in Physics-informed Machine

Learning”

A DESCRIPTION OF TASKS

For each dynamical system, we simulate the respective ODE to generate M = 1000 training tasks
each observed over regularly-spaced discrete time steps {t0, . . . , tT } where ∀l, tl = 0.1l. Our data
generation process is succinctly depicted in Table 1. For each dataset, the second column shows the
state variables Xt and the unknown parameters W ∗. For each training task T (i), i = 1, . . . ,M , we
sample an initial condition X

(i)
t0 ∼ P (Xt0 |E = e) where E = e is the training environment (shown

under ID columns of the table). We consider two scenarios for the dynamical system parameters:

• Constant W (i)∗ (third and fourth columns in Table 1): W (i)∗ is constant for all tasks i .
For all tasks i, W (i)∗ = Wparam as indicated in the table.

• Varying W (i)∗ (final two columns in Table 1): We sample a different W (i)∗ ∼
U(Wparam, 2Wparam) for each task i with Wparam shown in the table.

At OOD test, we generate M ′ = 200 test tasks by simulating the respective dynamical system over
timesteps {t0, . . . , tr}, where again ∀l, tl = 0.1l. For each test task j = 1, . . . ,M ′, we sample
initial conditions X(j)

t0 ∼ P (Xt0 |E = e′) where E = e′ is the test environment and can induce a
completely different support for the initial conditions X(j)

t0 than in training. The distribution of the
dynamical system parameters W ∗ is kept the same across training and test.

Damped pendulum system (Yin et al., 2021). The state Xt = [θt, ωt] ∈ R2 describes the angle
made by the pendulum with the vertical and the corresponding angular velocity at time t. The true
(unknown) function ψ describing this dynamical system is given by dθt

dt = ωt,
dωt

dt = −α∗2 sin(θt)−
ρ∗ωt where W ∗ = (α∗, ρ∗) are the dynamical system parameters. We simulate the ODE over time
steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in training and over time steps {t0, . . . , tr} in test with
r = 1

3T . In training, the pendulum is dropped from initial angles θ(i)t0 ∼ U(0, π/2) with no angular
velocity, whereas in OOD test, the pendulum is dropped from initial angles θ(j)t0 ∼ U(π − 0.1, π) and
angular velocity ω(j)

t0 ∈ U(−1, 0).

Predator-prey system (Wang et al., 2021a). We wish to model the dynamics between two species
acting as prey and predator respectively. We adapt the experiment by Wang et al. (2021a) to our out-of-
distribution forecasting scenario according to Definition 1. Let p and q denote the prey and predator
populations respectively. The ordinary differential equations describing the dynamical system is given
by dp

dt = α∗p−β∗pq , dqdt = δ∗pq−γ∗q , where W ∗ = (α∗, β∗, γ∗, δ∗) are the (unknown) dynamical
system parameters. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps {t0, . . . , tr} in test with r = 1

3T . We generate M = 1000 training tasks
with different initial prey and predator populations with prey p(i)t0 ∼ U(1000, 2000) and predator
q
(i)
t0 ∼ U(10, 20) for each i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution

(OOD) test tasks with different initial prey populations p(j)t0 ∼ U(100, 200) but the same distribution
for predator population q(j)t0 ∼ U(10, 20).

Epidemic modeling (Wang et al., 2021a). We adapt the experiment by Wang et al. (2021a) to our
out-of-distribution forecasting scenario according to Definition 1. The state of the dynamical system
is described by three variables: number of susceptible (S), infected (I) and recovered (R) individuals.
The dynamics is described using the following ODEs: dS

dt = −β SI
N , dIdt = β SI

N − γI, dRdt = γI ,
where W = (β, γ) are the (unknown) dynamical system parameters and N = S + I + R is the
total population. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps r = 1

10T . We generate M = 1000 training tasks with different initial
populations for susceptible (S) and infected (I) individuals, while the number of initial recovered

14



Under review as a conference paper at ICLR 2023

Test Normalized RMSE (NRMSE) ↓
Constant W (i)∗ Varying W (i)∗

Methods ID OOD ID OOD

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.003 (0.000) 1.229 ( 0.059) 0.005 (0.000) 1.139 ( 0.031)
DyAd (Wang et al., 2021b) 0.003 (0.001) 121.236 (462.022) 0.006 (0.001) 77.377 (204.435)
CoDA (Kirchmeyer et al., 2022) 0.004 (0.001) 2.044 ( 0.754) 0.004 (0.001) 3.341 ( 0.389)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.075 (0.071) 2.345 ( 6.035) 0.151 (0.150) 0.544 ( 0.249)
SINDy (Brunton et al., 2016) 2.038 (0.008) 2.447 ( 0.065) 1.999 (0.046) 2.746 ( 0.476)
EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.006 (0.002) 0.035 ( 0.028) 0.009 (0.004) 0.019 ( 0.002)

(a) Test NRMSE ↓ for different methods. NaN∗ indicates that the model returned errors during test.
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Figure 5: (Epidemic model results) (a) MetaPhysiCa outputs 35× and 28× more robust OOD predictions
in constant W (i)∗ and varying W (i)∗ datasets respectively. (b, c) shows example ground truth curves (blue
stars) in- and out-of-distribution along with corresponding predictions. Only MetaPhysiCa (orange) closely
follows the true curve OOD.

State variables Constant W (i)∗ = Wparam Varying W (i)∗ ∼ U(Wparam, 2Wparam)
Datasets ID OOD ID OOD

Damped pendulum Xt = (θt, ωt)
θ0 ∼ U(0, π/2) θ0 ∼ U(π − 0.1, π) θ0 ∼ U(0, π/2) θ0 ∼ U(π − 0.1, π)
ω0 = 0 ω0 ∼ U(−1, 0) ω0 = 0 ω0 ∼ U(−1, 0)

W ∗ = (α, ρ) αparam = 1, ρparam = 0.2

Predator prey system Xt = (pt, qt)
p0 ∼ U(1000, 2000) p0 ∼ U(100, 200) p0 ∼ U(1000, 2000) p0 ∼ U(100, 200)
q0 ∼ U(10, 20) q0 ∼ U(10, 20) q0 ∼ U(10, 20) q0 ∼ U(10, 20)

W ∗ = (α, β, γ, δ) αparam = 1, βparam = 0.06, γparam = 0.5, δparam = 0.0005

Epidemic modeling Xt = (St, It, Rt)
S0 ∼ U(9, 10) S0 ∼ U(90, 100) S0 ∼ U(9, 10) S0 ∼ U(90, 100)
I0 ∼ U(1, 5) I0 ∼ U(1, 5) I0 ∼ U(1, 5) I0 ∼ U(1, 5)
R0 = 0 R0 = 0 R0 = 0 R0 = 0

W ∗ = (β, γ) βparam = 4, γparam = 0.4

Table 1: Description of the dataset generation process. For each dataset, Xt denotes the state variable
of the dynamical system and W ∗ denotes its parameters. Third and fourth columns correspond
to the case when the (hidden) ground truth parameters W (i)∗ are kept fixed for all the tasks to
W (i)∗ = Wparam. For example, in the damped pendulum dataset, we fix β(i)∗ = βparam = 1

and ρ(i)∗ = ρparam = 0.2 for all tasks i. Column ID represents in-distribution initial states while
the column OOD represents the out-of-distribution initial states. Similarly, the final two columns
correspond to the case when the ground truth parameters W (i)∗ vary across tasks and are sampled
from a uniform distribution W (i)∗ ∼ U(Wparam, 2Wparam). For example, in the damped pendulum
dataset, we sample α(i)∗ ∼ U(αparam, 2αparam) = (1, 2) and ρ(i)∗ ∼ U(ρparam, 2ρparam) = (0.2, 0.4)
for each task i.

(R) individuals are always zero. In training, we sample S(i)
t0 ∼ U(9, 10) and I(i)t0 ∼ U(1, 5) for each

i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution test tasks with a different
initial susceptible population, S(j)

t0 ∼ U(90, 100), while keeping the same distribution for infected
population.

15



Under review as a conference paper at ICLR 2023

Predict

Trajectories from unknown
dynamical system

OOD initial
state

Estimate ground
truth derivatives for

time

Observe

Tr
ai

ni
ng

Te
st

Shared across
all tasks

Causal structure Task-specific
parameters Basis functions

(Fixed at test) Predict test trajectory till      with parameters   
     and             using an ODE solver.

Predicted
derivatives for

time

Training Loss
Equation (3)

or
Equation (6)

Observations
from timeTest-time

adapt 
Equation (4)

ODE
Solve

Figure 6: Schematic diagram of MetaPhysiCa and corresponding training/test methodologies. We
observe M trajectories in training from the same dynamical system with different initial conditions
and ODE parameters. In training, Φ, denoting the causal structure, is shared among all tasks
i = 1, . . . ,M , while W (i) are the task-specific parameters. Predicted derivatives for task i over time
t = t0, . . . , tT are obtained from Equation (2) using the parameters Φ,W (i) and the basis functions
F (X

(i)
t ; ξ). During test, we adapt W (M+1) over the observations of the test trajectory from time

t0, . . . , tr, keeping the learnt causal structure Φ̂ fixed.

B IMPLEMENTATION DETAILS

In what follows, we describe implementation details of MetaPhysiCa and the baselines.

B.1 METAPHYSICA

Figure 6 shows a schematic diagram of MetaPhysiCa and the corresponding training/test procedures.
Recall from Equation (2) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (5)

where ⊙ is the Hadamard product and

• F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
is the vector of outputs from the basis func-

tions with parameters ξ,
• Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal structure across all tasks

such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists,
• W (i) ∈ Rd×m are task-specific parameters that act as coefficients in linear combination of the

selected basis functions.

In our experiments, we use polynomial and trigonometric basis functions, such that

F (X̂
(i)
t ; ξ) :=[
1 X̂

(i)
t,1 . . . X̂

(i)
t,d︸ ︷︷ ︸

polynomial order 1

X̂
(i)2
t,1 . . . X̂

(i)
t,l−1X̂

(i)
t,l . . . X̂

(i)2
t,d︸ ︷︷ ︸

polynomial order 2

sin(ξ1,1X̂
(i)
t,1 + ξ1,2) . . . sin(ξd,1X̂

(i)
t,d + ξd,2)︸ ︷︷ ︸

trigonometric

]T

.

16



Under review as a conference paper at ICLR 2023

Equation (3) describes a bi-level objective that optimizes the structure parameters Φ and the global
parameters ξ in the outer-level, and the task-specific parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) + λW ||W (i)||1, ∀i = 1, . . . ,M ,

where λΦ, λW and λREx are hyperparameters. As discussed in the main text, the jointly optimizing
Φ, ξ and W (i), i = 1, . . . ,M, instead of alternating SGD resulted in comparable performance with
considerable computational benefits. We use the following joint optimization objective to approximate
Equation (3),

Φ̂, ξ̂, Ŵ (1), . . . , Ŵ (M) = argmin
Φ,ξ,W (1),...,W (M)

1

M

M∑
i=1

R(i)(W (i),Φ, ξ) + λΦ||Φ||1 + λW

M∑
i=1

||W (i)||1

(6)

+ λRExVariance({R(i)(W (i),Φ, ξ)}Mi=1)

We perform a grid search over the following hyperparameters: regularization strengths λΦ ∈
{10−4, 10−3, 5×10−3, 10−2}, λW ∈ {0, 10−4, 10−3, 10−2}, λREx ∈ {0, 10−3, 10−2}, and learning
rates η ∈ {10−2, 10−3, 10−4}. We choose the hyperparameters that result in sparsest model (i.e.,
with the least ||Φ̂||0) while achieving validation loss within 5% of the best validation loss in held-out
in-distribution validation data.

B.2 NEURALODE (CHEN ET AL., 2018)

The prediction dynamics corresponding to the latent NeuralODE model is given by dX̂t

dt =

Fnn(X̂t, z≤r;W1) where z≤r = Fenc(Xt0 , . . . ,Xtr ;W2) encodes the initial observations using
a recurrent neural network Fenc (e.g., GRU), and Fnn is a feedforward neural network. The model
is trained with an ODE solver (dopri5) and the gradients computed using the adjoint method (Chen
et al., 2018). We perform a grid search over the following hyperparameters: number of layers for Fnn,
L ∈ {1, 2, 3}, size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, size of the encoder representation
z≤r, dz ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

B.3 DYAD (MODIFIED FOR ODES) (WANG ET AL., 2021B)

DyAd, originally proposed for forecasting PDEs, uses a meta-learning framework to adapt to different
training tasks by learning a per-task weak label. We modify their approach for our ODE-based
experiments. Since we do not assume the presence of weak labels for supervision for adaptation,
we use mean of each variable in the training task as the task’s weak label. We use NeuralODE
as the base sequence model for the forecaster network. The forecaster network takes the initial
observations as input and forecasts the future observations while being adapted with the encoder
network. The encoder network is a recurrent network (GRU in our experiments) that takes as input
the initial observations and predicts the weak label. The last layer representation from the encoder
network is used to adapt NeuralODE via AdaIN (Huang & Belongie, 2017). We perform a grid
search over the following hyperparameters: size of hidden layers for the forecaster and encoder
networks dh ∈ {32, 64, 128}, number of layers for the forecaster network, L ∈ {1, 2, 3}, batch sizes
B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

B.4 APHYNITY (YIN ET AL., 2021)

APHYNITY assumes that we are given a (possibly incomplete) physics model ϕ(·,Θphy) with
parameters Θphy. When the training data may consist of tasks with different W (i)∗, APHYNITY
predicts the physics parameters with respect to the task i inductively using a recurrent neural
network Gnn from the initial observations of the system as Θ̂(i)

phy = Gnn(Xt0 , . . . ,Xtr ;W2). Then,
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APHYNITY augments the given physics model ϕ with a feedforward neural network component Fnn

and defines the final dynamics as dX̂
(i)
t

dt = ϕ(X̂
(i)
t ; Θ̂

(i)
phy) + Fnn(X̂

(i)
t ;W1). APHYNITY solves a

constrained optimization problem to minimize the norm of the neural network component while still
predicting the training trajectories accurately. The model is trained with an ODE solver (dopri5) and
the gradients computed using the adjoint method (Chen et al., 2018). In our experiments, we provide
APHYNITY with simpler physics models:

• For damped pendulum system, we use a physics model that assumes no friction: dθt
dt = ωt,

dωt

dt =

−α2
phy sin(θt) where Θphy = αphy is the physics model parameter.

• For predator-prey system, we use a physics model that assumes no interaction between the two
species: dp

dt = αphyp ,
dq
dt = −γphyq where Θphy = (αphy, γphy) are the physics model parameters.

• For epidemic model, we use a physics model that assumes the disease is not infectious: dS
dt =

0, dIdt = −γI, dRdt = γI , where Θphy = γphy is the physics model parameter.

In each dataset, APHYNITY needs to augment the physics model with a neural network component
for accurate predictions.

We perform a grid search over the following hyperparameters: number of layers for Fnn, L ∈ {1, 2, 3},
size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.

B.5 SINDY (BRUNTON ET AL., 2016)

SINDy uses a given dictionary of basis functions to model the dynamics as dX̂t

dt = Θ(X̂t)W where
Θ is feature map with the basis functions (such as polynomial and trigonometric functions) and W is
simply a weight matrix. SINDy is trained using sequential threshold least squares (STLS) for sparse
weights W . We perform a grid search over the following hyperparameters: threshold parameter
used in STLS optimization, τ0 ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}, and the regularization strength
α ∈ {0.05, 0.01, 0.1, 0.5}.

B.6 EQUATION LEARNER (MARTIUS & LAMPERT, 2016)

Equation learner (EQL) is a neural network architecture where each layer is defined as follows with
input x and output o

z = Wx+ b

o = (f1(z1), f2(z2), . . . , g1(zk, zk+1), g2(zk+2, zk+3), . . . , ) ,

where fi are unary basis functions (such as sin, cos, etc.) and gi are binary basis functions
(such as multiplication). We use id, sin and multiplication functions in our implementation. EQL
is trained using a sparsity inducing ℓ1-regularization with hard thresholding for the final few
epochs. We perform a grid search over the following hyperparameters: number of EQL lay-
ers, L ∈ {1, 2}, number of nodes for each type of basis function, h ∈ {1, 3, 5}, regulariza-
tion strength α ∈ {10−1, 10−2, 10−3, 10−4, 10−5}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.

C ADDITIONAL RESULTS

C.1 QUALITATIVE ANALYSIS

Recall from Equation (2) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (7)

where F (X̂(i)
t ; ξ) is the vector of outputs from the basis functions, Φ ∈ {0, 1}d×m are the learnable

parameters governing the global causal structure across all tasks, and W (i) ∈ Rd×m are task-specific
parameters that act as coefficients in linear combination of the selected basis functions.
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Datasets State variables Ground truth ODE Learnt ODE (from Φ)

Damped pendulum Xt = (θt, ωt)
dθt
dt = ωt

dθt
dt =W1ωt

dωt

dt = −α∗2 sin(θt)− ρ∗ωt
dωt

dt =W2 sin(θt) +W3ωt

Predator prey system Xt = (pt, qt)
dpt

dt = α∗pt − β∗ptqt
dpt

dt =W1pt +W2ptqt
dqt
dt = δ∗ptqt − γ∗qt

dqt
dt =W3ptqt +W4qt

Epidemic modeling Xt = (St, It, Rt)

dSt

dt = −β∗ StIt
St+It+Rt

dSt

dt =W1StIt
dIt
dt = β∗ StIt

St+It+Rt
− γ∗It

dIt
dt =W2StIt +W3I

2
t +W4ItRt

dRt

dt = γ∗It
dRt

dt =W5StIt +W6I
2
t +W7ItRt

Table 2: (Qualitative analysis.) Ground truth dynamical system vs learnt ODE in the meta-model Φ.
Recall that Φ ∈ {0, 1}d×m dictates which of the basis functions affect the output dXt/dt. The weights
Wl in the learnt ODE column are learnable parameters that are optimized via test-time adaptation
in Equation (4). MetaPhysiCa learns the exact ground truth ODE for Damped pendulum and
Predator-prey system, and a reparameterized version of the true ODE for epidemic modeling
task.

After training, the ODE learnt by the model can be easily inferred by checking all the terms in Φ that
are greater than zero, i.e., Φj,k > 0 implies fk(xt; ξk) → dxt,j/dt exists in the causal graph. In other
words, RHS of learnt ODE for dxt,j/dt contains the basis function fk(xt; ξk).

Table 2 shows the ground truth ODE and the learnt ODE for the three experiments. For each
learnt ODE, we also depict the learnable parameters Wl that can be adapted using Equation (4)
during test-time. For damped pendulum and predator-prey system, the RHS terms in the learnt
ODE exactly matches ground truth ODE, and from Figures 2 and 4, it is clear that the method is
able to accurately adapt the learnable parameters Wl during test-time. For epidemic modeling task,
MetaPhysiCa learns a reparameterized version of the ground truth ODE. For example, MetaPhysiCa
learns dRt

dt = W ′
aItSt + W ′

bI
2
t + W ′

cItRt, which can be written as dRt

dt = WaIt (the ground
truth ODE) if W ′

a = W ′
b = W ′

c, because St + It + Rt = N is a constant denoting the total
population. While the learnt reparameterized ODE is more complex because it allows different
values for W ′

a,W
′
b,W

′
c, the test-time adaptation of these learnable parameters with the initial test

observations results in them taking the same values.

C.2 ABLATION RESULTS

We present an ablation study comparing different components of MetaPhysiCa in Table 3. Table
shows out-of-distribution test NRMSE for MetaPhysiCa without each individual component on the
three dynamical systems (varying W (i)∗ scenario). We observe that sparsity regularization (i.e.,
||Φ||1) and test-time adaptation are the most important components. For two out of three tasks, the
method returns prediction errors without sparsity regularization.

When testing MetaPhysiCa without test-time adaptation, we simply use the mean of the task-specific
weights learnt for training tasks as the task-specific weight for the given test trajectory, i.e., ŴM+1 =
1
M

∑
i W

(i). This results in high OOD errors showing the importance of test-time adaptation. The
other two components of the MetaPhysiCa, the task-specific ℓ1-regularization (i.e., ||W (i)||1) and the
V-REx penalty (Krueger et al., 2021) help in some experiments and perform comparably in others.

C.3 OUT-OF-DISTRIBUTION ODE PARAMETERS

The forecasting task in Definition 1 considers out-of-distribution initial conditions Xt0 and in-
distribution ODE parameters W (i)∗. Here, we consider OOD values for true dynamical system
parameters W (i)∗ as well, which significantly increases the difficulty of the forecasting task.

Consider the damped pendulum system: dθt
dt = ωt,

dωt

dt = −α∗2 sin(θt)−ρ∗ωt where W ∗ = (α∗, ρ∗)

are the dynamical system parameters. Training: Pendulum is dropped from initial angles θ(i)t0 ∼
U(0, π/2) with no angular velocity. We sample the dynamical system parameters α(i)∗ ∼ U(1, 2)
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OOD Test Normalized RMSE ↓
Method Damped Pendulum Predator-Prey Epidemic Modeling

MetaPhysiCa 0.070 (0.011) 0.129 (0.030) 0.019 (0.002)
without ||Φ||1 NaN∗ 1.806 (0.736) NaN∗

without ||W (i)||1 0.434 (0.531) 0.132 (0.020) 0.020 (0.021)
without test-time adaptation 1.223 (0.741) 1.404 (3.794) 0.358 (0.554)
without V-REx penalty 0.070 (0.014) 0.129 (0.030) 0.042 (0.065)

Table 3: (Ablation.) Out-of-distribution test NRMSE for MetaPhysiCa without each individual
component on the three dynamical systems (varying W (i)∗ scenario). Sparsity regularization (i.e.,
||Φ||1) and test-time adaptation are the most important components, whereas the task-specific
ℓ1-regularization (i.e., ||W (i)||1) and the V-REx penalty (Krueger et al., 2021) help in some
tasks, but not in others.

Test NRMSE ↓
Methods ID OOD Xt0 OOD Xt0 and W (i)∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.083 (0.033) 0.591 (0.119) 1.208 (0.401)
DyAd (Wang et al., 2021b) 0.078 (0.051) 0.834 (0.263) 1.390 (0.441)
CoDA (Kirchmeyer et al., 2022) 0.052 (0.032) 0.764 (0.201) 1.031 (0.213)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.097 (0.020) 0.970 (0.384) 1.343 (0.404)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (ours) 0.049 (0.002) 0.070 (0.011) 0.181 (0.012)

Table 4: (Damped pendulum.) Normalized RMSE ↓ of test predictions from different methods
under two cases: (a) when initial conditions Xt0 are OOD, and (b) when both initial conditions Xt0

and ODE parameters W (i)∗ are OOD. NaN∗ indicates that the model returned errors during test-time
predictions. MetaPhysiCa is able to adapt its parameters to the OOD parameters W (i)∗ and
outputs ≈ 5× more robust OOD predictions compared to the baselines..

and ρ(i)∗ ∼ U(0.2, 0.4) for each task i. Out-of-distribution Test: The pendulum is dropped from
initial angles θ(j)t0 ∼ U(π − 0.1, π) and angular velocity ω(j)

t0 ∈ U(−1, 0). We sample the dynamical
system parameters α(i)∗ ∼ U(1, 2) and ρ(i)∗ ∼ U(0.1, 0.2). Note that the damping coefficient ρ(i)∗
is sampled out-of-support from its training distribution. Rest of the experimental methodology is kept
same as before.

We report the normalized RMSE of the all the methods in Table 4 for three test scenarios: in-
distribution (ID), out-of-distribution initial conditions (OOD Xt0), and out-of-distribution initial
conditions and ODE parameters (OOD Xt0 and W (i)∗). MetaPhysiCa is able to adapt relatively
well to the out-of-distribution ODE parameters and performs ≈ 4× better than the best baseline.
Unfortunately, the test-time adaptation is not perfect (NRMSE is 5× higher for OOD Xt0 and W (i)∗

compared to OOD initial conditions alone), possibly because the trajectories with higher α(i)∗ and
higher ρ(i)∗ are harder to forecast.

C.4 ROBUSTNESS TO NOISE

We repeat the Damped pendulum and Predator-prey experiments with increasing amounts of noises.
Specifically, we add 1%, 5% and 10% Gaussian noise to all the trajectories, both in training and in
test. As discussed before, we use Total Variation Regularization (TVR) (Rudin et al., 1992; Chartrand,
2011) for estimating derivatives from noisy data as done by Brunton et al. (2016). We report the
normalized RMSE for different models trained on the noisy versions of data in Figure 7. SINDy and
EQL are not shown as they returned errors during test-time predictions similar to the case with no
noise because the learnt ODE was too stiff (numerically unstable) to solve. In both tasks, the proposed
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Figure 7: (Performance with increasing noise.) Out-of-distribution NRMSE values for Damped
Pendulum and Predator-prey experiments with different percentages of Gaussian noise added
(0%, 1%, 5%, 10%). MetaPhysiCa is relatively robust to ≤ 5% Gaussian noise and outper-
forms the baselines. With a larger amount of noise, MetaPhysiCa is unable to identify the
dynamical system accurately but performs comparable to the baselines.

method is relatively robust to small amounts of noise and outperforms the baselines. With 10% noise,
MetaPhysiCa is unable to identify the dynamical system accurately, but performs comparable to the
baselines.

C.5 COMPLEX ODE TASK

In this section, we extend MetaPhysiCa to consider significantly more expressive structural causal
models (compared to Figure 3) that allow for composition of the basis functions. This is achieved
with a 2-layer learnable basis function composition procedure. For example, given basis func-
tions f1(xt; ξ1) = sin(ξ1,1xt,1 + ξ1,2), and f2(xt; ξ2) = xt,1xt,2, one can construct more ex-
pressive basis functions with compositions: f̃3(xt; ξ3) = sin(ξ3,3 sin(ξ3,1xt,1 + ξ3,2) + ξ3,4),
f̃4(xt; ξ4) = xt,1xt,2 sin(ξ4,1xt,1 + ξ4,2), etc., where ξj are global parameters that remain con-
stant for all training/test tasks. The rest of the SCM remains the same and the derivative dx

(i)
t,j/dt for a

particular dimension j ∈ {1, . . . , d} is a sparse linear combination of the original basis functions and
the more expressive second layer ones.

We evaluated MetaPhysiCa on a more complex ODE task from Chen (2020) adapted to our setting. We
consider a two-dimensional ODE with state Xt = [pt, qt] ∈ R2: dpt

dt = a∗ sin(pt)+b
∗ sin(q2t );

dpt

dt =
c∗ sin(pt) cos(qt), where W ∗ = (a∗, b∗, c∗) are the dynamical system parameters. We simulate
the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in training and over time steps
{t0, . . . , tr} in test with r = 1

3T . In training, we sample initial states pt, qt ∼ U(0.5, 1), whereas in
out-of-distribution test, we sample pt, qt ∼ U(1, 1.5). For constant W (i)∗ scenario, the dynamical
system parameters are set to a(i)∗ = b(i)∗ = c(i)∗ = 1 for all i, whereas for the varying W (i)∗

scenario, the dynamical system parameters are sampled as a(i)∗, b(i)∗, c(i)∗ ∼ U(1.0, 1.5).
Table 5 shows the results for this task. First, we note that due to the complexity of a 2-layer learnable
basis function procedure, we sometimes need to use validation data (held out from training) to cross-
validate the learned model (and reject meta-models that do not do well in validation). MetaPhysiCa
learnt a stiff ODE for 2 out of 5 folds of cross-validation, resulting in no predictions for in-distribution
validation data, which were rejected (marked as superscript ∗). In these experiments MetaPhysiCa
performs 1.5× to 1.7× better than the competing baselines. We believe there is room for improvement
in the optimization procedure of these more complex models.
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Test Normalized RMSE (NRMSE) ↓
Constant W (i)∗ Varying W (i)∗

Methods ID OOD ID OOD

NeuralODE (Chen et al., 2018) 0.012 (0.001) 0.188 (0.025) 0.034 (0.008) 0.296 (0.064)
APHYNITY (Yin et al., 2021) 0.010 (0.002) 0.329 (0.050) 0.027 (0.010) 0.684 (0.117)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.119 (0.072)* 0.110 (0.048)* 0.188 (0.035)* 0.203 (0.046)*

Table 5: Test NRMSE ↓ for different methods. * indicates that the method returned errors during
predictions due to learning a stiff ODE.
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