
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTRIBUTIONS AS ACTIONS: A UNIFIED FRAME-
WORK FOR DIVERSE ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel reinforcement learning (RL) framework that treats param-
eterized action distributions as actions, redefining the boundary between agent
and environment. This reparameterization makes the new action space contin-
uous, regardless of the original action type (discrete, continuous, hybrid, etc.).
Under this new parameterization, we develop a generalized deterministic policy
gradient estimator, Distributions-as-Actions Policy Gradient (DA-PG), which has
lower variance than the gradient in the original action space. Although learning
the critic over distribution parameters poses new challenges, we introduce inter-
polated critic learning (ICL), a simple yet effective strategy to enhance learning,
supported by insights from bandit settings. Building on TD3, a strong baseline for
continuous control, we propose a practical actor-critic algorithm, Distributions-
as-Actions Actor-Critic (DA-AC). Empirically, DA-AC achieves competitive per-
formance in various settings across discrete, continuous, and hybrid control.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-
based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants
like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility
of enumerating and comparing action values. In contrast, policy-based methods are typically used
for continuous actions, though they can be used for both discrete and continuous action spaces
(Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999),
with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be ap-
plied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can
alternatively compute gradients via the action-value function (the critic), leveraging its differentia-
bility with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms
(Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess
et al., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates
by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the
structure of the action space. In particular, different estimators and architectures are often required
for discrete versus continuous actions, making it difficult to design unified algorithms that generalize
across domains. Although the LR estimator is always applicable, it often requires different critic
architectures for different action spaces and carefully designed baselines to manage high variance,
especially in continuous or high-dimensional action spaces.

In this paper, we introduce the distributions-as-actions framework, an alternative to the classical
RL formulation that treats the parameters of parameterized distributions as actions. For a Gaussian
policy, for example, the distribution parameters are the mean and variance, and for a softmax policy,
the distribution parameters are the probability values. The RL agent outputs these distribution pa-
rameters to the environment, and the sampling of the action is now part of the stochastic transition in
the environment. Distribution parameters are typically continuous, even if the actions are discrete,
hybrid or structured. By shifting this agent-environment boundary, therefore, we can develop one
continuous-action algorithm for a diverse class of action spaces.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To develop algorithms under the new framework, we first propose the Distributions-as-Actions Pol-
icy Gradient (DA-PG) estimator, and prove it has lower variance than the corresponding update in
the original action space. This reduction in variance can increase the bias, because the critic can be
harder to learn. We develop an augmentation approach, called interpolated critic learning (ICL), to
improve this critic learning. We then introduce a deep RL algorithm based on TD3 (Fujimoto et al.,
2018), called Distributions-as-Actions Actor-Critic (DA-AC), that incorporates the DA-PG estima-
tor and ICL. We evaluate DA-AC empirically to assess the viability of this new framework and the
ability to use one algorithm for diverse action spaces. DA-AC achieves competitive and sometimes
better performance compared to baselines in a variety of settings across continuous, discrete, and
hybrid control. We also provide targeted experiments to understand the bias-variance trade-off in
DA-AC, and show the utility of ICL for improving critic learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) ⟨S,A, p, d0, r, γ⟩, where S is the state space, A
is the action space, p : S × A → ∆(S) is the transition function, d0 ∈ ∆(S) is the initial state
distribution, r : S × A → ∆(R) is the reward function, and γ is the discount factor. Here, ∆(X)
denotes the set of distributions over a set X . In this paper, we consider A to be either discrete or
continuous.1 We use π(a|s) to represent the probability of taking action a ∈ A under state s ∈ S for
policy π. The goal of the agent is to find a policy π under which the below objective is maximized:

J(π)
.
=

∞∑
t=0

ES0∼d0,At∼π(·|St),St+1∼p(·|St,At)
[
γtRt+1

]
=

∞∑
t=0

Eπ
[
γtRt+1

]
, (1)

where the second formula uses simplified notation that we follow in the rest of the paper. The
(state-)value function and action-value function of the policy are defined as follows:

vπ(s)
.
=

∞∑
t=0

Eπ
[
γtRt+1|S0 = s

]
, qπ(s, a)

.
= Eπ [R1 + γvπ(S1)|S0 = s,A0 = a] . (2)

In this paper, we consider actor-critic methods that learns a parameterized policy, denoted by πθ,
and a parameterized action-value function, denoted by Qw. Given a transition ⟨St, At, Rt+1, St+1⟩,
Qw is usually learned using temporal-difference (TD) learning:

w← w + α (Rt+1 + γQw(St+1, At+1)−Qw(St, At))∇Qw(St, At), (3)
where α is the step size, and At+1 is sampled from the current policy: At+1 ∼ πθ(·|St+1).

The policy is typically optimized using a surrogate of Equation (1):

Ĵ(πθ) = ESt∼d,At∼πθ(·|St) [Qw(St, At)] , (4)
where d ∈ ∆(S) is some distribution over states. Below we outline three typical estimators for the
gradient of this objective.

The likelihood-ratio (LR) policy gradient estimator uses ∇̂θĴ(πθ;St, A) =
∇θ log πθ(A|St)Qw(St, A), where A ∼ πθ(·|St). Since the LR estimator suffers from high
variance, it is often used with the value function as a baseline:

∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)), (5)

where V (St) could either be parameterized and learned or be calculated analytically from Qw when
the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action
space is continuous and the policy is deterministic (πθ : S → A), and uses the gradient of Qw with
respect to the action:

∇̂DPG
θ Ĵ(πθ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St). (6)

The reparameterization (RP) policy gradient estimator (Heess et al., 2015; Haarnoja et al., 2018)
can be used if the policy can be reparameterized (i.e., A = gθ(ϵ;St), ϵ ∼ p(·), where p(·) is a prior
distribution):

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St). (7)
1Note that the framework and methods proposed in this paper also apply to other complex types of action

spaces. We focus on discrete and continuous action spaces in our presentation for simplicity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

St

Value function,
model, …

 At
∼ f(⋅ | π̄θ(s))

Agent Env

π̄θ π̄θ(St) f

Rt

p St+1

r Rt+1

AtAt−1
Update

St  At
∼ f(⋅ | π̄θ(s))

Agent Env

π̄θ π̄θ(St) f
πθ

Rt

p St+1

r Rt+1

Update

Value function,
model, …

Distributions-as-Actions FrameworkClassical RL Framework

In this view, the sampling function is treated as part of the environment.fThe agent samples action via a sampling function , given distribution parameters .At f π̄θ(St)

Figure 1: Comparison between the classical reinforcement learning (RL) framework and the
proposed distributions-as-actions framework. In the classical RL setting (col 1), the agent’s
policy πθ consists of π̄θ, which produces the distribution parameters, and a sampling function f
that returns an action given these parameters. In the distributions-as-actions framework (col 2), the
sampling function f is considered part of the environment, and the agent outputs the distribution
parameters π̄θ(St) as its action. This shift redefines the interface between agent and environment,
potentially simplifying learning and enabling new algorithmic perspectives.

3 DISTRIBUTIONS-AS-ACTIONS FRAMEWORK

The action space is typically defined by the environment designer based on domain-specific knowl-
edge. Depending on the problem, it may be more natural to model the action space as either discrete
or continuous. In both cases, the agent’s policy at a given state s can often be interpreted as first
producing distribution parameters π̄θ(s), followed by sampling an action A ∼ f(·|π̄θ(s)) from the
resulting distribution. With a slight abuse of notation, we denote π̄θ : S → U as the part of the
policy πθ that maps states to distribution parameters, and by f(·|u) the distribution over actions
defined by parameters u ∈ U .

In the classical RL framework, both π̄θ and f are considered part of the agent, as in the left of
Figure 1. In this work, we introduce the distributions-as-actions framework: the agent outputs
distribution parameters π̄θ(s) as its action, while the sampling process A ∼ f(·|π̄θ(s)) is treated as
part of the environment, depicted on the right in Figure 1.

This reformulation leads to a new MDP in which the action space is the parameter space U . The
reward and transition functions in this MDP become:

p̄(s′|s, u) .
=

∑
a∈A

f(a|u)p(s′|s, a), or p̄(s′|s, u) .
=

∫
A
f(a|u)p(s′|s, a) da, (8)

r̄(s, u)
.
=

∑
a∈A

f(a|u)r(s, a), or r̄(s, u)
.
=

∫
A
f(a|u)r(s, a) da, (9)

depending on whether the original action space A is discrete or continuous, respectively.

This gives rise to the distributions-as-actions MDP (DA-MDP) ⟨S,U , p̄, d0, r̄, γ⟩. We can define the
corresponding value functions, and show they are connected to their classical counterparts.

v̄π̄(s)
.
=

∞∑
t=0

Eπ̄
[
γtRt+1|S0 = s

]
, q̄π̄(s, u)

.
= Eπ̄ [R1 + γv̄π̄(S1)|S0 = s, U0 = u] . (10)

Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.
Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix A.

The main advantage of this framework is that it transforms the original action space into a continu-
ous parameter space U , regardless of whether the underlying action space A is discrete, continuous,
or structured. This unification allows us to develop generic RL algorithms that operate over a con-
tinuous transformed action space, enabling a single framework to accommodate a wide variety of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we
can apply DPG methods even in discrete action domains, where they were not previously applicable.
We explore this direction in detail in Sections 4 and 5.

4 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ALGORITHMS

In this section, we introduce the Distributions-as-Actions Policy Gradient (DA-PG), a generalization
of DPG for the distributions-as-actions framework. We show this estimator has lower variance, and
then present a practical DA-PG algorithm for deep RL based on TD3.

4.1 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ESTIMATOR

DA-PG is the application of DPG to the distributions-as-actions MDP. We need to slightly modify
the assumptions to reason about both the distribution parameter space and the original action space.
Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.
Theorem 4.2 (Distributions-as-actions policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed as

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.

The resulting gradient estimator of the surrogate objective Ĵ(π̄θ) = ESt∼d
[
Q̄w(St, π̄θ(St))

]
is

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St), (11)

where Q̄w is a learned parameterized critic. Note that the DA-PG estimator shares the same math-
ematical form as the DPG estimator (Equation (6)). However, the roles of the components differ:
In DA-PG, the policy π̄θ outputs distribution parameters rather than a single action, and the critic
estimates the expected return over the entire action distribution, rather than for a specific action.

In fact, DA-PG is a strict generalization of DPG. When the policy is restricted to be deterministic, the
distribution parameters effectively become the action, and the distributions-as-actions critic reduces
to the classical action-value critic.
Proposition 4.3. If U = A and f(·|u) is the Dirac delta distribution centered at u, then π̄θ and Q̄w

are equivalent to πθ and Qw, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇̂DPG

θ Ĵ(πθ;St).

Moreover, DPG’s theoretical analysis can also be extended to the distributions-as-actions frame-
work. In Appendix A, we generalize the convergence analysis of DPG to DA-PG, establishing a
theoretical guarantee that holds for MDPs with arbitrary action space types.

4.2 COMPARISON TO OTHER ESTIMATORS FOR STOCHASTIC POLICIES

We now compare the proposed DA-PG estimator with classical stochastic policy gradient methods,
highlighting its variance and bias characteristics across action spaces.

DA-PG can be seen as the conditional expectation of both the LR (Equation (5)) and RP (Equa-
tion (7)) estimators. This leads to strictly lower variance.

Proposition 4.4. Assume Qw = qπθ
in ∇̂LR

θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ
in ∇̂DA-PG

θ Ĵ(π̄θ;St).
Then, ∇̂DA-PG

θ Ĵ(π̄θ;St) = EA∼πθ(·|St)
[
∇̂LR

θ Ĵ(πθ;St, A)
]
. Further, if the expectation of the action-

conditioned variance is greater than zero, then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)
.

Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DA-PG
θ Ĵ(π̄θ;St). Then, ∇̂DA-PG

θ Ĵ(π̄θ;St) = Eϵ∼p
[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
. Further, if the expectation of

the noise-induced variance is greater than zero, then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a1 a2 a3
Action

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Reward for Each Action

p1 = 1 p2 = 1

p3 = 1

Expected Reward Contour (Simplex)
Optimal Policy

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Ex
pe

ct
ed

 R
ew

ar
d

p1 = 1 p2 = 1

p3 = 1

Learned Critic (Standard Update)
PE Policy

0.526

0.532

0.538

0.544

0.550

0.556

0.562

Le
ar

ne
d

Va
lu

e

p1 = 1 p2 = 1

p3 = 1

Learned Critic (ICL Update)
PE Policy

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

Le
ar

ne
d

Va
lu

e

2 1 0 1 2
Action

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Reward Function

2 1 0 1 2
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g

Expected Reward Contour
Optimal Policies

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ex
pe

ct
ed

 R
ew

ar
d

2 1 0 1 2
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g

Learned Critic (Standard Update)
PE Policy

0.600
0.608
0.616
0.624
0.632
0.640
0.648
0.656
0.664

Le
ar

ne
d

Va
lu

e

2 1 0 1 2
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
g

Learned Critic (ICL Update)
PE Policy

0.32
0.16

0.00
0.16
0.32
0.48
0.64
0.80
0.96
1.12

Le
ar

ne
d

Va
lu

e

Figure 2: Visualization of the reward function (col 1), expected rewards of distribution parame-
ters (col 2), and learned critics using the standard update in Equation (12) (col 3) and the interpo-
lated critic learning (ICL) update in Equation (14) (col 4) in policy evaluation (PE). Top: K-Armed
Bandit. Bottom: Bimodal Continuous Bandit. With access only to samples from the evaluation
policy, the standard update estimates values accurately at the target policy but fails to generalize. In
contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

In discrete action spaces, the LR estimator typically requires carefully designed baselines to manage
high variance, especially as dimensionality increases. While biased alternatives like the straight-
through (ST) estimator (Bengio et al., 2013) or continuous relaxations (Jang et al., 2016; Maddison
et al., 2016) exist, they sacrifice unbiasedness even when using a perfect critic. DA-PG avoids this
trade-off, providing the first unbiased RP-style estimator with low variance in the discrete setting.

In continuous action spaces, DPG offers zero variance but assumes fixed stochasticity (i.e., no learn-
able exploration). RP estimators allow for learning the stochastic parameters but exhibit higher
variance. DA-PG offers the best of both worlds: it permits learning all policy parameters including
those for stochasticity while retaining the zero-variance property per state.

Another direction to reduce variance is expected policy gradient (EPG; Ciosek & Whiteson, 2018;
Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients
conditioned on a state: ∇̂EPG

θ Ĵ(πθ;St) = ∇θEAt∼πθ(·|St) [Qw(St, At)]. However, this estimator
is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases
within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson,
2020). In contrast, our estimator ∇̂DA-PG

θ Ĵ(π̄θ;St) generalizes to a wider range of settings, including
high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DA-PG may suffer from increased bias due to the increased complex-
ity of the critic’s input space. For discrete actions, the critic Q̄w inputs a vector of probabilities
corresponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic Q̄w

inputs both the mean and standard deviation. This increased input dimensionality makes it harder
to approximate the true value function, and if the critic is inaccurate, the overall benefit of lower
gradient variance may be diminished—an effect we examine empirically in Section 5.5.

4.3 INTERPOLATED CRITIC LEARNING

In this section, we propose a method to improve learning the distributions-as-actions critic Q̄w.
Similar to Equation (3), the standard TD update for Q̄w is

w← w + α
(
Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ut)

)
∇Q̄w(St, Ut). (12)

This update, however, does not make use of the sampled action At, and its relationship to the out-
come state and reward. One direction to leverage this knowledge is to recognize that the transition
can also be used to update the value at alternative parameters Ût. This is possible because the action
At could have been sampled from distributions parameterized by many other Ût. As a result, the
value at Ût can be learned off-policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

What, then, should we choose for Ût? To answer this, we ask: what properties should the critic have
to support effective policy optimization in parameter space? Our answer is that the critic should
provide informative gradient directions that guide the policy toward optimality. For MDPs, there
always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence
of some UA∗

t
∈ U , a deterministic distribution corresponding to the optimal action A∗

t for state St.
Ideally, the critic should exhibit curvature that points toward such optimal parameters U∗

t .

One candidate for Ût is UAt , the deterministic distribution parameters associated with the sampled
action At. However, merely learning accurate values at UAt does not ensure that the critic has
smooth curvature from Ut toward high-value points. To encourage the critic to generalize better and
provide smoother gradients, we propose using a linearly interpolated point between Ut and UAt :

Ût = ωtUt + (1− ωt)UAt , ωt ∼ Uniform[0, 1]. (13)

The critic is then trained to predict the value at Ût using the following update:

w← w + α
(
Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ût)

)
∇Q̄w(St, Ût). (14)

We refer to this approach as interpolated critic learning (ICL).

To further provide intuition on ICL, we conduct a policy evaluation experiment in bandit problems,
shown in Figure 2 (column 1). Figure 2 (column 3) and (column 4) show the learned critics using
the standard update in Equation (12) and the ICL update in Equation (14), respectively. The critic
learned by ICL has more informative curvature. In the continuous action case, the learned critic is
sufficient to identify the optimal distribution parameters. More details can be found in Appendix B.2.

4.4 DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Since the DA-PG estimator is derived from DPG, we base our practical algorithm on TD3 (Fujimoto
et al., 2018), a strong DPG-based off-policy actor-critic algorithm for continuous control. We re-
place the classical actor and critic with their distributions-as-actions counterparts and use the DA-PG
gradient estimator (Equation (11)) and the ICL critic loss (Equation (14)) to update them, respec-
tively. We omit the actor target network, as it does not improve performance (see Appendix B.4).
The pseudocode for the algorithm, which we call Distributions-as-Actions Actor-Critic (DA-AC), is
in Appendix E.

5 EXPERIMENTS

In this section, we conduct experiments to investigate DA-AC’s empirical performance in continuous
(Section 5.1), discrete (Sections 5.2 and 5.3), and hybrid (Section 5.4) control settings. In addition,
we examine the effectiveness of the proposed interpolated critic learning in Section 5.5. Unless
otherwise noted, each environment is run with 10 seeds, and error bars or shaded regions indicate
95% bootstrap confidence intervals.

5.1 CONTINUOUS CONTROL

We use OpenAI Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020) for continuous control. From MuJoCo, we use the most commonly
used 5 environments; from DMC, we use the same 15 environments as D’Oro et al. (2023). Details
about these environments are in Appendix B.4. We run each environment for 1M steps.

Algorithms We use TD3 (Fujimoto et al., 2018) as our primary baseline, as DA-AC is based on it.
We also include an off-policy actor-critic baseline that uses the reparameterization (RP) estimator.
This RP-AC algorithm closely resembles DA-AC but learns in the original action space and updates
the policy using the RP estimator. For consistency, DA-AC and RP-AC use the default hyperparam-
eters of TD3 and a Gaussian policy parameterization. Implementations details and pseudocode can
be found in Appendices B.4 and E, respectively. For reference, we also evaluate the performance of
SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ant-
v4

Half
Che

eta
h-v

4

fis
h-s

wim

sw
im

mer-
sw

im
mer6

Hum
an

oid
-v4

ac
rob

ot-
sw

ing
up

Walk
er2

d-v
4

ch
ee

tah
-ru

n

rea
ch

er-
ha

rd

Hop
pe

r-v
4

ho
pp

er-
ho

p

hu
man

oid
-ru

n

walk
er-

run

fin
ge

r-tu
rn_

ha
rd

pe
nd

ulu
m-sw

ing
up

qu
ad

rup
ed

-w
alk

qu
ad

rup
ed

-ru
n

hu
man

oid
-w

alk

ho
pp

er-
sta

nd

hu
man

oid
-st

an
d

0.1

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 R
et

ur
n

D
iff

er
en

ce

Relative Final Performance: DA-AC vs TD3

DA-AC better
TD3 better

DA-AC RP-AC TD3 SAC PPO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

MuJoCo (5 tasks)

DA-AC RP-AC TD3 SAC PPO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

DMC (15 tasks)

Figure 3: Relative final performance of DA-AC versus TD3 across 20 individual continuous con-
trol tasks (col 1), and average normalized returns of DA-AC and baselines on MuJoCo (col 2)
and DeepMind Control (col 3) tasks. In individual task comparisons (col 1), results are averaged
over 10 seeds per task. For average performance plots (cols 2-3), values are averaged over 10 seeds
and tasks. Error bars show 95% bootstrap confidence intervals (CIs).

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

walker-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

quadruped-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

100

200

300

400

Av
er

ag
e

R
et

ur
n

humanoid-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

25

50

75

100

Av
er

ag
e

R
et

ur
n

humanoid-run

DA-AC RP-AC TD3 SAC PPO

Figure 4: Learning curves in six DeepMind Control tasks with high-dimensional action spaces.
Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Results Figure 3 shows per-environment performance for DA-AC and TD3 and the aggregated
results across environments for all algorithms. From Figure 3 (column 1), we can see that DA-
AC achieves better performance in more environments compared to TD3. From Figure 3 (columns
2–3), we can see that DA-AC achieves better overall performance, outperforming most baselines
significantly in the DMC Suite, particularly in high-dimensional environments (see Figure 4).

5.2 DISCRETE CONTROL

Following Ceron & Castro (2021), we use 4 Gym classic control (Brockman et al., 2016) and 5
MinAtar environments (Young & Tian, 2019) for discrete control. We run each environment for
500k (classic control) or 5M (MinAtar) steps.

Algorithms We include off-policy actor-critic baselines that resemble DA-AC. These baselines
learn in the original action space and update the policy with different gradient estimators, including
the likelihood-ratio (LR-AC) and expected (EAC) policy gradient estimators. Here, LR-AC uses a
state-value baseline analytically computed from action values. Although not common in prior work,
we also include a variant that uses the straight-through (ST) estimator (Bengio et al., 2013), denoted
as ST-AC. This baseline is the discrete counterpart of RP-AC, serving as a performance reference for
alternative RP-based methods. For comparison, we also evaluate the performance of Discrete SAC
(DSAC; Christodoulou, 2019), DQN (Mnih et al., 2015), and PPO (Schulman et al., 2017). The
hyperparameters for DA-AC and X-AC baselines are adopted from the TD3 defaults and adjusted to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DA-AC ST-AC LR-AC EAC DSAC DQN PPO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

Gym (4 tasks)

DA-AC ST-AC LR-AC EAC DSAC DQN PPO
0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

MinAtar (5 tasks)

DA-AC ST-AC LR-AC PPO
0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

Discretized MuJoCo (5 tasks)

DA-AC ST-AC LR-AC PPO
0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

Discretized DMC (15 tasks)

Figure 5: Average normalized returns of DA-AC and baselines on discrete control benchmarks,
including classic control (col 1), MinAtar (col 2), discretized MuJoCo (col 3), and discretized Deep-
Mind Control (col 4) tasks.

the corresponding benchmark based on those of DQN. More details and pseudocode can be found
in Appendices B.5 and E, respectively.

Results From Figure 5 (columns 1–2), we can see that DA-AC is among the best-performing
algorithms in both classic control and MinAtar, achieving comparable performance to DQN.

5.3 HIGH-DIMENSIONAL DISCRETE CONTROL

For this setting, we use the same 20 environment from the Section 5.1 but with a discretized action
space. Specifically, we discretize each action dimension into 7 bins with uniform spacing. For
example, the original action space in Humanoid-v4 is [−0.4, 0.4]17, which is discretized to 0.4 ×
{−1,− 2

3 ,−
1
3 , 0,

1
3 ,

2
3 , 1}

17. We run each environment for 1M steps.

Algorithms We use ST-AC, LR-AC, and PPO from the previous section as baselines. EAC,
DSAC, and DQN are excluded, as they are not feasible in environments with high-dimensional
actions. Note that DSAC relies on the unfeasible expected updates similar to EAC; without them,
it fails to learn. LR-AC learns an additional state-value function as a baseline, since analytically
deriving it from the action-value function is prohibitive in this high-dimensional setting. We use the
same hyperparameters as those in Section 5.1. More details can be found in Appendix B.6.

Results As shown in Figure 5 (columns 3–4), DA-AC’s average performance is higher than all
baselines in both benchmarks. Note that the performance of DA-AC and PPO is slightly worse
compared to the original continuous action setting (Figure 3).

5.4 HYBRID CONTROL

DA-AC PATD3 PDQN HHQN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

PAMDPs (7 tasks)

Figure 6: Average normalized
performance of DA-AC and
baselines on hybrid control tasks.

In addition to continuous and discrete control settings, we also
evaluate DA-AC’s performance in parameterized action MDPs
(PAMDPs), a hybrid control setting with parameterized actions
(see Masson et al. (2016) for detailed discussion). We use 7
PAMDP environments from Li et al. (2021) and follow their
experiment protocol. See Appendix B.7 for more details.

Algorithms We use PATD3 as our primary baseline, a DPG-
based baseline specifically designed for parameterized action
(PA) spaces. PATD3 builds on PADDPG (Hausknecht & Stone,
2015) and incorporates clipped double Q-learning from TD3,
making it a suitable and directly comparable baseline for DA-
AC, as both methods build on TD3. In DA-AC, the distribution
parameters include both the probability vector for the discrete actions and mean/log-std vectors for
the continuous actions. We keep most hyperparameters the same as TD3’s default unless otherwise
adjusted to align with PATD3. In addition, we also include PDQN (Xiong et al., 2018) and HHQN
(Fu et al., 2019) as additional baselines for reference. See Appendix B.7 for more details.

Results Figure 6 shows the average normalized performance of DA-AC and baselines. The learn-
ing curves in each individual environment can be found in Figure 16. We can see that DA-AC also
often achieves better performance than the baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

p1 = 1 p2 = 1

p3 = 1
Shared Step 0

Current Policy

p1 = 1 p2 = 1

p3 = 1
DA-AC w/o ICL Step 1000

Current Policy

p1 = 1 p2 = 1

p3 = 1
DA-AC Step 1000

Current Policy

p1 = 1 p2 = 1

p3 = 1
DA-AC w/o ICL Step 2000

Current Policy

p1 = 1 p2 = 1

p3 = 1
DA-AC Step 2000

Current Policy

0.00

0.25

0.50

0.75

1.00

Le
ar

ne
d

Va
lu

e

2 1 0 1 23

2

1

0

1

lo
g

Shared Step 0
Current Policy

2 1 0 1 23

2

1

0

1

lo
g

DA-AC w/o ICL Step 1000
Current Policy

2 1 0 1 23

2

1

0

1

lo
g

DA-AC Step 1000
Current Policy

2 1 0 1 23

2

1

0

1

lo
g

DA-AC w/o ICL Step 2000
Current Policy

2 1 0 1 23

2

1

0

1

lo
g

DA-AC Step 2000
Current Policy

0.5

0.0

0.5

1.0

Le
ar

ne
d

Va
lu

e

Figure 8: Initial critic (col 1) and learned critics and policies at different training stages using
DA-AC w/o ICL (cols 2 and 4) and DA-AC (cols 3 and 5). Top: K-Armed Bandit. Bottom: Bi-
modal Continuous Bandit. DA-AC produces more accurate value estimates at deterministic distribu-
tion parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous
case—and offers stronger gradient signals for policy optimization.

5.5 EFFECTIVENESS OF INTERPOLATED CRITIC LEARNING

MuJoCo DMC D' MuJoCo D' DMC Gym MinAtar PAMDPs
0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

Performance Comparison Across Settings

DA-AC
DA-AC w/o ICL

Figure 7: Comparison between DA-AC and
DA-AC w/o ICL in all settings.

We compare DA-AC and DA-AC w/o ICL, an
ablated version that uses the standard critic up-
date (Equation (12)). From Figure 7, we can see
that DA-AC w/o ICL is generally worse than
DA-AC for all settings.

To provide further insights into why we see this
difference, we move to a bandit setting where
visualization and analysis are intuitive. We use
the same bandit environments from Figure 2,
and run each algorithm for 2000 steps and 50
seeds. See Appendix B.3 for hyperparameters
and other details.

Figure 9 in the appendix shows the superiority
of DA-AC over DA-AC w/o ICL, as well as the bias–variance trade-off incurred by different gradient
estimators. To assess the impact of ICL on critic quality, we visualize the learned critics from
a representative training run of DA-AC and DA-AC w/o ICL in Figure 8. In both discrete and
continuous action settings, DA-AC yields a significantly improved critic landscape early in training.

6 CONCLUSIONS

We introduced the distributions-as-actions framework, redefining the agent-environment boundary
to treat distribution parameters as actions. We showed that the policy gradient update has theoreti-
cally lower variance, and developed a practical deep RL algorithm called Distributions-as-Actions
Actor-Critic (DA-AC) based on this estimator. We also introduced an improved critic learning up-
date, ICL, tailored to this new setting. We demonstrated that DA-AC achieves competitive perfor-
mance in diverse settings across continuous, discrete, and hybrid control.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underly-
ing action types. A key next step is to further exploit this reframing for new algorithmic avenues,
including model-based methods, hierarchical control, or novel hybrid approaches. There are also
key open questions around critic learning in this new framework. More advanced strategies for
training the distributions-as-actions critic could also be explored, including off-policy updates at
diverse regions of the parameter space or using a learned action-value function Qw(s, a) to guide
updates of Q̄w′(s, u). This will also open up new questions about convergence properties for these
new variants.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will provide a public code release covering DA-AC implementations
in all control settings. Comprehensive hyperparameter choices and environment configurations are
documented in Appendix B. All reported metrics are based on multiple random seeds, with un-
certainty quantified using 95% bootstrap confidence intervals. The repository will further include
instructions to reproduce our main experimental results.

REFERENCES

Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdel-rahman Mohamed, George Konidaris, and
Michael Littman. Mean actor-critic. arXiv preprint arXiv:1709.00503, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In The Twelfth International Conference on Learning Representations,
2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pp. 1373–1383. PMLR, 2021.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal
of Machine Learning Research, 21(52):1–51, 2020.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning Representations, 2023.

Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep multi-
agent reinforcement learning with discrete-continuous hybrid action spaces. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 2329–2335, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
In International Conference on Learning Representations, 2015.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in Neural Information
Processing Systems, 28, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations, 2016.

Boyan Li, Hongyao Tang, YAN ZHENG, Jianye HAO, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
LI Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. In International Conference on Learning Representations, 2021.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2016.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

A Paszke. PyTorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning. Journal of Machine Learning Research, 25(318):1–63, 2024.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Matthew Kyle Schlegel, Volodymyr Tkachuk, Adam M White, and Martha White. Investigating
action encodings in recurrent neural networks in reinforcement learning. Transactions on Machine
Learning Research, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning, pp.
387–395. PMLR, 2014.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Gautham Vasan, Mohamed Elsayed, Seyed Alireza Azimi, Jiamin He, Fahim Shahriar, Colin
Bellinger, Martha White, and Rupam Mahmood. Deep policy gradient methods without batch
updates, target networks, or replay buffers. Advances in Neural Information Processing Systems,
37:845–891, 2024.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
dient: Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159–2169. PMLR,
2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

Ming Xu, Matias Quiroz, Robert Kohn, and Scott A Sisson. Variance reduction properties of the
reparameterization trick. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 2711–2720. PMLR, 2019.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF DA-PG

We provide the proofs of the theoretical results for the distributions-as-actions framework and
Distributions-as-Actions Policy Gradient (DA-PG) in the main text in Appendices A.1 and A.2.
In addition, we also extend a convergence proof of DPG from Xiong et al. (2022) to DA-PG in
Appendix A.3.

A.1 PROOFS OF THEORETICAL RESULTS IN SECTION 3

Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

Proof. Let π be the policy in the original MDP that first maps s to u = π̄(s) and then samples
A ∼ f(·|u). The state-value function v̄π̄(s) in the distributions-as-actions MDP is defined as:

v̄π̄(s) =

∞∑
k=0

Eπ̄
[
γkr̄(Sk, Uk) | S0 = s

]
,

where Uk = π̄(Sk). From Equation (8), r̄(s, u) = EA∼f(·|u)[r(s,A)]. Also, the transition
p̄(s′|s, u) = EA∼f(·|u)[p(s

′|s,A)]. Consider a trajectory S0, U0, S1, U1, . . . in the distributions-as-
actions MDP (DA-MDP). This corresponds to a trajectory S0, A0, S1, A1, . . . in the original MDP
where Ak ∼ f(·|Uk). The expected reward at time k in the DA-MDP, given Sk and Uk = π̄(Sk),
is r̄(Sk, π̄(Sk)) = EAk∼f(·|π̄(Sk))[r(Sk, Ak)]. The dynamics are also equivalent in expectation:
E[Sk+1|Sk, Uk] = ES′∼p̄(·|Sk,Uk)[S

′] = EAk∼f(·|Uk)[ES′∼p(·|Sk,Ak)[S
′]]. Thus, the sequence of

states and expected rewards generated under π̄ in the DA-MDP is identical in distribution to the
sequence of states and rewards under π in the original MDP. Therefore, v̄π̄(s) = vπ(s).

For the action-value function q̄π̄(s, u):

q̄π̄(s, u) = Eπ̄ [r̄(S0, U0) + γv̄π̄(S1) | S0 = s, U0 = u]

= r̄(s, u) + γES1∼p̄(·|s,u)[v̄π̄(S1)]

= EA∼f(·|u)[r(s,A)] + γEA∼f(·|u)
[
ES1∼p(·|s,A)[vπ(S1)]

]
(using v̄π̄ = vπ)

= EA∼f(·|u)
[
r(s,A) + γES1∼p(·|s,A)[vπ(S1)]

]
= EA∼f(·|u) [Eπ[R1 + γvπ(S1)|S0 = s,A0 = A]]

= EA∼f(·|u)[qπ(s,A)].

The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures
these expectations and value functions are well-defined.

A.2 PROOFS OF THEORETICAL RESULTS IN SECTION 4

Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective function J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed

as
∇θJ(π̄θ) = Es∼dπ̄θ

[
∇θπ̄θ(s)

⊤∇uQ̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.

Proof. This theorem results from applying the deterministic policy gradient (DPG) theorem to the
DA-MDP ⟨S,U , p̄, d0, r̄, γ⟩, where π̄θ : S → U acts as a deterministic policy. The objective
function is J(π̄θ) = ES0∼d0 [v̄π̄θ

(S0)].

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic
policy µθ : S → A, the policy gradient is:

∇θJ(µθ) = Es∼dµθ
[
∇θµθ(s)

⊤∇aqµθ
(s, a)

∣∣
a=µθ(s)

]
.

In our context:

• The policy in the DA-MDP is π̄θ(s).

• The action space is U , and actions are denoted by u.

• The critic q̄π̄θ
(s, u) is the action-value function in this DA-MDP.

• The state distribution dπ̄θ
(s) is the discounted state occupancy measure under policy π̄θ.

Assumptions 3.1 and 4.1 ensure that π̄θ(s) and q̄π̄θ
(s, u) are appropriately differentiable and that

the interchange of expectation and differentiation is valid. Substituting π̄θ for µθ and q̄π̄θ
for qµθ

yields the theorem’s result:

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
.

The notation ∇θπ̄θ(s)
⊤∇uq̄π̄θ

in the theorem statement implies the appropriate vector or matrix
product. If θ ∈ Rk and u ∈ Rm, then ∇θπ̄θ(s) is an m × k Jacobian, ∇uq̄π̄θ

is an m × 1 vector,
and the product (∇θπ̄θ(s))

⊤∇uq̄π̄θ
results in the k × 1 gradient vector for J(π̄θ).

Proposition 4.3. If U = A and f(· | u) is the Dirac delta distribution centered at u, then π̄θ and Q̄w

are equivalent to πθ and Qw, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇̂DPG

θ Ĵ(πθ;St).

Proof. The DA-PG gradient estimator is given by Equation (11):

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St).

Given the conditions:

1. U = A: The distribution-parameter space is the action space.

2. f(·|u) = δ(· − u): Sampling A ∼ f(·|u) yields A = u.

Under these conditions, π̄θ(St) outputs parameters U ∈ U , which are directly actions in A. Thus,
we can write πθ(St) = π̄θ(St), where πθ(St) ∈ A.

Next, consider the DA value function q̄π̄θ
(St, U). From Proposition 3.2, q̄π̄θ

(St, U) =
EA∼f(·|U)[qπθ

(St, A)]. Since f(A|U) = δ(A − U), the expectation becomes qπθ
(St, U). So,

q̄π̄θ
(St, U) = qπθ

(St, U), where U ∈ U = A.

This means the DA critic Q̄w(St, U) is estimating the action-value function qπθ
(St, U). Thus, we

can write Q̄w(St, U) = Qw(St, U), where U ∈ A.

Substituting these equivalences into the DA-PG gradient estimator:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St).

This is precisely the DPG gradient estimator (Equation (6)). Thus, ∇̂DA-PG
θ Ĵ(π̄θ;St) =

∇̂DPG
θ Ĵ(πθ;St).

Proposition 4.4. Assume Qw = qπθ
in ∇̂LR

θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ
in ∇̂DA-PG

θ Ĵ(π̄θ;St). Then,

∇̂DA-PG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.

Further, if the expectation of the action-conditioned variance is greater than zero, then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Proposition 3.2 states q̄π̄θ
(St, U) = EA∼f(·|U)[qπθ

(St, A)]. Given Q̄w = q̄π̄θ
and Qw =

qπθ
, this becomes Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)]. Note that Qw(St, A) and Q̄w(St, U) are

distinct critic functions. The use of w for both signifies that they are learned approximators. In
the context of this proof, we can think of Qw and Q̄w as separate approximators, each utilizing a
corresponding subset of w.

Starting with the DA-PG estimator (assuming continuous A; discrete case is analogous with sums):

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEA∼f(·|U)[Qw(St, A)]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(
∇U

∫
A
f(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(∫

A
∇Uf(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
∫
A
∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θf(A|π̄θ(St))Qw(St, A) dA.

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θf(A|π̄θ(St)) = ∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St).

Using πθ(A|St) = f(A|π̄θ(St)) and the log-derivative trick, we can express the DA-PG estimator
as:

∇̂DA-PG
θ Ĵ(π̄θ;St) =

∫
A
∇θπθ(A|St)Qw(St, A) dA

=

∫
A
∇θ log πθ(A|St)πθ(A|St)Qw(St, A) dA

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)] .

The LR estimator is ∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)). Its expectation is

EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
. The term involving the baseline V (St) vanishes in expectation:

EA∼πθ(·|St) [∇θ log πθ(A|St)V (St)] = V (St)EA∼πθ(·|St) [∇θ log πθ(A|St)]

= V (St)

∫
A
∇θπθ(A|St) dA

= V (St)∇θ

∫
A
πθ(A|St) dA = V (St)∇θ(1) = 0.

Thus, EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)]. This shows

∇̂DA-PG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.

For variance reduction, let X = ∇̂LR
θ Ĵ(πθ;St, A) and Y = ∇̂DA-PG

θ Ĵ(π̄θ;St). We have Y =
E[X|St, π̄θ(St)] (expectation over A). By the law of total variance: V(X) = E[V(X|St, π̄θ(St))]+
V(E[X|St, π̄θ(St)]). This translates to

V
(
∇̂LR

θ Ĵ(πθ;St, A)
)
= ESt

[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)]+ V

(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)] > 0 (i.e., the action-conditioned variance is positive on aver-

age), then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DA-PG
θ Ĵ(π̄θ;St). Then,

∇̂DA-PG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.

Further, if the expectation of the noise-induced variance is greater than zero, then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
.

Proof. For the RP estimator, the action is generated as A = gθ(ϵ;St), where ϵ ∼ p(·). For con-
sistency with DA-PG notation, we can write A = g(ϵ;U), where U = π̄θ(St) ∈ U represents all
relevant learnable distribution parameters. Thus, the distribution f(·|U) of the random variable A is
induced by g(ϵ;U) with ϵ ∼ p(·).
Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value
functions, we have:

Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)] = Eϵ∼p [Qw(St, g(ϵ; π̄θ(St)))] ,

where we use a change of variables to express the expectation in terms of the noise ϵ.

Now, we can express the DA-PG gradient as:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEϵ∼p[Qw(St, g(ϵ;U))]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤Eϵ∼p

[
∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p

[
∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p [∇θQw(St, g(ϵ; π̄θ(St)))] .

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θQw(St, g(ϵ; π̄θ(St))) = ∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St).

On the other hand, the RP gradient is:

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St)

= ∇θg(ϵ; π̄θ(St))
⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St))

= ∇θQw(St, g(ϵ; π̄θ(St))),

where we use the chain rule again in the last equation: ∇θQw(St, g(ϵ; π̄θ(St))) =
∇θg(ϵ; π̄θ(St))

⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St)). Thus, we have:

∇̂DA-PG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.

The variance reduction argument is similar to that in Proposition 4.4. Let X = ∇̂RP
θ Ĵ(πθ;St, ϵ) and

Y = ∇̂DA-PG
θ Ĵ(π̄θ;St). We have Y = E[X|St, ϵ] (expectation over ϵ). By the law of total variance:

V(X) = E[V(X|St, ϵ)] + V(E[X|St, ϵ]). This translates to

V
(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
= ESt

[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)]+ V

(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)] > 0 (i.e., the noise-induced variance is positive on average), then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)

.

A.3 CONVERGENCE ANALYSIS FOR DA-PG

We present a convergence result for the distributions-as-actions policy gradient (DA-PG), which
is a direct application of the convergence of the deterministic policy gradient (DPG; Xiong et al.,
2022). We assume an on-policy linear function approximation setting and use TD learning to learn

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 DA-PG-TD

1: Input: αw, αθ, w0, θ0, batch size M .
2: for t = 0, 1, . . . , T do
3: for j = 0, 1, . . . ,M − 1 do
4: Sample st,j ∼ dθt .
5: Generate ut,j = π̄θt(st,j).
6: Sample st+1,j ∼ p̄(·|st,j , ut,j) and rt,j .
7: Generate ut+1,j = π̄θt(st+1,j).
8: Denote xt,j = (st,j , ut,j).
9: δt,j = rt,j + γϕ(xt+1,j)

⊤wt − ϕ(xt,j)
⊤wt.

10: end for
11: wt+1 = wt +

αw
M

∑M−1
j=0 δt,jϕ(xt,j).

12: for j = 0, 1, . . . ,M − 1 do
13: Sample s′t,j ∼ νθt .
14: end for
15: θt+1 = θt +

αθ
M

∑M−1
j=0 ∇θπ̄θt(s′t,j)∇θπ̄θt(s′t,j)⊤wt.

16: end for

the critic. See Algorithm 1 for the analyzed DA-PG-TD algorithm. We follow the notation of Xiong
et al. as much as possible for comparison with their results.

Following their notation, the parameterized policy is denoted as π̄θ and the objective function J(π̄θ)
(Equation (1)) is denoted as J(θ). The distributions-as-actions policy gradient is

∇θJ(θ) = Es∼νθ
[
∇θπ̄θ(s)∇uq̄π̄θ (s, u)|u=π̄θ(s)

]
, (15)

where νθ(s)
.
=

∑∞
t=0 Eπ̄θ [γtI(St = s)] is the discounted occupancy measure under π̄θ. We also

define the stationary distribution of π̄θ to be dθ(s) = limT→∞
1
T

∑T−1
t=0 Eπ̄θ [I(St = s)]. Under

linear function approximation for the critic function, the parameterized critic can be expressed as
Q̄w(s, u) = ϕ(s, u)⊤w, where ϕ : S × U → Rd is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the
convergence theorem. In addition, we incorporate the corrections to the result of Xiong et al. from
Vasan et al. (2024), which extends the result to the reparameterization policy gradient. Following
Vasan et al., the corrections are highlighted in red.

Assumption A.1. For any θ1, θ2, θ ∈ Rd, there exist positive constants Lπ̄, Lϕ and λΦ, such that (1)
∥π̄θ1(s)−π̄θ2(s)∥ ≤ Lπ̄∥θ1−θ2∥,∀s ∈ S; (2) ∥∇θπ̄θ1(s)−∇θπ̄θ2(s)∥ ≤ Lψ∥θ1−θ2∥,∀s ∈ S; (3)

the matrix Ψθ := Eνθ
[
∇θπ̄θ(s)∇θπ̄θ(s)⊤

]
is non-singular with the minimal eigenvalue uniformly

lower-bounded as σmin(Ψθ) ≥ λΨ.

Assumption A.2. For any u1, u2 ∈ U , there exist positive constants Lp̄, Lr̄, such that (1) the
distributions-as-actions transition kernel satisfies |p̄(s′|s, u1)− p̄(s′|s, u2)| ≤ Lp̄∥u1−u2∥,∀s, s′ ∈
S; (2) the distributions-as-actions reward function satisfies |r̄(s, u1) − r̄(s, u2)| ≤ Lr̄∥u1 −
u2∥,∀s, s′ ∈ S.

Assumption A.3. For any u1, u2 ∈ U , there exists a positive constant Lq̄ , such that ∥∇uq̄π̄θ (s, u1)−
∇uq̄π̄θ (s, u2)∥ ≤ Lq̄∥u1 − u2∥,∀θ ∈ Rd, s ∈ S.

Assumption A.4. The feature function ϕ : S × U → Rd is uniformly bounded, i.e., ∥ϕ(·, ·)∥ ≤ Cϕ
for some positive constant Cϕ. In addition, we define A = Edθ

[
ϕ(x)(γϕ(x′)− ϕ(x))⊤

]
and D =

Edθ
[
ϕ(x)ϕ(x)⊤

]
, and assume that A and D are non-singular. We further assume that the absolute

value of the eigenvalues of A are uniformly lower bounded, i.e., |σ(A)| ≥ λA for some positive
constant λA.

Proposition A.5 (Compatible function approximation). A function estimator Q̄w(s, u) is compatible
with a policy π̄θ, i.e., ∇J(θ) = Eνθ

[
∇θπ̄θ(s)∇uQ̄w(s, u)|u=π̄θ(s)

]
, if it satisfies the following two

conditions:

1. ∇uQ̄w(s, u)|u=π̄θ(s) = ∇θπ̄θ(s)⊤w;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. w = w∗
ξθ

minimizes the mean square error Eνθ
[
ξ(s; θ, w)⊤ξ(s; θ, w)

]
, where ξ(s; θ, w)=

∇uQ̄w(s, u)|u=π̄θ(s)−∇uq̄π̄θ (s, u)|u=π̄θ(s).

Given the above assumption, one can show that the distributions-as-actions policy gradient is smooth
(Lemma A.6), and that Algorithm 1 converges (Theorem A.7).
Lemma A.6. Suppose Assumptions A.1-A.3 hold. Then the distributions-as-actions policy gradient
∇J(θ) defined in Equation (15) is Lipschitz continuous with the parameter LJ , i.e., ∀θ1, θ2 ∈ Rd,

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ∥θ1 − θ2∥, (16)

where LJ=
(

1
2Lp̄L

2
π̄LνCν+

Lψ
1−γ

)(
Lr̄+

γRmaxLp̄
1−γ

)
+ Lπ̄

1−γ

(
Lq̄Lπ̄+

γ
2L

2
p̄RmaxLπ̄Cν+

γLp̄Lr̄Lπ̄
1−γ

)
.

Theorem A.7. Suppose that Assumptions A.1-A.4 hold. Let αw ≤ λ
2C2

A
;M ≥ 48αwC

2
A

λ ;αθ ≤

min
{

1
4LJ

, λαw
24

√
6LhLw

}
. Then the output of DA-PG-TD in Algorithm 1 satisfies

min
t∈[T]

E∥∇J(θt)∥2 ≤
c1
T

+
c2
M

+ c3κ
2,

where c1 = 8Rmax

αθ(1−γ) +
144L2

h

λαw
∥w0−w∗

θ0
∥2, c2 =

[
48α2

w(C
2
AC

2
w + C2

b) +
96L2

wL
4
π̄C

2
wξ
α2
θ

λαw

]
· 144L

2
h

λαw
+

72L4
π̄C

2
wξ

, c3 = 18L2
h +

[
24L2

wL
2
hα

2
θ

λαw
+ 24

λαw

]
· 144L

2
h

λαw
with CA = 2C2

ϕ, Cb = RmaxCϕ, Cw =

RmaxCϕ
λA

, Cwξ =
Lπ̄Cq̄

λΨ(1−γ) , Lw = LJ
λΨ

+
Lπ̄Cq̄

λ2
Ψ(1−γ)

(
L2
π̄Lν +

2Lπ̄Lψ
1−γ

)
, Lh = L2

π̄, Cq̄ = Lr̄ + Lp̄ ·
γRmax

1−γ , Lν = 1
2CνLp̄Lπ̄ , and LJ defined in Lemma A.6, and we define

κ := max
θ
∥w∗

θ − w∗
ξθ
∥. (17)

Remark A.8. Apart from the corrections highlighted in red, the convergence result retains the same
mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). How-
ever, the associated constants differ, as they are defined with respect to the distributions-as-actions
formulations of the MDP, policy, and critic. Notably, the distributions-as-actions policy class strictly
generalizes the deterministic policy class. Consequently, this convergence result constitutes a strict
generalization of the DPG convergence result.

The proofs of Lemma A.6 and Theorem A.7 follow the same lines as that of Lemma 1 and Theorem
1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for
details about the corrections.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL
(Huang et al., 2022), distributed under the MIT license. The source code is currently being cleaned
up and will be open-sourced following paper acceptance.

Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95%
bootstrap confidence intervals (CIs) for reporting the statistical significance whenever applicable, as
recommended by Patterson et al. (2024). We use scipy.stats.bootstrap with 10, 000 resamples from
SciPy to calculate the bootstrap CIs. For all bar plots, we plot the final performance, which is
computed using the average of the return collected during the final 10% training steps.

B.1 POLICY PARAMETERIZATION AND ACTION SAMPLING

When the action space is multidimensional, we treat each dimension independently. For simplicity,
our exposition will focus on the unidimensional case in the remaining of the paper.

Discrete action spaces We use the categorical policy parameterization: A ∼
f(·|[p1, · · · , pN]⊤), where f(x|[p1, · · · , pN]⊤) =

∏N
i=1 p

I(x=i)
i is the probability mass function

for the categorical distribution. For DA-AC, we choose the probability vector u = [p1, · · · , pN]⊤

as the distribution parameters. We define the distribution parameters corresponding to an action A
to be the one-hot vector UA = one hot(A).

Continuous action spaces Assume the action space is [amin, amax]. We use the Gaussian policy
parameterization that is used in TD3: A = clip(µ+ ϵ, amin, amax), ϵ ∼ N (0, σ). Same as TD3, we
restrict the mean µ to be within [amin, amax] using a squashing function:

µ =
uµ + 1

2
(amax − amin) + amin, uµ = tanh(logitµ),

where logitµ ∈ R is the actor network’s output for µ. While TD3 uses a fixed σTD3 = 0.1 ∗
amax−amin

2 , we allow the learnable standard deviation to be within a range σ ∈ [σmin, σmax]:

log σ =
uσ + 1

2
∗ (log σmax − log σmin) + log σmin, uσ = tanh(logitσ),

where logitσ ∈ R is the actor network’s output for σ. For RP-AC, the reparameterization function
is gθ(ϵ;St) = clip(µθ(St) + σθ(St)ϵ, amin, amax), ϵ ∼ N (0, 1). For DA-AC, we choose the distri-
bution parameters to be u = [uµ, uσ]

⊤ ∈ [−1, 1]2 so that the parameter space is consistent across
the mean and standard deviation dimensions. Since we lower bound the standard deviation space
to encourage exploration, we define the distribution parameters corresponding to an action A to be
UA = [2A

amax−amin
,−1]⊤ to approximate the Dirac delta distribution, which corresponds to µ = A

and σ = σmin.

Hybrid action spaces For environments with hybrid action spaces, DA-AC simply uses the
policy parameterizations described above for the corresponding discrete and continuous parts.

B.2 POLICY EVALUATION IN BANDITS

K-Armed Bandit We use a K-armed bandit with K = 3 and a deterministic reward function:

r(a1) = 0, r(a2) = 0.5, r(a3) = 1.

Bimodal Continuous Bandit We use a continuous bandit with a bimodal reward function that
is deterministic. Specifically, the reward function is the normalized summation of two Gaussians’
density functions whose standard deviations are both 0.5 and whose means are −1 and 1, respec-
tively:

r(a) = e−
(a+1)2

0.5 + e−
(a−1)2

0.5 .

We restrict the action space to be [amin, amax] = [−2, 2]. The standard standard deviation is con-
strained to [σmin, σmax] = [e−3, e].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
Timestep

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

K-Armed Bandit (K=3)

LR-AC
DA-AC w/o ICL
DA-AC

LR-PG
DA-PG

0 500 1000 1500 2000
Timestep

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

Bimodal Continuous Bandit

RP-AC
DA-AC w/o ICL
DA-AC

RP-PG
DA-PG

Figure 9: Learning curves of DA-AC, DA-AC w/o ICL, and baselines on the K-Armed Bandit
(col 1) and Bimodal Continuous Bandit (col 2) tasks. Results are averaged over 50 seeds. Shaded
regions show 95% bootstrap CIs. ICL substantially improves DA-AC’s performance, enabling it to
match LR-AC and RP-AC in these simple settings.

Critic network architecture To be consistent with the RL settings, we use the same critic
network architecture as those in Appendices B.4 and B.6. Specifically, we use a two-layer MLP
network with the concatenated state and action vector as input. We reduce the hidden size from 256
to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the
distributions-as-actions critic function for 2000 steps using either Equation (12) or Equation (14). In
K-Armed Bandit, the PE policy is π̄PE = uPE = [1/3, 1/3, 1/3]; in Bimodal Continuous Bandit, the
PE policy is π̄PE = uPE = [0, 0.5] (corresponding to µ = 0 and log σ = 0.0). The hyperparameters
are the same as those of DA-AC in Table 3, except that the actor is kept fixed to the corresponding
PE policy.

B.3 POLICY OPTIMIZATION IN BANDITS

Environments We use the same K-Armed Bandit and Bimodal Continuous Bandit environ-
ments as Appendix B.2.

Algorithms In addition to DA-AC and DA-AC w/o ICL, we also include LR-AC and RP-AC
as a reference, as they should be quite effective in these settings because of a much simpler critic
function. Note that our goal is not to show that DA-AC can outperform other baselines in these
toy settings, but rather to illustrate how ICL substantially improves critic learning in DA-AC. Here,
LR-AC uses the average of the action values as the baseline. We also include LR-PG, RP-PG, and
DA-PG, variants of LR-AC, RP-AC, and DA-AC that have access to their corresponding true value
functions to remove the confounding factor of learning the critic.

Experimental Details We use the same critic network architecture as in Appendix B.2. Simi-
larly, we use the same actor network architecture as those in Appendices B.4 and B.6. Specifically,
we use a two-layer MLP network with the state vector as input. We reduce the hidden size from
256 to 16 and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For
LR-PG, RP-PG, and DA-PG, the critic function is calculated analytically; otherwise, their hyperpa-
rameters are the same as their counterparts with a learned critic function. See Figure 9 for learning
curves.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms
for a more controlled comparison in Section 5.5, we note that interpolated critic learning (ICL) also
improves the performance of DA-AC under other learning rates. Apart from 0.01, we report the
results with learning rates 0.001 and 0.1 in Figure 10.

B.4 CONTINUOUS CONTROL

Environments From OpenAI Gym MuJoCo, we use the most commonly used 5 environments
(see Table 1). From DeepMind Control Suite, we use the same 15 environments as D’Oro et al.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
Timestep

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

K-Armed Bandit (K=3)

LR-AC
DA-AC w/o ICL
DA-AC

LR-PG
DA-PG

0 500 1000 1500 2000
Timestep

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

Bimodal Continuous Bandit

RP-AC
DA-AC w/o ICL
DA-AC

RP-PG
DA-PG

0 500 1000 1500 2000
Timestep

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

K-Armed Bandit (K=3)

LR-AC
DA-AC w/o ICL
DA-AC

LR-PG
DA-PG

0 500 1000 1500 2000
Timestep

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

Bimodal Continuous Bandit

RP-AC
DA-AC w/o ICL
DA-AC

RP-PG
DA-PG

Figure 10: Learning curves of DA-AC, DA-AC w/o ICL, and baselines using learning rates 0.001
(cols 1–2) and 0.1 (cols 3–4). Results are averaged over 50 seeds. Shaded regions show 95%
bootstrap CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal
points for most algorithms. Consistent with Figure 9, ICL demonstrates improved performance for
DA-AC when a more conservative learning rate is employed.

DA-A
C

DA-A
C w

/ A
TN

RP-A
C

RP-A
C w

/ A
TN

TD3 w
/o

ATN
TD3

0.0

0.2

0.4

0.6

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

MuJoCo (5 tasks)

DA-A
C

DA-A
C w

/ A
TN

RP-A
C

RP-A
C w

/ A
TN

TD3 w
/o

ATN
TD3

0.0

0.2

0.4

0.6

Av
er

ag
e

N
or

m
al

iz
ed

 R
et

ur
n

DMC (15 tasks)

Figure 11: Average normalized returns with and without actor target network (ATN) on Mu-
JoCo (col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10
(DMC) tasks. Error bars show 95% bootstrap CIs.

(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep
RL algorithms. The full list of environments and their corresponding observation and action space
dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by
the maximum possible return for a given task. In DMC environments, the maximum return is 1000
(Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on
the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4,
7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DA-AC and RP-AC also adopt a uniform exploration
phase. During the uniform exploration phase, the distribution parameters u = [uµ, uσ]

⊤ are uni-
formly sampled from [−1, 1]2. These three algorithms use the default hyperparameters of TD3 (see
Table 4). For SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), we use the implementa-
tions and tuned hyperparameters in CleanRL (Huang et al., 2022). See Figure 13 for learning curves
in each individual environment.

fis
h-s

wim

fin
ge

r-tu
rn_

ha
rd

Half
Che

eta
h-v

4

walk
er-

run

ch
ee

tah
-ru

n

sw
im

mer-
sw

im
mer6

rea
ch

er-
ha

rd

pe
nd

ulu
m-sw

ing
up

ac
rob

ot-
sw

ing
up

ho
pp

er-
ho

p

hu
man

oid
-ru

n

Hum
an

oid
-v4

Walk
er2

d-v
4

hu
man

oid
-st

an
d

qu
ad

rup
ed

-ru
n

qu
ad

rup
ed

-w
alk

Hop
pe

r-v
4

hu
man

oid
-w

alk
Ant-

v4

ho
pp

er-
sta

nd
0.2

0.1

0.0

0.1

0.2

N
or

m
al

iz
ed

 R
et

ur
n

D
iff

er
en

ce

Relative Final Performance: DA-AC (Continuous) vs DA-AC (Discrete)

DA-AC (Continuous) better
DA-AC (Discrete) better

Figure 12: Relative final performance of DA-AC with continuous actions versus with discrete
actions across 20 individual control tasks. Results are averaged over 10 seeds per task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Impact of the actor target network We also investigate the impact of using an actor target
network (ATN) in DA-AC and the baselines. While TD3 already employs an ATN, both DA-AC and
RP-AC do not. We additionally test DA-AC w/ ATN and RP-AC w/ ATN and TD3 w/o ATN. From
Figure 11, we can see that the actor target network does not have a significant impact in general.

B.5 DISCRETE CONTROL

Environments We use the same 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar
(Young & Tian, 2019) environments as in Ceron & Castro (2021).

Experimental details for Gym environments We use the existing implementations and tuned
hyperparameters of DQN (Mnih et al., 2015) and PPO in CleanRL (Tables 8 and 10). For DA-AC,
ST-AC, LR-AC, and EAC, we adjust relevant off-policy training hyperparameters based on those of
DQN, including batch size, gradient steps per step, network size, replay buffer size. We also disables
double Q-networks to better align with DQN. See Table 5 for the updated parameters from Table 4.
We use a similar setup for Discrete SAC (DSAC; Christodoulou, 2019), as shown in the same table.
The learning curves can be found in Figure 14.

Experimental details for MinAtar environments The MinAtar setups for DQN and PPO are
adopted from their implementations and tuned hyperparameters for Atari (Bellemare et al., 2013)
in CleanRL (Tables 9 and 11). Similar to the above, we adjust relevant off-policy training hyperpa-
rameters based on DQN for DA-AC, ST-AC, LR-AC, and EAC (Table 6). We use a similar setup
for DSAC but decrease its uniform exploration steps according to its hyperparameters for Atari in
CleanRL (Table 6). For consistency, we use the same critic network for DA-AC, ST-AC, LR-AC,
EAC, and DSAC, which takes actions as input. The learning curves can be found in Figure 14.

Joint encoding of CNN observation features and actions While concatenation is used for joint
encoding of observations and actions for state-based observations in MuJoCo/DMC/Gym environ-
ments, it might not be efficient for encoding latent features and actions (Schlegel et al., 2023).
Inspired by Schlegel et al., we use the flattened outer product of the CNN observation features (with
a dimension of 128) and the vectorized action representations (with a dimension of |A|) as the joint
encoding. The action representations are the action probabilities for DA-AC, while they are one-hot
embedding of actions for other algorithms. We then use an additional hidden layer with a small
number of hidden units (8 in MinAtar) with negligible overhead to extract higher-level features.

B.6 HIGH-DIMENSIONAL DISCRETE CONTROL

Details We use the same 20 environments as Appendix B.4. Similar to the continuous control
case, we also include a uninform exploration phase for all discrete control algorithms. For LR-AC
and ST-AC, the action is randomly sampled from a uniform categorical distribution. For DA-AC, the
logits of the distribution parameters (in this case, the probability vector) are sampled fromN (0, 1)N ,
where N is the number of possible discrete outcomes. All algorithms use the default hyperparame-
ters of TD3 (see Table 4). See Figure 15 for learning curves in each individual environment.

Comparison to continuous control We plot the relative final performance of DA-AC with
continuous actions versus with discrete actions in Figure 12. We can see that the performance of
DA-AC with discrete actions can often compete with DA-AC with continuous actions.

B.7 HYBRID CONTROL

Environments We use 7 parameterized-action MDP (PAMDP; Masson et al., 2016) environ-
ments from Li et al. (2021). Please see their Appendix B.1 for the descriptions of the environments.

Experimental details Contrary to other settings, which report training episodes’ return, we
report performance in evaluation phases following Li et al.. During evaluation phases, DA-AC uses
discrete actions with the highest probability for the discrete components and mean actions for the
continuous components. We use the implementations provided by Li et al. for baselines, including
PADDPG (Hausknecht & Stone, 2015), PDQN (Xiong et al., 2018), and (Fu et al., 2019). All

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the baselines incorporate clipped double Q-learning from TD3, with PADDPG renamed to PATD3.
The hyperparameters of DA-AC are made aligned with the baselines (Table 12). Since PDQN uses
per-environment tuned γ in Li et al., our results are slightly different than theirs as we use a fixed
γ = 0.99 for PDQN to be consistent with other algorithms. Learning curves can be found in
Figure 16.

B.8 COMPUTATIONAL RESOURCE REQUIREMENT

All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core
Processor. Each training run was executed using a single CPU core and consumed less than 256MB
of RAM. Most runs completed 2000 training steps within 10 seconds.

All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were
equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell
@ 2.1GHz, Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @
2.4GHz. Each training run was executed using a single CPU core and consumed less than 2GB of
RAM. The training duration varied considerably across environments, primarily influenced by the
dimensionality of the observation space, the complexity of the physics simulation, and, in the case
of discrete action spaces, the dimensionality of the action space. Most algorithms typically com-
pleted 1 million training steps in approximately 7 hours per run. However, LR-AC required a longer
training period of roughly 9 hours due to the additional computational overhead of learning an extra
neural network.

Table 1: Observation and action dimensions of OpenAI Gym MuJoCo environments.

Environment Observation dimension Action dimension
Hopper-v3 11 3
Walker2d-v3 17 6
HalfCheetah-v3 17 6
Ant-v3 27 8
Humanoid-v3 376 17

Table 2: Observation and action dimensions of DeepMind Control Suite environments.

Domain Task(s) Observation dimension Action dimension
pendulum swingup 3 1
acrobot swingup 6 1
reacher hard 6 2
finger turn hard 12 2
hopper stand, hop 15 4
fish swim 24 5
swimmer swimmer6 25 5
cheetah run 17 6
walker run 24 6
quadruped walk, run 58 12
humanoid stand, walk, run 67 24

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C HYPERPARAMETERS

Table 3: Hyperparameters for both continuous (col 3) and discrete (col 2) bandits that are different
from Table 4. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respec-
tively. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC uses the same hyperparameters
as DA-AC (D).

Hyperparameter DA-AC (D) DA-AC (C)

Batch size 8
Learning rate (actor / critic) 0.01

Neurons per hidden layer (16, 16)
Discount factor (γ) N/A
Replay buffer size 2000

Policy update delay (Nd) 1
Uniform exploration steps N/A
Learnable σ range ([σmin, σmax]) N/A [e−3, e]

Table 4: Hyperparameters of actor-critic algorithms for both MuJoCo/DMC continuous (cols 3–5)
and discrete (col 2) control environments. DA-AC is applied to both settings, denoted as DA-AC
(C) and DA-AC (D), respectively. For simplicity, we assume [amin, amax] = [−1, 1] for continuous
control algorithms. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC and ST-AC use
the same hyperparameters as DA-AC (D).

Hyperparameter DA-AC (D) DA-AC (C) TD3 SAC

Batch size 256
Optimizer Adam
Learning rate (actor / critic) 0.0003 0.0003 / 0.001
Target network update rate (τ) 0.005
Gradient steps per env step 1
Number of hidden layers 2
Neurons per hidden layer (256, 256)
Activation function ReLU
Discount factor (γ) 0.99
Replay buffer size 1× 106

Policy update delay (Nd) 2
Uniform exploration steps 25, 000 5, 000

Learnable σ range ([σmin, σmax]) N/A [0.05, 0.2] N/A N/A
Target entropy N/A |A|
Target policy noise clip (c) N/A 0.5 N/A
Target policy noise (σ̃TD3) N/A 0.2 N/A
Exploration policy noise (σTD3) N/A 0.1 N/A

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters of actor-critic algorithms for Gym environments that are different from
Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter DA-AC DSAC

Batch size 128
Learning rate (actor / critic) 0.0003

Target network update rate (τ) 0.01
Gradient steps per env step 1 (every 10 env steps)
Neurons per hidden layer (120, 84)
Replay buffer size 1× 104

Policy update delay (Nd) 1
Uniform exploration steps 12, 500 2, 500

Target entropy N/A 0.89|A|

Table 6: Hyperparameters of actor-critic algorithms for MinAtar environments that are different
from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter DA-AC DSAC

Batch size 32
Learning rate (actor / critic) 0.0003

Gradient steps per env step 1 (every 4 env steps)
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 2
Neurons per MLP layer (128, 8)
Replay buffer size 1× 105

Policy update delay (Nd) 1
Uniform exploration steps 50, 000 4, 000

Target entropy N/A 0.89|A|

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters of PPO in MuJoCo/DMC continuous- and discrete-control environments.

Hyperparameter PPO

Optimizer Adam
Learning rate (actor / critic) 3× 10−4

Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Rollout length (timesteps per update) 2048
Minibatch size 32
Number of epochs per update 10
Number of hidden layers 2
Neurons per hidden layer (64, 64)
Activation function Tanh
Clipping parameter (ϵ) 0.2
Entropy coefficient 0.0
Value loss coefficient 0.5
Max grad norm 0.5
Reward normalization Enabled
Observation normalization Enabled
Learning rate schedule Linear decay

Table 8: Hyperparameters of PPO in Gym environments that are different from Table 7.

Hyperparameter PPO

Rollout length (timesteps per update) 128
Number of epochs per update 4

Table 9: Hyperparameters of PPO in MinAtar environments that are different from Table 7. Since
MinAtar already normalizes the observations and rewards, we disable the normalization wrappers.

Hyperparameter PPO

Learning rate (actor / critic) 2.5× 10−4

Rollout length (timesteps per update) 128
Number of epochs per update 4
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Activation function ReLU
Entropy coefficient 0.01
Reward normalization Disable
Observation normalization Disable

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters of DQN in Gym environments.

Hyperparameter DQN

Batch size 128
Optimizer Adam
Learning rate 2.5× 10−4

Discount factor (γ) 0.99
Hard target network update Every 500 env steps
Gradient steps per env step 1 (every 10 env steps)
Number of hidden layers 2
Neurons per hidden layer (120, 84)
Activation function ReLU
Replay buffer size 1× 104

Min replay size before learning 10,000

Linear ε-greedy range 1.0→ 0.05

Linear ε-greedy steps 2.5× 105

Table 11: Hyperparameters of DQN in MinAtar environments.

Hyperparameter DQN

Batch size 32
Learning rate 1× 10−4

Hard target network update Every 1000 env steps
Gradient steps per env step 1 (every 4 env steps)
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Replay buffer size 1× 105

Min replay size before learning 40,000

Linear ε-greedy range 1.0→ 0.01

Linear ε-greedy steps 5× 105

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters of actor-critic algorithms for PAMDP environments.

Hyperparameter DA-AC PATD3 HHQN PDQN

Batch size 128
Optimizer Adam
Learning rate (actor / critic) 0.0003 0.0001 / 0.001
Target network update rate (τ) 0.005 0.001 / 0.01
Gradient steps per env step 1
Number of hidden layers 2
Neurons per hidden layer (256, 256)
Activation function ReLU
Discount factor (γ) 0.99
Replay buffer size 1× 105

Policy update delay (Nd) 2
Uniform exploration steps 5, 000 N/A
Learnable σ range ([σmin, σmax]) [0.05, 0.2] N/A
Target policy noise clip (c) N/A 0.5 N/A
Target policy noise (σ̃TD3) N/A 0.2 N/A
Exploration policy noise (σTD3) N/A 0.1 N/A
Ornstein-Uhlenbeck noise N/A Enable
Linear ε-greedy range N/A 1.0→ 0.01

Linear ε-greedy steps N/A 1× 103

Max grad norm N/A 0.5

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D ADDITIONAL PLOTS

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000
Av

er
ag

e
R

et
ur

n

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
et

ur
n

Walker2d-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2000

4000

6000

Av
er

ag
e

R
et

ur
n

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2500

5000

7500

10000

Av
er

ag
e

R
et

ur
n

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2000

4000

Av
er

ag
e

R
et

ur
n

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

20

40

60

80

100

Av
er

ag
e

R
et

ur
n

acrobot-swingup

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

cheetah-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

50

100

150

200

Av
er

ag
e

R
et

ur
n

hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

25

50

75

100

125

Av
er

ag
e

R
et

ur
n

humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

100

200

300

400

Av
er

ag
e

R
et

ur
n

humanoid-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

pendulum-swingup

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

quadruped-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

reacher-hard

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

swimmer-swimmer6

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

walker-run

DA-AC DA-AC w/o ICL RP-AC TD3 SAC PPO

Figure 13: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 continuous control
tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

0 100000 200000 300000 400000 500000
Timestep

0

50

100

150

200

Av
er

ag
e

R
et

ur
n

gym/CartPole-v0

0 100000 200000 300000 400000 500000
Timestep

500

400

300

200

100

Av
er

ag
e

R
et

ur
n

gym/Acrobot-v1

0 100000 200000 300000 400000 500000
Timestep

200

100

0

100

200

Av
er

ag
e

R
et

ur
n

gym/LunarLander-v2

0 100000 200000 300000 400000 500000
Timestep

200

195

190

185

180

175

Av
er

ag
e

R
et

ur
n

gym/MountainCar-v0

0 1 2 3 4 5
Timestep 1e6

0

20

40

60

80

Av
er

ag
e

R
et

ur
n

MinAtar/Asterix-v1

0 1 2 3 4 5
Timestep 1e6

0

50

100

Av
er

ag
e

R
et

ur
n

MinAtar/Breakout-v1

0 1 2 3 4 5
Timestep 1e6

0

20

40

60

Av
er

ag
e

R
et

ur
n

MinAtar/Freeway-v1

0 1 2 3 4 5
Timestep 1e6

0

25

50

75

100

125

Av
er

ag
e

R
et

ur
n

MinAtar/Seaquest-v1

0 1 2 3 4 5
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

MinAtar/SpaceInvaders-v1

DA-AC DA-AC w/o ICL ST-AC LR-AC EAC DSAC DQN PPO

Figure 14: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 4 Gym and 5 MinAtar
discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

Av
er

ag
e

R
et

ur
n

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

Walker2d-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

Av
er

ag
e

R
et

ur
n

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2000

4000

6000

8000

10000

Av
er

ag
e

R
et

ur
n

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
et

ur
n

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

20

40

60

80

Av
er

ag
e

R
et

ur
n

acrobot-swingup

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

cheetah-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

50

100

150

200

Av
er

ag
e

R
et

ur
n

hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

25

50

75

100

125

Av
er

ag
e

R
et

ur
n

humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e

R
et

ur
n

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

100

200

300

400

Av
er

ag
e

R
et

ur
n

humanoid-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800
Av

er
ag

e
R

et
ur

n

pendulum-swingup

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

quadruped-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e

R
et

ur
n

reacher-hard

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

swimmer-swimmer6

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e

R
et

ur
n

walker-run

DA-AC DA-AC w/o ICL ST-AC LR-AC PPO

Figure 15: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 MuJoCo/DMC
discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

0 100000 200000 300000
Timesteps

0.0

0.2

0.4

0.6

Av
er

ag
e

Su
cc

es
s

R
at

e

Goal

0 100000 200000 300000
Timesteps

0.0

0.2

0.4

0.6

Av
er

ag
e

Su
cc

es
s

R
at

e

Hard Goal

0 50000 100000 150000 200000
Timesteps

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
et

ur
n

Platform

0 50000 100000 150000 200000
Timesteps

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s

R
at

e

Catch Point

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s

R
at

e

Hard Move (n=4)

0 50000 100000 150000 200000
Timesteps

0.1

0.2

0.3

Av
er

ag
e

Su
cc

es
s

R
at

e

Hard Move (n=6)

0 50000 100000 150000 200000
Timesteps

0.04

0.06

0.08

0.10

Av
er

ag
e

Su
cc

es
s

R
at

e

Hard Move (n=8)

DA-AC DA-AC w/o ICL PATD3 PDQN HHQN

Figure 16: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 7 hybrid control tasks.
Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E PSEUDOCODE

E.1 DA-AC: DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Algorithm 2 DA-AC for diverse action spaces

Input action sampling function f : U → ∆(A) (see Appendix B.1 for f in different settings)
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ f(·|Ut) with Ut = π̄θ(St), observe Rt+1, St+1

Add ⟨St, Ut, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Û = ωU + (1− ω)UA, ω ∼ Uniform[0, 1], for each transition ⟨S,U,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt

(
R+ γminj∈{1,2} Qw̄j (S

′, π̄θ(S
′))−Qwi(S, Û)

)
∇Qwi(S, Û)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπ̄θ(S)
⊤∇ŨQw1(S, Ũ)|Ũ=π̄θ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

E.2 TD3: TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT

Algorithm 3 TD3 for continuous action spaces

Input exploration noise σTD3, target policy noise σ̃TD3, target noise clipping c
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, θ̄ ← θ, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = πθ(St) + ϵ, ϵ ∼ N (0, σTD3), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = πθ̄(S

′) + ϵ, ϵ ∼ clip(N (0, σ̃TD3),−c, c), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπθ(S)
⊤∇ÃQw1(S, Ã)|Ã=πθ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i, θ̄ ← τθ + (1− τ)θ̄

end if
end for

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.3 RP-AC: ACTOR-CRITIC WITH THE REPARAMETERIZATION (RP) ESTIMATOR

Algorithm 4 RP-AC for continuous action spaces

Input reparameterization function gθ : S × R→ A (for Gaussian policies, see Appendix B.1)
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = gθ(ϵ;St), ϵ ∼ N (0, 1), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = gθ(ϵ;S

′), ϵ ∼ N (0, 1), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample ϵ ∼ N (0, 1) for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θgθ(ϵ;S)
⊤∇ÃQw1

(S, Ã)|Ã=gθ(ϵ;S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

E.4 ST-AC: ACTOR-CRITIC WITH THE STRAIGHT-THROUGH (ST) ESTIMATOR

Algorithm 5 ST-AC for discrete action spaces

Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B

Use the straight-through trick to compute Ãθ = one hot(Ã) + πθ(·|S)− πϕ(·|S)|ϕ=θ

Update policy on B:

θ ← θ − αt∇θπθ(·|S)⊤∇ÃQw1(S, Ã)|Ã=Ãθ

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E.5 LR-AC: ACTOR-CRITIC WITH THE LIKELIHOOD-RATIO (LR) ESTIMATOR

Algorithm 6 LR-AC for discrete action spaces

Initialize parameters w1,w2,θ, v, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Ã ∼ πθ(·|S) and A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

v← v + αt

(
Qw1

(S, Ã)− Vv(S)
)
∇Vv(S)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θ log πθ(Ã|S)
(
Qw1

(S, Ã)− Vv(S)
)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

E.6 EAC: ACTOR-CRITIC WITH THE EXPECTED POLICY GRADIENT ESTIMATOR

Algorithm 7 EAC for discrete action spaces

Initialize parameters w1,w2, v, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Ã ∼ πθ(·|S) and A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θ

∑
a∈A

πθ(a|S)Qw1(S, a)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in a strictly auxiliary capacity during the prepa-
ration of this paper. Their use was limited to two areas: (1) assisting with writing refinement by
improving readability, grammar, and conciseness, without contributing to the technical content or
conceptual development; and (2) supporting workflow tasks such as drafting or adjusting scripts
for data processing and figure generation, with all outputs carefully reviewed and corrected by the
authors. LLMs were not used for generating research ideas, conducting literature searches, or pro-
ducing original technical material. Their involvement was confined to polishing communication and
light implementation support.

34

	Introduction
	Problem formulation
	Distributions-as-actions framework
	Distributions-as-actions policy gradient algorithms
	Distributions-as-actions policy gradient estimator
	Comparison to other estimators for stochastic policies
	Interpolated critic learning
	Distributions-as-actions actor-critic

	Experiments
	Continuous control
	Discrete control
	High-dimensional discrete control
	Hybrid control
	Effectiveness of interpolated critic learning

	Conclusions
	Theoretical analysis of DA-PG
	Proofs of theoretical results in Section 3
	Proofs of theoretical results in Section 4
	Convergence analysis for DA-PG

	Experimental details
	Policy parameterization and action sampling
	Policy evaluation in bandits
	Policy optimization in bandits
	Continuous control
	Discrete control
	High-dimensional discrete control
	Hybrid control
	Computational resource requirement

	Hyperparameters
	Additional plots
	Pseudocode
	DA-AC: Distributions-as-Actions Actor-Critic
	TD3: Twin Delayed Deep Deterministic policy gradient
	RP-AC: Actor-critic with the reparameterization (RP) estimator
	ST-AC: Actor-critic with the straight-through (ST) estimator
	LR-AC: Actor-critic with the likelihood-ratio (LR) estimator
	EAC: Actor-critic with the expected policy gradient estimator

	Use of large language models

