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ABSTRACT

We introduce a novel reinforcement learning (RL) framework that treats param-
eterized action distributions as actions, redefining the boundary between agent
and environment. This reparameterization makes the new action space contin-
uous, regardless of the original action type (discrete, continuous, hybrid, etc.).
Under this new parameterization, we develop a generalized deterministic policy
gradient estimator, Distributions-as-Actions Policy Gradient (DA-PG), which has
lower variance than the gradient in the original action space. Although learning
the critic over distribution parameters poses new challenges, we introduce inter-
polated critic learning (ICL), a simple yet effective strategy to enhance learning,
supported by insights from bandit settings. Building on TD?3, a strong baseline for
continuous control, we propose a practical actor-critic algorithm, Distributions-
as-Actions Actor-Critic (DA-AC). Empirically, DA-AC achieves competitive per-
formance in various settings across discrete, continuous, and hybrid control.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-
based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants
like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility
of enumerating and comparing action values. In contrast, policy-based methods are typically used
for continuous actions, though they can be used for both discrete and continuous action spaces
(Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999),
with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be ap-
plied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can
alternatively compute gradients via the action-value function (the critic), leveraging its differentia-
bility with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms
(Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess
etal., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates
by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the
structure of the action space. In particular, different estimators and architectures are often required
for discrete versus continuous actions, making it difficult to design unified algorithms that generalize
across domains. Although the LR estimator is always applicable, it often requires different critic
architectures for different action spaces and carefully designed baselines to manage high variance,
especially in continuous or high-dimensional action spaces.

In this paper, we introduce the distributions-as-actions framework, an alternative to the classical
RL formulation that treats the parameters of parameterized distributions as actions. For a Gaussian
policy, for example, the distribution parameters are the mean and variance, and for a softmax policy,
the distribution parameters are the probability values. The RL agent outputs these distribution pa-
rameters to the environment, and the sampling of the action is now part of the stochastic transition in
the environment. Distribution parameters are typically continuous, even if the actions are discrete,
hybrid or structured. By shifting this agent-environment boundary, therefore, we can develop one
continuous-action algorithm for a diverse class of action spaces.
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To develop algorithms under the new framework, we first propose the Distributions-as-Actions Pol-
icy Gradient (DA-PG) estimator, and prove it has lower variance than the corresponding update in
the original action space. This reduction in variance can increase the bias, because the critic can be
harder to learn. We develop an augmentation approach, called interpolated critic learning (ICL), to
improve this critic learning. We then introduce a deep RL algorithm based on TD3 (Fujimoto et al.,
2018), called Distributions-as-Actions Actor-Critic (DA-AC), that incorporates the DA-PG estima-
tor and ICL. We evaluate DA-AC empirically to assess the viability of this new framework and the
ability to use one algorithm for diverse action spaces. DA-AC achieves competitive and sometimes
better performance compared to baselines in a variety of settings across continuous, discrete, and
hybrid control. We also provide targeted experiments to understand the bias-variance trade-off in
DA-AC, and show the utility of ICL for improving critic learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) (S, A, p, do,r,7), where S is the state space, .4
is the action space, p : & x A — A(S) is the transition function, dy € A(S) is the initial state
distribution, r : S x A — A(R) is the reward function, and ~ is the discount factor. Here, A(X)
denotes the set of distributions over a set X. In this paper, we consider .4 to be either discrete or
continuous.! We use 7(als) to represent the probability of taking action a € A under state s € S for

policy 7. The goal of the agent is to find a policy 7 under which the below objective is maximized:

T(m) =Y Esgmdy, Acmr(150),S0r1~p( 150,40 [V Ret1] ZE V' Riva] (1
t=0
where the second formula uses simplified notation that we follow in the rest of the paper. The
(state-)value function and action-value function of the policy are defined as follows:

(oo}
)= Br [V RealSo =], gn(s,0) = Ex [Ry +70:(51)[So =5, Ao =a] . (2)
t=0
In this paper, we consider actor-critic methods that learns a parameterized policy, denoted by 7g,
and a parameterized action-value function, denoted by Q. Given a transition (S, A¢, Ri+1, St41)»
Qw is usually learned using temporal-difference (TD) learning:

W W+ a (Rigp1 +7Qw(St1, Arr1) — Qw(St, Ar)) VQw (St As), 3)
where « is the step size, and A;; is sampled from the current policy: A;y1 ~ 7o (+|Stt1)-

The policy is typically optimized using a surrogate of Equation (1):

J(76) = Eg, i, A, mmo (-|50) [@w (St Ab)] 4 4
where d € A(S) is some distribution over states. Below we outline three typical estimators for the
gradient of this objective.

The likelihood-ratio (LR) policy gradient estimator uses Vo (me; St, A) =
Volog mo(A|St)Qw(St, A), where A ~ mg(:|S;). Since the LR estimator suffers from high
variance, it is often used with the value function as a baseline:

Vg J (mg; Sy, A) = Ve log me(A|S:)(Qw (i, A) — V(Sh)), (5)
where V (S;) could either be parameterized and learned or be calculated analytically from @, when
the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action
space is continuous and the policy is deterministic (7g : S — A), and uses the gradient of (), with
respect to the action:

VHPCJ(1e; St) = Vora(St) ' VaQw(St, A)| are(s,)- (6)

The reparameterization (RP) policy gradient estimator (Heess et al., 2015; Haarnoja et al., 2018)
can be used if the policy can be reparameterized (i.e., A = gg(€; St), € ~ p(+), where p(-) is a prior
distribution):

V' J(m0; Sts€) = Vaga(e; St) T VaQuw (St, A)| azgo(e:s0)- (7)

"Note that the framework and methods proposed in this paper also apply to other complex types of action
spaces. We focus on discrete and continuous action spaces in our presentation for simplicity.
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Figure 1: Comparison between the classical reinforcement learning (RL) framework and the
proposed distributions-as-actions framework. In the classical RL setting (col 1), the agent’s
policy mg consists of g, which produces the distribution parameters, and a sampling function f
that returns an action given these parameters. In the distributions-as-actions framework (col 2), the
sampling function f is considered part of the environment, and the agent outputs the distribution
parameters 7g(.S;) as its action. This shift redefines the interface between agent and environment,
potentially simplifying learning and enabling new algorithmic perspectives.

3  DISTRIBUTIONS-AS-ACTIONS FRAMEWORK

The action space is typically defined by the environment designer based on domain-specific knowl-
edge. Depending on the problem, it may be more natural to model the action space as either discrete
or continuous. In both cases, the agent’s policy at a given state s can often be interpreted as first
producing distribution parameters 7g(s), followed by sampling an action A ~ f(-|7g(s)) from the
resulting distribution. With a slight abuse of notation, we denote g : S — U as the part of the
policy mg that maps states to distribution parameters, and by f(-|u) the distribution over actions
defined by parameters v € U.

In the classical RL framework, both 7g and f are considered part of the agent, as in the left of
Figure 1. In this work, we introduce the distributions-as-actions framework: the agent outputs
distribution parameters 7g(s) as its action, while the sampling process A ~ f(:|Tg(s)) is treated as
part of the environment, depicted on the right in Figure 1.

This reformulation leads to a new MDP in which the action space is the parameter space U{. The
reward and transition functions in this MDP become:

B(s']s,u) = 3 flalwp(s'ls.a), or p(s'|s,u) = /A falwp(s']s,a)da,  (8)

acA
s = 3 flaluyr(sca), or ()= [ flaluyr(s,a)da, ©)
acA A
depending on whether the original action space A is discrete or continuous, respectively.

This gives rise to the distributions-as-actions MDP (DA-MDP) (S,U, p, dy, 7, ). We can define the
corresponding value functions, and show they are connected to their classical counterparts.

Uz(s) = Z]Eﬁ' [V'Ris1So = 5],  Gz(s,u) =Ez [R1 +70:(S1)[So = s,Up =v].  (10)
=0

Assumption 3.1. The set I/ is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, vz (s) = vr(s) and Gz (s,u) = Eawp(ju)[gr (s, A)].

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix C.

The main advantage of this framework is that it transforms the original action space into a continu-
ous parameter space U/, regardless of whether the underlying action space A is discrete, continuous,
or structured. This unification allows us to develop generic RL algorithms that operate over a con-
tinuous transformed action space, enabling a single framework to accommodate a wide variety of
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settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we
can apply DPG methods even in discrete action domains, where they were not previously applicable.
We explore this direction in detail in Sections 4 and 5.

4 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ALGORITHMS

In this section, we introduce the Distributions-as-Actions Policy Gradient (DA-PG), a generalization
of DPG for the distributions-as-actions framework. We show this estimator has lower variance, and
then present a practical DA-PG algorithm for deep RL based on TD3.

4.1 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ESTIMATOR

DA-PG is the application of DPG to the distributions-as-actions MDP. We need to slightly modify
the assumptions to reason about both the distribution parameter space and the original action space.

Assumption 4.1. The functions 7g(s), f(a|u), and their derivatives are continuous with respect to
the variables v and 6. Moreover, when S or A is continuous, the functions p(s'|s, a), do(s), (s, a),
7o(s), f(alu), and their derivatives are also continuous with respect to s, s, or a, respectively.

Theorem 4.2 (Distributions-as-actions policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective J(7tg) = > oo Er [v' Rit1] with respect to @ can be expressed as

Vo (7o) = Esnd,, [VoTo(s) Vulng (s, 1) |u=re(s)]

where dzo(s) = 3,2 Bz [V 1(S; = s)] is the (discounted) occupancy measure under 7.

The resulting gradient estimator of the surrogate objective J(7g) = Es,~a [Qw (St To(St))] is
VoA (7t; St) = Voo (St) Vi Quw(St. U)lu—re(s0): (n

where @, is a learned parameterized critic. Note that the DA-PG estimator shares the same math-
ematical form as the DPG estimator (Equation (6)). However, the roles of the components differ:
In DA-PG, the policy g outputs distribution parameters rather than a single action, and the critic
estimates the expected return over the entire action distribution, rather than for a specific action.

In fact, DA-PG is a strict generalization of DPG. When the policy is restricted to be deterministic, the
distribution parameters effectively become the action, and the distributions-as-actions critic reduces
to the classical action-value critic.

Proposition 4.3. IfU = A and f(-|u) is the Dirac delta distribution centered at u, then Ttg and Q+,
are equivalent to g and Q, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

Vo 0 (71 S1) = Vg (w0 Si).

Moreover, DPG’s theoretical analysis can also be extended to the distributions-as-actions frame-
work. In Appendix C, we generalize the convergence analysis of DPG to DA-PG, establishing a
theoretical guarantee that holds for MDPs with arbitrary action space types.

4.2 COMPARISON TO OTHER ESTIMATORS FOR STOCHASTIC POLICIES

We now compare the proposed DA-PG estimator with classical stochastic policy gradient methods,
highlighting its variance and bias characteristics across action spaces.

DA-PG can be seen as the conditional expectation of both the LR (Equation (5)) and RP (Equa-
tion (7)) estimators. This leads to strictly lower variance.

Proposition 4.4. Assume Qw = ¢r, in @st(ﬂg;St,A) and Qv = Gr, in @QA'PGj(ﬁg;St).
Then, @QA'PGJA(ﬁg; St) = Eanre(|5:) [@‘ij(ﬂ'g; Sy, A)] Further, if the expectation of the action-
conditioned variance is greater than zero, then V(@QA'PGJA(ﬁ'g; St)) < V(@QRJA(WQ; St, A))
Proposition 4.5. Assume A is continuous, Qw = qr, in @I;Pj(mg; Si€), and Qw = Gy in
@QA'PGJA(ﬁg; St). Then, @QA'PGJA(frg; St) = Eenp [@gpj(ﬂ'g; St, e)} Further, if the expectation of
the noise-induced variance is greater than zero, then V(@QA'PGj(ﬁ'g; Sy)) < V(@gpj(mg; St €)).



Under review as a conference paper at ICLR 2026

Reward for Each Action Expected Reward Contour (Simplex) Learned Critic (Standard Update) Learned Critic (ICL Update)

ps=1_ @ Optimal Policy ps=1 @ PEPolicy _1 @ PEPolicy

3
0.8 0.90 0.562 §
so6 o75<§ 0556 g
§ s o,so% 0.550%’ 58

) I o.Asg 0.544 % "
0.2 030§ 0538 8 6~

0.0 0.15 0.532 -
a1 as =1 pa=1 000 pa=1 0526 Pa=1 00

a -
Action p=1

p=1

Reward Function Expected Reward Contour

1.0 10 1.0
: @ Optimal Policies.
05 o9
2

Learned Critic (Standard Update) Learned Critic (ICL Update)
1.0 1.0

I ‘ o i
2

08 0.656

)
2
2
&
e

0.640
0.632
0.624

Learned Valus
Learned Value

0.616
0.608

0.600

Action H

Figure 2: Visualization of the reward function (col 1), expected rewards of distribution parame-
ters (col 2), and learned critics using the standard update in Equation (12) (col 3) and the interpo-
lated critic learning (ICL) update in Equation (14) (col 4) in policy evaluation (PE). Top: K-Armed
Bandit. Bottom: Bimodal Continuous Bandit. With access only to samples from the evaluation
policy, the standard update estimates values accurately at the target policy but fails to generalize. In
contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

In discrete action spaces, the LR estimator typically requires carefully designed baselines to manage
high variance, especially as dimensionality increases. While biased alternatives like the straight-
through (ST) estimator (Bengio et al., 2013) or continuous relaxations (Jang et al., 2016; Maddison
et al., 2016) exist, they sacrifice unbiasedness even when using a perfect critic. DA-PG avoids this
trade-off, providing the first unbiased RP-style estimator with low variance in the discrete setting.

In continuous action spaces, DPG offers zero variance but assumes fixed stochasticity (i.e., no learn-
able exploration). RP estimators allow for learning the stochastic parameters but exhibit higher
variance. DA-PG offers the best of both worlds: it permits learning all policy parameters including
those for stochasticity while retaining the zero-variance property per state.

Another direction to reduce variance is expected policy gradient (EPG; Ciosek & Whiteson, 2018;
Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients
conditioned on a state: @EPGJA (10;St) = VoEa,~rg(|5,) [Qw(St, A¢)]. However, this estimator
is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases
within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson,
2020). In contrast, our estimator @BA'P G J (g; S¢) generalizes to a wider range of settings, including
high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DA-PG may suffer from increased bias due to the increased complex-
ity of the critic’s input space. For discrete actions, the critic )y inputs a vector of probabilities
corresponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic Q
inputs both the mean and standard deviation. This increased input dimensionality makes it harder
to approximate the true value function, and if the critic is inaccurate, the overall benefit of lower
gradient variance may be diminished—an effect we examine empirically in Section 5.5.

4.3 INTERPOLATED CRITIC LEARNING

In this section, we propose a method to improve learning the distributions-as-actions critic Q-
Similar to Equation (3), the standard TD update for Q, is

W W+ o (Rig1 + YQw(Si41, To(Si41)) — Qw(St, Ur)) VQuw (Se, Uy). (12)

This update, however, does not make use of the sampled action A;, and its relationship to the out-
come state and reward. One direction to leverage this knowledge is to recognize that the transition

can also be used to update the value at alternative parameters U,. This is possible because the action
A could have been sampled from distributions parameterized by many other U;. As a result, the
value at U; can be learned off-policy.
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‘What, then, should we choose for Ut? To answer this, we ask: what properties should the critic have
to support effective policy optimization in parameter space? Our answer is that the critic should
provide informative gradient directions that guide the policy toward optimality. For MDPs, there
always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence
of some Ua: € U, a deterministic distribution corresponding to the optimal action A} for state S;.
Ideally, the critic should exhibit curvature that points toward such optimal parameters U;".

One candidate for U is U A, the deterministic distribution parameters associated with the sampled
action A;. However, merely learning accurate values at U4, does not ensure that the critic has
smooth curvature from U, toward high-value points. To encourage the critic to generalize better and
provide smoother gradients, we propose using a linearly interpolated point between U; and U 4, :

U, = w, Uy + (1 —wy)Uys,, wi~ Uniform|0,1]. (13)

The critic is then trained to predict the value at U, using the following update:

W~ W (Rt+1 + VQw(St+1>7?9(St+1)) - Qw(sta Ut)) VQw(St> Ut) (14)

We refer to this approach as interpolated critic learning (ICL).

To further provide intuition on ICL, we conduct a policy evaluation experiment in bandit problems,
shown in Figure 2 (column 1). Figure 2 (column 3) and (column 4) show the learned critics using
the standard update in Equation (12) and the ICL update in Equation (14), respectively. The critic
learned by ICL has more informative curvature. As a result, the policy could be updated toward high-
value regions more easily. In the continuous action case, the learned critic is sufficient to update the
policy towards near-optimal distribution parameters. More details can be found in Appendix D.2.

4.4 DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

To demonstrate the potential of the DA framework, we develop its first practical algorithm under
the simple but fundamental single-stream learning setting. Since the DA-PG estimator is derived
from DPG, we base our practical algorithm on TD3 (Fujimoto et al., 2018), a strong DPG-based off-
policy actor-critic algorithm for continuous control. We replace the classical actor and critic with
their distributions-as-actions counterparts and use the DA-PG gradient estimator (Equation (11)) and
the ICL critic loss (Equation (14)) to update them, respectively. We omit the actor target network,
as it does not improve performance (see Appendix D.4). The pseudocode for the algorithm, which
we call Distributions-as-Actions Actor-Critic (DA-AC), is in Appendix G.

5 EXPERIMENTS

In this section, we conduct experiments to investigate DA-AC’s empirical performance in continuous
(Section 5.1), discrete (Sections 5.2 and 5.3), and hybrid (Section 5.4) control settings. In addition,
we examine the effectiveness of the proposed interpolated critic learning in Section 5.5. Unless
otherwise noted, each environment is run with 10 seeds, and error bars or shaded regions indicate
95% bootstrap confidence intervals.

5.1 CONTINUOUS CONTROL

We use OpenAl Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020) for continuous control. From MuJoCo, we use the most commonly
used 5 environments; from DMC, we use the same 15 environments as D’Oro et al. (2023). Details
about these environments are in Appendix D.4. We run each environment for 1M steps.

Algorithms We use TD3 (Fujimoto et al., 2018) as our primary baseline, as DA-AC is based on it.
We also include an off-policy actor-critic baseline that uses the reparameterization (RP) estimator.
This RP-AC algorithm closely resembles DA-AC but learns in the original action space and updates
the policy using the RP estimator. For consistency, DA-AC and RP-AC use the default hyperparam-
eters of TD3 and a Gaussian policy parameterization. Implementations details and pseudocode can
be found in Appendices D.4 and G, respectively. For reference, we also evaluate the performance of
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Figure 3: Relative final performance of DA-AC versus TD3 across 20 individual continuous con-
trol tasks (col 1), and average normalized returns of DA-AC and baselines on MuJoCo (col 2)
and DeepMind Control (col 3) tasks. In individual task comparisons (col 1), results are averaged
over 10 seeds per task. For average performance plots (cols 2-3), values are averaged over 10 seeds
and tasks. Error bars show 95% bootstrap confidence intervals (CIs).
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Figure 4: Learning curves in six DeepMind Control tasks with high-dimensional action spaces.
Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017). Since we focus on the single-stream
setting, we use the original single-stream version of PPO as in Schulman et al..

Results  Figure 3 shows per-environment performance for DA-AC and TD3 and the aggregated
results across environments for all algorithms. From Figure 3 (column 1), we can see that DA-
AC achieves better performance in more environments compared to TD3. From Figure 3 (columns
2-3), we can see that DA-AC achieves better overall performance, outperforming most baselines
significantly in the DMC Suite, particularly in high-dimensional environments (see Figure 4).

5.2 DISCRETE CONTROL

Following Ceron & Castro (2021), we use 4 Gym classic control (Brockman et al., 2016) and 5
MinAtar environments (Young & Tian, 2019) for discrete control. We run each environment for
500k (classic control) or 5M (MinAtar) steps.

Algorithms  We include off-policy actor-critic baselines that resemble DA-AC. These baselines
learn in the original action space and update the policy with different gradient estimators, including
the likelihood-ratio (LR-AC) and expected (EAC) policy gradient estimators. Here, LR-AC uses a
state-value baseline analytically computed from action values. Although not common in prior work,
we also include a variant that uses the straight-through (ST) estimator (Bengio et al., 2013), denoted
as ST-AC. This baseline is the discrete counterpart of RP-AC, serving as a performance reference for
alternative RP-based methods. For comparison, we also evaluate the performance of Discrete SAC
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Figure 5: Average normalized returns of DA-AC and baselines on discrete control benchmarks,
including classic control (col 1), MinAtar (col 2), discretized MuJoCo (col 3), and discretized Deep-
Mind Control (col 4) tasks.

(DSAC; Christodoulou, 2019), DQN (Mnih et al., 2015), and PPO (Schulman et al., 2017). The
hyperparameters for DA-AC and X-AC baselines are adopted from the TD3 defaults and adjusted to
the corresponding benchmark based on those of DQN. More details and pseudocode can be found
in Appendices D.5 and G, respectively.

Results From Figure 5 (columns 1-2), we can see that DA-AC is among the best-performing
algorithms in both classic control and MinAtar, achieving comparable performance to DQN.

5.3 HIGH-DIMENSIONAL DISCRETE CONTROL

For this setting, we use the same 20 environment from the Section 5.1 but with a discretized action
space. Specifically, we discretize each action dimension into 7 bins with uniform spacing. For
example the original action space in Humanoid-v4 is [—0.4, 0.4]'7, which is discretized to 0.4 x

{-1,-3, 1 ,0, é, g, 1}17. We run each environment for 1)/ steps.

Algorithms We use ST-AC, LR-AC, and PPO from the previous section as baselines. EAC,
DSAC, and DQN are excluded, as they are not feasible in environments with high-dimensional
actions. Note that DSAC relies on the unfeasible expected updates similar to EAC; without them,
it fails to learn. LR-AC learns an additional state-value function as a baseline, since analytically
deriving it from the action-value function is prohibitive in this high-dimensional setting. We use the
same hyperparameters as those in Section 5.1. More details can be found in Appendix D.6.

Results  As shown in Figure 5 (columns 3—4), DA-AC’s average performance is higher than all
baselines in both benchmarks. Note that the performance of DA-AC and PPO is slightly worse
compared to the original continuous action setting (Figure 3).

5.4 HYBRID CONTROL
In addition to continuous and discrete control settings, we also PAMDPs (7 tasks)

evaluate DA-AC’s performance in parameterized action MDPs I

(PAMDPs), a hybrid control setting with parameterized actions
DA-AC  PATD3 PDQN HHQN

°

(see Masson et al. (2016) for detailed discussion). We use 7
PAMDP environments from Li et al. (2021) and follow their
experiment protocol. See Appendix D.7 for more details.

_ Average Normalized Performance
s g ¢

Algorithms We use PATD3 as our primary baseline, a DPG-
based baseline specifically designed for parameterized action ]
(PA) spaces. PATD3 builds on PADDPG (Hausknecht & Stone, Figure 6: Average normalized
2015) and incorporates clipped double Q-learning from TD3, Performance of DA-AC and
making it a suitable and directly comparable baseline for DA- baselines on /iybrid control tasks.
AC, as both methods build on TD3. In DA-AC, the distribution

parameters include both the probability vector for the discrete actions and mean/log-std vectors for
the continuous actions. We keep most hyperparameters the same as TD3’s default unless otherwise
adjusted to align with PATD3. In addition, we also include PDQN (Xiong et al., 2018) and HHQN
(Fu et al., 2019) as additional baselines for reference. See Appendix D.7 for more details.

Results  Figure 6 shows the average normalized performance of DA-AC and baselines. The learn-
ing curves in each individual environment can be found in Figure 16. We can see that DA-AC also
achieves better performance than the baselines.
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Learned Value

Figure 8: Imitial critic (col 1) and learned critics and policies at different training stages using
DA-AC w/o ICL (cols 2 and 4) and DA-AC (cols 3 and 5). Top: K-Armed Bandit. Bottom: Bi-
modal Continuous Bandit. DA-AC produces more accurate value estimates at deterministic distribu-
tion parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous
case—and offers stronger gradient signals for policy optimization.

5.5 EFFECTIVENESS OF INTERPOLATED CRITIC LEARNING

We compare DA-AC and DA-AC w/o ICL, an Performance Comparison Across Settings

ablated version that uses the standard critic up- ————
DA-AC w/o ICL ]
0.0 '

o
©

date (Equation (12)). From Figure 7, we can see
that DA-AC w/o ICL is generally worse than
DA-AC for all settings.

o
=)

To provide further insights into why we see this
difference, we move to a bandit setting where
visualization and analysis are intuitive. We use
the same bandit environments from Figure 2,

Average Normalized Return
o o
N e

and run eaCh algorithm fOr 2000 Steps and 50 MuJoCo DMC D'MuJoCo D'DMC Gym MinAtar PAMDPs
seeds. See Appendix D.3 for hyperparameters Figure 7: Comparison between DA-AC and
and other details. DA-AC w/o ICL in all settings.

Figure 9 in the appendix shows the superiority

of DA-AC over DA-AC w/o ICL, as well as the bias—variance trade-off incurred by different gradient
estimators. To assess the impact of ICL on critic quality, we visualize the learned critics from
a representative training run of DA-AC and DA-AC w/o ICL in Figure 8. In both discrete and
continuous action settings, DA-AC yields a significantly improved critic landscape early in training.

6 CONCLUSIONS

We introduced the distributions-as-actions framework, redefining the agent-environment boundary
to treat distribution parameters as actions. We showed that the policy gradient update has theoreti-
cally lower variance, and developed a practical deep RL algorithm called Distributions-as-Actions
Actor-Critic (DA-AC) based on this estimator. We also introduced an improved critic learning up-
date, ICL, tailored to this new setting. We demonstrated that DA-AC achieves competitive perfor-
mance in diverse settings across continuous, discrete, and hybrid control.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underly-
ing action types. A key next step is to further exploit this reframing for new algorithmic avenues,
including model-based methods, hierarchical control, or novel hybrid approaches. There are also
key open questions around critic learning in this new framework. More advanced strategies for
training the distributions-as-actions critic could also be explored, including off-policy updates at
diverse regions of the parameter space or using a learned action-value function Qw (s, a) to guide
updates of Q- (s, w). This will also open up new questions about convergence properties for these
new variants.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will provide a public code release covering DA-AC implementations
in all control settings. Comprehensive hyperparameter choices and environment configurations are
documented in Appendix D. All reported metrics are based on multiple random seeds, with un-
certainty quantified using 95% bootstrap confidence intervals. The repository will further include
instructions to reproduce our main experimental results.

REFERENCES

Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdel-rahman Mohamed, George Konidaris, and
Michael Littman. Mean actor-critic. arXiv preprint arXiv:1709.00503,2017.

Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, and Alec Koppel. On the sample
complexity and metastability of heavy-tailed policy search in continuous control. Journal of
Machine Learning Research, 25(39):1-58, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253-279, 2013.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In The Twelfth International Conference on Learning Representations,
2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym. arXiv preprint arXiv:1606.01540, 2016.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pp. 1373—1383. PMLR, 2021.

Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients in
continuous control with deep reinforcement learning using the beta distribution. In International
conference on machine learning, pp. 834-843. PMLR, 2017.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal
of Machine Learning Research, 21(52):1-51, 2020.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning Representations, 2023.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in pa-
rameterized action space. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 2279-2285, 2019.

Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep multi-
agent reinforcement learning with discrete-continuous hybrid action spaces. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 2329-2335, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587-1596. PMLR, 2018.

10



Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861-1870. PMLR, 2018.

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In International Conference on Machine Learning, pp. 8387-8406. PMLR, 2022.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
In International Conference on Learning Representations, 2015.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in Neural Information
Processing Systems, 28, 2015.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in

deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and Jodo G.M. Aradjo. CleanRL: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations, 2016.

Boyan Li, Hongyao Tang, YAN ZHENG, Jianye HAO, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
LI Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. In International Conference on Learning Representations, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2016.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
Chawla. S$2$AC: Energy-based reinforcement learning with stein soft actor critic. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=rAHcTCMaLc.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—1937. PmLR, 2016.

Ofir Nabati, Guy Tennenholtz, and Shie Mannor. Representation-driven reinforcement learning. In
International Conference on Machine Learning, pp. 25588-25603. PMLR, 2023.

A Paszke. PyTorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

11


https://openreview.net/forum?id=rAHcTCMaLc
https://openreview.net/forum?id=rAHcTCMaLc

Under review as a conference paper at ICLR 2026

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning. Journal of Machine Learning Research, 25(318):1-63, 2024.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Matthew Kyle Schlegel, Volodymyr Tkachuk, Adam M White, and Martha White. Investigating
action encodings in recurrent neural networks in reinforcement learning. Transactions on Machine
Learning Research, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Waulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. Advances in Neural Information Processing Systems, 34:27209-27221, 2021.

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus,
and Markus Wulfmeier. Solving continuous control via g-learning. In The Eleventh International
Conference on Learning Representations, 2023.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning, pp.
387-395. PMLR, 2014.

David Silver, Aja Huang, Chris ] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 5981-5988, 2020.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Hado Van Hasselt and Marco A Wiering. Reinforcement learning in continuous action spaces. In
2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pp. 272-279. IEEE, 2007.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Gautham Vasan, Mohamed Elsayed, Seyed Alireza Azimi, Jiamin He, Fahim Shahriar, Colin
Bellinger, Martha White, and Rupam Mahmood. Deep policy gradient methods without batch
updates, target networks, or replay buffers. Advances in Neural Information Processing Systems,
37:845-891, 2024.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279-292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Huagqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
dient: Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159-2169. PMLR,
2022.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep g-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

12



Under review as a conference paper at ICLR 2026

Ming Xu, Matias Quiroz, Robert Kohn, and Scott A Sisson. Variance reduction properties of the
reparameterization trick. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 2711-2720. PMLR, 2019.

Timothy Yee, Viliam Lisy, Michael H Bowling, and S Kambhampati. Monte carlo tree search in
continuous action spaces with execution uncertainty. In IJCAI, pp. 690-697, 2016.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Shenao Zhang, Boyi Liu, Zhaoran Wang, and Tuo Zhao. Model-based reparameterization policy
gradient methods: theory and practical algorithms. Advances in Neural Information Processing
Systems, 36:68391-68419, 2023.

Lingwei Zhu, Haseeb Shah, Han Wang, Yukie Nagai, and Martha White. g-exponential family for
policy optimization. In The Thirteenth International Conference on Learning Representations,
2025.

Yuanyang Zhu, Zhi Wang, Yuanheng Zhu, Chunlin Chen, and Dongbin Zhao. Discretizing contin-
uous action space with unimodal probability distributions for on-policy reinforcement learning.
IEEE Transactions on Neural Networks and Learning Systems, 2024.

13



Under review as a conference paper at ICLR 2026

A RELATED WORKS
In this section, we provide an extended discussion of related work.

Value-based control When the action space is discrete, value-based algorithms are one of the
most commonly used approaches (Watkins & Dayan, 1992; Mnih et al., 2015; Van Hasselt et al.,
2016; Hessel et al., 2018). By learning an action-value function, these algorithms extract policies
using various greedy operators. While these methods have been effective in a wide range of dis-
crete control domains, their applications to continuous-action problems are limited, with only a few
exceptions (Seyde et al., 2023).

Policy-based discrete control Policy-based methods, including actor-critic algorithms, form
another important class of approaches for discrete control (Williams, 1992; Mnih et al., 2016). These
methods explicitly maintain a policy that outputs distribution parameters used to construct a policy
distribution from which actions are sampled. In the discrete case, these parameters correspond to
the logits of a categorical distribution. Beyond the likelihood-ratio (LR) policy gradient estimator
(Williams, 1992), Gumbel-Softmax (Jang et al., 2016) and Concrete distributions (Maddison et al.,
2016) provide reparameterization-based but biased gradient estimators. In contrast to these biased
estimators, our distributions-as-actions (DA) gradient estimator in Equation (11) can be viewed as
the first unbiased reparameterization (RP) estimator for discrete distributions.

Policy-based continuous control For continuous control, policy-based methods dominate the
literature (Van Hasselt & Wiering, 2007; Silver et al., 2014; Lillicrap et al., 2015; Schulman et al.,
2017; Haarnoja et al., 2018). The policy typically outputs the parameters of a parametric distribu-
tion. Gaussian policies are the most common choice (Lillicrap et al., 2015; Schulman et al., 2017;
Haarnoja et al., 2018), although many alternatives have been explored in different contexts (Chou
et al., 2017; Bedi et al., 2024; Zhu et al., 2025). Optimizing these policies using classical policy
gradient estimators (LR or RP) requires access either to an analytical log-density function or a repa-
rameterization function. In contrast, the DA gradient estimator in Equation (11) requires neither,
enabling application to a broader class of policies. Beyond parametric distributions, implicit poli-
cies built using more expressive generative models have also been studied (Haarnoja et al., 2017;
Messaoud et al., 2024). Our DA framework and estimator can be applied to these advanced policy
classes as well, which suggests an interesting direction for future work.

Policy-based continuous control with discretization Another line of work discretizes the con-
tinuous action space and then applies discrete-action control algorithms—often policy-based methods
due to the high dimensionality of action spaces (Tang & Agrawal, 2020; Seyde et al., 2021; Zhu et al.,
2024). While such approaches have shown strong benchmark performance, they may be undesirable
in practice because the resulting control can be less smooth and more unstable (Seyde et al., 2021),
and the method often requires additional tuning of the discretization granularity (Tang & Agrawal,
2020). In this work, we treat discretized continuous control problems primarily as a testbed for
high-dimensional discrete control. Thus, we do not extensively compare continuous- vs. discrete-
based methods for continuous control, as this is not our main focus. Nevertheless, we include such
a comparison in Figure 12 for reference.

Policy-based hybrid control Beyond purely discrete or continuous settings, many real-world
applications involve hybrid action spaces requiring the agent to control discrete and continuous
variables simultaneously (Masson et al., 2016; Xiong et al., 2018). These problems can often be
modeled as parameterized action MDPs (PAMDPs) (Masson et al., 2016), in which the agent selects
a discrete action and its associated continuous parameters. Most standard discrete and continuous
control algorithms are not directly applicable to PAMDPs and require additional adaptation or hy-
bridization to handle such action structures. For example, DDPG (Lillicrap et al., 2015) and PPO
(Schulman et al., 2017) have been modified to support hybrid actions (Hausknecht & Stone, 2015;
Fan et al., 2019), and combinations of DDPG and DQN (Mnih et al., 2015) have been explored
(Xiong et al., 2018; Fu et al., 2019). Unlike these methods, which patch together or retrofit existing
algorithms, our DA reframing directly converts hybrid control into a continuous control problem,
enabling a simple, unified algorithm applicable to PAMDPs and even more general hybrid settings.
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6 Representation-driven RL Different from the traditional policy optimization perspective used
757 in the methods above, representation-driven RL (RepRL) offers an alternative viewpoint (Nabati
758 et al., 2023). Instead of optimizing policy parameters 8 by estimating gradients based on the values
759 of sampled state-action pairs, RepRL recasts the search for optimal @ as a linear bandit problem by
760 projecting 6 into a lower-dimensional representation f (@) and optimizing € based on its expected
761 value over states. While our proposed DA framework also redraws the decision boundary, it does
762 so in a fundamentally different way. RepRL retreats the decision boundary all the way to a bandit
763 problem and, in some sense, treats even the policy network 7 as part of the environment. In contrast,
764 the DA framework only reframes the distribution parameters themselves as the decision variables,
765 viewing only the sampling function as part of the environment.

766

767 B EXTENDING EXISTING RL ALGORITHMS TO THE DA FRAMEWORK
768

769 While we have explored only one model-free actor-critic algorithm under the proposed distributions-
770 as-actions (DA) framework, many other algorithms in the classical RL literature can also be extended
771 to this setting. To facilitate future research, we outline several such directions below.

772

773 Entropy regularization Entropy regularization is a widely used mechanism for encouraging
774 exploration in RL, and incorporating it into the DA framework represents a promising avenue. We
775 discuss two potential approaches for adding entropy regularization to DA-AC. The first approach

is to augment the policy optimization objective (Equation (4)) with an entropy term. This requires

;;3 adding an entropy component to the policy gradient estimator (Equation (11)):

778 VPG (7e; Si) = Vere(Si) ' VuQw(S:, U)|U:7—r9(5t) + aH(f(:|Te(5t))), (15)
779

780 where « is the entropy coefficient and () denotes the entropy of distribution f. Optionally,
781 the critic may also incorporate entropy, yielding the Maximum Entropy RL formulation (MaxEnt;

782 Haarnoja et al., 2018). The standard MaxEnt critic update within the DA framework becomes

783 - _ _ - -

784 W W+ Q(Rt+1 + V(Qw(StJrl, 7T9(St+1)) + OéH(f('|7T9(St+1)))) - Qw(St7 Ut))va(Sh Ut)~

785 (16)

786 The second approach is specific to the MaxEnt setting and incorporates entropy directly into the

787 reward:

788 /

- Rty = Ry + aH(f(-|U)). (17)

790 Under this reward shaping, the optimization problem coincides with the MaxEnt objective (Haarnoja

791 et al., 2018). This method does not require modifying the actor or critic updates; only the reward

792 is transformed. The entropy can be computed analytically when available or estimated via samples

on (e.g., using —log f(A¢|Ut)). Understanding the trade-offs between these alternatives is itself an
interesting open question.

794

e Model-based planning algorithms Beyond model-free methods, model-based planning algo-

796 rithms can also be incorporated into the DA framework. A straightforward approach is to combine

797 traditional model-based algorithms operating on primitive actions with DA-based value estimation.

798 For example, in discrete-action environments, one could apply MCTS (Silver et al., 2016) over the

799 primitive discrete actions while using DA for the critic.

Zg? A potentially more compelling direction is to learn a model over the distribution parameters them-

selves. This would make it possible to apply continuous-action model-based planners—such as
802 continuous-action variants of MCTS (Yee et al., 2016), TD-MPC (Hansen et al., 2022), or model-

803 based reparameterization gradient methods (Zhang et al., 2023)—directly within the DA framework.
804

805 Incompatibility with discrete-structure-based algorithms Finally, by treating distribution pa-
806 rameters as actions, we may lose the ability to exploit certain convenient structures of the original
807 action space—particularly in discrete settings. While this choice allows the DA framework to remain
808 agnostic to the specifics of the primitive action space, it may still be desirable to leverage action
809 structure when beneficial. Hybrid approaches that combine DA with structure-aware algorithms,

such as integrating MCTS with DA-based value estimation, provide one promising path forward.
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C THEORETICAL ANALYSIS OF DA-PG

We provide the proofs of the theoretical results for the distributions-as-actions framework and
Distributions-as-Actions Policy Gradient (DA-PG) in the main text in Appendices C.1 and C.2.
In addition, we also extend a convergence proof of DPG from Xiong et al. (2022) to DA-PG in
Appendix C.3.

C.1 PROOFS OF THEORETICAL RESULTS IN SECTION 3

Assumption 3.1. The set I/ is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, Uz (s) = vx(s) and Gz (s,u) = Eawg(.|u)[gx (s, A)].

Proof. Let 7 be the policy in the original MDP that first maps s to v = 7(s) and then samples
A ~ f(-|u). The state-value function oz (s) in the distributions-as-actions MDP is defined as:

Un(s) = Y _Er [v*7(Sk, Ur) | So = 5],
k=0

where Uy = 7(Sk). From Equation (8), 7(s,u) = Esvfcjulr(s, A4)]. Also, the transition
p(s's,u) = Eavs(u)lp(s’]s, A)]. Consider a trajectory S, Uy, S1, U, ... in the distributions-as-
actions MDP (DA-MDP). This corresponds to a trajectory So, Ag, S1, A1, ... in the original MDP
where Ay ~ f(-|Ug). The expected reward at time % in the DA-MDP, given Sy, and Uy, = 7(Sk),
is 7(Sk, T(Sk)) = Ea,~r(|7(s0))[r(Sk, Ax)]. The dynamics are also equivalent in expectation:
E[Ski1|Sk, Ur] = Esinp(190,00)15'] = Eapmr v Esimp(|90,4,)[S']]. Thus, the sequence of
states and expected rewards generated under 7 in the DA-MDP is identical in distribution to the
sequence of states and rewards under 7 in the original MDP. Therefore, 7z (s) = v(s).

For the action-value function gz (s, u):
Gz (s,u) = Ez [F(So, Up) + v0z(S1) | So = s, Uy = u]
= 7(8,u) + YEs, ~p(5,u) [0 (51)]
=Eans(jolr(s, A)] + YEansu) [Esymp(ls,a)[vx(S1)]  (using 0z = vr)
=Eans(lu [7(5,4) +9Es mp(fs,a) [0r (S1)]]
= Eans(u) Ex[R1 +70x(S1)|S0 = 5, Ao = AJ]
= Eans(ulan(s, A)].

The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures
these expectations and value functions are well-defined. O

C.2 PROOFS OF THEORETICAL RESULTS IN SECTION 4

Assumption 4.1. The functions 7¢(s), f(a|u), and their derivatives are continuous with respect to
the variables v and 6. Moreover, when S or A is continuous, the functions p(s’|s, a), do(s), (s, a),
7o(s), f(alu), and their derivatives are also continuous with respect to s, s, or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective function J(7g) = > o o Ex [vt Ry 1 1] with respect to 0 can be expressed
as

Vo (7o) = Esnds,, [VoTo(s) VuQr,(s,u)lu=r(s)) »

where dz,(8) = > Er [V I(S: = s)] is the (discounted) occupancy measure under 7g.

Proof. This theorem results from applying the deterministic policy gradient (DPG) theorem to the
DA-MDP (S,U,p,dy,T,~), where Tg : S — U acts as a deterministic policy. The objective
function is J(7g) = Egynd, [Ure (S0)]-
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Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic
policy g : S — A, the policy gradient is:

VGJ(MG) = ESNd“e [VBNB(S)TVaQ;Le (8, a)|a:#9(s)} .

In our context:

* The policy in the DA-MDP is 7g(s).
* The action space is U, and actions are denoted by w.
* The critic Gz, (s, u) is the action-value function in this DA-MDP.

* The state distribution dz, (s) is the discounted state occupancy measure under policy 7g.

Assumptions 3.1 and 4.1 ensure that Tg(s) and gz, (s, u) are appropriately differentiable and that
the interchange of expectation and differentiation is valid. Substituting 7 for pg and gz, for g,
yields the theorem’s result:

Vo (7o) = Esnd,, [VoTo(s) | Vulrg (5, 1)|u=rg(s)] -

The notation Vg7g(s) " V., Gz, in the theorem statement implies the appropriate vector or matrix
product. If & € R* and u € R™, then Vg7g(s) is an m x k Jacobian, V, Gz, is an m x 1 vector,
and the product (Ve7e(s)) " V.Gx, results in the k x 1 gradient vector for .J(7g). O

Proposition 4.3. If i/ = A and f(- | u) is the Dirac delta distribution centered at u, then g and Qv
are equivalent to mg and Q.,, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

VARG J(79: S;) = VBPC.J (mg; Sy).
Proof. The DA-PG gradient estimator is given by Equation (11):
VoATCJ(Te; St) = VaTa(Si) " ViQuw(Se, U)|r=re(s0)-

Given the conditions:

1. U = A: The distribution-parameter space is the action space.

2. f(-Ju) = 6(- — u): Sampling A ~ f(-|u) yields A = w.
Under these conditions, 7g(S;) outputs parameters U € U, which are directly actions in .A. Thus,
we can write 79 (S;) = Tg(St), where g (S;) € A.

Next, consider the DA value function Gz, (S:,U). From Proposition 3.2, Gz,(S:,U) =
E A~ f(.|0)[Grg (St A)]. Since f(A|U) = 0(A — U), the expectation becomes ¢y, (S;,U). So,
Gro (St,U) = qry (Se, U), where U € U = A.

This means the DA critic Qv (S, U) is estimating the action-value function gy, (S;, U). Thus, we
can write Qvw (S, U) = Qw (S, U), where U € A.

Substituting these equivalences into the DA-PG gradient estimator:
VorAPGJ(7g; St) = Vore(St) TV aQuw (Sts A)| a—re(s,)-
This is precisely the DPG gradient estimator (Equation (6)). Thus, @EA'PGj (Rg; ;) =
@BPGj(Wg;St). O
Proposition 4.4. Assume Qy, = ¢, in V5R.J (193 Sy, A) and Qy, = G, in @BA'PGj(ﬁg; S;). Then,
VHAPG J(7g; S1) = Epnre(150) [@};RJ(WQ;S},A)} )
Further, if the expectation of the action-conditioned variance is greater than zero, then

v (@BA-PGj(ﬁg; St)) <V (%Rj(we; Sy, A)) :
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Proof. Proposition 3.2 states Gro (St, U) = E () [dre (St, A)]. Given Qw = Gz, and Qw =
(rg. this becomes Qw (S¢, U) = Ea s j1)[Qw(St, A)]. Note that Qu (S;, A) and Qw (S, U) are
distinct critic functions. The use of w for both signifies that they are learned approximators. In
the context of this proof, we can think of @), and )y, as separate approximators, each utilizing a
corresponding subset of w.

Starting with the DA-PG estimator (assuming continuous .4; discrete case is analogous with sums):
VorTOJ(7; St) = Voo (St) " Vi Quw (St U)lr—re(s0)
= Vomo(St) " VUEams(107 [Qw(St, A)]|r=re (1)

= ora(s)" (Vi [ SAI0IQu(S 4)d4)

U=7g(St)

— Vora(Si)T ( [ TuranQusi 4 dA)

U=mg (St)

— Voro(S,)T /A Vo FAD) [y (5 Qu (i, A) dA
_ /A Vor0(S) Vi F(AIU)|0—re(s,)@u (St A) dA

_ /A Vo /(Al6(S0))Qu (S, A) dA.

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where Vo f(A|Tg(S;)) = Vome(St) " Vu f(A|U)|r=re(s.)-

Using mg(A|S:) = f(A|7e(St)) and the log-derivative trick, we can express the DA-PG estimator
as:

VOAPS J(7g: Sy) = / Voro(A|S:)Quw(S:, A) dA
A

:/ Vo logmg(AlS)me(A|St)Qw(S;, A) dA
A
= EANWB('lst) [Vg 10g7Tg(A|St)QW(St, A)} .

The LR estimator is V4R J(7g; Si, A) = Vg log ma (A|S:)(Quw (Si, A) — V(S;)). Its expectation is
EAnre(-|5:) [@I(;RJA (7o; St, A)} . The term involving the baseline V' (.S;) vanishes in expectation:

EA~7r9(-|St) [Vg log 7T9(A|St)V(St)] = V(St)]EANWQ(~|St) [Vg 10g7r9(A|St)]
= V(St)/ Vg?Tg(A‘St) dA
A
_ V(st)w/ ro(AlS)) dA = V(8,)Ve(1) = 0.
A
Thus, Eary(.|s,) {@]éRj(ﬂg;ShA)] = Eanro(1s) [Vologme(A|S)Qw(S:, A)]. This shows
@2A"PGJ(77’9; St) = EANﬂe(.‘St) {?gRj(ﬂg; S, A)} .
For variance reduction, let X = V5R.J(7g;S;, A) and Y = VAP0 J(7g; ;). We have V =
E[X|S;, Te(S:)] (expectation over A). By the law of total variance: V(X)) = E[V(X|S;, Te(S¢))]+
V(E[X|St, Te(St)]). This translates to
SLR 7 _ SLR 7o &DAPG 7= .
V (V" (me3 S1, 4)) = Es, [Va (VR (mas S1, 4)|81) ] +V (VBP0 (71 51) )

IfEg, [V A (@};RJA (mg; St, A) ’St)} > 0 (i.e., the action-conditioned variance is positive on aver-

age), then V (@BA'PC’j(frg; St)) <V (@II;RJA(WQ; Sy, A)) O
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Proposition 4.5. Assume A is continuous, Qw = ¢r, In @lép j(7r9; Sp,6), and Qw = Gr, in
VDAPG J(79; ;). Then,

VoA (7 St) = Eemyp [@‘;"J(we; Sy, e)] .
Further, if the expectation of the noise-induced variance is greater than zero, then

A% (@BA’PGj(ﬁg; St)) <V (@‘;Pj(mg; St, e)) .

Proof. For the RP estimator, the action is generated as A = gg(€; S:), where € ~ p(-). For con-
sistency with DA-PG notation, we can write A = g(¢; U), where U = 7g(S;) € U represents all
relevant learnable distribution parameters. Thus, the distribution f(-|U) of the random variable A is
induced by g(e; U) with € ~ p(-).

Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value
functions, we have:

Qw(St,U) = Eans(10)[Qw(St; A)] = Ecnp [Qw (St, g(€; T (S1)))]
where we use a change of variables to express the expectation in terms of the noise .
Now, we can express the DA-PG gradient as:
@BA_PGJA(TTO; S) = Veﬁe(st)TvUQw(St, U)lu=re(s,)
= Vomo(St)  VUEewp[Qw(St, 9(6; U))]|r=ro(s,)
= Vo7o(5t)  Benp [VuQuw(St (6 U))|u—rp(sy)]
= Ec~p Voo (St) " VuQuw(St, 9(6 U))lu=rg(s)]
=Eenp [VoQw(St, g(€; 7o (St)))] -

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where VgQuw (St, g(€;T9(S1))) = VoTo(S:) ' VuQw (St, 9(6;U))|r=4(s,)-

On the other hand, the RP gradient is:
V§ J (me; S, €) = Voge(e; St) TV aAQuw(St, Al a—go(e:50)
= Vog(; 7TrG(St))TvAQw(Sta A)‘A:g(e;f're(st))
- VOQW(St> 9(67 ﬁ'g(St)))?

where we use the chain rule again in the last equation: VgQw(St, g(e7To(St))) =
Vog(e;70(St)) TV aQw(S:, A)| A=g(es70(S,))- Thus, we have:

@EA—PGJ(’E—B; St) = Eewp [@};Pj(ﬂ_e7 St, 6) .

The variance reduction argument is similar to that in Proposition 4.4. Let X = @EP J (o3 St €) and

Y = @BA’PGj (79;St). We have Y = E[X|S, €] (expectation over €). By the law of total variance:
V(X) = E[V(X|S:, €)] + V(E[X|S:, €]). This translates to

A\ (@EPJA(Wg; St,e)> =Eg, [VE (@gpj(wa;St,e)’Stﬂ +V (@gA'PGj(Tre; St)> )
IfEg, {VE (@I;Pj(ﬂg; Sy, €)
\% (@BA'PGJ(TTQ; St)> <V (@gpj(ﬂg; St, e)) O

St)} > 0 (i.e., the noise-induced variance is positive on average), then

C.3 CONVERGENCE ANALYSIS FOR DA-PG
We present a convergence result for the distributions-as-actions policy gradient (DA-PG), which

is a direct application of the convergence of the deterministic policy gradient (DPG; Xiong et al.,
2022). We assume an on-policy linear function approximation setting and use TD learning to learn
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Algorithm 1 DA-PG-TD
1: Input: «,,, g, wo, Oy, batch size M.
2: for t=0,1,...,T do
3: for j=0,1,...,M —1do

4: Sample s; ; ~ dy, .

5: Generate u; ; = Ty, (St,j)-

6: Sample s;41,; ~ P(-|s¢,5,us ;) and 7 ;.

7: Generate u;4+1,; = 7o, (St+1,5)-

8: Denote x; ; = (St,j,ut,j)-

9: 5,5,3‘ =Tt + ’}/d)(xt-‘rl,j)—rwt - d)(JJtJ)TUJt-
10:  end for

M-1
11: Wi41 = Wt + % =0 6t7j<z$(xt,j).
12 for 7=0,1,...,.M — 1do

13: Sample s} ; ~ vy,

14:  end for Mt

15: i1 =0+ 52 D50 Vema,(si ;) VeTe, (s) ;) wy.
16: end for

the critic. See Algorithm 1 for the analyzed DA-PG-TD algorithm. We follow the notation of Xiong
et al. as much as possible for comparison with their results.

Following their notation, the parameterized policy is denoted as 7 and the objective function J(7y)
(Equation (1)) is denoted as J(6). The distributions-as-actions policy gradient is

VOJ(G) = ESNVQ [Veﬁe(S)VuQﬁe (87 u)|u:7’r9(s):| ; (18)

where v(s) = > o o Ex,[y'I(S; = s)] is the discounted occupancy measure under 7p. We also
define the stationary distribution of 7y to be dy(s) = limr o0 7 E;‘F:_Ol Ez,[I(S; = s)]. Under
linear function approximation for the critic function, the parameterized critic can be expressed as
Qu(s,u) = ¢(s,u) Tw, where ¢ : S x U — R is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the
convergence theorem. In addition, we incorporate the corrections to the result of Xiong et al. from
Vasan et al. (2024), which extends the result to the reparameterization policy gradient. Following
Vasan et al., the corrections are highlighted in red.

Assumption C.1. For any 6, 65,0 € RY, there exist positive constants L, Ly and Mg, such that (1)
176, () =70, (s) || < Lz[l01 =02, Vs € S; 2) [VoTo, (5) = Voo, (s)[| < Ly||01—02,Vs € S;(3)
the matrix Uy :=E,, |VoTy (S)Vgirg(s)T is non-singular with the minimal eigenvalue uniformly
lower-bounded as oin (Pg) > Ay.

Assumption C.2. For any u;,us € U, there exist positive constants Ly, Lz, such that (1) the
distributions-as-actions transition kernel satisfies |p(s’|s, u1) —p(s'|s, u2)| < Lp|lug —uz||, Vs, s’ €
S; (2) the distributions-as-actions reward function satisfies |F(s,u1) — 7(s,u2)| < Lgllu; —
us||,Vs, s’ € S.

Assumption C.3. For any uq,us € U, there exists a positive constant L, such that ||V, Gz, (s, u1)—
Vulr, (8,u2)|| < Lgllur — uz||,V0 € R4, s € S.

Assumption C.4. The feature function ¢ : S x & — R? is uniformly bounded, i.e., ||4(-,-)|| < Cy
for some positive constant Cys. In addition, we define A = Eq, [¢(z)(y¢(z') — ¢(z)) "] and D =
Eq, [¢(z)$(x) "], and assume that A and D are non-singular. We further assume that the absolute
value of the eigenvalues of A are uniformly lower bounded, i.e., |o0(A)| > A4 for some positive
constant \ 4.

Proposition C.5 (Compatible function approximation). A function estimator Quw (s, u) is compatible
with a policy 7y, i.e., VJ(0) = Ey, [VoTo(5)VuQu (S, u)|uzr, ()], if it satisfies the following two
conditions:

1. vu@w(sa u)|u:ﬁ'9(s) = VQﬁ'g(S)TUJ,'
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2. w = wg, minimizes the mean square error E,,, [€(s;:0,w) TE(s;0,w)], where £(s;0,w) =
Vqu (S, u) |u:7?9 (s) — vu@’re (S, u) |u:7‘r9(s)-
Given the above assumption, one can show that the distributions-as-actions policy gradient is smooth
(Lemma C.6), and that Algorithm 1 converges (Theorem C.7).

Lemma C.6. Suppose Assumptions C.1-C.3 hold. Then the distributions-as-actions policy gradient
V.J(0) defined in Equation (18) is Lipschitz continuous with the parameter Ly, i.e., ¥0,,05 € RY,

IVJ(01) = VJ(62)|] < Lsl|6y — 62, (19)
where Ly = (%L,;L?rLVCD+1L—jy> (L+%) La (L L+ L2 Rinax L C, 4 1ptrle )
Theorem C.7. Suppose that Assumptions C.1-C.4 hold. Let o, < ﬁ;M > %;ae <
min {11%, 24\/)‘?# } Then the output of DA-PG-TD in Algorithm 1 satisfies

winE( (60, < % + CMQ + 3k,

8R 144L P 2 (2 2 oy, J8LLLCL 5 | 1442
where ¢; = ey + “lwo —wp, |2, c2 = {48aw(CACw +C7) + Aaw ¢ 1L,
T2LACE ey = 18LE + %ju A‘fﬂ UL with Gy = 2C2,Cy = RuaxCis Coy =
T% Cue = o285, Ly = &t + 5f220 (121, + 22E2) Ly = 12,64 = Lr + L

1%;", L, = %CVLZ;L,—D and L defined in Lemma C.6, and we define
K = max [wg — w, |- (20)

Remark C.8. Apart from the corrections highlighted in red, the convergence result retains the same
mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). How-
ever, the associated constants differ, as they are defined with respect to the distributions-as-actions
formulations of the MDP, policy, and critic. Notably, the distributions-as-actions policy class strictly
generalizes the deterministic policy class. Consequently, this convergence result constitutes a strict
generalization of the DPG convergence result.

The proofs of Lemma C.6 and Theorem C.7 follow the same lines as that of Lemma 1 and Theorem
1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for
details about the corrections.

21



Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL
(Huang et al., 2022), distributed under the MIT license. The source code is currently being cleaned
up and will be open-sourced following paper acceptance.

Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95%
bootstrap confidence intervals (Cls) for reporting the statistical significance whenever applicable, as
recommended by Patterson et al. (2024). We use scipy.stats.bootstrap with 10, 000 resamples from
SciPy to calculate the bootstrap CIs. For all bar plots, we plot the final performance, which is
computed using the average of the return collected during the final 10% training steps.

D.1 POLICY PARAMETERIZATION AND ACTION SAMPLING

When the action space is multidimensional, we treat each dimension independently. For simplicity,
our exposition will focus on the unidimensional case in the remaining of the paper.

Discrete action spaces We use the categorical policy parameterization: A  ~

FClpr, - pn]T), where f(z|[p1,---,pn]T) = [T, p-®=") is the probability mass function
for the categorical distribution. For DA-AC, we choose the probability vector u = [p1,--- ,pn] "

as the distribution parameters. We define the distribution parameters corresponding to an action A
to be the one-hot vector U4 = one_hot(A).

Continuous action spaces Assume the action space is [amin, Gmax|. We use the Gaussian policy
parameterization that is used in TD3: A = clip(pt + €, min, Gmax), € ~ N(0, o). Same as TD3, we
restrict the mean y to be within [amin, @max) Using a squashing function:

u, +1

m = 9 (amax - amin) + Qmin, Uy = taIlh(IOgitH),

where logit, € R is the actor network’s output for y. While TD3 uses a fixed omps = 0.1 *

%, we allow the learnable standard deviation to be within a range o € [0 min, Omax]:

+1
2
where logit, € R is the actor network’s output for o. For RP-AC, the reparameterization function
is go(€;St) = clip(ug(St) + 06(St)€, Amin, Gmax), € ~ N (0, 1). For DA-AC, we choose the distri-
bution parameters to be u = [u,,u,|" € [—1,1]* so that the parameter space is consistent across
the mean and standard deviation dimensions. Since we lower bound the standard deviation space
to encourage exploration, we define the distribution parameters corresponding to an action A to be
Us = [—24— —1]" to approximate the Dirac delta distribution, which corresponds to 11 = A
and 0 = Opin.-

logo = Yo * (log omax — 108 Omin) + 108 Omin, U, = tanh(logit, ),

Hybrid action spaces For environments with hybrid action spaces, DA-AC simply uses the
policy parameterizations described above for the corresponding discrete and continuous parts.

D.2 POLICY EVALUATION IN BANDITS

K-Armed Bandit We use a K-armed bandit with X = 3 and a deterministic reward function:
r(a1) =0, r(az)=0.5, r(az)=1.

Bimodal Continuous Bandit We use a continuous bandit with a bimodal reward function that
is deterministic. Specifically, the reward function is the normalized summation of two Gaussians’
density functions whose standard deviations are both 0.5 and whose means are —1 and 1, respec-
tively:

_(a+1)? _(a=1)?
r(a) —=e 05 e 05
We restrict the action space to be [amin, Gmax] = [—2,2]. The standard standard deviation is con-

-3

strained o0 [Omin, Tmax] = [€7°, €].
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K-Armed Bandit (K=3) Bimodal Continuous Bandit
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Figure 9: Learning curves of DA-AC, DA-AC w/o ICL, and baselines on the K-Armed Bandit
(col 1) and Bimodal Continuous Bandit (col 2) tasks. Results are averaged over 50 seeds. Shaded
regions show 95% bootstrap CIs. ICL substantially improves DA-AC’s performance, enabling it to
match LR-AC and RP-AC in these simple settings.

Critic network architecture To be consistent with the RL settings, we use the same critic
network architecture as those in Appendices D.4 and D.6. Specifically, we use a two-layer MLP
network with the concatenated state and action vector as input. We reduce the hidden size from 256
to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the
distributions-as-actions critic function for 2000 steps using either Equation (12) or Equation (14). In
K-Armed Bandit, the PE policy is 7pg = upg = [1/3,1/3,1/3]; in Bimodal Continuous Bandit, the
PE policy is 7pg = upg = [0, 0.5] (corresponding to = 0 and log o = 0.0). The hyperparameters
are the same as those of DA-AC in Table 3, except that the actor is kept fixed to the corresponding
PE policy.

D.3 POLICY OPTIMIZATION IN BANDITS

Environments We use the same K-Armed Bandit and Bimodal Continuous Bandit environ-
ments as Appendix D.2.

Algorithms In addition to DA-AC and DA-AC w/o ICL, we also include LR-AC and RP-AC
as a reference, as they should be quite effective in these settings because of a much simpler critic
function. Note that our goal is not to show that DA-AC can outperform other baselines in these
toy settings, but rather to illustrate how ICL substantially improves critic learning in DA-AC. Here,
LR-AC uses the average of the action values as the baseline. We also include LR-PG, RP-PG, and
DA-PG, variants of LR-AC, RP-AC, and DA-AC that have access to their corresponding true value
functions to remove the confounding factor of learning the critic.

Experimental Details We use the same critic network architecture as in Appendix D.2. Simi-
larly, we use the same actor network architecture as those in Appendices D.4 and D.6. Specifically,
we use a two-layer MLP network with the state vector as input. We reduce the hidden size from
256 to 16 and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For
LR-PG, RP-PG, and DA-PG, the critic function is calculated analytically; otherwise, their hyperpa-
rameters are the same as their counterparts with a learned critic function. See Figure 9 for learning
curves.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms
for a more controlled comparison in Section 5.5, we note that interpolated critic learning (ICL) also
improves the performance of DA-AC under other learning rates. Apart from 0.01, we report the
results with learning rates 0.001 and 0.1 in Figure 10.

D.4 CONTINUOUS CONTROL

Environments From OpenAl Gym MuJoCo, we use the most commonly used 5 environments
(see Table 1). From DeepMind Control Suite, we use the same 15 environments as D’Oro et al.
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Figure 10: Learning curves of DA-AC, DA-AC w/o ICL, and baselines using learning rates 0.001
(cols 1-2) and 0.1 (cols 3—4). Results are averaged over 50 seeds. Shaded regions show 95%
bootstrap CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal
points for most algorithms. Consistent with Figure 9, ICL demonstrates improved performance for
DA-AC when a more conservative learning rate is employed.
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Figure 11: Average normalized returns with and without actor target network (ATN) on Mu-
JoCo (col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10
(DMC) tasks. Error bars show 95% bootstrap ClIs.

(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep
RL algorithms. The full list of environments and their corresponding observation and action space
dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by
the maximum possible return for a given task. In DMC environments, the maximum return is 1000
(Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on
the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4,
7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DA-AC and RP-AC also adopt a uniform exploration
phase. During the uniform exploration phase, the distribution parameters v = [u,,, u,] " are uni-
formly sampled from [—1, 1]. These three algorithms use the default hyperparameters of TD3 (see
Table 4). For SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), we use the implementa-
tions and tuned hyperparameters in CleanRL (Huang et al., 2022). See Figure 13 for learning curves
in each individual environment.

Relative Final Performance: DA-AC (Continuous) vs DA-AC (Discrete)

DA-AC (Continuous) better

0.2 mwm DA-AC (Discrete) better 7

Normalized Return Difference

Figure 12: Relative final performance of DA-AC with continuous actions versus with discrete
actions across 20 individual control tasks. Results are averaged over 10 seeds per task.
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Impact of the actor target network We also investigate the impact of using an actor target
network (ATN) in DA-AC and the baselines. While TD3 already employs an ATN, both DA-AC and
RP-AC do not. We additionally test DA-AC w/ ATN and RP-AC w/ ATN and TD3 w/o ATN. From
Figure 11, we can see that the actor target network does not have a significant impact in general.

D.5 DISCRETE CONTROL

Environments We use the same 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar
(Young & Tian, 2019) environments as in Ceron & Castro (2021).

Experimental details for Gym environments We use the existing implementations and tuned
hyperparameters of DQN (Mnih et al., 2015) and PPO in CleanRL (Tables 8 and 10). For DA-AC,
ST-AC, LR-AC, and EAC, we adjust relevant off-policy training hyperparameters based on those of
DQN, including batch size, gradient steps per step, network size, replay buffer size. We also disables
double Q-networks to better align with DQN. See Table 5 for the updated parameters from Table 4.
We use a similar setup for Discrete SAC (DSAC; Christodoulou, 2019), as shown in the same table.
The learning curves can be found in Figure 14.

Experimental details for MinAtar environments The MinAtar setups for DQN and PPO are
adopted from their implementations and tuned hyperparameters for Atari (Bellemare et al., 2013)
in CleanRL (Tables 9 and 11). Similar to the above, we adjust relevant off-policy training hyperpa-
rameters based on DQN for DA-AC, ST-AC, LR-AC, and EAC (Table 6). We use a similar setup
for DSAC but decrease its uniform exploration steps according to its hyperparameters for Atari in
CleanRL (Table 6). For consistency, we use the same critic network for DA-AC, ST-AC, LR-AC,
EAC, and DSAC, which takes actions as input. The learning curves can be found in Figure 14.

Joint encoding of CNN observation features and actions While concatenation is used for joint
encoding of observations and actions for state-based observations in MuJoCo/DMC/Gym environ-
ments, it might not be efficient for encoding latent features and actions (Schlegel et al., 2023).
Inspired by Schlegel et al., we use the flattened outer product of the CNN observation features (with
a dimension of 128) and the vectorized action representations (with a dimension of |.4]) as the joint
encoding. The action representations are the action probabilities for DA-AC, while they are one-hot
embedding of actions for other algorithms. We then use an additional hidden layer with a small
number of hidden units (8 in MinAtar) with negligible overhead to extract higher-level features.

D.6 HIGH-DIMENSIONAL DISCRETE CONTROL

Details We use the same 20 environments as Appendix D.4. Similar to the continuous control
case, we also include a uninform exploration phase for all discrete control algorithms. For LR-AC
and ST-AC, the action is randomly sampled from a uniform categorical distribution. For DA-AC, the
logits of the distribution parameters (in this case, the probability vector) are sampled from N'(0, 1),
where N is the number of possible discrete outcomes. All algorithms use the default hyperparame-
ters of TD3 (see Table 4). See Figure 15 for learning curves in each individual environment.

Comparison to continuous control We plot the relative final performance of DA-AC with
continuous actions versus with discrete actions in Figure 12. We can see that the performance of
DA-AC with discrete actions can often compete with DA-AC with continuous actions.

D.7 HYBRID CONTROL

Environments We use 7 parameterized-action MDP (PAMDP; Masson et al., 2016) environ-
ments from Li et al. (2021). Please see their Appendix B.1 for the descriptions of the environments.

Experimental details Contrary to other settings, which report training episodes’ return, we
report performance in evaluation phases following Li et al.. During evaluation phases, DA-AC uses
discrete actions with the highest probability for the discrete components and mean actions for the
continuous components. We use the implementations provided by Li et al. for baselines, including
PADDPG (Hausknecht & Stone, 2015), PDQN (Xiong et al., 2018), and (Fu et al., 2019). All
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the baselines incorporate clipped double Q-learning from TD3, with PADDPG renamed to PATD3.
The hyperparameters of DA-AC are made aligned with the baselines (Table 12). Since PDQN uses
per-environment tuned -y in Li et al., our results are slightly different than theirs as we use a fixed
v = 0.99 for PDQN to be consistent with other algorithms. Learning curves can be found in
Figure 16.

D.8 COMPUTATIONAL RESOURCE REQUIREMENT

All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core
Processor. Each training run was executed using a single CPU core and consumed less than 256 MB
of RAM. Most runs completed 2000 training steps within 10 seconds.

All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were
equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell
@ 2.1GHz, Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @
2.4GHz. Each training run was executed using a single CPU core and consumed less than 2GB of
RAM. The training duration varied considerably across environments, primarily influenced by the
dimensionality of the observation space, the complexity of the physics simulation, and, in the case
of discrete action spaces, the dimensionality of the action space. Most algorithms typically com-
pleted 1 million training steps in approximately 7 hours per run. However, LR-AC required a longer
training period of roughly 9 hours due to the additional computational overhead of learning an extra
neural network.

Table 1: Observation and action dimensions of OpenAl Gym MuJoCo environments.

Environment \ Observation dimension Action dimension
Hopper-v3 11 3
Walker2d-v3 17 6
HalfCheetah-v3 17 6
Ant-v3 27 8
Humanoid-v3 376 17

Table 2: Observation and action dimensions of DeepMind Control Suite environments.

Domain \ Task(s) \ Observation dimension Action dimension
pendulum | swingup 3 1
acrobot swingup 6 1
reacher hard 6 2
finger turn_hard 12 2
hopper stand, hop 15 4
fish swim 24 5
swimmer swimmer6 25 5
cheetah run 17 6
walker run 24 6
quadruped | walk, run 58 12
humanoid | stand, walk, run 67 24
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E HYPERPARAMETERS

Table 3: Hyperparameters for both continuous (col 3) and discrete (col 2) bandits that are different
from Table 4. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respec-
tively. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC uses the same hyperparameters
as DA-AC (D).

Hyperparameter ‘ DA-AC (D) ‘ DA-AC (O)
Batch size 8

Learning rate (actor / critic) 0.01

Neurons per hidden layer (16, 16)
Discount factor () N/A

Replay buffer size 2000

Policy update delay (Ng) 1

Uniform exploration steps N/A

Learnable o range ([0'min; Omax)) N/A ‘ [e=3, €]

Table 4: Hyperparameters of actor-critic algorithms for both MuJoCo/DMC continuous (cols 3-5)
and discrete (col 2) control environments. DA-AC is applied to both settings, denoted as DA-AC
(C) and DA-AC (D), respectively. For simplicity, we assume [amin, @max] = [—1, 1] for continuous
control algorithms. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC and ST-AC use

the same hyperparameters as DA-AC (D).

Hyperparameter | DA-AC (D) | DA-AC(C) | TD3 | SAC
Batch size 256

Optimizer Adam

Learning rate (actor / critic) 0.0003 0.0003 / 0.001
Target network update rate (7) 0.005

Gradient steps per env step 1

Number of hidden layers 2

Neurons per hidden layer (256, 256)

Activation function ReLU

Discount factor () 0.99

Replay buffer size 1 x 10°

Policy update delay (Ng) 2

Uniform exploration steps 25,000 5,000
Learnable o range ([0umin, Omax]) N/A | [0.05,0.2] [ N/A | N/A
Target entropy N/A |A|
Target policy noise clip (¢) N/A 0.5 N/A
Target policy noise (0rp3) N/A 0.2 N/A
Exploration policy noise (orp3) N/A 0.1 N/A
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Table 5: Hyperparameters of actor-critic algorithms for Gym environments that are different from
Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter ‘ DA-AC ‘ DSAC
Batch size 128
Learning rate (actor / critic) 0.0003

Target network update rate (7) 0.01
Gradient steps per env step 1 (every 10 env steps)
Neurons per hidden layer (120, 84)
Replay buffer size 1 x 10%
Policy update delay (Ng) 1

Uniform exploration steps 12,500 2,500
Target entropy N/A 0.89]A|

Table 6: Hyperparameters of actor-critic algorithms for MinAtar environments that are different
from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter ‘ DA-AC ‘ DSAC
Batch size 32
Learning rate (actor / critic) 0.0003
Gradient steps per env step | 1 (every 4 env steps)
Number of Conv. layers 1

Conv. channels 16

Conw. filter size 3

Conv. stride 1
Number of MLP layers 2
Neurons per MLP layer (128, 8)
Replay buffer size 1x10°
Policy update delay (Ng) 1
Uniform exploration steps 50, 000 4,000
Target entropy N/A 0.89]A|
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Table 7: Hyperparameters of PPO in MuJoCo/DMC continuous- and discrete-control environments.

Hyperparameter PPO
Optimizer Adam
Learning rate (actor / critic) 3x 1074
Discount factor () 0.99
GAE parameter () 0.95
Rollout Iength (timesteps per update) 2048
Minibatch size 32
Number of epochs per update 10
Number of hidden layers 2
Neurons per hidden layer (64, 64)
Activation function Tanh
Clipping parameter (€) 0.2
Entropy coefficient 0.0
Value loss coefficient 0.5
Max grad norm 0.5
Reward normalization Enabled
Observation normalization Enabled

Learning rate schedule

Linear decay

Table 8: Hyperparameters of PPO in Gym environments that are different from Table 7.

Hyperparameter

| PPO

Rollout length (timesteps per update)

128

Number of epochs per update

4

Table 9: Hyperparameters of PPO in MinAtar environments that are different from Table 7. Since
MinAtar already normalizes the observations and rewards, we disable the normalization wrappers.

Hyperparameter PPO
Learning rate (actor / critic) 2.5 x 1074
Rollout length (timesteps per update) 128
Number of epochs per update 4
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Activation function ReLU
Entropy coefficient 0.01
Reward normalization Disable
Observation normalization Disable
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Table 10: Hyperparameters of DQN in Gym environments.

Hyperparameter DQN
Batch size 128
Optimizer Adam
Learning rate 2.5 x 1074
Discount factor (v) 0.99

Hard target network update

Every 500 env steps

Gradient steps per env step

1 (every 10 env steps)

Number of hidden layers 2
Neurons per hidden layer (120, 84)
Activation function ReLU
Replay buffer size 1 x 10%
Min replay size before learning 10,000
Linear e-greedy range 1.0 — 0.05
Linear c-greedy steps 2.5 x 10°

Table 11: Hyperparameters of DQN in MinAtar environments.

Hyperparameter ‘ DQN
Batch size 32
Learning rate 1x1074

Hard target network update

Every 1000 env steps

Gradient steps per env step

1 (every 4 env steps)

Number of Conv. layers

1

Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Replay buffer size 1x10°
Min replay size before learning 40,000
Linear e-greedy range 1.0 — 0.01
Linear e-greedy steps 5 x 10°
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Table 12: Hyperparameters of actor-critic algorithms for PAMDP environments.

Hyperparameter | DA-AC | PATD3 | HHQN |  PDQN
Batch size 128

Optimizer Adam

Learning rate (actor / critic) 0.0003 0.0001 /0.001
Target network update rate (7) 0.005 0.001/0.01
Gradient steps per env step

Number of hidden layers 2

Neurons per hidden layer (256, 256)

Activation function ReLU

Discount factor () 0.99

Replay buffer size 1 x10°

Policy update delay (Ny) 2

Uniform exploration steps 5,000 N/A

Learnable o range ([0imin, Omax)) | [0.05,0.2] N/A

Target policy noise clip (c) N/A 0.5 N/A
Target policy noise (6rp3) N/A 0.2 N/A
Exploration policy noise (orp3) N/A 0.1 N/A
Ornstein-Uhlenbeck noise N/A Enable
Linear e-greedy range N/A 1.0 — 0.01
Linear e-greedy steps N/A 1x10?
Max grad norm N/A 0.5
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G PSEUDOCODE

G.1 DA-AC: DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Algorithm 2 DA-AC for diverse action spaces

Input action sampling function f : i/ — A(A) (see Appendix D.1 for f in different settings)
Initialize parameters w1, wa, 8, W1 < W1, Wo < Wo, replay buffer B
Obtain initial state Sy
fort =1toT do
Take action A; ~ f(-|U;) with Uy = Tg(St), observe Ryy1, Sti+1
Add <St, Ut, At, St+17 Rt+1> to the buffer B
Sample a mini-batch B from buffer 3
Sample U = wU + (1 — w)U, w ~ Uniform[0, 1], for each transition (S, U, 4, S, R) in B
Update critics on B:

Wi < Wi + oy (R + 'Vminje{lg} QV’VJ- (S,vﬁe(sl)) - QWi(S’ U)) VQWz(S’ U)
ift =0 (mod Ny) then
Update policy on B:
0+ 06— OthQﬁg(S)TVUle (S, U)|U:ﬁ'9(s)

Update target network weights:
w; %Twi—F(l—T)Wi

end if
end for

G.2 TD3: TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT

Algorithm 3 TD3 for continuous action spaces

Input exploration noise op3, target policy noise op3, target noise clipping ¢
Initialize parameters w1, wa, 8, W1 <— W1, Wy < Wo, 6 < 0, replay buffer B
Obtain initial state Sy
fort =1to7T do
Take action A; = 79 (S;) + €, € ~ N(0, orp3 ), and observe Ry11, Si11
Add <St, At, St+1, Rt+1> to the buffer B
Sample a mini-batch B from buffer B
Sample A’ = 75(5") + €, € ~ clip(N (0, d1p3), —¢, ¢), for each transition (S, A, S, R) in B
Update critics on B:

Wi Wi +ay (R +yminje(r 2y Qw, (5", A) — Qw, (S, 4)) VQw, (S, A4)

ift =0 (mod Ng) then
Update policy on B:

0 60—, Voro(S) 'V iQw, (S A) | izry(s)

Update target network weights:
Wi W + (1 —7)W;, 0+ 70+ (1—-1)0

end if
end for
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G.3 RP-AC: ACTOR-CRITIC WITH THE REPARAMETERIZATION (RP) ESTIMATOR

Algorithm 4 RP-AC for continuous action spaces

Input reparameterization function gg : S X R — A (for Gaussian policies, see Appendix D.1)
Initialize parameters w1, wo, 8, W1 <— W1, Wy <— Wo, replay buffer B
Obtain initial state S
fort =1toT do
Take action A; = gg(€; Sy), € ~ N(0,1), and observe Ry 1, Si11
Add <St, At7 St+1, Rt+1> to the buffer B
Sample a mini-batch B from buffer B
Sample A" = gg(€; "), € ~ N(0, 1), for each transition (S, A, S’, R) in B
Update critics on B:

Wi — W; +ay (R +yminjeqr 23 Qw,; (5, A") — Qw, (S, A)) VQuw, (S, A)
ift =0 (mod N,) then

Sample € ~ N(0, 1) for each transition (S, A, S", R) in B
Update policy on B:

0« 60— ;Vaoge(e;S) 'V 1Qw, (S, A>|A:gg(6;5)

Update target network weights:
Wi — TW; + (1 —7)w;

end if
end for

G.4 ST-AC: ACTOR-CRITIC WITH THE STRAIGHT-THROUGH (ST) ESTIMATOR

Algorithm 5 ST-AC for discrete action spaces

Initialize parameters w1, wo, 8, W1 < W1, Wo < Wa, replay buffer B
Obtain initial state S
fort =1to T do

Take action A; ~ mg(-|S), and observe Ry 11, Si11

Add <St, At, St+1, Rt+1> to the buffer B

Sample a mini-batch B from buffer 3

Sample A’ ~ 7g(:|S’) for each transition (S, A, S’, R) in B

Update critics on B:

W, < W; + oy (R -+ ’yminjE{LQ} ij (S/, A/) — le (S, A)) VQVV7 (S, A)

ift =0 (mod Ny) then
Sample A ~ mg([5), for each transition (S, A, 5", R) in B

Use the straight-through trick to compute Ag = one_hot(A) + m(:|S) — 74 (:|5)|p=06
Update policy on B:

06— thVQﬂ'g(‘|S)TVAQW1 (Sv A~)|A=Ag

Update target network weights:
Wi(*TW¢+(1fT)Wi

end if
end for
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G.5 LR-AC: ACTOR-CRITIC WITH THE LIKELIHOOD-RATIO (LR) ESTIMATOR

Algorithm 6 LR-AC for discrete action spaces

Initialize parameters w1, wo, 8, v, W1 < W1, Wo < Wa, replay buffer B
Obtain initial state S
fort =1to 1T do

Take action A; ~ mg(-|S), and observe Ry 11, Si11

Add <St, At, St+1, Rt+1> to the buffer B

Sample a mini-batch B from buffer 5

Sample A ~ 7q(-|S) and A’ ~ 7g(-|S’) for each transition (S, A, 5", R) in B
Update critics on B:

W, < W, + 0 (R +yminjeqy 2} QW]‘ (8", A") = Qw, (S, A)) VQw, (S, A)
Ve vt (le (S, A) — VV(S)) Vi (S)

ift =0 (mod Ng) then
Sample A ~ mg(+|.S), for each transition (S, A, S’, R) in B
Update policy on B:

0« 0 — ,Vologme(A|S) (le(s, A) - VV(S))

Update target network weights:
w; (—TWZ‘-i-(l—T)V_Vi

end if
end for

G.6 EAC: ACTOR-CRITIC WITH THE EXPECTED POLICY GRADIENT ESTIMATOR

Algorithm 7 EAC for discrete action spaces

Initialize parameters wi, W, V, W1 <— W1, Wy <— Wo, replay buffer B
Obtain initial state Sy
fort =1toT do

Take action A; ~ mg(-|S), and observe R;11, Si11

Add <St, At, St+1, Rt+1> to the buffer B

Sample a mini-batch B from buffer B

Sample A ~ 7p(-|S) and A’ ~ g (+|S") for each transition (S, A, S, R) in B
Update critics on B:

W; < W; + oy (R + ")/Hlinje{172} ij (5/7 A,) - Qw, (S, A)) Vle (S, A)

ift =0 (mod Ny) then
Update policy on B:

0+ 0—a;Vg Z 7T0(Q|S)Qw1 (Sa a)
acA

Update target network weights:
Wi(*TW¢+(1fT)Wi

end if
end for
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H USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in a strictly auxiliary capacity during the prepa-
ration of this paper. Their use was limited to two areas: (1) assisting with writing refinement by
improving readability, grammar, and conciseness, without contributing to the technical content or
conceptual development; and (2) supporting workflow tasks such as drafting or adjusting scripts
for data processing and figure generation, with all outputs carefully reviewed and corrected by the
authors. LLMs were not used for generating research ideas, conducting literature searches, or pro-
ducing original technical material. Their involvement was confined to polishing communication and
light implementation support.
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