

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTIONS AS ACTIONS: A UNIFIED FRAMEWORK FOR DIVERSE ACTION SPACES

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a novel reinforcement learning (RL) framework that treats parameterized action distributions as actions, redefining the boundary between agent and environment. This reparameterization makes the new action space continuous, regardless of the original action type (discrete, continuous, hybrid, etc.). Under this new parameterization, we develop a generalized deterministic policy gradient estimator, *Distributions-as-Actions Policy Gradient* (DA-PG), which has lower variance than the gradient in the original action space. Although learning the critic over distribution parameters poses new challenges, we introduce *interpolated critic learning* (ICL), a simple yet effective strategy to enhance learning, supported by insights from bandit settings. Building on TD3, a strong baseline for continuous control, we propose a practical actor-critic algorithm, *Distributions-as-Actions Actor-Critic* (DA-AC). Empirically, DA-AC achieves competitive performance in various settings across discrete, continuous, and hybrid control.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility of enumerating and comparing action values. In contrast, policy-based methods are typically used for continuous actions, though they can be used for both discrete and continuous action spaces (Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999), with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be applied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can alternatively compute gradients via the action-value function (the critic), leveraging its differentiability with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms (Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess et al., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the structure of the action space. In particular, different estimators and architectures are often required for discrete versus continuous actions, making it difficult to design unified algorithms that generalize across domains. Although the LR estimator is always applicable, it often requires different critic architectures for different action spaces and carefully designed baselines to manage high variance, especially in continuous or high-dimensional action spaces.

In this paper, we introduce the *distributions-as-actions framework*, an alternative to the classical RL formulation that treats the parameters of parameterized distributions as actions. For a Gaussian policy, for example, the distribution parameters are the mean and variance, and for a softmax policy, the distribution parameters are the probability values. The RL agent outputs these distribution parameters to the environment, and the sampling of the action is now part of the stochastic transition in the environment. Distribution parameters are typically continuous, even if the actions are discrete, hybrid or structured. By shifting this agent-environment boundary, therefore, we can develop one continuous-action algorithm for a diverse class of action spaces.

To develop algorithms under the new framework, we first propose the *Distributions-as-Actions Policy Gradient* (DA-PG) estimator, and prove it has lower variance than the corresponding update in the original action space. This reduction in variance can increase the bias, because the critic can be harder to learn. We develop an augmentation approach, called *interpolated critic learning* (ICL), to improve this critic learning. We then introduce a deep RL algorithm based on TD3 (Fujimoto et al., 2018), called *Distributions-as-Actions Actor-Critic* (DA-AC), that incorporates the DA-PG estimator and ICL. We evaluate DA-AC empirically to assess the viability of this new framework and the ability to use one algorithm for diverse action spaces. DA-AC achieves competitive and sometimes better performance compared to baselines in a variety of settings across continuous, discrete, and hybrid control. We also provide targeted experiments to understand the bias-variance trade-off in DA-AC, and show the utility of ICL for improving critic learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) $\langle \mathcal{S}, \mathcal{A}, p, d_0, r, \gamma \rangle$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $p : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition function, $d_0 \in \Delta(\mathcal{S})$ is the initial state distribution, $r : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathbb{R})$ is the reward function, and γ is the discount factor. Here, $\Delta(\mathcal{X})$ denotes the set of distributions over a set \mathcal{X} . In this paper, we consider \mathcal{A} to be either discrete or continuous.¹ We use $\pi(a|s)$ to represent the probability of taking action $a \in \mathcal{A}$ under state $s \in \mathcal{S}$ for policy π . The goal of the agent is to find a policy π under which the below objective is maximized:

$$J(\pi) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{S_0 \sim d_0, A_t \sim \pi(\cdot|S_t), S_{t+1} \sim p(\cdot|S_t, A_t)} [\gamma^t R_{t+1}] = \sum_{t=0}^{\infty} \mathbb{E}_{\pi} [\gamma^t R_{t+1}], \quad (1)$$

where the second formula uses simplified notation that we follow in the rest of the paper. The *(state-)value function* and *action-value function* of the policy are defined as follows:

$$v_{\pi}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\pi} [\gamma^t R_{t+1} | S_0 = s], \quad q_{\pi}(s, a) \doteq \mathbb{E}_{\pi} [R_1 + \gamma v_{\pi}(S_1) | S_0 = s, A_0 = a]. \quad (2)$$

In this paper, we consider actor-critic methods that learns a parameterized policy, denoted by π_{θ} , and a parameterized action-value function, denoted by $Q_{\mathbf{w}}$. Given a transition $\langle S_t, A_t, R_{t+1}, S_{t+1} \rangle$, $Q_{\mathbf{w}}$ is usually learned using temporal-difference (TD) learning:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (R_{t+1} + \gamma Q_{\mathbf{w}}(S_{t+1}, A_{t+1}) - Q_{\mathbf{w}}(S_t, A_t)) \nabla Q_{\mathbf{w}}(S_t, A_t), \quad (3)$$

where α is the step size, and A_{t+1} is sampled from the current policy: $A_{t+1} \sim \pi_{\theta}(\cdot|S_{t+1})$.

The policy is typically optimized using a surrogate of Equation (1):

$$\hat{J}(\pi_{\theta}) = \mathbb{E}_{S_t \sim d, A_t \sim \pi_{\theta}(\cdot|S_t)} [Q_{\mathbf{w}}(S_t, A_t)], \quad (4)$$

where $d \in \Delta(\mathcal{S})$ is some distribution over states. Below we outline three typical estimators for the gradient of this objective.

The likelihood-ratio (LR) policy gradient estimator uses $\hat{\nabla}_{\theta} \hat{J}(\pi_{\theta}; S_t, A) = \nabla_{\theta} \log \pi_{\theta}(A|S_t) Q_{\mathbf{w}}(S_t, A)$, where $A \sim \pi_{\theta}(\cdot|S_t)$. Since the LR estimator suffers from high variance, it is often used with the value function as a baseline:

$$\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A) = \nabla_{\theta} \log \pi_{\theta}(A|S_t) (Q_{\mathbf{w}}(S_t, A) - V(S_t)), \quad (5)$$

where $V(S_t)$ could either be parameterized and learned or be calculated analytically from $Q_{\mathbf{w}}$ when the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action space is continuous and the policy is deterministic ($\pi_{\theta} : \mathcal{S} \rightarrow \mathcal{A}$), and uses the gradient of $Q_{\mathbf{w}}$ with respect to the action:

$$\hat{\nabla}_{\theta}^{\text{DPG}} \hat{J}(\pi_{\theta}; S_t) = \nabla_{\theta} \pi_{\theta}(S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A)|_{A=\pi_{\theta}(S_t)}. \quad (6)$$

The reparameterization (RP) policy gradient estimator (Heess et al., 2015; Haarnoja et al., 2018) can be used if the policy can be reparameterized (i.e., $A = g_{\theta}(\epsilon; S_t)$, $\epsilon \sim p(\cdot)$, where $p(\cdot)$ is a prior distribution):

$$\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) = \nabla_{\theta} g_{\theta}(\epsilon; S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A)|_{A=g_{\theta}(\epsilon; S_t)}. \quad (7)$$

¹Note that the framework and methods proposed in this paper also apply to other complex types of action spaces. We focus on discrete and continuous action spaces in our presentation for simplicity.

Figure 1: **Comparison between the classical reinforcement learning (RL) framework and the proposed distributions-as-actions framework.** In the classical RL setting (col 1), the agent’s policy π_θ consists of $\bar{\pi}_\theta$, which produces the distribution parameters, and a sampling function f that returns an action given these parameters. In the *distributions-as-actions framework* (col 2), the sampling function f is considered part of the environment, and the agent outputs the distribution parameters $\bar{\pi}_\theta(S_t)$ as its action. This shift redefines the interface between agent and environment, potentially simplifying learning and enabling new algorithmic perspectives.

3 DISTRIBUTIONS-AS-ACTIONS FRAMEWORK

The action space is typically defined by the environment designer based on domain-specific knowledge. Depending on the problem, it may be more natural to model the action space as either discrete or continuous. In both cases, the agent’s policy at a given state s can often be interpreted as first producing distribution parameters $\bar{\pi}_\theta(s)$, followed by sampling an action $A \sim f(\cdot | \bar{\pi}_\theta(s))$ from the resulting distribution. With a slight abuse of notation, we denote $\bar{\pi}_\theta : \mathcal{S} \rightarrow \mathcal{U}$ as the part of the policy π_θ that maps states to distribution parameters, and by $f(\cdot | u)$ the distribution over actions defined by parameters $u \in \mathcal{U}$.

In the classical RL framework, both $\bar{\pi}_\theta$ and f are considered part of the agent, as in the left of Figure 1. In this work, we introduce the *distributions-as-actions framework*: the agent outputs distribution parameters $\bar{\pi}_\theta(s)$ as its action, while the sampling process $A \sim f(\cdot | \bar{\pi}_\theta(s))$ is treated as part of the environment, depicted on the right in Figure 1.

This reformulation leads to a new MDP in which the action space is the parameter space \mathcal{U} . The reward and transition functions in this MDP become:

$$\bar{p}(s'|s, u) \doteq \sum_{a \in \mathcal{A}} f(a|u)p(s'|s, a), \quad \text{or} \quad \bar{p}(s'|s, u) \doteq \int_{\mathcal{A}} f(a|u)p(s'|s, a) da, \quad (8)$$

$$\bar{r}(s, u) \doteq \sum_{a \in \mathcal{A}} f(a|u)r(s, a), \quad \text{or} \quad \bar{r}(s, u) \doteq \int_{\mathcal{A}} f(a|u)r(s, a) da, \quad (9)$$

depending on whether the original action space \mathcal{A} is discrete or continuous, respectively.

This gives rise to the *distributions-as-actions MDP* (DA-MDP) $\langle \mathcal{S}, \mathcal{U}, \bar{p}, d_0, \bar{r}, \gamma \rangle$. We can define the corresponding value functions, and show they are connected to their classical counterparts.

$$\bar{v}_{\bar{\pi}}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} [\gamma^t R_{t+1} | S_0 = s], \quad \bar{q}_{\bar{\pi}}(s, u) \doteq \mathbb{E}_{\bar{\pi}} [R_1 + \gamma \bar{v}_{\bar{\pi}}(S_1) | S_0 = s, U_0 = u]. \quad (10)$$

Assumption 3.1. The set \mathcal{U} is compact. Moreover, when \mathcal{S} or \mathcal{A} is continuous, the corresponding set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, $\bar{v}_{\bar{\pi}}(s) = v_{\pi}(s)$ and $\bar{q}_{\bar{\pi}}(s, u) = \mathbb{E}_{A \sim f(\cdot | u)}[q_{\pi}(s, A)]$.

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix C.

The main advantage of this framework is that it transforms the original action space into a continuous parameter space \mathcal{U} , regardless of whether the underlying action space \mathcal{A} is discrete, continuous, or structured. This unification allows us to develop generic RL algorithms that operate over a continuous transformed action space, enabling a single framework to accommodate a wide variety of

162 settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we
 163 can apply DPG methods even in discrete action domains, where they were not previously applicable.
 164 We explore this direction in detail in Sections 4 and 5.
 165

166 4 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ALGORITHMS 167

168 In this section, we introduce the *Distributions-as-Actions Policy Gradient* (DA-PG), a generalization
 169 of DPG for the distributions-as-actions framework. We show this estimator has lower variance, and
 170 then present a practical DA-PG algorithm for deep RL based on TD3.
 171

172 4.1 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ESTIMATOR 173

174 DA-PG is the application of DPG to the distributions-as-actions MDP. We need to slightly modify
 175 the assumptions to reason about both the distribution parameter space and the original action space.

176 **Assumption 4.1.** The functions $\bar{\pi}_\theta(s)$, $f(a|u)$, and their derivatives are continuous with respect to
 177 the variables u and θ . Moreover, when \mathcal{S} or \mathcal{A} is continuous, the functions $p(s'|s, a)$, $d_0(s)$, $r(s, a)$,
 178 $\bar{\pi}_\theta(s)$, $f(a|u)$, and their derivatives are also continuous with respect to s , s' , or a , respectively.

179 **Theorem 4.2** (Distributions-as-actions policy gradient theorem). *Under Assumptions 3.1 and 4.1,
 180 the gradient of the objective $J(\bar{\pi}_\theta) = \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} [\gamma^t R_{t+1}]$ with respect to θ can be expressed as*

$$181 \nabla_\theta J(\bar{\pi}_\theta) = \mathbb{E}_{s \sim d_{\bar{\pi}_\theta}} [\nabla_\theta \bar{\pi}_\theta(s)^\top \nabla_u \bar{q}_{\bar{\pi}_\theta}(s, u)|_{u=\bar{\pi}_\theta(s)}],$$

183 where $d_{\bar{\pi}_\theta}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_\theta} [\gamma^t \mathbb{I}(S_t = s)]$ is the (discounted) occupancy measure under $\bar{\pi}_\theta$.
 184

185 The resulting gradient estimator of the surrogate objective $\hat{J}(\bar{\pi}_\theta) = \mathbb{E}_{S_t \sim d} [\bar{Q}_w(S_t, \bar{\pi}_\theta(S_t))]$ is

$$186 \hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \nabla_\theta \bar{\pi}_\theta(S_t)^\top \nabla_U \bar{Q}_w(S_t, U)|_{U=\bar{\pi}_\theta(S_t)}, \quad (11)$$

188 where \bar{Q}_w is a learned parameterized critic. Note that the DA-PG estimator shares the same mathematical form as the DPG estimator (Equation (6)). However, the roles of the components differ:
 189 In DA-PG, the policy $\bar{\pi}_\theta$ outputs distribution parameters rather than a single action, and the critic
 190 estimates the expected return over the entire action distribution, rather than for a specific action.
 191

192 In fact, DA-PG is a strict generalization of DPG. When the policy is restricted to be deterministic, the
 193 distribution parameters effectively become the action, and the distributions-as-actions critic reduces
 194 to the classical action-value critic.

195 **Proposition 4.3.** *If $\mathcal{U} = \mathcal{A}$ and $f(\cdot|u)$ is the Dirac delta distribution centered at u , then $\bar{\pi}_\theta$ and \bar{Q}_w
 196 are equivalent to π_θ and Q_w , respectively. Consequently, the DA-PG gradient estimator becomes
 197 equivalent to DPG:*

$$198 \hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \hat{\nabla}_\theta^{\text{DPG}} \hat{J}(\pi_\theta; S_t).$$

199 Moreover, DPG’s theoretical analysis can also be extended to the distributions-as-actions framework. In Appendix C, we generalize the convergence analysis of DPG to DA-PG, establishing a
 200 theoretical guarantee that holds for MDPs with arbitrary action space types.
 201

203 4.2 COMPARISON TO OTHER ESTIMATORS FOR STOCHASTIC POLICIES 204

205 We now compare the proposed DA-PG estimator with classical stochastic policy gradient methods,
 206 highlighting its variance and bias characteristics across action spaces.

207 DA-PG can be seen as the conditional expectation of both the LR (Equation (5)) and RP (Equation
 208 (7)) estimators. This leads to strictly lower variance.
 209

210 **Proposition 4.4.** *Assume $Q_w = q_{\pi_\theta}$ in $\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A)$ and $\bar{Q}_w = \bar{q}_{\bar{\pi}_\theta}$ in $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t)$. Then,
 211 $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \mathbb{E}_{A \sim \pi_\theta(\cdot|S_t)} [\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A)]$. Further, if the expectation of the action-
 212 conditioned variance is greater than zero, then $\mathbb{V}(\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t)) < \mathbb{V}(\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A))$.*

213 **Proposition 4.5.** *Assume \mathcal{A} is continuous, $Q_w = q_{\pi_\theta}$ in $\hat{\nabla}_\theta^{\text{RP}} \hat{J}(\pi_\theta; S_t, \epsilon)$, and $\bar{Q}_w = \bar{q}_{\bar{\pi}_\theta}$ in
 214 $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t)$. Then, $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \mathbb{E}_{\epsilon \sim p} [\hat{\nabla}_\theta^{\text{RP}} \hat{J}(\pi_\theta; S_t, \epsilon)]$. Further, if the expectation of
 215 the noise-induced variance is greater than zero, then $\mathbb{V}(\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t)) < \mathbb{V}(\hat{\nabla}_\theta^{\text{RP}} \hat{J}(\pi_\theta; S_t, \epsilon))$.*

Figure 2: Visualization of the **reward function** (col 1), **expected rewards of distribution parameters** (col 2), and **learned critics** using the *standard* update in Equation (12) (col 3) and the *interpolated critic learning* (ICL) update in Equation (14) (col 4) in policy evaluation (PE). **Top:** K-Armed Bandit. **Bottom:** Bimodal Continuous Bandit. With access only to samples from the evaluation policy, the standard update estimates values accurately at the target policy but fails to generalize. In contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

In discrete action spaces, the LR estimator typically requires carefully designed baselines to manage high variance, especially as dimensionality increases. While biased alternatives like the straight-through (ST) estimator (Bengio et al., 2013) or continuous relaxations (Jang et al., 2016; Maddison et al., 2016) exist, they sacrifice unbiasedness even when using a perfect critic. DA-PG avoids this trade-off, providing the first unbiased RP-style estimator with low variance in the discrete setting.

In continuous action spaces, DPG offers zero variance but assumes fixed stochasticity (i.e., no learnable exploration). RP estimators allow for learning the stochastic parameters but exhibit higher variance. DA-PG offers the best of both worlds: it permits learning all policy parameters including those for stochasticity while retaining the zero-variance property per state.

Another direction to reduce variance is *expected policy gradient* (EPG; Ciosek & Whiteson, 2018; Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients conditioned on a state: $\hat{\nabla}_{\theta}^{\text{EPG}} \hat{J}(\pi_{\theta}; S_t) = \nabla_{\theta} \mathbb{E}_{A_t \sim \pi_{\theta}(\cdot | S_t)} [Q_w(S_t, A_t)]$. However, this estimator is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson, 2020). In contrast, our estimator $\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)$ generalizes to a wider range of settings, including high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DA-PG may suffer from increased bias due to the increased complexity of the critic’s input space. For discrete actions, the critic \bar{Q}_w inputs a vector of probabilities corresponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic \bar{Q}_w inputs both the mean and standard deviation. This increased input dimensionality makes it harder to approximate the true value function, and if the critic is inaccurate, the overall benefit of lower gradient variance may be diminished—an effect we examine empirically in Section 5.5.

4.3 INTERPOLATED CRITIC LEARNING

In this section, we propose a method to improve learning the distributions-as-actions critic \bar{Q}_w . Similar to Equation (3), the standard TD update for \bar{Q}_w is

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (R_{t+1} + \gamma \bar{Q}_w(S_{t+1}, \bar{\pi}_{\theta}(S_{t+1})) - \bar{Q}_w(S_t, U_t)) \nabla \bar{Q}_w(S_t, U_t). \quad (12)$$

This update, however, does not make use of the sampled action A_t , and its relationship to the outcome state and reward. One direction to leverage this knowledge is to recognize that the transition can also be used to update the value at alternative parameters \hat{U}_t . This is possible because the action A_t could have been sampled from distributions parameterized by many other \hat{U}_t . As a result, the value at \hat{U}_t can be learned off-policy.

What, then, should we choose for \hat{U}_t ? To answer this, we ask: *what properties should the critic have to support effective policy optimization in parameter space?* Our answer is that the critic should provide informative gradient directions that guide the policy toward optimality. For MDPs, there always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence of some $U_{A_t^*} \in \mathcal{U}$, a deterministic distribution corresponding to the optimal action A_t^* for state S_t . Ideally, the critic should exhibit curvature that points toward such optimal parameters U_t^* .

One candidate for \hat{U}_t is U_{A_t} , the deterministic distribution parameters associated with the sampled action A_t . However, merely learning accurate values at U_{A_t} does not ensure that the critic has smooth curvature from U_t toward high-value points. To encourage the critic to generalize better and provide smoother gradients, we propose using a linearly interpolated point between U_t and U_{A_t} :

$$\hat{U}_t = \omega_t U_t + (1 - \omega_t) U_{A_t}, \quad \omega_t \sim \text{Uniform}[0, 1]. \quad (13)$$

The critic is then trained to predict the value at \hat{U}_t using the following update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma \bar{Q}_{\mathbf{w}}(S_{t+1}, \bar{\pi}_{\theta}(S_{t+1})) - \bar{Q}_{\mathbf{w}}(S_t, \hat{U}_t) \right) \nabla \bar{Q}_{\mathbf{w}}(S_t, \hat{U}_t). \quad (14)$$

We refer to this approach as *interpolated critic learning* (ICL).

To further provide intuition on ICL, we conduct a policy evaluation experiment in bandit problems, shown in Figure 2 (column 1). Figure 2 (column 3) and (column 4) show the learned critics using the standard update in Equation (12) and the ICL update in Equation (14), respectively. The critic learned by ICL has more informative curvature. **As a result, the policy could be updated toward high-value regions more easily.** In the continuous action case, the learned critic is sufficient to **update the policy towards near-optimal distribution parameters**. More details can be found in Appendix D.2.

4.4 DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

To demonstrate the potential of the DA framework, we develop its first practical algorithm under the simple but fundamental single-stream learning setting. Since the DA-PG estimator is derived from DPG, we base our practical algorithm on TD3 (Fujimoto et al., 2018), a strong DPG-based off-policy actor-critic algorithm for continuous control. We replace the classical actor and critic with their distributions-as-actions counterparts and use the DA-PG gradient estimator (Equation (11)) and the ICL critic loss (Equation (14)) to update them, respectively. We omit the actor target network, as it does not improve performance (see Appendix D.4). The pseudocode for the algorithm, which we call *Distributions-as-Actions Actor-Critic* (DA-AC), is in Appendix G.

5 EXPERIMENTS

In this section, we conduct experiments to investigate DA-AC’s empirical performance in continuous (Section 5.1), discrete (Sections 5.2 and 5.3), and hybrid (Section 5.4) control settings. In addition, we examine the effectiveness of the proposed interpolated critic learning in Section 5.5. Unless otherwise noted, each environment is run with 10 seeds, and error bars or shaded regions indicate 95% bootstrap confidence intervals.

5.1 CONTINUOUS CONTROL

We use OpenAI Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite (Tunyasuvunakool et al., 2020) for continuous control. From MuJoCo, we use the most commonly used 5 environments; from DMC, we use the same 15 environments as D’Oro et al. (2023). Details about these environments are in Appendix D.4. We run each environment for 1M steps.

Algorithms We use TD3 (Fujimoto et al., 2018) as our primary baseline, as DA-AC is based on it. We also include an off-policy actor-critic baseline that uses the reparameterization (RP) estimator. This RP-AC algorithm closely resembles DA-AC but learns in the original action space and updates the policy using the RP estimator. For consistency, DA-AC and RP-AC use the default hyperparameters of TD3 and a Gaussian policy parameterization. Implementations details and pseudocode can be found in Appendices D.4 and G, respectively. For reference, we also evaluate the performance of

Figure 3: **Relative final performance of DA-AC versus TD3** across 20 individual *continuous* control tasks (col 1), and **average normalized returns of DA-AC and baselines** on MuJoCo (col 2) and DeepMind Control (col 3) tasks. In individual task comparisons (col 1), results are averaged over 10 seeds per task. For average performance plots (cols 2-3), values are averaged over 10 seeds and tasks. Error bars show 95% bootstrap confidence intervals (CIs).

Figure 4: **Learning curves in six DeepMind Control tasks with high-dimensional action spaces.** Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017). Since we focus on the single-stream setting, we use the original single-stream version of PPO as in Schulman et al..

Results Figure 3 shows per-environment performance for DA-AC and TD3 and the aggregated results across environments for all algorithms. From Figure 3 (column 1), we can see that DA-AC achieves better performance in more environments compared to TD3. From Figure 3 (columns 2-3), we can see that DA-AC achieves better overall performance, outperforming most baselines significantly in the DMC Suite, particularly in high-dimensional environments (see Figure 4).

5.2 DISCRETE CONTROL

Following Ceron & Castro (2021), we use 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar environments (Young & Tian, 2019) for discrete control. We run each environment for 500k (classic control) or 5M (MinAtar) steps.

Algorithms We include off-policy actor-critic baselines that resemble DA-AC. These baselines learn in the original action space and update the policy with different gradient estimators, including the likelihood-ratio (LR-AC) and expected (EAC) policy gradient estimators. Here, LR-AC uses a state-value baseline analytically computed from action values. Although not common in prior work, we also include a variant that uses the straight-through (ST) estimator (Bengio et al., 2013), denoted as ST-AC. This baseline is the discrete counterpart of RP-AC, serving as a performance reference for alternative RP-based methods. For comparison, we also evaluate the performance of Discrete SAC

Figure 5: **Average normalized returns of DA-AC and baselines on discrete control benchmarks**, including classic control (col 1), MinAtar (col 2), discretized MuJoCo (col 3), and discretized Deep-Mind Control (col 4) tasks.

(DSAC; Christodoulou, 2019), DQN (Mnih et al., 2015), and PPO (Schulman et al., 2017). The hyperparameters for DA-AC and X-AC baselines are adopted from the TD3 defaults and adjusted to the corresponding benchmark based on those of DQN. More details and pseudocode can be found in Appendices D.5 and G, respectively.

Results From Figure 5 (columns 1–2), we can see that DA-AC is among the best-performing algorithms in both classic control and MinAtar, achieving comparable performance to DQN.

5.3 HIGH-DIMENSIONAL DISCRETE CONTROL

For this setting, we use the same 20 environment from the Section 5.1 but with a discretized action space. Specifically, we discretize each action dimension into 7 bins with uniform spacing. For example, the original action space in Humanoid-v4 is $[-0.4, 0.4]$ ¹⁷, which is discretized to $0.4 \times \{-1, -\frac{2}{3}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1\}$ ¹⁷. We run each environment for $1M$ steps.

Algorithms We use ST-AC, LR-AC, and PPO from the previous section as baselines. EAC, DSAC, and DQN are excluded, as they are not feasible in environments with high-dimensional actions. Note that DSAC relies on the unfeasible expected updates similar to EAC; without them, it fails to learn. LR-AC learns an additional state-value function as a baseline, since analytically deriving it from the action-value function is prohibitive in this high-dimensional setting. We use the same hyperparameters as those in Section 5.1. More details can be found in Appendix D.6.

Results As shown in Figure 5 (columns 3–4), DA-AC’s average performance is higher than all baselines in both benchmarks. Note that the performance of DA-AC and PPO is slightly worse compared to the original continuous action setting (Figure 3).

5.4 HYBRID CONTROL

In addition to continuous and discrete control settings, we also evaluate DA-AC’s performance in parameterized action MDPs (PAMDPs), a hybrid control setting with parameterized actions (see Masson et al. (2016) for detailed discussion). We use 7 PAMDP environments from Li et al. (2021) and follow their experiment protocol. See Appendix D.7 for more details.

Algorithms We use PATD3 as our primary baseline, a DPG-based baseline specifically designed for parameterized action (PA) spaces. PATD3 builds on PADDPG (Hausknecht & Stone, 2015) and incorporates clipped double Q-learning from TD3, making it a suitable and directly comparable baseline for DA-AC, as both methods build on TD3. In DA-AC, the distribution parameters include both the probability vector for the discrete actions and mean/log-std vectors for the continuous actions. We keep most hyperparameters the same as TD3’s default unless otherwise adjusted to align with PATD3. In addition, we also include PDQN (Xiong et al., 2018) and HHQN (Fu et al., 2019) as additional baselines for reference. See Appendix D.7 for more details.

Results Figure 6 shows the average normalized performance of DA-AC and baselines. The learning curves in each individual environment can be found in Figure 16. We can see that DA-AC also achieves better performance than the baselines.

Figure 6: **Average normalized performance of DA-AC and baselines on hybrid control tasks**.

Figure 8: **Initial critic** (col 1) and **learned critics and policies** at different training stages using DA-AC w/o ICL (cols 2 and 4) and DA-AC (cols 3 and 5). **Top:** K-Armed Bandit. **Bottom:** Bi-modal Continuous Bandit. DA-AC produces more accurate value estimates at deterministic distribution parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous case—and offers stronger gradient signals for policy optimization.

5.5 EFFECTIVENESS OF INTERPOLATED CRITIC LEARNING

We compare DA-AC and DA-AC w/o ICL, an ablated version that uses the standard critic update (Equation (12)). From Figure 7, we can see that DA-AC w/o ICL is generally worse than DA-AC for all settings.

To provide further insights into why we see this difference, we move to a bandit setting where visualization and analysis are intuitive. We use the same bandit environments from Figure 2, and run each algorithm for 2000 steps and 50 seeds. See Appendix D.3 for hyperparameters and other details.

Figure 9 in the appendix shows the superiority of DA-AC over DA-AC w/o ICL, as well as the bias-variance trade-off incurred by different gradient estimators. To assess the impact of ICL on critic quality, we visualize the learned critics from a representative training run of DA-AC and DA-AC w/o ICL in Figure 8. In both discrete and continuous action settings, DA-AC yields a significantly improved critic landscape early in training.

6 CONCLUSIONS

We introduced the *distributions-as-actions framework*, redefining the agent-environment boundary to treat distribution parameters as actions. We showed that the policy gradient update has theoretically lower variance, and developed a practical deep RL algorithm called *Distributions-as-Actions Actor-Critic* (DA-AC) based on this estimator. We also introduced an improved critic learning update, ICL, tailored to this new setting. We demonstrated that DA-AC achieves competitive performance in diverse settings across continuous, discrete, and hybrid control.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underlying action types. A key next step is to further exploit this reframing for new algorithmic avenues, including model-based methods, hierarchical control, or novel hybrid approaches. There are also key open questions around critic learning in this new framework. More advanced strategies for training the distributions-as-actions critic could also be explored, including off-policy updates at diverse regions of the parameter space or using a learned action-value function $Q_w(s, a)$ to guide updates of $\bar{Q}_w(s, u)$. This will also open up new questions about convergence properties for these new variants.

486
487

REPRODUCIBILITY STATEMENT

488
489
490
491
492

To facilitate reproducibility, we will provide a public code release covering DA-AC implementations in all control settings. Comprehensive hyperparameter choices and environment configurations are documented in Appendix D. All reported metrics are based on multiple random seeds, with uncertainty quantified using 95% bootstrap confidence intervals. The repository will further include instructions to reproduce our main experimental results.

493

REFERENCES

494
495
496
497

Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdel-rahman Mohamed, George Konidaris, and Michael Littman. Mean actor-critic. *arXiv preprint arXiv:1709.00503*, 2017.

498
499
500

Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, and Alec Koppel. On the sample complexity and metastability of heavy-tailed policy search in continuous control. *Journal of Machine Learning Research*, 25(39):1–58, 2024.

501
502
503
504

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. *Journal of artificial intelligence research*, 47: 253–279, 2013.

505

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

507
508
509
510

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox, and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity. In *The Twelfth International Conference on Learning Representations*, 2024.

511
512
513

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. *arXiv preprint arXiv:1606.01540*, 2016.

514
515
516

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and inclusive deep reinforcement learning research. In *International Conference on Machine Learning*, pp. 1373–1383. PMLR, 2021.

517
518
519
520

Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients in continuous control with deep reinforcement learning using the beta distribution. In *International conference on machine learning*, pp. 834–843. PMLR, 2017.

521
522

Petros Christodoulou. Soft actor-critic for discrete action settings. *arXiv preprint arXiv:1910.07207*, 2019.

523
524
525

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

526
527

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. *Journal of Machine Learning Research*, 21(52):1–51, 2020.

528
529
530
531

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In *The Eleventh International Conference on Learning Representations*, 2023.

532
533
534

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in parameterized action space. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 2279–2285, 2019.

535
536
537
538

Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep multi-agent reinforcement learning with discrete-continuous hybrid action spaces. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 2329–2335, 2019.

539

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *International Conference on Machine Learning*, pp. 1587–1596. PMLR, 2018.

540 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 541 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
 542 PMLR, 2017.

543 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 544 maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference on Machine Learning*, pp. 1861–1870. PMLR, 2018.

545 Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
 546 control. In *International Conference on Machine Learning*, pp. 8387–8406. PMLR, 2022.

547 Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
 548 In *International Conference on Learning Representations*, 2015.

549 Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
 550 continuous control policies by stochastic value gradients. *Advances in Neural Information
 551 Processing Systems*, 28, 2015.

552 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
 553 Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
 554 deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 555 volume 32, 2018.

556 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
 557 nal Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep
 558 reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.

559 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
 560 *International Conference on Learning Representations*, 2016.

561 Boyan Li, Hongyao Tang, YAN ZHENG, Jianye HAO, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
 562 LI Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
 563 representation. In *International Conference on Learning Representations*, 2021.

564 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 565 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv
 566 preprint arXiv:1509.02971*, 2015.

567 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
 568 laxation of discrete random variables. In *International Conference on Learning Representations*,
 569 2016.

570 Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
 571 eterized actions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30,
 572 2016.

573 Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
 574 Chawla. S\$2\$AC: Energy-based reinforcement learning with stein soft actor critic. In *The Twelfth
 575 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=rAHcTCMaLc>.

576 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 577 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 578 control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

579 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 580 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 581 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.

582 Ofir Nabati, Guy Tennenholz, and Shie Mannor. Representation-driven reinforcement learning. In
 583 *International Conference on Machine Learning*, pp. 25588–25603. PMLR, 2023.

584 A Paszke. PyTorch: An imperative style, high-performance deep learning library. *arXiv preprint
 585 arXiv:1912.01703*, 2019.

594 Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
 595forcement learning. *Journal of Machine Learning Research*, 25(318):1–63, 2024.
 596

597 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 598 Wiley & Sons, 2014.

599 Matthew Kyle Schlegel, Volodymyr Tkachuk, Adam M White, and Martha White. Investigating
 600 action encodings in recurrent neural networks in reinforcement learning. *Transactions on Machine
 601 Learning Research*, 2023.

602 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 603 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

604

605 Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
 606 Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
 607 bernoulli policies. *Advances in Neural Information Processing Systems*, 34:27209–27221, 2021.

608

609 Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus,
 610 and Markus Wulfmeier. Solving continuous control via q-learning. In *The Eleventh International
 611 Conference on Learning Representations*, 2023.

612 David Silver, Guy Lever, Nicolas Heess, Thomas Degrif, Daan Wierstra, and Martin Riedmiller.
 613 Deterministic policy gradient algorithms. In *International Conference on Machine Learning*, pp.
 614 387–395. PMLR, 2014.

615

616 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 617 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 618 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

619

620 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 621 ods for reinforcement learning with function approximation. *Advances in Neural Information
 622 Processing Systems*, 12, 1999.

623

624 Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
 In *Proceedings of the aaai conference on artificial intelligence*, volume 34, pp. 5981–5988, 2020.

625

626 Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
 627 Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
 628 continuous control. *Software Impacts*, 6:100022, 2020.

629

630 Hado Van Hasselt and Marco A Wiering. Reinforcement learning in continuous action spaces. In
 631 *2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
 632 Learning*, pp. 272–279. IEEE, 2007.

633

634 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 635 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

636

637 Gautham Vasan, Mohamed Elsayed, Seyed Alireza Azimi, Jiamin He, Fahim Shahriar, Colin
 638 Bellinger, Martha White, and Rupam Mahmood. Deep policy gradient methods without batch
 639 updates, target networks, or replay buffers. *Advances in Neural Information Processing Systems*,
 640 37:845–891, 2024.

641

642 Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine Learning*, 8:279–292, 1992.

643

644 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 645 learning. *Machine learning*, 8:229–256, 1992.

646

647 Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
 648 dient: Convergence analysis. In *Uncertainty in Artificial Intelligence*, pp. 2159–2169. PMLR,
 649 2022.

650

651 Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
 652 Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
 653 with discrete-continuous hybrid action space. *arXiv preprint arXiv:1810.06394*, 2018.

648 Ming Xu, Matias Quiroz, Robert Kohn, and Scott A Sisson. Variance reduction properties of the
649 reparameterization trick. In *The 22nd International Conference on Artificial Intelligence and*
650 *Statistics*, pp. 2711–2720. PMLR, 2019.

651

652 Timothy Yee, Vilim Lisý, Michael H Bowling, and S Kambhampati. Monte carlo tree search in
653 continuous action spaces with execution uncertainty. In *IJCAI*, pp. 690–697, 2016.

654

655 Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
656 reinforcement learning experiments. *arXiv preprint arXiv:1903.03176*, 2019.

657

658 Shenao Zhang, Boyi Liu, Zhaoran Wang, and Tuo Zhao. Model-based reparameterization policy
659 gradient methods: theory and practical algorithms. *Advances in Neural Information Processing*
660 *Systems*, 36:68391–68419, 2023.

661

662 Lingwei Zhu, Haseeb Shah, Han Wang, Yukie Nagai, and Martha White. q -exponential family for
663 policy optimization. In *The Thirteenth International Conference on Learning Representations*,
664 2025.

665

666 Yuanyang Zhu, Zhi Wang, Yuanheng Zhu, Chunlin Chen, and Dongbin Zhao. Discretizing contin-
667 uous action space with unimodal probability distributions for on-policy reinforcement learning.
668 *IEEE Transactions on Neural Networks and Learning Systems*, 2024.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A RELATED WORKS**

703
704 In this section, we provide an extended discussion of related work.
705

706 **Value-based control** When the action space is discrete, value-based algorithms are one of the
707 most commonly used approaches (Watkins & Dayan, 1992; Mnih et al., 2015; Van Hasselt et al.,
708 2016; Hessel et al., 2018). By learning an action-value function, these algorithms extract policies
709 using various greedy operators. While these methods have been effective in a wide range of dis-
710 crete control domains, their applications to continuous-action problems are limited, with only a few
711 exceptions (Seyde et al., 2023).
712

713 **Policy-based discrete control** Policy-based methods, including actor-critic algorithms, form
714 another important class of approaches for discrete control (Williams, 1992; Mnih et al., 2016). These
715 methods explicitly maintain a policy that outputs distribution parameters used to construct a policy
716 distribution from which actions are sampled. In the discrete case, these parameters correspond to
717 the logits of a categorical distribution. Beyond the likelihood-ratio (LR) policy gradient estimator
718 (Williams, 1992), Gumbel-Softmax (Jang et al., 2016) and Concrete distributions (Maddison et al.,
719 2016) provide reparameterization-based but biased gradient estimators. In contrast to these biased
720 estimators, our distributions-as-actions (DA) gradient estimator in Equation (11) can be viewed as
721 the first unbiased reparameterization (RP) estimator for discrete distributions.
722

723 **Policy-based continuous control** For continuous control, policy-based methods dominate the
724 literature (Van Hasselt & Wiering, 2007; Silver et al., 2014; Lillicrap et al., 2015; Schulman et al.,
725 2017; Haarnoja et al., 2018). The policy typically outputs the parameters of a parametric distribu-
726 tion. Gaussian policies are the most common choice (Lillicrap et al., 2015; Schulman et al., 2017;
727 Haarnoja et al., 2018), although many alternatives have been explored in different contexts (Chou
728 et al., 2017; Bedi et al., 2024; Zhu et al., 2025). Optimizing these policies using classical policy
729 gradient estimators (LR or RP) requires access either to an analytical log-density function or a repa-
730 rameterization function. In contrast, the DA gradient estimator in Equation (11) requires neither,
731 enabling application to a broader class of policies. Beyond parametric distributions, implicit poli-
732 cies built using more expressive generative models have also been studied (Haarnoja et al., 2017;
733 Messaoud et al., 2024). Our DA framework and estimator can be applied to these advanced policy
734 classes as well, which suggests an interesting direction for future work.
735

736 **Policy-based continuous control with discretization** Another line of work discretizes the con-
737 tinuous action space and then applies discrete-action control algorithms—often policy-based methods
738 due to the high dimensionality of action spaces (Tang & Agrawal, 2020; Seyde et al., 2021; Zhu et al.,
739 2024). While such approaches have shown strong benchmark performance, they may be undesirable
740 in practice because the resulting control can be less smooth and more unstable (Seyde et al., 2021),
741 and the method often requires additional tuning of the discretization granularity (Tang & Agrawal,
742 2020). In this work, we treat discretized continuous control problems primarily as a testbed for
743 high-dimensional discrete control. Thus, we do not extensively compare continuous- vs. discrete-
744 based methods for continuous control, as this is not our main focus. Nevertheless, we include such
745 a comparison in Figure 12 for reference.
746

747 **Policy-based hybrid control** Beyond purely discrete or continuous settings, many real-world
748 applications involve hybrid action spaces requiring the agent to control discrete and continuous
749 variables simultaneously (Masson et al., 2016; Xiong et al., 2018). These problems can often be
750 modeled as parameterized action MDPs (PAMDPs) (Masson et al., 2016), in which the agent selects
751 a discrete action and its associated continuous parameters. Most standard discrete and continuous
752 control algorithms are not directly applicable to PAMDPs and require additional adaptation or hy-
753 bridization to handle such action structures. For example, DDPG (Lillicrap et al., 2015) and PPO
754 (Schulman et al., 2017) have been modified to support hybrid actions (Hausknecht & Stone, 2015;
755 Fan et al., 2019), and combinations of DDPG and DQN (Mnih et al., 2015) have been explored
(Xiong et al., 2018; Fu et al., 2019). Unlike these methods, which patch together or retrofit existing
algorithms, our DA reframing directly converts hybrid control into a continuous control problem,
enabling a simple, unified algorithm applicable to PAMDPs and even more general hybrid settings.
756

756 **Representation-driven RL** Different from the traditional policy optimization perspective used
 757 in the methods above, representation-driven RL (RepRL) offers an alternative viewpoint (Nabati
 758 et al., 2023). Instead of optimizing policy parameters θ by estimating gradients based on the values
 759 of sampled state-action pairs, RepRL recasts the search for optimal θ as a linear bandit problem by
 760 projecting θ into a lower-dimensional representation $f(\theta)$ and optimizing θ based on its expected
 761 value over states. While our proposed DA framework also redraws the decision boundary, it does
 762 so in a fundamentally different way. RepRL retreats the decision boundary all the way to a bandit
 763 problem and, in some sense, treats even the policy network π as part of the environment. In contrast,
 764 the DA framework only reframes the distribution parameters themselves as the decision variables,
 765 viewing only the sampling function as part of the environment.

766 B EXTENDING EXISTING RL ALGORITHMS TO THE DA FRAMEWORK

769 While we have explored only one model-free actor-critic algorithm under the proposed distributions-
 770 as-actions (DA) framework, many other algorithms in the classical RL literature can also be extended
 771 to this setting. To facilitate future research, we outline several such directions below.

772 **Entropy regularization** Entropy regularization is a widely used mechanism for encouraging
 773 exploration in RL, and incorporating it into the DA framework represents a promising avenue. We
 774 discuss two potential approaches for adding entropy regularization to DA-AC. The first approach
 775 is to augment the policy optimization objective (Equation (4)) with an entropy term. This requires
 776 adding an entropy component to the policy gradient estimator (Equation (11)):

$$778 \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) = \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^\top \nabla_U \bar{Q}_{\mathbf{w}}(S_t, U) \Big|_{U=\bar{\pi}_{\theta}(S_t)} + \alpha \mathcal{H}(f(\cdot | \bar{\pi}_{\theta}(S_t))), \quad (15)$$

780 where α is the entropy coefficient and $\mathcal{H}(f)$ denotes the entropy of distribution f . Optionally,
 781 the critic may also incorporate entropy, yielding the Maximum Entropy RL formulation (MaxEnt;
 782 Haarnoja et al., 2018). The standard MaxEnt critic update within the DA framework becomes

$$783 \mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma (\bar{Q}_{\mathbf{w}}(S_{t+1}, \bar{\pi}_{\theta}(S_{t+1})) + \alpha \mathcal{H}(f(\cdot | \bar{\pi}_{\theta}(S_{t+1})))) - \bar{Q}_{\mathbf{w}}(S_t, U_t) \right) \nabla \bar{Q}_{\mathbf{w}}(S_t, U_t). \quad (16)$$

786 The second approach is specific to the MaxEnt setting and incorporates entropy directly into the
 787 reward:

$$788 R'_{t+1} = R_{t+1} + \alpha \mathcal{H}(f(\cdot | U_t)). \quad (17)$$

790 Under this reward shaping, the optimization problem coincides with the MaxEnt objective (Haarnoja
 791 et al., 2018). This method does not require modifying the actor or critic updates; only the reward
 792 is transformed. The entropy can be computed analytically when available or estimated via samples
 793 (e.g., using $-\log f(A_t | U_t)$). Understanding the trade-offs between these alternatives is itself an
 794 interesting open question.

795 **Model-based planning algorithms** Beyond model-free methods, model-based planning algo-
 796 rithms can also be incorporated into the DA framework. A straightforward approach is to combine
 797 traditional model-based algorithms operating on primitive actions with DA-based value estimation.
 798 For example, in discrete-action environments, one could apply MCTS (Silver et al., 2016) over the
 799 primitive discrete actions while using DA for the critic.

800 A potentially more compelling direction is to learn a model over the distribution parameters them-
 801 selves. This would make it possible to apply continuous-action model-based planners—such as
 802 continuous-action variants of MCTS (Yee et al., 2016), TD-MPC (Hansen et al., 2022), or model-
 803 based reparameterization gradient methods (Zhang et al., 2023)—directly within the DA framework.

805 **Incompatibility with discrete-structure-based algorithms** Finally, by treating distribution pa-
 806 rameters as actions, we may lose the ability to exploit certain convenient structures of the original
 807 action space—particularly in discrete settings. While this choice allows the DA framework to remain
 808 agnostic to the specifics of the primitive action space, it may still be desirable to leverage action
 809 structure when beneficial. Hybrid approaches that combine DA with structure-aware algorithms,
 such as integrating MCTS with DA-based value estimation, provide one promising path forward.

810 C THEORETICAL ANALYSIS OF DA-PG 811

812 We provide the proofs of the theoretical results for the distributions-as-actions framework and
813 Distributions-as-Actions Policy Gradient (DA-PG) in the main text in Appendices C.1 and C.2.
814 In addition, we also extend a convergence proof of DPG from [Xiong et al. \(2022\)](#) to DA-PG in
815 Appendix C.3.

817 C.1 PROOFS OF THEORETICAL RESULTS IN SECTION 3 818

819 **Assumption 3.1.** The set \mathcal{U} is compact. Moreover, when \mathcal{S} or \mathcal{A} is continuous, the corresponding
820 set is also assumed to be compact.

821 **Proposition 3.2.** Under Assumption 3.1, $\bar{v}_{\bar{\pi}}(s) = v_{\pi}(s)$ and $\bar{q}_{\bar{\pi}}(s, u) = \mathbb{E}_{A \sim f(\cdot|u)}[q_{\pi}(s, A)]$.

824 *Proof.* Let π be the policy in the original MDP that first maps s to $u = \bar{\pi}(s)$ and then samples
825 $A \sim f(\cdot|u)$. The state-value function $\bar{v}_{\bar{\pi}}(s)$ in the distributions-as-actions MDP is defined as:

$$826 \bar{v}_{\bar{\pi}}(s) = \sum_{k=0}^{\infty} \mathbb{E}_{\bar{\pi}} [\gamma^k \bar{r}(S_k, U_k) \mid S_0 = s],$$

829 where $U_k = \bar{\pi}(S_k)$. From Equation (8), $\bar{r}(s, u) = \mathbb{E}_{A \sim f(\cdot|u)}[r(s, A)]$. Also, the transition
830 $\bar{p}(s'|s, u) = \mathbb{E}_{A \sim f(\cdot|u)}[p(s'|s, A)]$. Consider a trajectory $S_0, U_0, S_1, U_1, \dots$ in the distributions-as-
831 actions MDP (DA-MDP). This corresponds to a trajectory $S_0, A_0, S_1, A_1, \dots$ in the original MDP
832 where $A_k \sim f(\cdot|U_k)$. The expected reward at time k in the DA-MDP, given S_k and $U_k = \bar{\pi}(S_k)$,
833 is $\bar{r}(S_k, \bar{\pi}(S_k)) = \mathbb{E}_{A_k \sim f(\cdot|\bar{\pi}(S_k))}[r(S_k, A_k)]$. The dynamics are also equivalent in expectation:
834 $\mathbb{E}[S_{k+1} \mid S_k, U_k] = \mathbb{E}_{S' \sim \bar{p}(\cdot|S_k, U_k)}[S'] = \mathbb{E}_{A_k \sim f(\cdot|U_k)}[\mathbb{E}_{S' \sim p(\cdot|S_k, A_k)}[S']]$. Thus, the sequence of
835 states and expected rewards generated under $\bar{\pi}$ in the DA-MDP is identical in distribution to the
836 sequence of states and rewards under π in the original MDP. Therefore, $\bar{v}_{\bar{\pi}}(s) = v_{\pi}(s)$.

837 For the action-value function $\bar{q}_{\bar{\pi}}(s, u)$:

$$\begin{aligned} 839 \bar{q}_{\bar{\pi}}(s, u) &= \mathbb{E}_{\bar{\pi}} [\bar{r}(S_0, U_0) + \gamma \bar{v}_{\bar{\pi}}(S_1) \mid S_0 = s, U_0 = u] \\ 840 &= \bar{r}(s, u) + \gamma \mathbb{E}_{S_1 \sim \bar{p}(\cdot|s, u)}[\bar{v}_{\bar{\pi}}(S_1)] \\ 841 &= \mathbb{E}_{A \sim f(\cdot|u)}[r(s, A)] + \gamma \mathbb{E}_{A \sim f(\cdot|u)}[\mathbb{E}_{S_1 \sim p(\cdot|s, A)}[v_{\pi}(S_1)]] \quad (\text{using } \bar{v}_{\bar{\pi}} = v_{\pi}) \\ 843 &= \mathbb{E}_{A \sim f(\cdot|u)}[r(s, A) + \gamma \mathbb{E}_{S_1 \sim p(\cdot|s, A)}[v_{\pi}(S_1)]] \\ 844 &= \mathbb{E}_{A \sim f(\cdot|u)}[\mathbb{E}_{\pi}[R_1 + \gamma v_{\pi}(S_1) \mid S_0 = s, A_0 = A]] \\ 845 &= \mathbb{E}_{A \sim f(\cdot|u)}[q_{\pi}(s, A)]. \end{aligned}$$

847 The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures
848 these expectations and value functions are well-defined. \square

850 C.2 PROOFS OF THEORETICAL RESULTS IN SECTION 4 851

852 **Assumption 4.1.** The functions $\bar{\pi}_{\theta}(s)$, $f(a|u)$, and their derivatives are continuous with respect to
853 the variables u and θ . Moreover, when \mathcal{S} or \mathcal{A} is continuous, the functions $p(s'|s, a)$, $d_0(s)$, $r(s, a)$,
854 $\bar{\pi}_{\theta}(s)$, $f(a|u)$, and their derivatives are also continuous with respect to s , s' , or a , respectively.

855 **Theorem 4.2** (Distribution parameter policy gradient theorem). *Under Assumptions 3.1 and 4.1,
856 the gradient of the objective function $J(\bar{\pi}_{\theta}) = \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} [\gamma^t R_{t+1}]$ with respect to θ can be expressed
857 as*

$$858 \nabla_{\theta} J(\bar{\pi}_{\theta}) = \mathbb{E}_{s \sim d_{\bar{\pi}_{\theta}}} [\nabla_{\theta} \bar{\pi}_{\theta}(s)^{\top} \nabla_u \bar{Q}_{\bar{\pi}_{\theta}}(s, u) \mid u = \bar{\pi}_{\theta}(s)],$$

859 where $d_{\bar{\pi}_{\theta}}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_{\theta}}[\gamma^t \mathbb{I}(S_t = s)]$ is the (discounted) occupancy measure under $\bar{\pi}_{\theta}$.

862 *Proof.* This theorem results from applying the deterministic policy gradient (DPG) theorem to the
863 DA-MDP $\langle \mathcal{S}, \mathcal{U}, \bar{p}, d_0, \bar{r}, \gamma \rangle$, where $\bar{\pi}_{\theta} : \mathcal{S} \rightarrow \mathcal{U}$ acts as a deterministic policy. The objective
864 function is $J(\bar{\pi}_{\theta}) = \mathbb{E}_{S_0 \sim d_0}[\bar{v}_{\bar{\pi}_{\theta}}(S_0)]$.

Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic policy $\mu_\theta : \mathcal{S} \rightarrow \mathcal{A}$, the policy gradient is:

$$\nabla_\theta J(\mu_\theta) = \mathbb{E}_{s \sim d_{\mu_\theta}} \left[\nabla_\theta \mu_\theta(s)^\top \nabla_a q_{\mu_\theta}(s, a) \Big|_{a=\mu_\theta(s)} \right].$$

In our context:

- The policy in the DA-MDP is $\bar{\pi}_\theta(s)$.
- The action space is \mathcal{U} , and actions are denoted by u .
- The critic $\bar{q}_{\bar{\pi}_\theta}(s, u)$ is the action-value function in this DA-MDP.
- The state distribution $d_{\bar{\pi}_\theta}(s)$ is the discounted state occupancy measure under policy $\bar{\pi}_\theta$.

Assumptions 3.1 and 4.1 ensure that $\bar{\pi}_\theta(s)$ and $\bar{q}_{\bar{\pi}_\theta}(s, u)$ are appropriately differentiable and that the interchange of expectation and differentiation is valid. Substituting $\bar{\pi}_\theta$ for μ_θ and $\bar{q}_{\bar{\pi}_\theta}$ for q_{μ_θ} yields the theorem's result:

$$\nabla_\theta J(\bar{\pi}_\theta) = \mathbb{E}_{s \sim d_{\bar{\pi}_\theta}} \left[\nabla_\theta \bar{\pi}_\theta(s)^\top \nabla_u \bar{q}_{\bar{\pi}_\theta}(s, u) \Big|_{u=\bar{\pi}_\theta(s)} \right].$$

The notation $\nabla_\theta \bar{\pi}_\theta(s)^\top \nabla_u \bar{q}_{\bar{\pi}_\theta}$ in the theorem statement implies the appropriate vector or matrix product. If $\theta \in \mathbb{R}^k$ and $u \in \mathbb{R}^m$, then $\nabla_\theta \bar{\pi}_\theta(s)$ is an $m \times k$ Jacobian, $\nabla_u \bar{q}_{\bar{\pi}_\theta}$ is an $m \times 1$ vector, and the product $(\nabla_\theta \bar{\pi}_\theta(s))^\top \nabla_u \bar{q}_{\bar{\pi}_\theta}$ results in the $k \times 1$ gradient vector for $J(\bar{\pi}_\theta)$. \square

Proposition 4.3. If $\mathcal{U} = \mathcal{A}$ and $f(\cdot | u)$ is the Dirac delta distribution centered at u , then $\bar{\pi}_\theta$ and \bar{Q}_w are equivalent to π_θ and Q_w , respectively. Consequently, the DA-PG gradient estimator becomes equivalent to DPG:

$$\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \hat{\nabla}_\theta^{\text{DPG}} \hat{J}(\pi_\theta; S_t).$$

Proof. The DA-PG gradient estimator is given by Equation (11):

$$\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \nabla_\theta \bar{\pi}_\theta(S_t)^\top \nabla_U \bar{Q}_w(S_t, U) \Big|_{U=\bar{\pi}_\theta(S_t)}.$$

Given the conditions:

1. $\mathcal{U} = \mathcal{A}$: The distribution-parameter space is the action space.
2. $f(\cdot | u) = \delta(\cdot - u)$: Sampling $A \sim f(\cdot | u)$ yields $A = u$.

Under these conditions, $\bar{\pi}_\theta(S_t)$ outputs parameters $U \in \mathcal{U}$, which are directly actions in \mathcal{A} . Thus, we can write $\pi_\theta(S_t) = \bar{\pi}_\theta(S_t)$, where $\pi_\theta(S_t) \in \mathcal{A}$.

Next, consider the DA value function $\bar{q}_{\bar{\pi}_\theta}(S_t, U)$. From Proposition 3.2, $\bar{q}_{\bar{\pi}_\theta}(S_t, U) = \mathbb{E}_{A \sim f(\cdot | U)} [q_{\pi_\theta}(S_t, A)]$. Since $f(A | U) = \delta(A - U)$, the expectation becomes $q_{\pi_\theta}(S_t, U)$. So, $\bar{q}_{\bar{\pi}_\theta}(S_t, U) = q_{\pi_\theta}(S_t, U)$, where $U \in \mathcal{U} = \mathcal{A}$.

This means the DA critic $\bar{Q}_w(S_t, U)$ is estimating the action-value function $q_{\pi_\theta}(S_t, U)$. Thus, we can write $\bar{Q}_w(S_t, U) = Q_w(S_t, U)$, where $U \in \mathcal{A}$.

Substituting these equivalences into the DA-PG gradient estimator:

$$\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \nabla_\theta \pi_\theta(S_t)^\top \nabla_A Q_w(S_t, A) \Big|_{A=\pi_\theta(S_t)}.$$

This is precisely the DPG gradient estimator (Equation (6)). Thus, $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \hat{\nabla}_\theta^{\text{DPG}} \hat{J}(\pi_\theta; S_t)$. \square

Proposition 4.4. Assume $Q_w = q_{\pi_\theta}$ in $\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A)$ and $\bar{Q}_w = \bar{q}_{\bar{\pi}_\theta}$ in $\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t)$. Then,

$$\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) = \mathbb{E}_{A \sim \pi_\theta(\cdot | S_t)} \left[\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A) \right].$$

Further, if the expectation of the action-conditioned variance is greater than zero, then

$$\mathbb{V} \left(\hat{\nabla}_\theta^{\text{DA-PG}} \hat{J}(\bar{\pi}_\theta; S_t) \right) < \mathbb{V} \left(\hat{\nabla}_\theta^{\text{LR}} \hat{J}(\pi_\theta; S_t, A) \right).$$

918 *Proof.* Proposition 3.2 states $\bar{q}_{\pi_\theta}(S_t, U) = \mathbb{E}_{A \sim f(\cdot|U)}[q_{\pi_\theta}(S_t, A)]$. Given $\bar{Q}_w = \bar{q}_{\pi_\theta}$ and $Q_w = q_{\pi_\theta}$, this becomes $\bar{Q}_w(S_t, U) = \mathbb{E}_{A \sim f(\cdot|U)}[Q_w(S_t, A)]$. Note that $Q_w(S_t, A)$ and $\bar{Q}_w(S_t, U)$ are distinct critic functions. The use of w for both signifies that they are learned approximators. In the context of this proof, we can think of Q_w and \bar{Q}_w as separate approximators, each utilizing a corresponding subset of w .

923 Starting with the DA-PG estimator (assuming continuous \mathcal{A} ; discrete case is analogous with sums):

$$\begin{aligned}
 925 \quad \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U \bar{Q}_w(S_t, U) \Big|_{U=\bar{\pi}_{\theta}(S_t)} \\
 926 &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U \mathbb{E}_{A \sim f(\cdot|U)}[Q_w(S_t, A)] \Big|_{U=\bar{\pi}_{\theta}(S_t)} \\
 927 &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \left(\nabla_U \int_{\mathcal{A}} f(A|U) Q_w(S_t, A) dA \right) \Big|_{U=\bar{\pi}_{\theta}(S_t)} \\
 928 &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \left(\int_{\mathcal{A}} \nabla_U f(A|U) Q_w(S_t, A) dA \right) \Big|_{U=\bar{\pi}_{\theta}(S_t)} \\
 929 &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \int_{\mathcal{A}} \nabla_U f(A|U) \Big|_{U=\bar{\pi}_{\theta}(S_t)} Q_w(S_t, A) dA \\
 930 &= \int_{\mathcal{A}} \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U f(A|U) \Big|_{U=\bar{\pi}_{\theta}(S_t)} Q_w(S_t, A) dA \\
 931 &= \int_{\mathcal{A}} \nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) Q_w(S_t, A) dA.
 932 \\
 933 &= \int_{\mathcal{A}} \nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) Q_w(S_t, A) dA.
 934 \\
 935 &= \int_{\mathcal{A}} \nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) Q_w(S_t, A) dA.
 936 \\
 937 &= \int_{\mathcal{A}} \nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) Q_w(S_t, A) dA.
 938 \\
 939 &= \int_{\mathcal{A}} \nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) Q_w(S_t, A) dA.
 940
 \end{aligned}$$

940 The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
941 from the chain rule, where $\nabla_{\theta} f(A|\bar{\pi}_{\theta}(S_t)) = \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U f(A|U) \Big|_{U=\bar{\pi}_{\theta}(S_t)}$.

942 Using $\pi_{\theta}(A|S_t) = f(A|\bar{\pi}_{\theta}(S_t))$ and the log-derivative trick, we can express the DA-PG estimator
943 as:

$$\begin{aligned}
 944 \quad \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) &= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(A|S_t) Q_w(S_t, A) dA \\
 945 &= \int_{\mathcal{A}} \nabla_{\theta} \log \pi_{\theta}(A|S_t) \pi_{\theta}(A|S_t) Q_w(S_t, A) dA \\
 946 &= \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t) Q_w(S_t, A)].
 947 \\
 948 &= \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t) Q_w(S_t, A)].
 949 \\
 950 &= \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t) Q_w(S_t, A)].
 951
 \end{aligned}$$

951 The LR estimator is $\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A) = \nabla_{\theta} \log \pi_{\theta}(A|S_t) (Q_w(S_t, A) - V(S_t))$. Its expectation is
952 $\mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A)]$. The term involving the baseline $V(S_t)$ vanishes in expectation:
953

$$\begin{aligned}
 954 \quad \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t) V(S_t)] &= V(S_t) \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t)] \\
 955 &= V(S_t) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(A|S_t) dA \\
 956 &= V(S_t) \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta}(A|S_t) dA = V(S_t) \nabla_{\theta}(1) = 0.
 957 \\
 958 &= V(S_t) \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta}(A|S_t) dA = V(S_t) \nabla_{\theta}(1) = 0.
 959 \\
 960 &= V(S_t) \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta}(A|S_t) dA = V(S_t) \nabla_{\theta}(1) = 0.
 961
 \end{aligned}$$

961 Thus, $\mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A)] = \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\nabla_{\theta} \log \pi_{\theta}(A|S_t) Q_w(S_t, A)]$. This shows
962 $\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) = \mathbb{E}_{A \sim \pi_{\theta}(\cdot|S_t)} [\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A)]$.
963

964 For variance reduction, let $X = \hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A)$ and $Y = \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)$. We have $Y =$
965 $\mathbb{E}[X|S_t, \bar{\pi}_{\theta}(S_t)]$ (expectation over A). By the law of total variance: $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|S_t, \bar{\pi}_{\theta}(S_t))] +$
966 $\mathbb{V}(\mathbb{E}[X|S_t, \bar{\pi}_{\theta}(S_t)])$. This translates to

$$967 \quad \mathbb{V}(\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A)) = \mathbb{E}_{S_t} [\mathbb{V}_A (\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A) | S_t)] + \mathbb{V}(\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)).
 968 \\
 969$$

970 If $\mathbb{E}_{S_t} [\mathbb{V}_A (\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A) | S_t)] > 0$ (i.e., the action-conditioned variance is positive on aver-
971 age), then $\mathbb{V}(\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)) < \mathbb{V}(\hat{\nabla}_{\theta}^{\text{LR}} \hat{J}(\pi_{\theta}; S_t, A))$. \square

972 **Proposition 4.5.** Assume \mathcal{A} is continuous, $Q_{\mathbf{w}} = q_{\pi_{\theta}}$ in $\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon)$, and $\bar{Q}_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\theta}}$ in
 973 $\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)$. Then,
 974

$$975 \quad \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) = \mathbb{E}_{\epsilon \sim p} \left[\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \right].$$

$$976$$

977 Further, if the expectation of the noise-induced variance is greater than zero, then
 978

$$979 \quad \mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) \right) < \mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \right).$$

$$980$$

981 *Proof.* For the RP estimator, the action is generated as $A = g_{\theta}(\epsilon; S_t)$, where $\epsilon \sim p(\cdot)$. For con-
 982 sistency with DA-PG notation, we can write $A = g(\epsilon; U)$, where $U = \bar{\pi}_{\theta}(S_t) \in \mathcal{U}$ represents all
 983 relevant learnable distribution parameters. Thus, the distribution $f(\cdot | U)$ of the random variable A is
 984 induced by $g(\epsilon; U)$ with $\epsilon \sim p(\cdot)$.

985 Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value
 986 functions, we have:
 987

$$988 \quad \bar{Q}_{\mathbf{w}}(S_t, U) = \mathbb{E}_{A \sim f(\cdot | U)} [Q_{\mathbf{w}}(S_t, A)] = \mathbb{E}_{\epsilon \sim p} [Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t)))] ,$$

$$989$$

990 where we use a change of variables to express the expectation in terms of the noise ϵ .
 991

992 Now, we can express the DA-PG gradient as:
 993

$$994 \quad \begin{aligned} \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U \bar{Q}_{\mathbf{w}}(S_t, U) |_{U=\bar{\pi}_{\theta}(S_t)} \\ &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U \mathbb{E}_{\epsilon \sim p} [Q_{\mathbf{w}}(S_t, g(\epsilon; U))] |_{U=\bar{\pi}_{\theta}(S_t)} \\ &= \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \mathbb{E}_{\epsilon \sim p} [\nabla_U Q_{\mathbf{w}}(S_t, g(\epsilon; U)) |_{U=\bar{\pi}_{\theta}(S_t)}] \\ &= \mathbb{E}_{\epsilon \sim p} [\nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U Q_{\mathbf{w}}(S_t, g(\epsilon; U)) |_{U=\bar{\pi}_{\theta}(S_t)}] \\ &= \mathbb{E}_{\epsilon \sim p} [\nabla_{\theta} Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t)))] . \end{aligned}$$

$$995$$

$$996$$

$$997$$

$$998$$

999 The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
 1000 from the chain rule, where $\nabla_{\theta} Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t))) = \nabla_{\theta} \bar{\pi}_{\theta}(S_t)^{\top} \nabla_U Q_{\mathbf{w}}(S_t, g(\epsilon; U)) |_{U=\bar{\pi}_{\theta}(S_t)}$.
 1001

1002 On the other hand, the RP gradient is:
 1003

$$1004 \quad \begin{aligned} \hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) &= \nabla_{\theta} g_{\theta}(\epsilon; S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A) |_{A=g_{\theta}(\epsilon; S_t)} \\ &= \nabla_{\theta} g(\epsilon; \bar{\pi}_{\theta}(S_t))^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A) |_{A=g(\epsilon; \bar{\pi}_{\theta}(S_t))} \\ &= \nabla_{\theta} Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t))), \end{aligned}$$

$$1005$$

$$1006$$

1007 where we use the chain rule again in the last equation: $\nabla_{\theta} Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t))) =$
 1008 $\nabla_{\theta} g(\epsilon; \bar{\pi}_{\theta}(S_t))^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A) |_{A=g(\epsilon; \bar{\pi}_{\theta}(S_t))}$. Thus, we have:
 1009

$$1010 \quad \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) = \mathbb{E}_{\epsilon \sim p} \left[\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \right].$$

$$1011$$

1012 The variance reduction argument is similar to that in Proposition 4.4. Let $X = \hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon)$ and
 1013 $Y = \hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t)$. We have $Y = \mathbb{E}[X | S_t, \epsilon]$ (expectation over ϵ). By the law of total variance:
 1014 $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X | S_t, \epsilon)] + \mathbb{V}(\mathbb{E}[X | S_t, \epsilon])$. This translates to
 1015

$$1016 \quad \mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \right) = \mathbb{E}_{S_t} \left[\mathbb{V}_{\epsilon} \left(\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \middle| S_t \right) \right] + \mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) \right) .$$

$$1017$$

1018 If $\mathbb{E}_{S_t} \left[\mathbb{V}_{\epsilon} \left(\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \middle| S_t \right) \right] > 0$ (i.e., the noise-induced variance is positive on average), then
 1019 $\mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\theta}; S_t) \right) < \mathbb{V} \left(\hat{\nabla}_{\theta}^{\text{RP}} \hat{J}(\pi_{\theta}; S_t, \epsilon) \right)$. \square
 1020

1021 **C.3 CONVERGENCE ANALYSIS FOR DA-PG**
 1022

1023 We present a convergence result for the distributions-as-actions policy gradient (DA-PG), which
 1024 is a direct application of the convergence of the deterministic policy gradient (DPG; [Xiong et al.,](#)
 1025 2022). We assume an on-policy linear function approximation setting and use TD learning to learn

Algorithm 1 DA-PG-TD

```

1: Input:  $\alpha_w, \alpha_\theta, w_0, \theta_0$ , batch size  $M$ .
2: for  $t = 0, 1, \dots, T$  do
3:   for  $j = 0, 1, \dots, M - 1$  do
4:     Sample  $s_{t,j} \sim d_{\theta_t}$ .
5:     Generate  $u_{t,j} = \bar{\pi}_{\theta_t}(s_{t,j})$ .
6:     Sample  $s_{t+1,j} \sim \bar{p}(\cdot | s_{t,j}, u_{t,j})$  and  $r_{t,j}$ .
7:     Generate  $u_{t+1,j} = \bar{\pi}_{\theta_t}(s_{t+1,j})$ .
8:     Denote  $x_{t,j} = (s_{t,j}, u_{t,j})$ .
9:      $\delta_{t,j} = r_{t,j} + \gamma \phi(x_{t+1,j})^\top w_t - \phi(x_{t,j})^\top w_t$ .
10:  end for
11:   $w_{t+1} = w_t + \frac{\alpha_w}{M} \sum_{j=0}^{M-1} \delta_{t,j} \phi(x_{t,j})$ .
12:  for  $j = 0, 1, \dots, M - 1$  do
13:    Sample  $s'_{t,j} \sim \nu_{\theta_t}$ .
14:  end for
15:   $\theta_{t+1} = \theta_t + \frac{\alpha_\theta}{M} \sum_{j=0}^{M-1} \nabla_{\theta} \bar{\pi}_{\theta_t}(s'_{t,j}) \nabla_{\theta} \bar{\pi}_{\theta_t}(s'_{t,j})^\top w_t$ .
16: end for

```

the critic. See Algorithm 1 for the analyzed DA-PG-TD algorithm. We follow the notation of [Xiong et al.](#) as much as possible for comparison with their results.

Following their notation, the parameterized policy is denoted as $\bar{\pi}_\theta$ and the objective function $J(\bar{\pi}_\theta)$ (Equation (1)) is denoted as $J(\theta)$. The distributions-as-actions policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \nu_{\theta}} [\nabla_{\theta} \bar{\pi}_{\theta}(s) \nabla_u \bar{Q}_{\bar{\pi}_{\theta}}(s, u) |_{u=\bar{\pi}_{\theta}(s)}], \quad (18)$$

where $\nu_{\theta}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_{\theta}} [\gamma^t \mathbb{I}(S_t = s)]$ is the discounted occupancy measure under $\bar{\pi}_{\theta}$. We also define the stationary distribution of $\bar{\pi}_{\theta}$ to be $d_{\theta}(s) = \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\bar{\pi}_{\theta}} [\mathbb{I}(S_t = s)]$. Under linear function approximation for the critic function, the parameterized critic can be expressed as $\bar{Q}_w(s, u) = \phi(s, u)^\top w$, where $\phi : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}^d$ is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the convergence theorem. In addition, we incorporate the corrections to the result of [Xiong et al.](#) from [Vasan et al. \(2024\)](#), which extends the result to the reparameterization policy gradient. Following [Vasan et al.](#), the corrections are highlighted in red.

Assumption C.1. For any $\theta_1, \theta_2, \theta \in \mathbb{R}^d$, there exist positive constants $L_{\bar{\pi}}, L_\phi$ and λ_Φ , such that (1) $\|\bar{\pi}_{\theta_1}(s) - \bar{\pi}_{\theta_2}(s)\| \leq L_{\bar{\pi}} \|\theta_1 - \theta_2\|, \forall s \in \mathcal{S}$; (2) $\|\nabla_{\theta} \bar{\pi}_{\theta_1}(s) - \nabla_{\theta} \bar{\pi}_{\theta_2}(s)\| \leq L_\phi \|\theta_1 - \theta_2\|, \forall s \in \mathcal{S}$; (3) the matrix $\Psi_\theta := \mathbb{E}_{\nu_\theta} [\nabla_{\theta} \bar{\pi}_{\theta}(s) \nabla_{\theta} \bar{\pi}_{\theta}(s)^\top]$ is non-singular with the minimal eigenvalue uniformly lower-bounded as $\sigma_{\min}(\Psi_\theta) \geq \lambda_\Psi$.

Assumption C.2. For any $u_1, u_2 \in \mathcal{U}$, there exist positive constants $L_{\bar{p}}, L_{\bar{r}}$, such that (1) the distributions-as-actions transition kernel satisfies $|\bar{p}(s'|s, u_1) - \bar{p}(s'|s, u_2)| \leq L_{\bar{p}} \|u_1 - u_2\|, \forall s, s' \in \mathcal{S}$; (2) the distributions-as-actions reward function satisfies $|\bar{r}(s, u_1) - \bar{r}(s, u_2)| \leq L_{\bar{r}} \|u_1 - u_2\|, \forall s, s' \in \mathcal{S}$.

Assumption C.3. For any $u_1, u_2 \in \mathcal{U}$, there exists a positive constant $L_{\bar{q}}$, such that $\|\nabla_u \bar{Q}_{\bar{\pi}_{\theta}}(s, u_1) - \nabla_u \bar{Q}_{\bar{\pi}_{\theta}}(s, u_2)\| \leq L_{\bar{q}} \|u_1 - u_2\|, \forall \theta \in \mathbb{R}^d, s \in \mathcal{S}$.

Assumption C.4. The feature function $\phi : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}^d$ is uniformly bounded, i.e., $\|\phi(\cdot, \cdot)\| \leq C_\phi$ for some positive constant C_ϕ . In addition, we define $A = \mathbb{E}_{d_\theta} [\phi(x)(\gamma \phi(x') - \phi(x))^\top]$ and $D = \mathbb{E}_{d_\theta} [\phi(x)\phi(x)^\top]$, and assume that A and D are non-singular. We further assume that the absolute value of the eigenvalues of A are uniformly lower bounded, i.e., $|\sigma(A)| \geq \lambda_A$ for some positive constant λ_A .

Proposition C.5 (Compatible function approximation). *A function estimator $\bar{Q}_w(s, u)$ is compatible with a policy $\bar{\pi}_{\theta}$, i.e., $\nabla J(\theta) = \mathbb{E}_{\nu_\theta} [\nabla_{\theta} \bar{\pi}_{\theta}(s) \nabla_u \bar{Q}_w(s, u) |_{u=\bar{\pi}_{\theta}(s)}]$, if it satisfies the following two conditions:*

1. $\nabla_u \bar{Q}_w(s, u) |_{u=\bar{\pi}_{\theta}(s)} = \nabla_{\theta} \bar{\pi}_{\theta}(s)^\top w$;

1080 2. $w = w_{\xi_\theta}^*$ minimizes the mean square error $\mathbb{E}_{\nu_\theta} [\xi(s; \theta, w)^\top \xi(s; \theta, w)]$, where $\xi(s; \theta, w) =$
 1081 $\nabla_u \bar{Q}_w(s, u)|_{u=\bar{\pi}_\theta(s)} - \nabla_u \bar{q}_{\bar{\pi}_\theta}(s, u)|_{u=\bar{\pi}_\theta(s)}$.
 1082

1083 Given the above assumption, one can show that the distributions-as-actions policy gradient is smooth
 1084 (Lemma C.6), and that Algorithm 1 converges (Theorem C.7).

1085 **Lemma C.6.** *Suppose Assumptions C.1-C.3 hold. Then the distributions-as-actions policy gradient*
 1086 $\nabla J(\theta)$ *defined in Equation (18) is Lipschitz continuous with the parameter L_J , i.e., $\forall \theta_1, \theta_2 \in \mathbb{R}^d$,*
 1087

$$1088 \|\nabla J(\theta_1) - \nabla J(\theta_2)\| \leq L_J \|\theta_1 - \theta_2\|, \quad (19)$$

1089 where $L_J = \left(\frac{1}{2} L_{\bar{p}} L_{\bar{\pi}}^2 L_\nu C_\nu + \frac{L_\psi}{1-\gamma} \right) \left(L_{\bar{r}} + \frac{\gamma R_{\max} L_{\bar{p}}}{1-\gamma} \right) + \frac{L_{\bar{\pi}}}{1-\gamma} \left(L_{\bar{q}} L_{\bar{\pi}} + \frac{\gamma}{2} L_{\bar{p}}^2 R_{\max} L_{\bar{\pi}} C_\nu + \frac{\gamma L_{\bar{p}} L_{\bar{r}} L_{\bar{\pi}}}{1-\gamma} \right)$.
 1090

1091 **Theorem C.7.** *Suppose that Assumptions C.1-C.4 hold. Let $\alpha_w \leq \frac{\lambda}{2C_A^2}$; $M \geq \frac{48\alpha_w C_A^2}{\lambda}$; $\alpha_\theta \leq$
 1092 $\min \left\{ \frac{1}{4L_J}, \frac{\lambda\alpha_w}{24\sqrt{6}L_h L_w} \right\}$. Then the output of DA-PG-TD in Algorithm 1 satisfies*
 1093

$$1095 \min_{t \in [T]} \mathbb{E} \|\nabla J(\theta_t)\|^2 \leq \frac{c_1}{T} + \frac{c_2}{M} + c_3 \kappa^2,$$

1097 where $c_1 = \frac{8R_{\max}}{\alpha_\theta(1-\gamma)} + \frac{144L_h^2}{\lambda\alpha_w} \|w_0 - w_{\theta_0}^*\|^2$, $c_2 = \left[48\alpha_w^2 (C_A^2 C_w^2 + C_b^2) + \frac{96L_w^2 L_{\bar{\pi}}^4 C_{w_\xi}^2 \alpha_\theta^2}{\lambda\alpha_w} \right] \cdot \frac{144L_h^2}{\lambda\alpha_w} +$
 1098 $72L_{\bar{\pi}}^4 C_{w_\xi}^2$, $c_3 = 18L_h^2 + \left[\frac{24L_w^2 L_h^2 \alpha_\theta^2}{\lambda\alpha_w} + \frac{24}{\lambda\alpha_w} \right] \cdot \frac{144L_h^2}{\lambda\alpha_w}$ with $C_A = 2C_\phi^2$, $C_b = R_{\max} C_\phi$, $C_w =$
 1099 $\frac{R_{\max} C_\phi}{\lambda_A}$, $C_{w_\xi} = \frac{L_{\bar{\pi}} C_{\bar{q}}}{\lambda_\Psi(1-\gamma)}$, $L_w = \frac{L_J}{\lambda_\Psi} + \frac{L_{\bar{\pi}} C_{\bar{q}}}{\lambda_\Psi^2(1-\gamma)} \left(L_{\bar{\pi}}^2 L_\nu + \frac{2L_{\bar{\pi}} L_\psi}{1-\gamma} \right)$, $L_h = L_{\bar{\pi}}^2$, $C_{\bar{q}} = L_{\bar{r}} + L_{\bar{p}}$.
 1100 $\frac{\gamma R_{\max}}{1-\gamma}$, $L_\nu = \frac{1}{2} C_\nu L_{\bar{p}} L_{\bar{\pi}}$, and L_J defined in Lemma C.6, and we define
 1101

$$1104 \kappa := \max_\theta \|w_\theta^* - w_{\xi_\theta}^*\|. \quad (20)$$

1106 *Remark C.8.* Apart from the corrections highlighted in red, the convergence result retains the same
 1107 mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). However,
 1108 the associated constants differ, as they are defined with respect to the distributions-as-actions
 1109 formulations of the MDP, policy, and critic. Notably, the distributions-as-actions policy class strictly
 1110 generalizes the deterministic policy class. Consequently, this convergence result constitutes a strict
 1111 generalization of the DPG convergence result.

1112 The proofs of Lemma C.6 and Theorem C.7 follow the same lines as that of Lemma 1 and Theorem
 1113 1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for
 1114 details about the corrections.

1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 **D EXPERIMENTAL DETAILS**
1135

1136 Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL
1137 (Huang et al., 2022), distributed under the MIT license. The source code is currently being cleaned
1138 up and will be open-sourced following paper acceptance.

1139 Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95%
1140 bootstrap confidence intervals (CIs) for reporting the statistical significance whenever applicable, as
1141 recommended by Patterson et al. (2024). We use `scipy.stats.bootstrap` with 10,000 resamples from
1142 SciPy to calculate the bootstrap CIs. For all bar plots, we plot the final performance, which is
1143 computed using the average of the return collected during the final 10% training steps.
1144

1145 **D.1 POLICY PARAMETERIZATION AND ACTION SAMPLING**
1146

1147 When the action space is multidimensional, we treat each dimension independently. For simplicity,
1148 our exposition will focus on the unidimensional case in the remaining of the paper.

1149 **Discrete action spaces** We use the categorical policy parameterization: $A \sim$
1150 $f(\cdot | [p_1, \dots, p_N]^\top)$, where $f(x | [p_1, \dots, p_N]^\top) = \prod_{i=1}^N p_i^{\mathbb{I}(x=i)}$ is the probability mass function
1151 for the categorical distribution. For DA-AC, we choose the probability vector $u = [p_1, \dots, p_N]^\top$
1152 as the distribution parameters. We define the distribution parameters corresponding to an action A
1153 to be the one-hot vector $U_A = \text{one_hot}(A)$.
1154

1155 **Continuous action spaces** Assume the action space is $[a_{\min}, a_{\max}]$. We use the Gaussian policy
1156 parameterization that is used in TD3: $A = \text{clip}(\mu + \epsilon, a_{\min}, a_{\max})$, $\epsilon \sim \mathcal{N}(0, \sigma)$. Same as TD3, we
1157 restrict the mean μ to be within $[a_{\min}, a_{\max}]$ using a squashing function:
1158

$$\mu = \frac{u_\mu + 1}{2} (a_{\max} - a_{\min}) + a_{\min}, \quad u_\mu = \tanh(\text{logit}_\mu),$$

1159 where $\text{logit}_\mu \in \mathbb{R}$ is the actor network's output for μ . While TD3 uses a fixed $\sigma_{\text{TD3}} = 0.1 * \frac{a_{\max} - a_{\min}}{2}$, we allow the learnable standard deviation to be within a range $\sigma \in [\sigma_{\min}, \sigma_{\max}]$:
1160

$$\log \sigma = \frac{u_\sigma + 1}{2} * (\log \sigma_{\max} - \log \sigma_{\min}) + \log \sigma_{\min}, \quad u_\sigma = \tanh(\text{logit}_\sigma),$$

1161 where $\text{logit}_\sigma \in \mathbb{R}$ is the actor network's output for σ . For RP-AC, the reparameterization function
1162 is $g_\theta(\epsilon; S_t) = \text{clip}(\mu_\theta(S_t) + \sigma_\theta(S_t)\epsilon, a_{\min}, a_{\max})$, $\epsilon \sim \mathcal{N}(0, 1)$. For DA-AC, we choose the distribution
1163 parameters to be $u = [u_\mu, u_\sigma]^\top \in [-1, 1]^2$ so that the parameter space is consistent across
1164 the mean and standard deviation dimensions. Since we lower bound the standard deviation space
1165 to encourage exploration, we define the distribution parameters corresponding to an action A to be
1166 $U_A = [\frac{2A}{a_{\max} - a_{\min}}, -1]^\top$ to approximate the Dirac delta distribution, which corresponds to $\mu = A$
1167 and $\sigma = \sigma_{\min}$.
1168

1169 **Hybrid action spaces** For environments with hybrid action spaces, DA-AC simply uses the
1170 policy parameterizations described above for the corresponding discrete and continuous parts.
1171

1172 **D.2 POLICY EVALUATION IN BANDITS**
1173

1174 **K-Armed Bandit** We use a K-armed bandit with $K = 3$ and a deterministic reward function:
1175

$$r(a_1) = 0, \quad r(a_2) = 0.5, \quad r(a_3) = 1.$$

1176 **Bimodal Continuous Bandit** We use a continuous bandit with a bimodal reward function that
1177 is deterministic. Specifically, the reward function is the normalized summation of two Gaussians'
1178 density functions whose standard deviations are both 0.5 and whose means are -1 and 1 , respectively:
1179

$$r(a) = e^{-\frac{(a+1)^2}{0.5}} + e^{-\frac{(a-1)^2}{0.5}}.$$

1180 We restrict the action space to be $[a_{\min}, a_{\max}] = [-2, 2]$. The standard standard deviation is con-
1181 strained to $[\sigma_{\min}, \sigma_{\max}] = [e^{-3}, e]$.
1182

Figure 9: **Learning curves of DA-AC, DA-AC w/o ICL, and baselines** on the K-Armed Bandit (col 1) and Bimodal Continuous Bandit (col 2) tasks. Results are averaged over 50 seeds. Shaded regions show 95% bootstrap CIs. ICL substantially improves DA-AC’s performance, enabling it to match LR-AC and RP-AC in these simple settings.

Critic network architecture To be consistent with the RL settings, we use the same critic network architecture as those in Appendices D.4 and D.6. Specifically, we use a two-layer MLP network with the concatenated state and action vector as input. We reduce the hidden size from 256 to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the distributions-as-actions critic function for 2000 steps using either Equation (12) or Equation (14). In K-Armed Bandit, the PE policy is $\bar{\pi}_{\text{PE}} = u_{\text{PE}} = [1/3, 1/3, 1/3]$; in Bimodal Continuous Bandit, the PE policy is $\bar{\pi}_{\text{PE}} = u_{\text{PE}} = [0, 0.5]$ (corresponding to $\mu = 0$ and $\log \sigma = 0.0$). The hyperparameters are the same as those of DA-AC in Table 3, except that the actor is kept fixed to the corresponding PE policy.

D.3 POLICY OPTIMIZATION IN BANDITS

Environments We use the same K-Armed Bandit and Bimodal Continuous Bandit environments as Appendix D.2.

Algorithms In addition to DA-AC and DA-AC w/o ICL, we also include LR-AC and RP-AC as a reference, as they should be quite effective in these settings because of a much simpler critic function. Note that our goal is not to show that DA-AC can outperform other baselines in these toy settings, but rather to illustrate how ICL substantially improves critic learning in DA-AC. Here, LR-AC uses the average of the action values as the baseline. We also include LR-PG, RP-PG, and DA-PG, variants of LR-AC, RP-AC, and DA-AC that have access to their corresponding true value functions to remove the confounding factor of learning the critic.

Experimental Details We use the same critic network architecture as in Appendix D.2. Similarly, we use the same actor network architecture as those in Appendices D.4 and D.6. Specifically, we use a two-layer MLP network with the state vector as input. We reduce the hidden size from 256 to 16 and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For LR-PG, RP-PG, and DA-PG, the critic function is calculated analytically; otherwise, their hyperparameters are the same as their counterparts with a learned critic function. See Figure 9 for learning curves.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms for a more controlled comparison in Section 5.5, we note that interpolated critic learning (ICL) also improves the performance of DA-AC under other learning rates. Apart from 0.01, we report the results with learning rates 0.001 and 0.1 in Figure 10.

D.4 CONTINUOUS CONTROL

Environments From OpenAI Gym MuJoCo, we use the most commonly used 5 environments (see Table 1). From DeepMind Control Suite, we use the same 15 environments as D’Oro et al.

Figure 10: **Learning curves of DA-AC, DA-AC w/o ICL, and baselines** using learning rates 0.001 (cols 1–2) and 0.1 (cols 3–4). Results are averaged over 50 seeds. Shaded regions show 95% bootstrap CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal points for most algorithms. Consistent with Figure 9, ICL demonstrates improved performance for DA-AC when a more conservative learning rate is employed.

Figure 11: **Average normalized returns with and without actor target network (ATN)** on MuJoCo (col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10 (DMC) tasks. Error bars show 95% bootstrap CIs.

(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep RL algorithms. The full list of environments and their corresponding observation and action space dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by the maximum possible return for a given task. In DMC environments, the maximum return is 1000 (Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4, 7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DA-AC and RP-AC also adopt a uniform exploration phase. During the uniform exploration phase, the distribution parameters $u = [u_\mu, u_\sigma]^\top$ are uniformly sampled from $[-1, 1]^2$. These three algorithms use the default hyperparameters of TD3 (see Table 4). For SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), we use the implementations and tuned hyperparameters in CleanRL (Huang et al., 2022). See Figure 13 for learning curves in each individual environment.

Figure 12: **Relative final performance of DA-AC with continuous actions versus with discrete actions** across 20 individual control tasks. Results are averaged over 10 seeds per task.

1296 **Impact of the actor target network** We also investigate the impact of using an actor target
 1297 network (ATN) in DA-AC and the baselines. While TD3 already employs an ATN, both DA-AC and
 1298 RP-AC do not. We additionally test DA-AC w/ ATN and RP-AC w/ ATN and TD3 w/o ATN. From
 1299 Figure 11, we can see that the actor target network does not have a significant impact in general.
 1300

1301 D.5 DISCRETE CONTROL

1303 **Environments** We use the same 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar
 1304 (Young & Tian, 2019) environments as in Ceron & Castro (2021).

1306 **Experimental details for Gym environments** We use the existing implementations and tuned
 1307 hyperparameters of DQN (Mnih et al., 2015) and PPO in CleanRL (Tables 8 and 10). For DA-AC,
 1308 ST-AC, LR-AC, and EAC, we adjust relevant off-policy training hyperparameters based on those of
 1309 DQN, including batch size, gradient steps per step, network size, replay buffer size. We also disables
 1310 double Q-networks to better align with DQN. See Table 5 for the updated parameters from Table 4.
 1311 We use a similar setup for Discrete SAC (DSAC; Christodoulou, 2019), as shown in the same table.
 1312 The learning curves can be found in Figure 14.

1313 **Experimental details for MinAtar environments** The MinAtar setups for DQN and PPO are
 1314 adopted from their implementations and tuned hyperparameters for Atari (Bellemare et al., 2013)
 1315 in CleanRL (Tables 9 and 11). Similar to the above, we adjust relevant off-policy training hyperpa-
 1316 rameters based on DQN for DA-AC, ST-AC, LR-AC, and EAC (Table 6). We use a similar setup
 1317 for DSAC but decrease its uniform exploration steps according to its hyperparameters for Atari in
 1318 CleanRL (Table 6). For consistency, we use the same critic network for DA-AC, ST-AC, LR-AC,
 1319 EAC, and DSAC, which takes actions as input. The learning curves can be found in Figure 14.

1320 **Joint encoding of CNN observation features and actions** While concatenation is used for joint
 1321 encoding of observations and actions for state-based observations in MuJoCo/DMC/Gym environ-
 1322 ments, it might not be efficient for encoding latent features and actions (Schlegel et al., 2023).
 1323 Inspired by Schlegel et al., we use the flattened outer product of the CNN observation features (with
 1324 a dimension of 128) and the vectorized action representations (with a dimension of $|\mathcal{A}|$) as the joint
 1325 encoding. The action representations are the action probabilities for DA-AC, while they are one-hot
 1326 embedding of actions for other algorithms. We then use an additional hidden layer with a small
 1327 number of hidden units (8 in MinAtar) with negligible overhead to extract higher-level features.

1329 D.6 HIGH-DIMENSIONAL DISCRETE CONTROL

1331 **Details** We use the same 20 environments as Appendix D.4. Similar to the continuous control
 1332 case, we also include a uniform exploration phase for all discrete control algorithms. For LR-AC
 1333 and ST-AC, the action is randomly sampled from a uniform categorical distribution. For DA-AC, the
 1334 logits of the distribution parameters (in this case, the probability vector) are sampled from $\mathcal{N}(0, 1)^N$,
 1335 where N is the number of possible discrete outcomes. All algorithms use the default hyperpara-
 1336 meters of TD3 (see Table 4). See Figure 15 for learning curves in each individual environment.

1337 **Comparison to continuous control** We plot the relative final performance of DA-AC with
 1338 continuous actions versus with discrete actions in Figure 12. We can see that the performance of
 1339 DA-AC with discrete actions can often compete with DA-AC with continuous actions.

1341 D.7 HYBRID CONTROL

1343 **Environments** We use 7 parameterized-action MDP (PAMDP; Masson et al., 2016) environ-
 1344 ments from Li et al. (2021). Please see their Appendix B.1 for the descriptions of the environments.

1346 **Experimental details** Contrary to other settings, which report training episodes’ return, we
 1347 report performance in evaluation phases following Li et al.. During evaluation phases, DA-AC uses
 1348 discrete actions with the highest probability for the discrete components and mean actions for the
 1349 continuous components. We use the implementations provided by Li et al. for baselines, including
 PADDPG (Hausknecht & Stone, 2015), PDQN (Xiong et al., 2018), and (Fu et al., 2019). All

1350 the baselines incorporate clipped double Q-learning from TD3, with PADDPG renamed to PATD3.
 1351 The hyperparameters of DA-AC are made aligned with the baselines (Table 12). Since PDQN uses
 1352 per-environment tuned γ in Li et al., our results are slightly different than theirs as we use a fixed
 1353 $\gamma = 0.99$ for PDQN to be consistent with other algorithms. Learning curves can be found in
 1354 Figure 16.

1355 D.8 COMPUTATIONAL RESOURCE REQUIREMENT

1356 All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core
 1357 Processor. Each training run was executed using a single CPU core and consumed less than 256MB
 1358 of RAM. Most runs completed 2000 training steps within 10 seconds.

1359 All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were
 1360 equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell @ 2.1GHz,
 1361 Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @ 2.4GHz.
 1362 Each training run was executed using a single CPU core and consumed less than 2GB of
 1363 RAM. The training duration varied considerably across environments, primarily influenced by the
 1364 dimensionality of the observation space, the complexity of the physics simulation, and, in the case
 1365 of discrete action spaces, the dimensionality of the action space. Most algorithms typically com-
 1366 pleted 1 million training steps in approximately 7 hours per run. However, LR-AC required a longer
 1367 training period of roughly 9 hours due to the additional computational overhead of learning an extra
 1368 neural network.

1369 Table 1: Observation and action dimensions of OpenAI Gym MuJoCo environments.

1370 Environment	1371 Observation dimension	1372 Action dimension
1373 Hopper-v3	1374 11	1375 3
1376 Walker2d-v3	1377 17	1378 6
1379 HalfCheetah-v3	1380 17	1381 6
1382 Ant-v3	1383 27	1384 8
1385 Humanoid-v3	1386 376	1387 17

1388 Table 2: Observation and action dimensions of DeepMind Control Suite environments.

1389 Domain	1390 Task(s)	1391 Observation dimension	1392 Action dimension
1393 pendulum	1394 swingup	1395 3	1396 1
1397 acrobot	1398 swingup	1399 6	1400 1
1401 reacher	1402 hard	1403 6	1404 2
1405 finger	1406 turn_hard	1407 12	1408 2
1409 hopper	1410 stand, hop	1411 15	1412 4
1413 fish	1414 swim	1415 24	1416 5
1418 swimmer	1419 swimmer6	1420 25	1421 5
1423 cheetah	1424 run	1425 17	1426 6
1428 walker	1429 run	1430 24	1431 6
1434 quadruped	1435 walk, run	1436 58	1437 12
1439 humanoid	1440 stand, walk, run	1441 67	1442 24

1404 **E HYPERPARAMETERS**
 1405

1406 Table 3: Hyperparameters for both continuous (col 3) and discrete (col 2) bandits that are different
 1407 from Table 4. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respec-
 1408 tively. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC uses the same hyperparameters
 1409 as DA-AC (D).

Hyperparameter	DA-AC (D)	DA-AC (C)
Batch size	8	
Learning rate (actor / critic)	0.01	
Neurons per hidden layer	(16, 16)	
Discount factor (γ)	N/A	
Replay buffer size	2000	
Policy update delay (N_d)	1	
Uniform exploration steps	N/A	
Learnable σ range ($[\sigma_{\min}, \sigma_{\max}]$)	N/A	$[e^{-3}, e]$

1424 Table 4: Hyperparameters of actor-critic algorithms for both MuJoCo/DMC continuous (cols 3–5)
 1425 and discrete (col 2) control environments. DA-AC is applied to both settings, denoted as DA-AC
 1426 (C) and DA-AC (D), respectively. For simplicity, we assume $[a_{\min}, a_{\max}] = [-1, 1]$ for continuous
 1427 control algorithms. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC and ST-AC use
 1428 the same hyperparameters as DA-AC (D).

Hyperparameter	DA-AC (D)	DA-AC (C)	TD3	SAC
Batch size	256			
Optimizer	Adam			
Learning rate (actor / critic)	0.0003		0.0003 / 0.001	
Target network update rate (τ)	0.005			
Gradient steps per env step	1			
Number of hidden layers	2			
Neurons per hidden layer	(256, 256)			
Activation function	ReLU			
Discount factor (γ)	0.99			
Replay buffer size	1×10^6			
Policy update delay (N_d)	2			
Uniform exploration steps	25,000		5,000	
Learnable σ range ($[\sigma_{\min}, \sigma_{\max}]$)	N/A	[0.05, 0.2]	N/A	N/A
Target entropy	N/A		\mathcal{A}	
Target policy noise clip (c)	N/A	0.5	N/A	
Target policy noise ($\tilde{\sigma}_{\text{TD3}}$)	N/A	0.2	N/A	
Exploration policy noise (σ_{TD3})	N/A	0.1	N/A	

1458

1459

1460

1461

1462

Table 5: Hyperparameters of actor-critic algorithms for Gym environments that are different from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

Table 6: Hyperparameters of actor-critic algorithms for MinAtar environments that are different from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Hyperparameter	DA-AC	DSAC
Batch size	128	
Learning rate (actor / critic)	0.0003	
Target network update rate (τ)	0.01	
Gradient steps per env step	1 (every 10 env steps)	
Neurons per hidden layer	(120, 84)	
Replay buffer size	1×10^4	
Policy update delay (N_d)	1	
Uniform exploration steps	12,500	2,500
Target entropy	N/A	$0.89 \mathcal{A} $

Hyperparameter	DA-AC	DSAC
Batch size	32	
Learning rate (actor / critic)	0.0003	
Gradient steps per env step	1 (every 4 env steps)	
Number of Conv. layers	1	
Conv. channels	16	
Conv. filter size	3	
Conv. stride	1	
Number of MLP layers	2	
Neurons per MLP layer	(128, 8)	
Replay buffer size	1×10^5	
Policy update delay (N_d)	1	
Uniform exploration steps	50,000	4,000
Target entropy	N/A	$0.89 \mathcal{A} $

1512 Table 7: Hyperparameters of PPO in MuJoCo/DMC continuous- and discrete-control environments.
1513

Hyperparameter	PPO
Optimizer	Adam
Learning rate (actor / critic)	3×10^{-4}
Discount factor (γ)	0.99
GAE parameter (λ)	0.95
Rollout length (timesteps per update)	2048
Minibatch size	32
Number of epochs per update	10
Number of hidden layers	2
Neurons per hidden layer	(64, 64)
Activation function	Tanh
Clipping parameter (ϵ)	0.2
Entropy coefficient	0.0
Value loss coefficient	0.5
Max grad norm	0.5
Reward normalization	Enabled
Observation normalization	Enabled
Learning rate schedule	Linear decay

1538 Table 8: Hyperparameters of PPO in Gym environments that are different from Table 7.
1539

Hyperparameter	PPO
Rollout length (timesteps per update)	128
Number of epochs per update	4

1545 Table 9: Hyperparameters of PPO in MinAtar environments that are different from Table 7. Since
1546 MinAtar already normalizes the observations and rewards, we disable the normalization wrappers.
1547

Hyperparameter	PPO
Learning rate (actor / critic)	2.5×10^{-4}
Rollout length (timesteps per update)	128
Number of epochs per update	4
Number of Conv. layers	1
Conv. channels	16
Conv. filter size	3
Conv. stride	1
Number of MLP layers	1
Neurons per MLP layer	(128,)
Activation function	ReLU
Entropy coefficient	0.01
Reward normalization	Disable
Observation normalization	Disable

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

Table 10: Hyperparameters of DQN in Gym environments.

Hyperparameter	DQN
Batch size	128
Optimizer	Adam
Learning rate	2.5×10^{-4}
Discount factor (γ)	0.99
Hard target network update	Every 500 env steps
Gradient steps per env step	1 (every 10 env steps)
Number of hidden layers	2
Neurons per hidden layer	(120, 84)
Activation function	ReLU
Replay buffer size	1×10^4
Min replay size before learning	10,000
Linear ε -greedy range	$1.0 \rightarrow 0.05$
Linear ε -greedy steps	2.5×10^5

Table 11: Hyperparameters of DQN in MinAtar environments.

Hyperparameter	DQN
Batch size	32
Learning rate	1×10^{-4}
Hard target network update	Every 1000 env steps
Gradient steps per env step	1 (every 4 env steps)
Number of Conv. layers	1
Conv. channels	16
Conv. filter size	3
Conv. stride	1
Number of MLP layers	1
Neurons per MLP layer	(128,)
Replay buffer size	1×10^5
Min replay size before learning	40,000
Linear ε -greedy range	$1.0 \rightarrow 0.01$
Linear ε -greedy steps	5×10^5

1617

1618

1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632

1633 Table 12: Hyperparameters of actor-critic algorithms for PAMDP environments.
 1634

Hyperparameter	DA-AC	PATD3	HHQN	PDQN
Batch size		128		
Optimizer		Adam		
Learning rate (actor / critic)	0.0003		0.0001 / 0.001	
Target network update rate (τ)	0.005		0.001 / 0.01	
Gradient steps per env step	1			
Number of hidden layers	2			
Neurons per hidden layer	(256, 256)			
Activation function	ReLU			
Discount factor (γ)	0.99			
Replay buffer size	1×10^5			
Policy update delay (N_d)	2			
Uniform exploration steps	5,000		N/A	
Learnable σ range ($[\sigma_{\min}, \sigma_{\max}]$)	[0.05, 0.2]		N/A	
Target policy noise clip (c)	N/A	0.5	N/A	
Target policy noise ($\tilde{\sigma}_{\text{TD3}}$)	N/A	0.2	N/A	
Exploration policy noise (σ_{TD3})	N/A	0.1	N/A	
Ornstein-Uhlenbeck noise		N/A	Enable	
Linear ε -greedy range		N/A	$1.0 \rightarrow 0.01$	
Linear ε -greedy steps		N/A	1×10^3	
Max grad norm		N/A	0.5	

1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 F ADDITIONAL PLOTS
16751705
1706 **Figure 13: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 continuous control**
1707 **tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.**
17081722 **Figure 14: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 4 Gym and 5 MinAtar**
1723 **discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.**
1724

Figure 15: **Learning curves of DA-AC, DA-AC w/o ICL, and baselines** in 20 MuJoCo/DMC discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Figure 16: **Learning curves of DA-AC, DA-AC w/o ICL, and baselines** in 7 hybrid control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

1782 **G PSEUDOCODE**
17831784 **G.1 DA-AC: DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC**
17851786 **Algorithm 2** DA-AC for diverse action spaces
1787

1788 Input action sampling function $f : \mathcal{U} \rightarrow \Delta(\mathcal{A})$ (see Appendix D.1 for f in different settings)
 1789 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B}
 1790 Obtain initial state S_0
 1791 **for** $t = 1$ to T **do**
 1792 Take action $A_t \sim f(\cdot | U_t)$ with $U_t = \bar{\pi}_{\boldsymbol{\theta}}(S_t)$, observe R_{t+1}, S_{t+1}
 1793 Add $\langle S_t, U_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}
 1794 Sample a mini-batch B from buffer \mathcal{B}
 1795 Sample $\hat{U} = \omega U + (1 - \omega)U_A$, $\omega \sim \text{Uniform}[0, 1]$, for each transition $\langle S, U, A, S', R \rangle$ in B
 1796 Update critics on B :
 1797
$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{j \in \{1, 2\}} Q_{\bar{\mathbf{w}}_j}(S', \bar{\pi}_{\boldsymbol{\theta}}(S')) - Q_{\mathbf{w}_i}(S, \hat{U}) \right) \nabla Q_{\mathbf{w}_i}(S, \hat{U})$$

 1798
 1799 **if** $t \equiv 0 \pmod{N_d}$ **then**
 1800 Update policy on B :
 1801
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S)^\top \nabla_{\hat{U}} Q_{\mathbf{w}_1}(S, \tilde{U})|_{\tilde{U}=\bar{\pi}_{\boldsymbol{\theta}}(S)}$$

 1802
 1803 Update target network weights:
 1804
$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$$

 1805
 1806 **end if**
 1807 **end for**

1811 **G.2 TD3: TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT**
18121813 **Algorithm 3** TD3 for continuous action spaces
1814

1815 Input exploration noise σ_{TD3} , target policy noise $\tilde{\sigma}_{\text{TD3}}$, target noise clipping c
 1816 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2, \bar{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta}$, replay buffer \mathcal{B}
 1817 Obtain initial state S_0
 1818 **for** $t = 1$ to T **do**
 1819 Take action $A_t = \pi_{\boldsymbol{\theta}}(S_t) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_{\text{TD3}})$, and observe R_{t+1}, S_{t+1}
 1820 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}
 1821 Sample a mini-batch B from buffer \mathcal{B}
 1822 Sample $A' = \pi_{\bar{\boldsymbol{\theta}}}(S') + \epsilon$, $\epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}_{\text{TD3}}), -c, c)$, for each transition $\langle S, A, S', R \rangle$ in B
 1823 Update critics on B :
 1824
$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{j \in \{1, 2\}} Q_{\bar{\mathbf{w}}_j}(S', A') - Q_{\mathbf{w}_i}(S, A) \right) \nabla Q_{\mathbf{w}_i}(S, A)$$

 1825
 1826 **if** $t \equiv 0 \pmod{N_d}$ **then**
 1827 Update policy on B :
 1828
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(S)^\top \nabla_{\tilde{A}} Q_{\mathbf{w}_1}(S, \tilde{A})|_{\tilde{A}=\pi_{\boldsymbol{\theta}}(S)}$$

 1829
 1830 Update target network weights:
 1831
$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i, \quad \bar{\boldsymbol{\theta}} \leftarrow \tau \boldsymbol{\theta} + (1 - \tau) \bar{\boldsymbol{\theta}}$$

 1832
 1833 **end if**
 1834 **end for**

1836 G.3 RP-AC: ACTOR-CRITIC WITH THE REPARAMETERIZATION (RP) ESTIMATOR
1837

1838

1839 **Algorithm 4** RP-AC for continuous action spaces1840 Input reparameterization function $g_{\theta} : \mathcal{S} \times \mathbb{R} \rightarrow \mathcal{A}$ (for Gaussian policies, see Appendix D.1)1841 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \theta, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} 1842 Obtain initial state S_0 1843 **for** $t = 1$ to T **do**1844 Take action $A_t = g_{\theta}(\epsilon; S_t)$, $\epsilon \sim \mathcal{N}(0, 1)$, and observe R_{t+1}, S_{t+1} 1845 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1846 Sample a mini-batch B from buffer \mathcal{B} 1847 Sample $A' = g_{\theta}(\epsilon; S')$, $\epsilon \sim \mathcal{N}(0, 1)$, for each transition $\langle S, A, S', R \rangle$ in B 1848 Update critics on B :

1849
$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t (R + \gamma \min_{j \in \{1, 2\}} Q_{\bar{\mathbf{w}}_j}(S', A') - Q_{\mathbf{w}_i}(S, A)) \nabla Q_{\mathbf{w}_i}(S, A)$$

1850

1851 **if** $t \equiv 0 \pmod{N_d}$ **then**1852 Sample $\epsilon \sim \mathcal{N}(0, 1)$ for each transition $\langle S, A, S', R \rangle$ in B 1853 Update policy on B :

1854

1855
$$\theta \leftarrow \theta - \alpha_t \nabla_{\theta} g_{\theta}(\epsilon; S)^{\top} \nabla_{\tilde{A}} Q_{\mathbf{w}_1}(S, \tilde{A})|_{\tilde{A}=g_{\theta}(\epsilon; S)}$$

1856

1857 Update target network weights:

1858

1859
$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$$

1860 **end if**1861 **end for**

1862

1863

1864 G.4 ST-AC: ACTOR-CRITIC WITH THE STRAIGHT-THROUGH (ST) ESTIMATOR
1865

1866

1867 **Algorithm 5** ST-AC for discrete action spaces1868 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \theta, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} 1869 Obtain initial state S_0 1870 **for** $t = 1$ to T **do**1871 Take action $A_t \sim \pi_{\theta}(\cdot | S_t)$, and observe R_{t+1}, S_{t+1} 1872 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1873 Sample a mini-batch B from buffer \mathcal{B} 1874 Sample $A' \sim \pi_{\theta}(\cdot | S')$ for each transition $\langle S, A, S', R \rangle$ in B 1875 Update critics on B :

1876

1877
$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t (R + \gamma \min_{j \in \{1, 2\}} Q_{\bar{\mathbf{w}}_j}(S', A') - Q_{\mathbf{w}_i}(S, A)) \nabla Q_{\mathbf{w}_i}(S, A)$$

1878

1879

if $t \equiv 0 \pmod{N_d}$ **then**1880 Sample $\tilde{A} \sim \pi_{\theta}(\cdot | S)$, for each transition $\langle S, A, S', R \rangle$ in B 1881 Use the straight-through trick to compute $\tilde{A}_{\theta} = \text{one_hot}(\tilde{A}) + \pi_{\theta}(\cdot | S) - \pi_{\phi}(\cdot | S)|_{\phi=\theta}$ 1882 Update policy on B :

1883

1884
$$\theta \leftarrow \theta - \alpha_t \nabla_{\theta} \pi_{\theta}(\cdot | S)^{\top} \nabla_{\tilde{A}} Q_{\mathbf{w}_1}(S, \tilde{A})|_{\tilde{A}=\tilde{A}_{\theta}}$$

1885

1886

Update target network weights:

1887

1888
$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$$

1889

end if**end for**

1890 G.5 LR-AC: ACTOR-CRITIC WITH THE LIKELIHOOD-RATIO (LR) ESTIMATOR
1891

1892

1893 **Algorithm 6** LR-AC for discrete action spaces
1894

1895 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \mathbf{v}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B}
 1896 Obtain initial state S_0
for $t = 1$ to T **do**
 1897 Take action $A_t \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)$, and observe R_{t+1}, S_{t+1}
 1898 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}
 1899 Sample a mini-batch B from buffer \mathcal{B}
 1900 Sample $\tilde{A} \sim \pi_{\boldsymbol{\theta}}(\cdot|S)$ and $A' \sim \pi_{\boldsymbol{\theta}}(\cdot|S')$ for each transition $\langle S, A, S', R \rangle$ in B
 1901 Update critics on B :
 1902 $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t (R + \gamma \min_{j \in \{1,2\}} Q_{\mathbf{w}_j}(S', A') - Q_{\mathbf{w}_i}(S, A)) \nabla Q_{\mathbf{w}_i}(S, A)$
 1903 $\mathbf{v} \leftarrow \mathbf{v} + \alpha_t (Q_{\mathbf{w}_1}(S, \tilde{A}) - V_{\mathbf{v}}(S)) \nabla V_{\mathbf{v}}(S)$
 1904
 1905
 1906 **if** $t \equiv 0 \pmod{N_d}$ **then**
 1907 Sample $\tilde{A} \sim \pi_{\boldsymbol{\theta}}(\cdot|S)$, for each transition $\langle S, A, S', R \rangle$ in B
 1908 Update policy on B :
 1909 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\tilde{A}|S) (Q_{\mathbf{w}_1}(S, \tilde{A}) - V_{\mathbf{v}}(S))$
 1910
 1911
 1912 Update target network weights:
 1913 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$
 1914
 1915
 1916 **end if**
 1917 **end for**

1918

1919 G.6 EAC: ACTOR-CRITIC WITH THE EXPECTED POLICY GRADIENT ESTIMATOR
1920

1921

1922 **Algorithm 7** EAC for discrete action spaces
1923

1924 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \mathbf{v}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B}
 1925 Obtain initial state S_0
for $t = 1$ to T **do**
 1926 Take action $A_t \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)$, and observe R_{t+1}, S_{t+1}
 1927 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}
 1928 Sample a mini-batch B from buffer \mathcal{B}
 1929 Sample $\tilde{A} \sim \pi_{\boldsymbol{\theta}}(\cdot|S)$ and $A' \sim \pi_{\boldsymbol{\theta}}(\cdot|S')$ for each transition $\langle S, A, S', R \rangle$ in B
 1930 Update critics on B :
 1931 $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t (R + \gamma \min_{j \in \{1,2\}} Q_{\bar{\mathbf{w}}_j}(S', A') - Q_{\mathbf{w}_i}(S, A)) \nabla Q_{\mathbf{w}_i}(S, A)$
 1932
 1933
 1934 **if** $t \equiv 0 \pmod{N_d}$ **then**
 1935 Update policy on B :
 1936 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \sum_{a \in \mathcal{A}} \pi_{\boldsymbol{\theta}}(a|S) Q_{\mathbf{w}_1}(S, a)$
 1937
 1938
 1939 Update target network weights:
 1940 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$
 1941
 1942
 1943 **end if**
end for

1944
1945

1946 Large language models (LLMs) were employed in a strictly auxiliary capacity during the preparation of this paper. Their use was limited to two areas: (1) assisting with writing refinement by improving readability, grammar, and conciseness, without contributing to the technical content or conceptual development; and (2) supporting workflow tasks such as drafting or adjusting scripts for data processing and figure generation, with all outputs carefully reviewed and corrected by the authors. LLMs were not used for generating research ideas, conducting literature searches, or producing original technical material. Their involvement was confined to polishing communication and light implementation support.

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

H USE OF LARGE LANGUAGE MODELS