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ABSTRACT

We introduce a novel reinforcement learning (RL) framework that treats param-
eterized action distributions as actions, redefining the boundary between agent
and environment. This reparameterization makes the new action space contin-
uous, regardless of the original action type (discrete, continuous, hybrid, etc.).
Under this new parameterization, we develop a generalized deterministic policy
gradient estimator, Distributions-as-Actions Policy Gradient (DA-PG), which has
lower variance than the gradient in the original action space. Although learning
the critic over distribution parameters poses new challenges, we introduce inter-
polated critic learning (ICL), a simple yet effective strategy to enhance learning,
supported by insights from bandit settings. Building on TD3, a strong baseline for
continuous control, we propose a practical actor-critic algorithm, Distributions-
as-Actions Actor-Critic (DA-AC). Empirically, DA-AC achieves competitive per-
formance in various settings across discrete, continuous, and hybrid control.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-
based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants
like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility
of enumerating and comparing action values. In contrast, policy-based methods are typically used
for continuous actions, though they can be used for both discrete and continuous action spaces
(Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999),
with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be ap-
plied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can
alternatively compute gradients via the action-value function (the critic), leveraging its differentia-
bility with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms
(Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess
et al., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates
by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the
structure of the action space. In particular, different estimators and architectures are often required
for discrete versus continuous actions, making it difficult to design unified algorithms that generalize
across domains. Although the LR estimator is always applicable, it often requires different critic
architectures for different action spaces and carefully designed baselines to manage high variance,
especially in continuous or high-dimensional action spaces.

In this paper, we introduce the distributions-as-actions framework, an alternative to the classical
RL formulation that treats the parameters of parameterized distributions as actions. For a Gaussian
policy, for example, the distribution parameters are the mean and variance, and for a softmax policy,
the distribution parameters are the probability values. The RL agent outputs these distribution pa-
rameters to the environment, and the sampling of the action is now part of the stochastic transition in
the environment. Distribution parameters are typically continuous, even if the actions are discrete,
hybrid or structured. By shifting this agent-environment boundary, therefore, we can develop one
continuous-action algorithm for a diverse class of action spaces.
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To develop algorithms under the new framework, we first propose the Distributions-as-Actions Pol-
icy Gradient (DA-PG) estimator, and prove it has lower variance than the corresponding update in
the original action space. This reduction in variance can increase the bias, because the critic can be
harder to learn. We develop an augmentation approach, called interpolated critic learning (ICL), to
improve this critic learning. We then introduce a deep RL algorithm based on TD3 (Fujimoto et al.,
2018), called Distributions-as-Actions Actor-Critic (DA-AC), that incorporates the DA-PG estima-
tor and ICL. We evaluate DA-AC empirically to assess the viability of this new framework and the
ability to use one algorithm for diverse action spaces. DA-AC achieves competitive and sometimes
better performance compared to baselines in a variety of settings across continuous, discrete, and
hybrid control. We also provide targeted experiments to understand the bias-variance trade-off in
DA-AC, and show the utility of ICL for improving critic learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) ⟨S,A, p, d0, r, γ⟩, where S is the state space, A
is the action space, p : S × A → ∆(S) is the transition function, d0 ∈ ∆(S) is the initial state
distribution, r : S × A → ∆(R) is the reward function, and γ is the discount factor. Here, ∆(X )
denotes the set of distributions over a set X . In this paper, we consider A to be either discrete or
continuous.1 We use π(a|s) to represent the probability of taking action a ∈ A under state s ∈ S for
policy π. The goal of the agent is to find a policy π under which the below objective is maximized:

J(π)
.
=

∞∑
t=0

ES0∼d0,At∼π(·|St),St+1∼p(·|St,At)
[
γtRt+1

]
=

∞∑
t=0

Eπ
[
γtRt+1

]
, (1)

where the second formula uses simplified notation that we follow in the rest of the paper. The
(state-)value function and action-value function of the policy are defined as follows:

vπ(s)
.
=

∞∑
t=0

Eπ
[
γtRt+1|S0 = s

]
, qπ(s, a)

.
= Eπ [R1 + γvπ(S1)|S0 = s,A0 = a] . (2)

In this paper, we consider actor-critic methods that learns a parameterized policy, denoted by πθ,
and a parameterized action-value function, denoted by Qw. Given a transition ⟨St, At, Rt+1, St+1⟩,
Qw is usually learned using temporal-difference (TD) learning:

w← w + α (Rt+1 + γQw(St+1, At+1)−Qw(St, At))∇Qw(St, At), (3)
where α is the step size, and At+1 is sampled from the current policy: At+1 ∼ πθ(·|St+1).

The policy is typically optimized using a surrogate of Equation (1):

Ĵ(πθ) = ESt∼d,At∼πθ(·|St) [Qw(St, At)] , (4)
where d ∈ ∆(S) is some distribution over states. Below we outline three typical estimators for the
gradient of this objective.

The likelihood-ratio (LR) policy gradient estimator uses ∇̂θĴ(πθ;St, A) =
∇θ log πθ(A|St)Qw(St, A), where A ∼ πθ(·|St). Since the LR estimator suffers from high
variance, it is often used with the value function as a baseline:

∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)), (5)

where V (St) could either be parameterized and learned or be calculated analytically from Qw when
the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action
space is continuous and the policy is deterministic (πθ : S → A), and uses the gradient of Qw with
respect to the action:

∇̂DPG
θ Ĵ(πθ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St). (6)

The reparameterization (RP) policy gradient estimator (Heess et al., 2015; Haarnoja et al., 2018)
can be used if the policy can be reparameterized (i.e., A = gθ(ϵ;St), ϵ ∼ p(·), where p(·) is a prior
distribution):

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St). (7)
1Note that the framework and methods proposed in this paper also apply to other complex types of action

spaces. We focus on discrete and continuous action spaces in our presentation for simplicity.
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Figure 1: Comparison between the classical reinforcement learning (RL) framework and the
proposed distributions-as-actions framework. In the classical RL setting (col 1), the agent’s
policy πθ consists of π̄θ, which produces the distribution parameters, and a sampling function f
that returns an action given these parameters. In the distributions-as-actions framework (col 2), the
sampling function f is considered part of the environment, and the agent outputs the distribution
parameters π̄θ(St) as its action. This shift redefines the interface between agent and environment,
potentially simplifying learning and enabling new algorithmic perspectives.

3 DISTRIBUTIONS-AS-ACTIONS FRAMEWORK

The action space is typically defined by the environment designer based on domain-specific knowl-
edge. Depending on the problem, it may be more natural to model the action space as either discrete
or continuous. In both cases, the agent’s policy at a given state s can often be interpreted as first
producing distribution parameters π̄θ(s), followed by sampling an action A ∼ f(·|π̄θ(s)) from the
resulting distribution. With a slight abuse of notation, we denote π̄θ : S → U as the part of the
policy πθ that maps states to distribution parameters, and by f(·|u) the distribution over actions
defined by parameters u ∈ U .

In the classical RL framework, both π̄θ and f are considered part of the agent, as in the left of
Figure 1. In this work, we introduce the distributions-as-actions framework: the agent outputs
distribution parameters π̄θ(s) as its action, while the sampling process A ∼ f(·|π̄θ(s)) is treated as
part of the environment, depicted on the right in Figure 1.

This reformulation leads to a new MDP in which the action space is the parameter space U . The
reward and transition functions in this MDP become:

p̄(s′|s, u) .
=

∑
a∈A

f(a|u)p(s′|s, a), or p̄(s′|s, u) .
=

∫
A
f(a|u)p(s′|s, a) da, (8)

r̄(s, u)
.
=

∑
a∈A

f(a|u)r(s, a), or r̄(s, u)
.
=

∫
A
f(a|u)r(s, a) da, (9)

depending on whether the original action space A is discrete or continuous, respectively.

This gives rise to the distributions-as-actions MDP (DA-MDP) ⟨S,U , p̄, d0, r̄, γ⟩. We can define the
corresponding value functions, and show they are connected to their classical counterparts.

v̄π̄(s)
.
=

∞∑
t=0

Eπ̄
[
γtRt+1|S0 = s

]
, q̄π̄(s, u)

.
= Eπ̄ [R1 + γv̄π̄(S1)|S0 = s, U0 = u] . (10)

Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.
Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix C.

The main advantage of this framework is that it transforms the original action space into a continu-
ous parameter space U , regardless of whether the underlying action space A is discrete, continuous,
or structured. This unification allows us to develop generic RL algorithms that operate over a con-
tinuous transformed action space, enabling a single framework to accommodate a wide variety of
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settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we
can apply DPG methods even in discrete action domains, where they were not previously applicable.
We explore this direction in detail in Sections 4 and 5.

4 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ALGORITHMS

In this section, we introduce the Distributions-as-Actions Policy Gradient (DA-PG), a generalization
of DPG for the distributions-as-actions framework. We show this estimator has lower variance, and
then present a practical DA-PG algorithm for deep RL based on TD3.

4.1 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ESTIMATOR

DA-PG is the application of DPG to the distributions-as-actions MDP. We need to slightly modify
the assumptions to reason about both the distribution parameter space and the original action space.
Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.
Theorem 4.2 (Distributions-as-actions policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed as

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.

The resulting gradient estimator of the surrogate objective Ĵ(π̄θ) = ESt∼d
[
Q̄w(St, π̄θ(St))

]
is

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St), (11)

where Q̄w is a learned parameterized critic. Note that the DA-PG estimator shares the same math-
ematical form as the DPG estimator (Equation (6)). However, the roles of the components differ:
In DA-PG, the policy π̄θ outputs distribution parameters rather than a single action, and the critic
estimates the expected return over the entire action distribution, rather than for a specific action.

In fact, DA-PG is a strict generalization of DPG. When the policy is restricted to be deterministic, the
distribution parameters effectively become the action, and the distributions-as-actions critic reduces
to the classical action-value critic.
Proposition 4.3. If U = A and f(·|u) is the Dirac delta distribution centered at u, then π̄θ and Q̄w

are equivalent to πθ and Qw, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇̂DPG

θ Ĵ(πθ;St).

Moreover, DPG’s theoretical analysis can also be extended to the distributions-as-actions frame-
work. In Appendix C, we generalize the convergence analysis of DPG to DA-PG, establishing a
theoretical guarantee that holds for MDPs with arbitrary action space types.

4.2 COMPARISON TO OTHER ESTIMATORS FOR STOCHASTIC POLICIES

We now compare the proposed DA-PG estimator with classical stochastic policy gradient methods,
highlighting its variance and bias characteristics across action spaces.

DA-PG can be seen as the conditional expectation of both the LR (Equation (5)) and RP (Equa-
tion (7)) estimators. This leads to strictly lower variance.

Proposition 4.4. Assume Qw = qπθ
in ∇̂LR

θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ
in ∇̂DA-PG

θ Ĵ(π̄θ;St).
Then, ∇̂DA-PG

θ Ĵ(π̄θ;St) = EA∼πθ(·|St)
[
∇̂LR

θ Ĵ(πθ;St, A)
]
. Further, if the expectation of the action-

conditioned variance is greater than zero, then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)
.

Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DA-PG
θ Ĵ(π̄θ;St). Then, ∇̂DA-PG

θ Ĵ(π̄θ;St) = Eϵ∼p
[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
. Further, if the expectation of

the noise-induced variance is greater than zero, then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
.
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Figure 2: Visualization of the reward function (col 1), expected rewards of distribution parame-
ters (col 2), and learned critics using the standard update in Equation (12) (col 3) and the interpo-
lated critic learning (ICL) update in Equation (14) (col 4) in policy evaluation (PE). Top: K-Armed
Bandit. Bottom: Bimodal Continuous Bandit. With access only to samples from the evaluation
policy, the standard update estimates values accurately at the target policy but fails to generalize. In
contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

In discrete action spaces, the LR estimator typically requires carefully designed baselines to manage
high variance, especially as dimensionality increases. While biased alternatives like the straight-
through (ST) estimator (Bengio et al., 2013) or continuous relaxations (Jang et al., 2016; Maddison
et al., 2016) exist, they sacrifice unbiasedness even when using a perfect critic. DA-PG avoids this
trade-off, providing the first unbiased RP-style estimator with low variance in the discrete setting.

In continuous action spaces, DPG offers zero variance but assumes fixed stochasticity (i.e., no learn-
able exploration). RP estimators allow for learning the stochastic parameters but exhibit higher
variance. DA-PG offers the best of both worlds: it permits learning all policy parameters including
those for stochasticity while retaining the zero-variance property per state.

Another direction to reduce variance is expected policy gradient (EPG; Ciosek & Whiteson, 2018;
Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients
conditioned on a state: ∇̂EPG

θ Ĵ(πθ;St) = ∇θEAt∼πθ(·|St) [Qw(St, At)]. However, this estimator
is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases
within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson,
2020). In contrast, our estimator ∇̂DA-PG

θ Ĵ(π̄θ;St) generalizes to a wider range of settings, including
high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DA-PG may suffer from increased bias due to the increased complex-
ity of the critic’s input space. For discrete actions, the critic Q̄w inputs a vector of probabilities
corresponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic Q̄w

inputs both the mean and standard deviation. This increased input dimensionality makes it harder
to approximate the true value function, and if the critic is inaccurate, the overall benefit of lower
gradient variance may be diminished—an effect we examine empirically in Section 5.5.

4.3 INTERPOLATED CRITIC LEARNING

In this section, we propose a method to improve learning the distributions-as-actions critic Q̄w.
Similar to Equation (3), the standard TD update for Q̄w is

w← w + α
(
Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ut)

)
∇Q̄w(St, Ut). (12)

This update, however, does not make use of the sampled action At, and its relationship to the out-
come state and reward. One direction to leverage this knowledge is to recognize that the transition
can also be used to update the value at alternative parameters Ût. This is possible because the action
At could have been sampled from distributions parameterized by many other Ût. As a result, the
value at Ût can be learned off-policy.

5
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What, then, should we choose for Ût? To answer this, we ask: what properties should the critic have
to support effective policy optimization in parameter space? Our answer is that the critic should
provide informative gradient directions that guide the policy toward optimality. For MDPs, there
always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence
of some UA∗

t
∈ U , a deterministic distribution corresponding to the optimal action A∗

t for state St.
Ideally, the critic should exhibit curvature that points toward such optimal parameters U∗

t .

One candidate for Ût is UAt , the deterministic distribution parameters associated with the sampled
action At. However, merely learning accurate values at UAt does not ensure that the critic has
smooth curvature from Ut toward high-value points. To encourage the critic to generalize better and
provide smoother gradients, we propose using a linearly interpolated point between Ut and UAt :

Ût = ωtUt + (1− ωt)UAt , ωt ∼ Uniform[0, 1]. (13)

The critic is then trained to predict the value at Ût using the following update:

w← w + α
(
Rt+1 + γQ̄w(St+1, π̄θ(St+1))− Q̄w(St, Ût)

)
∇Q̄w(St, Ût). (14)

We refer to this approach as interpolated critic learning (ICL).

To further provide intuition on ICL, we conduct a policy evaluation experiment in bandit problems,
shown in Figure 2 (column 1). Figure 2 (column 3) and (column 4) show the learned critics using
the standard update in Equation (12) and the ICL update in Equation (14), respectively. The critic
learned by ICL has more informative curvature. As a result, the policy could be updated toward high-
value regions more easily. In the continuous action case, the learned critic is sufficient to update the
policy towards near-optimal distribution parameters. More details can be found in Appendix D.2.

4.4 DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

To demonstrate the potential of the DA framework, we develop its first practical algorithm under
the simple but fundamental single-stream learning setting. Since the DA-PG estimator is derived
from DPG, we base our practical algorithm on TD3 (Fujimoto et al., 2018), a strong DPG-based off-
policy actor-critic algorithm for continuous control. We replace the classical actor and critic with
their distributions-as-actions counterparts and use the DA-PG gradient estimator (Equation (11)) and
the ICL critic loss (Equation (14)) to update them, respectively. We omit the actor target network,
as it does not improve performance (see Appendix D.4). The pseudocode for the algorithm, which
we call Distributions-as-Actions Actor-Critic (DA-AC), is in Appendix G.

5 EXPERIMENTS

In this section, we conduct experiments to investigate DA-AC’s empirical performance in continuous
(Section 5.1), discrete (Sections 5.2 and 5.3), and hybrid (Section 5.4) control settings. In addition,
we examine the effectiveness of the proposed interpolated critic learning in Section 5.5. Unless
otherwise noted, each environment is run with 10 seeds, and error bars or shaded regions indicate
95% bootstrap confidence intervals.

5.1 CONTINUOUS CONTROL

We use OpenAI Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020) for continuous control. From MuJoCo, we use the most commonly
used 5 environments; from DMC, we use the same 15 environments as D’Oro et al. (2023). Details
about these environments are in Appendix D.4. We run each environment for 1M steps.

Algorithms We use TD3 (Fujimoto et al., 2018) as our primary baseline, as DA-AC is based on it.
We also include an off-policy actor-critic baseline that uses the reparameterization (RP) estimator.
This RP-AC algorithm closely resembles DA-AC but learns in the original action space and updates
the policy using the RP estimator. For consistency, DA-AC and RP-AC use the default hyperparam-
eters of TD3 and a Gaussian policy parameterization. Implementations details and pseudocode can
be found in Appendices D.4 and G, respectively. For reference, we also evaluate the performance of
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Figure 3: Relative final performance of DA-AC versus TD3 across 20 individual continuous con-
trol tasks (col 1), and average normalized returns of DA-AC and baselines on MuJoCo (col 2)
and DeepMind Control (col 3) tasks. In individual task comparisons (col 1), results are averaged
over 10 seeds per task. For average performance plots (cols 2-3), values are averaged over 10 seeds
and tasks. Error bars show 95% bootstrap confidence intervals (CIs).

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e 

R
et

ur
n

walker-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

Av
er

ag
e 

R
et

ur
n

quadruped-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

Av
er

ag
e 

R
et

ur
n

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

Av
er

ag
e 

R
et

ur
n

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

100

200

300

400

Av
er

ag
e 

R
et

ur
n

humanoid-walk

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

25

50

75

100

Av
er

ag
e 

R
et

ur
n

humanoid-run

DA-AC RP-AC TD3 SAC PPO

Figure 4: Learning curves in six DeepMind Control tasks with high-dimensional action spaces.
Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017). Since we focus on the single-stream
setting, we use the original single-stream version of PPO as in Schulman et al..

Results Figure 3 shows per-environment performance for DA-AC and TD3 and the aggregated
results across environments for all algorithms. From Figure 3 (column 1), we can see that DA-
AC achieves better performance in more environments compared to TD3. From Figure 3 (columns
2–3), we can see that DA-AC achieves better overall performance, outperforming most baselines
significantly in the DMC Suite, particularly in high-dimensional environments (see Figure 4).

5.2 DISCRETE CONTROL

Following Ceron & Castro (2021), we use 4 Gym classic control (Brockman et al., 2016) and 5
MinAtar environments (Young & Tian, 2019) for discrete control. We run each environment for
500k (classic control) or 5M (MinAtar) steps.

Algorithms We include off-policy actor-critic baselines that resemble DA-AC. These baselines
learn in the original action space and update the policy with different gradient estimators, including
the likelihood-ratio (LR-AC) and expected (EAC) policy gradient estimators. Here, LR-AC uses a
state-value baseline analytically computed from action values. Although not common in prior work,
we also include a variant that uses the straight-through (ST) estimator (Bengio et al., 2013), denoted
as ST-AC. This baseline is the discrete counterpart of RP-AC, serving as a performance reference for
alternative RP-based methods. For comparison, we also evaluate the performance of Discrete SAC
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Figure 5: Average normalized returns of DA-AC and baselines on discrete control benchmarks,
including classic control (col 1), MinAtar (col 2), discretized MuJoCo (col 3), and discretized Deep-
Mind Control (col 4) tasks.

(DSAC; Christodoulou, 2019), DQN (Mnih et al., 2015), and PPO (Schulman et al., 2017). The
hyperparameters for DA-AC and X-AC baselines are adopted from the TD3 defaults and adjusted to
the corresponding benchmark based on those of DQN. More details and pseudocode can be found
in Appendices D.5 and G, respectively.

Results From Figure 5 (columns 1–2), we can see that DA-AC is among the best-performing
algorithms in both classic control and MinAtar, achieving comparable performance to DQN.

5.3 HIGH-DIMENSIONAL DISCRETE CONTROL

For this setting, we use the same 20 environment from the Section 5.1 but with a discretized action
space. Specifically, we discretize each action dimension into 7 bins with uniform spacing. For
example, the original action space in Humanoid-v4 is [−0.4, 0.4]17, which is discretized to 0.4 ×
{−1,− 2

3 ,−
1
3 , 0,

1
3 ,

2
3 , 1}

17. We run each environment for 1M steps.

Algorithms We use ST-AC, LR-AC, and PPO from the previous section as baselines. EAC,
DSAC, and DQN are excluded, as they are not feasible in environments with high-dimensional
actions. Note that DSAC relies on the unfeasible expected updates similar to EAC; without them,
it fails to learn. LR-AC learns an additional state-value function as a baseline, since analytically
deriving it from the action-value function is prohibitive in this high-dimensional setting. We use the
same hyperparameters as those in Section 5.1. More details can be found in Appendix D.6.

Results As shown in Figure 5 (columns 3–4), DA-AC’s average performance is higher than all
baselines in both benchmarks. Note that the performance of DA-AC and PPO is slightly worse
compared to the original continuous action setting (Figure 3).

5.4 HYBRID CONTROL
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Figure 6: Average normalized
performance of DA-AC and
baselines on hybrid control tasks.

In addition to continuous and discrete control settings, we also
evaluate DA-AC’s performance in parameterized action MDPs
(PAMDPs), a hybrid control setting with parameterized actions
(see Masson et al. (2016) for detailed discussion). We use 7
PAMDP environments from Li et al. (2021) and follow their
experiment protocol. See Appendix D.7 for more details.

Algorithms We use PATD3 as our primary baseline, a DPG-
based baseline specifically designed for parameterized action
(PA) spaces. PATD3 builds on PADDPG (Hausknecht & Stone,
2015) and incorporates clipped double Q-learning from TD3,
making it a suitable and directly comparable baseline for DA-
AC, as both methods build on TD3. In DA-AC, the distribution
parameters include both the probability vector for the discrete actions and mean/log-std vectors for
the continuous actions. We keep most hyperparameters the same as TD3’s default unless otherwise
adjusted to align with PATD3. In addition, we also include PDQN (Xiong et al., 2018) and HHQN
(Fu et al., 2019) as additional baselines for reference. See Appendix D.7 for more details.

Results Figure 6 shows the average normalized performance of DA-AC and baselines. The learn-
ing curves in each individual environment can be found in Figure 16. We can see that DA-AC also
achieves better performance than the baselines.
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Figure 8: Initial critic (col 1) and learned critics and policies at different training stages using
DA-AC w/o ICL (cols 2 and 4) and DA-AC (cols 3 and 5). Top: K-Armed Bandit. Bottom: Bi-
modal Continuous Bandit. DA-AC produces more accurate value estimates at deterministic distribu-
tion parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous
case—and offers stronger gradient signals for policy optimization.

5.5 EFFECTIVENESS OF INTERPOLATED CRITIC LEARNING
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Figure 7: Comparison between DA-AC and
DA-AC w/o ICL in all settings.

We compare DA-AC and DA-AC w/o ICL, an
ablated version that uses the standard critic up-
date (Equation (12)). From Figure 7, we can see
that DA-AC w/o ICL is generally worse than
DA-AC for all settings.

To provide further insights into why we see this
difference, we move to a bandit setting where
visualization and analysis are intuitive. We use
the same bandit environments from Figure 2,
and run each algorithm for 2000 steps and 50
seeds. See Appendix D.3 for hyperparameters
and other details.

Figure 9 in the appendix shows the superiority
of DA-AC over DA-AC w/o ICL, as well as the bias–variance trade-off incurred by different gradient
estimators. To assess the impact of ICL on critic quality, we visualize the learned critics from
a representative training run of DA-AC and DA-AC w/o ICL in Figure 8. In both discrete and
continuous action settings, DA-AC yields a significantly improved critic landscape early in training.

6 CONCLUSIONS

We introduced the distributions-as-actions framework, redefining the agent-environment boundary
to treat distribution parameters as actions. We showed that the policy gradient update has theoreti-
cally lower variance, and developed a practical deep RL algorithm called Distributions-as-Actions
Actor-Critic (DA-AC) based on this estimator. We also introduced an improved critic learning up-
date, ICL, tailored to this new setting. We demonstrated that DA-AC achieves competitive perfor-
mance in diverse settings across continuous, discrete, and hybrid control.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underly-
ing action types. A key next step is to further exploit this reframing for new algorithmic avenues,
including model-based methods, hierarchical control, or novel hybrid approaches. There are also
key open questions around critic learning in this new framework. More advanced strategies for
training the distributions-as-actions critic could also be explored, including off-policy updates at
diverse regions of the parameter space or using a learned action-value function Qw(s, a) to guide
updates of Q̄w′(s, u). This will also open up new questions about convergence properties for these
new variants.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will provide a public code release covering DA-AC implementations
in all control settings. Comprehensive hyperparameter choices and environment configurations are
documented in Appendix D. All reported metrics are based on multiple random seeds, with un-
certainty quantified using 95% bootstrap confidence intervals. The repository will further include
instructions to reproduce our main experimental results.
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A RELATED WORKS

In this section, we provide an extended discussion of related work.

Value-based control When the action space is discrete, value-based algorithms are one of the
most commonly used approaches (Watkins & Dayan, 1992; Mnih et al., 2015; Van Hasselt et al.,
2016; Hessel et al., 2018). By learning an action-value function, these algorithms extract policies
using various greedy operators. While these methods have been effective in a wide range of dis-
crete control domains, their applications to continuous-action problems are limited, with only a few
exceptions (Seyde et al., 2023).

Policy-based discrete control Policy-based methods, including actor-critic algorithms, form
another important class of approaches for discrete control (Williams, 1992; Mnih et al., 2016). These
methods explicitly maintain a policy that outputs distribution parameters used to construct a policy
distribution from which actions are sampled. In the discrete case, these parameters correspond to
the logits of a categorical distribution. Beyond the likelihood-ratio (LR) policy gradient estimator
(Williams, 1992), Gumbel-Softmax (Jang et al., 2016) and Concrete distributions (Maddison et al.,
2016) provide reparameterization-based but biased gradient estimators. In contrast to these biased
estimators, our distributions-as-actions (DA) gradient estimator in Equation (11) can be viewed as
the first unbiased reparameterization (RP) estimator for discrete distributions.

Policy-based continuous control For continuous control, policy-based methods dominate the
literature (Van Hasselt & Wiering, 2007; Silver et al., 2014; Lillicrap et al., 2015; Schulman et al.,
2017; Haarnoja et al., 2018). The policy typically outputs the parameters of a parametric distribu-
tion. Gaussian policies are the most common choice (Lillicrap et al., 2015; Schulman et al., 2017;
Haarnoja et al., 2018), although many alternatives have been explored in different contexts (Chou
et al., 2017; Bedi et al., 2024; Zhu et al., 2025). Optimizing these policies using classical policy
gradient estimators (LR or RP) requires access either to an analytical log-density function or a repa-
rameterization function. In contrast, the DA gradient estimator in Equation (11) requires neither,
enabling application to a broader class of policies. Beyond parametric distributions, implicit poli-
cies built using more expressive generative models have also been studied (Haarnoja et al., 2017;
Messaoud et al., 2024). Our DA framework and estimator can be applied to these advanced policy
classes as well, which suggests an interesting direction for future work.

Policy-based continuous control with discretization Another line of work discretizes the con-
tinuous action space and then applies discrete-action control algorithms–often policy-based methods
due to the high dimensionality of action spaces (Tang & Agrawal, 2020; Seyde et al., 2021; Zhu et al.,
2024). While such approaches have shown strong benchmark performance, they may be undesirable
in practice because the resulting control can be less smooth and more unstable (Seyde et al., 2021),
and the method often requires additional tuning of the discretization granularity (Tang & Agrawal,
2020). In this work, we treat discretized continuous control problems primarily as a testbed for
high-dimensional discrete control. Thus, we do not extensively compare continuous- vs. discrete-
based methods for continuous control, as this is not our main focus. Nevertheless, we include such
a comparison in Figure 12 for reference.

Policy-based hybrid control Beyond purely discrete or continuous settings, many real-world
applications involve hybrid action spaces requiring the agent to control discrete and continuous
variables simultaneously (Masson et al., 2016; Xiong et al., 2018). These problems can often be
modeled as parameterized action MDPs (PAMDPs) (Masson et al., 2016), in which the agent selects
a discrete action and its associated continuous parameters. Most standard discrete and continuous
control algorithms are not directly applicable to PAMDPs and require additional adaptation or hy-
bridization to handle such action structures. For example, DDPG (Lillicrap et al., 2015) and PPO
(Schulman et al., 2017) have been modified to support hybrid actions (Hausknecht & Stone, 2015;
Fan et al., 2019), and combinations of DDPG and DQN (Mnih et al., 2015) have been explored
(Xiong et al., 2018; Fu et al., 2019). Unlike these methods, which patch together or retrofit existing
algorithms, our DA reframing directly converts hybrid control into a continuous control problem,
enabling a simple, unified algorithm applicable to PAMDPs and even more general hybrid settings.
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Representation-driven RL Different from the traditional policy optimization perspective used
in the methods above, representation-driven RL (RepRL) offers an alternative viewpoint (Nabati
et al., 2023). Instead of optimizing policy parameters θ by estimating gradients based on the values
of sampled state-action pairs, RepRL recasts the search for optimal θ as a linear bandit problem by
projecting θ into a lower-dimensional representation f(θ) and optimizing θ based on its expected
value over states. While our proposed DA framework also redraws the decision boundary, it does
so in a fundamentally different way. RepRL retreats the decision boundary all the way to a bandit
problem and, in some sense, treats even the policy network π as part of the environment. In contrast,
the DA framework only reframes the distribution parameters themselves as the decision variables,
viewing only the sampling function as part of the environment.

B EXTENDING EXISTING RL ALGORITHMS TO THE DA FRAMEWORK

While we have explored only one model-free actor-critic algorithm under the proposed distributions-
as-actions (DA) framework, many other algorithms in the classical RL literature can also be extended
to this setting. To facilitate future research, we outline several such directions below.

Entropy regularization Entropy regularization is a widely used mechanism for encouraging
exploration in RL, and incorporating it into the DA framework represents a promising avenue. We
discuss two potential approaches for adding entropy regularization to DA-AC. The first approach
is to augment the policy optimization objective (Equation (4)) with an entropy term. This requires
adding an entropy component to the policy gradient estimator (Equation (11)):

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)
∣∣
U=π̄θ(St)

+ αH(f(·|π̄θ(St))), (15)

where α is the entropy coefficient and H(f) denotes the entropy of distribution f . Optionally,
the critic may also incorporate entropy, yielding the Maximum Entropy RL formulation (MaxEnt;
Haarnoja et al., 2018). The standard MaxEnt critic update within the DA framework becomes

w← w + α
(
Rt+1 + γ

(
Q̄w(St+1, π̄θ(St+1)) + αH(f(·|π̄θ(St+1)))

)
− Q̄w(St, Ut)

)
∇Q̄w(St, Ut).

(16)

The second approach is specific to the MaxEnt setting and incorporates entropy directly into the
reward:

R′
t+1 = Rt+1 + αH(f(·|Ut)). (17)

Under this reward shaping, the optimization problem coincides with the MaxEnt objective (Haarnoja
et al., 2018). This method does not require modifying the actor or critic updates; only the reward
is transformed. The entropy can be computed analytically when available or estimated via samples
(e.g., using − log f(At|Ut)). Understanding the trade-offs between these alternatives is itself an
interesting open question.

Model-based planning algorithms Beyond model-free methods, model-based planning algo-
rithms can also be incorporated into the DA framework. A straightforward approach is to combine
traditional model-based algorithms operating on primitive actions with DA-based value estimation.
For example, in discrete-action environments, one could apply MCTS (Silver et al., 2016) over the
primitive discrete actions while using DA for the critic.

A potentially more compelling direction is to learn a model over the distribution parameters them-
selves. This would make it possible to apply continuous-action model-based planners–such as
continuous-action variants of MCTS (Yee et al., 2016), TD-MPC (Hansen et al., 2022), or model-
based reparameterization gradient methods (Zhang et al., 2023)–directly within the DA framework.

Incompatibility with discrete-structure-based algorithms Finally, by treating distribution pa-
rameters as actions, we may lose the ability to exploit certain convenient structures of the original
action space–particularly in discrete settings. While this choice allows the DA framework to remain
agnostic to the specifics of the primitive action space, it may still be desirable to leverage action
structure when beneficial. Hybrid approaches that combine DA with structure-aware algorithms,
such as integrating MCTS with DA-based value estimation, provide one promising path forward.
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C THEORETICAL ANALYSIS OF DA-PG

We provide the proofs of the theoretical results for the distributions-as-actions framework and
Distributions-as-Actions Policy Gradient (DA-PG) in the main text in Appendices C.1 and C.2.
In addition, we also extend a convergence proof of DPG from Xiong et al. (2022) to DA-PG in
Appendix C.3.

C.1 PROOFS OF THEORETICAL RESULTS IN SECTION 3

Assumption 3.1. The set U is compact. Moreover, when S or A is continuous, the corresponding
set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, v̄π̄(s) = vπ(s) and q̄π̄(s, u) = EA∼f(·|u)[qπ(s,A)].

Proof. Let π be the policy in the original MDP that first maps s to u = π̄(s) and then samples
A ∼ f(·|u). The state-value function v̄π̄(s) in the distributions-as-actions MDP is defined as:

v̄π̄(s) =

∞∑
k=0

Eπ̄
[
γkr̄(Sk, Uk) | S0 = s

]
,

where Uk = π̄(Sk). From Equation (8), r̄(s, u) = EA∼f(·|u)[r(s,A)]. Also, the transition
p̄(s′|s, u) = EA∼f(·|u)[p(s

′|s,A)]. Consider a trajectory S0, U0, S1, U1, . . . in the distributions-as-
actions MDP (DA-MDP). This corresponds to a trajectory S0, A0, S1, A1, . . . in the original MDP
where Ak ∼ f(·|Uk). The expected reward at time k in the DA-MDP, given Sk and Uk = π̄(Sk),
is r̄(Sk, π̄(Sk)) = EAk∼f(·|π̄(Sk))[r(Sk, Ak)]. The dynamics are also equivalent in expectation:
E[Sk+1|Sk, Uk] = ES′∼p̄(·|Sk,Uk)[S

′] = EAk∼f(·|Uk)[ES′∼p(·|Sk,Ak)[S
′]]. Thus, the sequence of

states and expected rewards generated under π̄ in the DA-MDP is identical in distribution to the
sequence of states and rewards under π in the original MDP. Therefore, v̄π̄(s) = vπ(s).

For the action-value function q̄π̄(s, u):

q̄π̄(s, u) = Eπ̄ [r̄(S0, U0) + γv̄π̄(S1) | S0 = s, U0 = u]

= r̄(s, u) + γES1∼p̄(·|s,u)[v̄π̄(S1)]

= EA∼f(·|u)[r(s,A)] + γEA∼f(·|u)
[
ES1∼p(·|s,A)[vπ(S1)]

]
(using v̄π̄ = vπ)

= EA∼f(·|u)
[
r(s,A) + γES1∼p(·|s,A)[vπ(S1)]

]
= EA∼f(·|u) [Eπ[R1 + γvπ(S1)|S0 = s,A0 = A]]

= EA∼f(·|u)[qπ(s,A)].

The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures
these expectations and value functions are well-defined.

C.2 PROOFS OF THEORETICAL RESULTS IN SECTION 4

Assumption 4.1. The functions π̄θ(s), f(a|u), and their derivatives are continuous with respect to
the variables u and θ. Moreover, when S orA is continuous, the functions p(s′|s, a), d0(s), r(s, a),
π̄θ(s), f(a|u), and their derivatives are also continuous with respect to s, s′, or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1,
the gradient of the objective function J(π̄θ) =

∑∞
t=0 Eπ̄ [γtRt+1] with respect to θ can be expressed

as
∇θJ(π̄θ) = Es∼dπ̄θ

[
∇θπ̄θ(s)

⊤∇uQ̄π̄θ
(s, u)|u=π̄θ(s)

]
,

where dπ̄θ
(s)

.
=

∑∞
t=0 Eπ̄θ

[γtI(St = s)] is the (discounted) occupancy measure under π̄θ.

Proof. This theorem results from applying the deterministic policy gradient (DPG) theorem to the
DA-MDP ⟨S,U , p̄, d0, r̄, γ⟩, where π̄θ : S → U acts as a deterministic policy. The objective
function is J(π̄θ) = ES0∼d0 [v̄π̄θ

(S0)].
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Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic
policy µθ : S → A, the policy gradient is:

∇θJ(µθ) = Es∼dµθ
[
∇θµθ(s)

⊤∇aqµθ
(s, a)

∣∣
a=µθ(s)

]
.

In our context:

• The policy in the DA-MDP is π̄θ(s).

• The action space is U , and actions are denoted by u.

• The critic q̄π̄θ
(s, u) is the action-value function in this DA-MDP.

• The state distribution dπ̄θ
(s) is the discounted state occupancy measure under policy π̄θ.

Assumptions 3.1 and 4.1 ensure that π̄θ(s) and q̄π̄θ
(s, u) are appropriately differentiable and that

the interchange of expectation and differentiation is valid. Substituting π̄θ for µθ and q̄π̄θ
for qµθ

yields the theorem’s result:

∇θJ(π̄θ) = Es∼dπ̄θ
[
∇θπ̄θ(s)

⊤∇uq̄π̄θ
(s, u)|u=π̄θ(s)

]
.

The notation ∇θπ̄θ(s)
⊤∇uq̄π̄θ

in the theorem statement implies the appropriate vector or matrix
product. If θ ∈ Rk and u ∈ Rm, then ∇θπ̄θ(s) is an m × k Jacobian, ∇uq̄π̄θ

is an m × 1 vector,
and the product (∇θπ̄θ(s))

⊤∇uq̄π̄θ
results in the k × 1 gradient vector for J(π̄θ).

Proposition 4.3. If U = A and f(· | u) is the Dirac delta distribution centered at u, then π̄θ and Q̄w

are equivalent to πθ and Qw, respectively. Consequently, the DA-PG gradient estimator becomes
equivalent to DPG:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇̂DPG

θ Ĵ(πθ;St).

Proof. The DA-PG gradient estimator is given by Equation (11):

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St).

Given the conditions:

1. U = A: The distribution-parameter space is the action space.

2. f(·|u) = δ(· − u): Sampling A ∼ f(·|u) yields A = u.

Under these conditions, π̄θ(St) outputs parameters U ∈ U , which are directly actions in A. Thus,
we can write πθ(St) = π̄θ(St), where πθ(St) ∈ A.

Next, consider the DA value function q̄π̄θ
(St, U). From Proposition 3.2, q̄π̄θ

(St, U) =
EA∼f(·|U)[qπθ

(St, A)]. Since f(A|U) = δ(A − U), the expectation becomes qπθ
(St, U). So,

q̄π̄θ
(St, U) = qπθ

(St, U), where U ∈ U = A.

This means the DA critic Q̄w(St, U) is estimating the action-value function qπθ
(St, U). Thus, we

can write Q̄w(St, U) = Qw(St, U), where U ∈ A.

Substituting these equivalences into the DA-PG gradient estimator:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπθ(St)

⊤∇AQw(St, A)|A=πθ(St).

This is precisely the DPG gradient estimator (Equation (6)). Thus, ∇̂DA-PG
θ Ĵ(π̄θ;St) =

∇̂DPG
θ Ĵ(πθ;St).

Proposition 4.4. Assume Qw = qπθ
in ∇̂LR

θ Ĵ(πθ;St, A) and Q̄w = q̄π̄θ
in ∇̂DA-PG

θ Ĵ(π̄θ;St). Then,

∇̂DA-PG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.

Further, if the expectation of the action-conditioned variance is greater than zero, then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)
.
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Proof. Proposition 3.2 states q̄π̄θ
(St, U) = EA∼f(·|U)[qπθ

(St, A)]. Given Q̄w = q̄π̄θ
and Qw =

qπθ
, this becomes Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)]. Note that Qw(St, A) and Q̄w(St, U) are

distinct critic functions. The use of w for both signifies that they are learned approximators. In
the context of this proof, we can think of Qw and Q̄w as separate approximators, each utilizing a
corresponding subset of w.

Starting with the DA-PG estimator (assuming continuous A; discrete case is analogous with sums):

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEA∼f(·|U)[Qw(St, A)]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(
∇U

∫
A
f(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
(∫

A
∇Uf(A|U)Qw(St, A) dA

)∣∣∣∣
U=π̄θ(St)

= ∇θπ̄θ(St)
⊤
∫
A
∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St)Qw(St, A) dA

=

∫
A
∇θf(A|π̄θ(St))Qw(St, A) dA.

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θf(A|π̄θ(St)) = ∇θπ̄θ(St)

⊤∇Uf(A|U)|U=π̄θ(St).

Using πθ(A|St) = f(A|π̄θ(St)) and the log-derivative trick, we can express the DA-PG estimator
as:

∇̂DA-PG
θ Ĵ(π̄θ;St) =

∫
A
∇θπθ(A|St)Qw(St, A) dA

=

∫
A
∇θ log πθ(A|St)πθ(A|St)Qw(St, A) dA

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)] .

The LR estimator is ∇̂LR
θ Ĵ(πθ;St, A) = ∇θ log πθ(A|St)(Qw(St, A)− V (St)). Its expectation is

EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
. The term involving the baseline V (St) vanishes in expectation:

EA∼πθ(·|St) [∇θ log πθ(A|St)V (St)] = V (St)EA∼πθ(·|St) [∇θ log πθ(A|St)]

= V (St)

∫
A
∇θπθ(A|St) dA

= V (St)∇θ

∫
A
πθ(A|St) dA = V (St)∇θ(1) = 0.

Thus, EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]

= EA∼πθ(·|St) [∇θ log πθ(A|St)Qw(St, A)]. This shows

∇̂DA-PG
θ Ĵ(π̄θ;St) = EA∼πθ(·|St)

[
∇̂LR

θ Ĵ(πθ;St, A)
]
.

For variance reduction, let X = ∇̂LR
θ Ĵ(πθ;St, A) and Y = ∇̂DA-PG

θ Ĵ(π̄θ;St). We have Y =
E[X|St, π̄θ(St)] (expectation over A). By the law of total variance: V(X) = E[V(X|St, π̄θ(St))]+
V(E[X|St, π̄θ(St)]). This translates to

V
(
∇̂LR

θ Ĵ(πθ;St, A)
)
= ESt

[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)]+ V

(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
VA

(
∇̂LR

θ Ĵ(πθ;St, A)
∣∣∣St)] > 0 (i.e., the action-conditioned variance is positive on aver-

age), then V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂LR

θ Ĵ(πθ;St, A)
)

.
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Proposition 4.5. Assume A is continuous, Qw = qπθ
in ∇̂RP

θ Ĵ(πθ;St, ϵ), and Q̄w = q̄π̄θ
in

∇̂DA-PG
θ Ĵ(π̄θ;St). Then,

∇̂DA-PG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.

Further, if the expectation of the noise-induced variance is greater than zero, then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
.

Proof. For the RP estimator, the action is generated as A = gθ(ϵ;St), where ϵ ∼ p(·). For con-
sistency with DA-PG notation, we can write A = g(ϵ;U), where U = π̄θ(St) ∈ U represents all
relevant learnable distribution parameters. Thus, the distribution f(·|U) of the random variable A is
induced by g(ϵ;U) with ϵ ∼ p(·).
Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value
functions, we have:

Q̄w(St, U) = EA∼f(·|U)[Qw(St, A)] = Eϵ∼p [Qw(St, g(ϵ; π̄θ(St)))] ,

where we use a change of variables to express the expectation in terms of the noise ϵ.

Now, we can express the DA-PG gradient as:

∇̂DA-PG
θ Ĵ(π̄θ;St) = ∇θπ̄θ(St)

⊤∇U Q̄w(St, U)|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤∇UEϵ∼p[Qw(St, g(ϵ;U))]|U=π̄θ(St)

= ∇θπ̄θ(St)
⊤Eϵ∼p

[
∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p

[
∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St)

]
= Eϵ∼p [∇θQw(St, g(ϵ; π̄θ(St)))] .

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows
from the chain rule, where∇θQw(St, g(ϵ; π̄θ(St))) = ∇θπ̄θ(St)

⊤∇UQw(St, g(ϵ;U))|U=π̄θ(St).

On the other hand, the RP gradient is:

∇̂RP
θ Ĵ(πθ;St, ϵ) = ∇θgθ(ϵ;St)

⊤∇AQw(St, A)|A=gθ(ϵ;St)

= ∇θg(ϵ; π̄θ(St))
⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St))

= ∇θQw(St, g(ϵ; π̄θ(St))),

where we use the chain rule again in the last equation: ∇θQw(St, g(ϵ; π̄θ(St))) =
∇θg(ϵ; π̄θ(St))

⊤∇AQw(St, A)|A=g(ϵ;π̄θ(St)). Thus, we have:

∇̂DA-PG
θ Ĵ(π̄θ;St) = Eϵ∼p

[
∇̂RP

θ Ĵ(πθ;St, ϵ)
]
.

The variance reduction argument is similar to that in Proposition 4.4. Let X = ∇̂RP
θ Ĵ(πθ;St, ϵ) and

Y = ∇̂DA-PG
θ Ĵ(π̄θ;St). We have Y = E[X|St, ϵ] (expectation over ϵ). By the law of total variance:

V(X) = E[V(X|St, ϵ)] + V(E[X|St, ϵ]). This translates to

V
(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)
= ESt

[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)]+ V

(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
.

If ESt
[
Vϵ

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
∣∣∣St)] > 0 (i.e., the noise-induced variance is positive on average), then

V
(
∇̂DA-PG

θ Ĵ(π̄θ;St)
)
< V

(
∇̂RP

θ Ĵ(πθ;St, ϵ)
)

.

C.3 CONVERGENCE ANALYSIS FOR DA-PG

We present a convergence result for the distributions-as-actions policy gradient (DA-PG), which
is a direct application of the convergence of the deterministic policy gradient (DPG; Xiong et al.,
2022). We assume an on-policy linear function approximation setting and use TD learning to learn
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Algorithm 1 DA-PG-TD

1: Input: αw, αθ, w0, θ0, batch size M .
2: for t = 0, 1, . . . , T do
3: for j = 0, 1, . . . ,M − 1 do
4: Sample st,j ∼ dθt .
5: Generate ut,j = π̄θt(st,j).
6: Sample st+1,j ∼ p̄(·|st,j , ut,j) and rt,j .
7: Generate ut+1,j = π̄θt(st+1,j).
8: Denote xt,j = (st,j , ut,j).
9: δt,j = rt,j + γϕ(xt+1,j)

⊤wt − ϕ(xt,j)
⊤wt.

10: end for
11: wt+1 = wt +

αw
M

∑M−1
j=0 δt,jϕ(xt,j).

12: for j = 0, 1, . . . ,M − 1 do
13: Sample s′t,j ∼ νθt .
14: end for
15: θt+1 = θt +

αθ
M

∑M−1
j=0 ∇θπ̄θt(s′t,j)∇θπ̄θt(s′t,j)⊤wt.

16: end for

the critic. See Algorithm 1 for the analyzed DA-PG-TD algorithm. We follow the notation of Xiong
et al. as much as possible for comparison with their results.

Following their notation, the parameterized policy is denoted as π̄θ and the objective function J(π̄θ)
(Equation (1)) is denoted as J(θ). The distributions-as-actions policy gradient is

∇θJ(θ) = Es∼νθ
[
∇θπ̄θ(s)∇uq̄π̄θ (s, u)|u=π̄θ(s)

]
, (18)

where νθ(s)
.
=

∑∞
t=0 Eπ̄θ [γtI(St = s)] is the discounted occupancy measure under π̄θ. We also

define the stationary distribution of π̄θ to be dθ(s) = limT→∞
1
T

∑T−1
t=0 Eπ̄θ [I(St = s)]. Under

linear function approximation for the critic function, the parameterized critic can be expressed as
Q̄w(s, u) = ϕ(s, u)⊤w, where ϕ : S × U → Rd is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the
convergence theorem. In addition, we incorporate the corrections to the result of Xiong et al. from
Vasan et al. (2024), which extends the result to the reparameterization policy gradient. Following
Vasan et al., the corrections are highlighted in red.

Assumption C.1. For any θ1, θ2, θ ∈ Rd, there exist positive constants Lπ̄, Lϕ and λΦ, such that (1)
∥π̄θ1(s)−π̄θ2(s)∥ ≤ Lπ̄∥θ1−θ2∥,∀s ∈ S; (2) ∥∇θπ̄θ1(s)−∇θπ̄θ2(s)∥ ≤ Lψ∥θ1−θ2∥,∀s ∈ S; (3)

the matrix Ψθ := Eνθ
[
∇θπ̄θ(s)∇θπ̄θ(s)⊤

]
is non-singular with the minimal eigenvalue uniformly

lower-bounded as σmin(Ψθ) ≥ λΨ.

Assumption C.2. For any u1, u2 ∈ U , there exist positive constants Lp̄, Lr̄, such that (1) the
distributions-as-actions transition kernel satisfies |p̄(s′|s, u1)− p̄(s′|s, u2)| ≤ Lp̄∥u1−u2∥,∀s, s′ ∈
S; (2) the distributions-as-actions reward function satisfies |r̄(s, u1) − r̄(s, u2)| ≤ Lr̄∥u1 −
u2∥,∀s, s′ ∈ S.

Assumption C.3. For any u1, u2 ∈ U , there exists a positive constant Lq̄ , such that ∥∇uq̄π̄θ (s, u1)−
∇uq̄π̄θ (s, u2)∥ ≤ Lq̄∥u1 − u2∥,∀θ ∈ Rd, s ∈ S.

Assumption C.4. The feature function ϕ : S × U → Rd is uniformly bounded, i.e., ∥ϕ(·, ·)∥ ≤ Cϕ
for some positive constant Cϕ. In addition, we define A = Edθ

[
ϕ(x)(γϕ(x′)− ϕ(x))⊤

]
and D =

Edθ
[
ϕ(x)ϕ(x)⊤

]
, and assume that A and D are non-singular. We further assume that the absolute

value of the eigenvalues of A are uniformly lower bounded, i.e., |σ(A)| ≥ λA for some positive
constant λA.

Proposition C.5 (Compatible function approximation). A function estimator Q̄w(s, u) is compatible
with a policy π̄θ, i.e., ∇J(θ) = Eνθ

[
∇θπ̄θ(s)∇uQ̄w(s, u)|u=π̄θ(s)

]
, if it satisfies the following two

conditions:

1. ∇uQ̄w(s, u)|u=π̄θ(s) = ∇θπ̄θ(s)⊤w;
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2. w = w∗
ξθ

minimizes the mean square error Eνθ
[
ξ(s; θ, w)⊤ξ(s; θ, w)

]
, where ξ(s; θ, w)=

∇uQ̄w(s, u)|u=π̄θ(s)−∇uq̄π̄θ (s, u)|u=π̄θ(s).

Given the above assumption, one can show that the distributions-as-actions policy gradient is smooth
(Lemma C.6), and that Algorithm 1 converges (Theorem C.7).
Lemma C.6. Suppose Assumptions C.1-C.3 hold. Then the distributions-as-actions policy gradient
∇J(θ) defined in Equation (18) is Lipschitz continuous with the parameter LJ , i.e., ∀θ1, θ2 ∈ Rd,

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ∥θ1 − θ2∥, (19)

where LJ=
(

1
2Lp̄L

2
π̄LνCν+

Lψ
1−γ

)(
Lr̄+

γRmaxLp̄
1−γ

)
+ Lπ̄

1−γ

(
Lq̄Lπ̄+

γ
2L

2
p̄RmaxLπ̄Cν+

γLp̄Lr̄Lπ̄
1−γ

)
.

Theorem C.7. Suppose that Assumptions C.1-C.4 hold. Let αw ≤ λ
2C2

A
;M ≥ 48αwC

2
A

λ ;αθ ≤

min
{

1
4LJ

, λαw
24

√
6LhLw

}
. Then the output of DA-PG-TD in Algorithm 1 satisfies

min
t∈[T ]

E∥∇J(θt)∥2 ≤
c1
T

+
c2
M

+ c3κ
2,

where c1 = 8Rmax

αθ(1−γ) +
144L2

h

λαw
∥w0−w∗

θ0
∥2, c2 =

[
48α2

w(C
2
AC

2
w + C2

b ) +
96L2

wL
4
π̄C

2
wξ
α2
θ

λαw

]
· 144L

2
h

λαw
+

72L4
π̄C

2
wξ

, c3 = 18L2
h +

[
24L2

wL
2
hα

2
θ

λαw
+ 24

λαw

]
· 144L

2
h

λαw
with CA = 2C2

ϕ, Cb = RmaxCϕ, Cw =

RmaxCϕ
λA

, Cwξ =
Lπ̄Cq̄

λΨ(1−γ) , Lw = LJ
λΨ

+
Lπ̄Cq̄

λ2
Ψ(1−γ)

(
L2
π̄Lν +

2Lπ̄Lψ
1−γ

)
, Lh = L2

π̄, Cq̄ = Lr̄ + Lp̄ ·
γRmax

1−γ , Lν = 1
2CνLp̄Lπ̄ , and LJ defined in Lemma C.6, and we define

κ := max
θ
∥w∗

θ − w∗
ξθ
∥. (20)

Remark C.8. Apart from the corrections highlighted in red, the convergence result retains the same
mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). How-
ever, the associated constants differ, as they are defined with respect to the distributions-as-actions
formulations of the MDP, policy, and critic. Notably, the distributions-as-actions policy class strictly
generalizes the deterministic policy class. Consequently, this convergence result constitutes a strict
generalization of the DPG convergence result.

The proofs of Lemma C.6 and Theorem C.7 follow the same lines as that of Lemma 1 and Theorem
1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for
details about the corrections.
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D EXPERIMENTAL DETAILS

Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL
(Huang et al., 2022), distributed under the MIT license. The source code is currently being cleaned
up and will be open-sourced following paper acceptance.

Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95%
bootstrap confidence intervals (CIs) for reporting the statistical significance whenever applicable, as
recommended by Patterson et al. (2024). We use scipy.stats.bootstrap with 10, 000 resamples from
SciPy to calculate the bootstrap CIs. For all bar plots, we plot the final performance, which is
computed using the average of the return collected during the final 10% training steps.

D.1 POLICY PARAMETERIZATION AND ACTION SAMPLING

When the action space is multidimensional, we treat each dimension independently. For simplicity,
our exposition will focus on the unidimensional case in the remaining of the paper.

Discrete action spaces We use the categorical policy parameterization: A ∼
f(·|[p1, · · · , pN ]⊤), where f(x|[p1, · · · , pN ]⊤) =

∏N
i=1 p

I(x=i)
i is the probability mass function

for the categorical distribution. For DA-AC, we choose the probability vector u = [p1, · · · , pN ]⊤

as the distribution parameters. We define the distribution parameters corresponding to an action A
to be the one-hot vector UA = one hot(A).

Continuous action spaces Assume the action space is [amin, amax]. We use the Gaussian policy
parameterization that is used in TD3: A = clip(µ+ ϵ, amin, amax), ϵ ∼ N (0, σ). Same as TD3, we
restrict the mean µ to be within [amin, amax] using a squashing function:

µ =
uµ + 1

2
(amax − amin) + amin, uµ = tanh(logitµ),

where logitµ ∈ R is the actor network’s output for µ. While TD3 uses a fixed σTD3 = 0.1 ∗
amax−amin

2 , we allow the learnable standard deviation to be within a range σ ∈ [σmin, σmax]:

log σ =
uσ + 1

2
∗ (log σmax − log σmin) + log σmin, uσ = tanh(logitσ),

where logitσ ∈ R is the actor network’s output for σ. For RP-AC, the reparameterization function
is gθ(ϵ;St) = clip(µθ(St) + σθ(St)ϵ, amin, amax), ϵ ∼ N (0, 1). For DA-AC, we choose the distri-
bution parameters to be u = [uµ, uσ]

⊤ ∈ [−1, 1]2 so that the parameter space is consistent across
the mean and standard deviation dimensions. Since we lower bound the standard deviation space
to encourage exploration, we define the distribution parameters corresponding to an action A to be
UA = [ 2A

amax−amin
,−1]⊤ to approximate the Dirac delta distribution, which corresponds to µ = A

and σ = σmin.

Hybrid action spaces For environments with hybrid action spaces, DA-AC simply uses the
policy parameterizations described above for the corresponding discrete and continuous parts.

D.2 POLICY EVALUATION IN BANDITS

K-Armed Bandit We use a K-armed bandit with K = 3 and a deterministic reward function:

r(a1) = 0, r(a2) = 0.5, r(a3) = 1.

Bimodal Continuous Bandit We use a continuous bandit with a bimodal reward function that
is deterministic. Specifically, the reward function is the normalized summation of two Gaussians’
density functions whose standard deviations are both 0.5 and whose means are −1 and 1, respec-
tively:

r(a) = e−
(a+1)2

0.5 + e−
(a−1)2

0.5 .

We restrict the action space to be [amin, amax] = [−2, 2]. The standard standard deviation is con-
strained to [σmin, σmax] = [e−3, e].
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Figure 9: Learning curves of DA-AC, DA-AC w/o ICL, and baselines on the K-Armed Bandit
(col 1) and Bimodal Continuous Bandit (col 2) tasks. Results are averaged over 50 seeds. Shaded
regions show 95% bootstrap CIs. ICL substantially improves DA-AC’s performance, enabling it to
match LR-AC and RP-AC in these simple settings.

Critic network architecture To be consistent with the RL settings, we use the same critic
network architecture as those in Appendices D.4 and D.6. Specifically, we use a two-layer MLP
network with the concatenated state and action vector as input. We reduce the hidden size from 256
to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the
distributions-as-actions critic function for 2000 steps using either Equation (12) or Equation (14). In
K-Armed Bandit, the PE policy is π̄PE = uPE = [1/3, 1/3, 1/3]; in Bimodal Continuous Bandit, the
PE policy is π̄PE = uPE = [0, 0.5] (corresponding to µ = 0 and log σ = 0.0). The hyperparameters
are the same as those of DA-AC in Table 3, except that the actor is kept fixed to the corresponding
PE policy.

D.3 POLICY OPTIMIZATION IN BANDITS

Environments We use the same K-Armed Bandit and Bimodal Continuous Bandit environ-
ments as Appendix D.2.

Algorithms In addition to DA-AC and DA-AC w/o ICL, we also include LR-AC and RP-AC
as a reference, as they should be quite effective in these settings because of a much simpler critic
function. Note that our goal is not to show that DA-AC can outperform other baselines in these
toy settings, but rather to illustrate how ICL substantially improves critic learning in DA-AC. Here,
LR-AC uses the average of the action values as the baseline. We also include LR-PG, RP-PG, and
DA-PG, variants of LR-AC, RP-AC, and DA-AC that have access to their corresponding true value
functions to remove the confounding factor of learning the critic.

Experimental Details We use the same critic network architecture as in Appendix D.2. Simi-
larly, we use the same actor network architecture as those in Appendices D.4 and D.6. Specifically,
we use a two-layer MLP network with the state vector as input. We reduce the hidden size from
256 to 16 and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For
LR-PG, RP-PG, and DA-PG, the critic function is calculated analytically; otherwise, their hyperpa-
rameters are the same as their counterparts with a learned critic function. See Figure 9 for learning
curves.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms
for a more controlled comparison in Section 5.5, we note that interpolated critic learning (ICL) also
improves the performance of DA-AC under other learning rates. Apart from 0.01, we report the
results with learning rates 0.001 and 0.1 in Figure 10.

D.4 CONTINUOUS CONTROL

Environments From OpenAI Gym MuJoCo, we use the most commonly used 5 environments
(see Table 1). From DeepMind Control Suite, we use the same 15 environments as D’Oro et al.
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Figure 10: Learning curves of DA-AC, DA-AC w/o ICL, and baselines using learning rates 0.001
(cols 1–2) and 0.1 (cols 3–4). Results are averaged over 50 seeds. Shaded regions show 95%
bootstrap CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal
points for most algorithms. Consistent with Figure 9, ICL demonstrates improved performance for
DA-AC when a more conservative learning rate is employed.
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Figure 11: Average normalized returns with and without actor target network (ATN) on Mu-
JoCo (col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10
(DMC) tasks. Error bars show 95% bootstrap CIs.

(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep
RL algorithms. The full list of environments and their corresponding observation and action space
dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by
the maximum possible return for a given task. In DMC environments, the maximum return is 1000
(Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on
the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4,
7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DA-AC and RP-AC also adopt a uniform exploration
phase. During the uniform exploration phase, the distribution parameters u = [uµ, uσ]

⊤ are uni-
formly sampled from [−1, 1]2. These three algorithms use the default hyperparameters of TD3 (see
Table 4). For SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), we use the implementa-
tions and tuned hyperparameters in CleanRL (Huang et al., 2022). See Figure 13 for learning curves
in each individual environment.
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Figure 12: Relative final performance of DA-AC with continuous actions versus with discrete
actions across 20 individual control tasks. Results are averaged over 10 seeds per task.
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Impact of the actor target network We also investigate the impact of using an actor target
network (ATN) in DA-AC and the baselines. While TD3 already employs an ATN, both DA-AC and
RP-AC do not. We additionally test DA-AC w/ ATN and RP-AC w/ ATN and TD3 w/o ATN. From
Figure 11, we can see that the actor target network does not have a significant impact in general.

D.5 DISCRETE CONTROL

Environments We use the same 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar
(Young & Tian, 2019) environments as in Ceron & Castro (2021).

Experimental details for Gym environments We use the existing implementations and tuned
hyperparameters of DQN (Mnih et al., 2015) and PPO in CleanRL (Tables 8 and 10). For DA-AC,
ST-AC, LR-AC, and EAC, we adjust relevant off-policy training hyperparameters based on those of
DQN, including batch size, gradient steps per step, network size, replay buffer size. We also disables
double Q-networks to better align with DQN. See Table 5 for the updated parameters from Table 4.
We use a similar setup for Discrete SAC (DSAC; Christodoulou, 2019), as shown in the same table.
The learning curves can be found in Figure 14.

Experimental details for MinAtar environments The MinAtar setups for DQN and PPO are
adopted from their implementations and tuned hyperparameters for Atari (Bellemare et al., 2013)
in CleanRL (Tables 9 and 11). Similar to the above, we adjust relevant off-policy training hyperpa-
rameters based on DQN for DA-AC, ST-AC, LR-AC, and EAC (Table 6). We use a similar setup
for DSAC but decrease its uniform exploration steps according to its hyperparameters for Atari in
CleanRL (Table 6). For consistency, we use the same critic network for DA-AC, ST-AC, LR-AC,
EAC, and DSAC, which takes actions as input. The learning curves can be found in Figure 14.

Joint encoding of CNN observation features and actions While concatenation is used for joint
encoding of observations and actions for state-based observations in MuJoCo/DMC/Gym environ-
ments, it might not be efficient for encoding latent features and actions (Schlegel et al., 2023).
Inspired by Schlegel et al., we use the flattened outer product of the CNN observation features (with
a dimension of 128) and the vectorized action representations (with a dimension of |A|) as the joint
encoding. The action representations are the action probabilities for DA-AC, while they are one-hot
embedding of actions for other algorithms. We then use an additional hidden layer with a small
number of hidden units (8 in MinAtar) with negligible overhead to extract higher-level features.

D.6 HIGH-DIMENSIONAL DISCRETE CONTROL

Details We use the same 20 environments as Appendix D.4. Similar to the continuous control
case, we also include a uninform exploration phase for all discrete control algorithms. For LR-AC
and ST-AC, the action is randomly sampled from a uniform categorical distribution. For DA-AC, the
logits of the distribution parameters (in this case, the probability vector) are sampled fromN (0, 1)N ,
where N is the number of possible discrete outcomes. All algorithms use the default hyperparame-
ters of TD3 (see Table 4). See Figure 15 for learning curves in each individual environment.

Comparison to continuous control We plot the relative final performance of DA-AC with
continuous actions versus with discrete actions in Figure 12. We can see that the performance of
DA-AC with discrete actions can often compete with DA-AC with continuous actions.

D.7 HYBRID CONTROL

Environments We use 7 parameterized-action MDP (PAMDP; Masson et al., 2016) environ-
ments from Li et al. (2021). Please see their Appendix B.1 for the descriptions of the environments.

Experimental details Contrary to other settings, which report training episodes’ return, we
report performance in evaluation phases following Li et al.. During evaluation phases, DA-AC uses
discrete actions with the highest probability for the discrete components and mean actions for the
continuous components. We use the implementations provided by Li et al. for baselines, including
PADDPG (Hausknecht & Stone, 2015), PDQN (Xiong et al., 2018), and (Fu et al., 2019). All
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the baselines incorporate clipped double Q-learning from TD3, with PADDPG renamed to PATD3.
The hyperparameters of DA-AC are made aligned with the baselines (Table 12). Since PDQN uses
per-environment tuned γ in Li et al., our results are slightly different than theirs as we use a fixed
γ = 0.99 for PDQN to be consistent with other algorithms. Learning curves can be found in
Figure 16.

D.8 COMPUTATIONAL RESOURCE REQUIREMENT

All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core
Processor. Each training run was executed using a single CPU core and consumed less than 256MB
of RAM. Most runs completed 2000 training steps within 10 seconds.

All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were
equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell
@ 2.1GHz, Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @
2.4GHz. Each training run was executed using a single CPU core and consumed less than 2GB of
RAM. The training duration varied considerably across environments, primarily influenced by the
dimensionality of the observation space, the complexity of the physics simulation, and, in the case
of discrete action spaces, the dimensionality of the action space. Most algorithms typically com-
pleted 1 million training steps in approximately 7 hours per run. However, LR-AC required a longer
training period of roughly 9 hours due to the additional computational overhead of learning an extra
neural network.

Table 1: Observation and action dimensions of OpenAI Gym MuJoCo environments.

Environment Observation dimension Action dimension
Hopper-v3 11 3
Walker2d-v3 17 6
HalfCheetah-v3 17 6
Ant-v3 27 8
Humanoid-v3 376 17

Table 2: Observation and action dimensions of DeepMind Control Suite environments.

Domain Task(s) Observation dimension Action dimension
pendulum swingup 3 1
acrobot swingup 6 1
reacher hard 6 2
finger turn hard 12 2
hopper stand, hop 15 4
fish swim 24 5
swimmer swimmer6 25 5
cheetah run 17 6
walker run 24 6
quadruped walk, run 58 12
humanoid stand, walk, run 67 24

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E HYPERPARAMETERS

Table 3: Hyperparameters for both continuous (col 3) and discrete (col 2) bandits that are different
from Table 4. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respec-
tively. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC uses the same hyperparameters
as DA-AC (D).

Hyperparameter DA-AC (D) DA-AC (C)

Batch size 8
Learning rate (actor / critic) 0.01

Neurons per hidden layer (16, 16)
Discount factor (γ) N/A
Replay buffer size 2000

Policy update delay (Nd) 1
Uniform exploration steps N/A
Learnable σ range ([σmin, σmax]) N/A [e−3, e]

Table 4: Hyperparameters of actor-critic algorithms for both MuJoCo/DMC continuous (cols 3–5)
and discrete (col 2) control environments. DA-AC is applied to both settings, denoted as DA-AC
(C) and DA-AC (D), respectively. For simplicity, we assume [amin, amax] = [−1, 1] for continuous
control algorithms. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC and ST-AC use
the same hyperparameters as DA-AC (D).

Hyperparameter DA-AC (D) DA-AC (C) TD3 SAC

Batch size 256
Optimizer Adam
Learning rate (actor / critic) 0.0003 0.0003 / 0.001
Target network update rate (τ ) 0.005
Gradient steps per env step 1
Number of hidden layers 2
Neurons per hidden layer (256, 256)
Activation function ReLU
Discount factor (γ) 0.99
Replay buffer size 1× 106

Policy update delay (Nd) 2
Uniform exploration steps 25, 000 5, 000

Learnable σ range ([σmin, σmax]) N/A [0.05, 0.2] N/A N/A
Target entropy N/A |A|
Target policy noise clip (c) N/A 0.5 N/A
Target policy noise (σ̃TD3) N/A 0.2 N/A
Exploration policy noise (σTD3) N/A 0.1 N/A

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters of actor-critic algorithms for Gym environments that are different from
Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter DA-AC DSAC

Batch size 128
Learning rate (actor / critic) 0.0003

Target network update rate (τ ) 0.01
Gradient steps per env step 1 (every 10 env steps)
Neurons per hidden layer (120, 84)
Replay buffer size 1× 104

Policy update delay (Nd) 1
Uniform exploration steps 12, 500 2, 500

Target entropy N/A 0.89|A|

Table 6: Hyperparameters of actor-critic algorithms for MinAtar environments that are different
from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter DA-AC DSAC

Batch size 32
Learning rate (actor / critic) 0.0003

Gradient steps per env step 1 (every 4 env steps)
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 2
Neurons per MLP layer (128, 8)
Replay buffer size 1× 105

Policy update delay (Nd) 1
Uniform exploration steps 50, 000 4, 000

Target entropy N/A 0.89|A|
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Table 7: Hyperparameters of PPO in MuJoCo/DMC continuous- and discrete-control environments.

Hyperparameter PPO

Optimizer Adam
Learning rate (actor / critic) 3× 10−4

Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Rollout length (timesteps per update) 2048
Minibatch size 32
Number of epochs per update 10
Number of hidden layers 2
Neurons per hidden layer (64, 64)
Activation function Tanh
Clipping parameter (ϵ) 0.2
Entropy coefficient 0.0
Value loss coefficient 0.5
Max grad norm 0.5
Reward normalization Enabled
Observation normalization Enabled
Learning rate schedule Linear decay

Table 8: Hyperparameters of PPO in Gym environments that are different from Table 7.

Hyperparameter PPO

Rollout length (timesteps per update) 128
Number of epochs per update 4

Table 9: Hyperparameters of PPO in MinAtar environments that are different from Table 7. Since
MinAtar already normalizes the observations and rewards, we disable the normalization wrappers.

Hyperparameter PPO

Learning rate (actor / critic) 2.5× 10−4

Rollout length (timesteps per update) 128
Number of epochs per update 4
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Activation function ReLU
Entropy coefficient 0.01
Reward normalization Disable
Observation normalization Disable
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Table 10: Hyperparameters of DQN in Gym environments.

Hyperparameter DQN

Batch size 128
Optimizer Adam
Learning rate 2.5× 10−4

Discount factor (γ) 0.99
Hard target network update Every 500 env steps
Gradient steps per env step 1 (every 10 env steps)
Number of hidden layers 2
Neurons per hidden layer (120, 84)
Activation function ReLU
Replay buffer size 1× 104

Min replay size before learning 10,000

Linear ε-greedy range 1.0→ 0.05

Linear ε-greedy steps 2.5× 105

Table 11: Hyperparameters of DQN in MinAtar environments.

Hyperparameter DQN

Batch size 32
Learning rate 1× 10−4

Hard target network update Every 1000 env steps
Gradient steps per env step 1 (every 4 env steps)
Number of Conv. layers 1
Conv. channels 16
Conv. filter size 3
Conv. stride 1
Number of MLP layers 1
Neurons per MLP layer (128,)
Replay buffer size 1× 105

Min replay size before learning 40,000

Linear ε-greedy range 1.0→ 0.01

Linear ε-greedy steps 5× 105
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Table 12: Hyperparameters of actor-critic algorithms for PAMDP environments.

Hyperparameter DA-AC PATD3 HHQN PDQN

Batch size 128
Optimizer Adam
Learning rate (actor / critic) 0.0003 0.0001 / 0.001
Target network update rate (τ ) 0.005 0.001 / 0.01
Gradient steps per env step 1
Number of hidden layers 2
Neurons per hidden layer (256, 256)
Activation function ReLU
Discount factor (γ) 0.99
Replay buffer size 1× 105

Policy update delay (Nd) 2
Uniform exploration steps 5, 000 N/A
Learnable σ range ([σmin, σmax]) [0.05, 0.2] N/A
Target policy noise clip (c) N/A 0.5 N/A
Target policy noise (σ̃TD3) N/A 0.2 N/A
Exploration policy noise (σTD3) N/A 0.1 N/A
Ornstein-Uhlenbeck noise N/A Enable
Linear ε-greedy range N/A 1.0→ 0.01

Linear ε-greedy steps N/A 1× 103

Max grad norm N/A 0.5
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F ADDITIONAL PLOTS
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Figure 13: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 continuous control
tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.
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Figure 14: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 4 Gym and 5 MinAtar
discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.
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Figure 15: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 MuJoCo/DMC
discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.
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Figure 16: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 7 hybrid control tasks.
Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.
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G PSEUDOCODE

G.1 DA-AC: DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Algorithm 2 DA-AC for diverse action spaces

Input action sampling function f : U → ∆(A) (see Appendix D.1 for f in different settings)
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ f(·|Ut) with Ut = π̄θ(St), observe Rt+1, St+1

Add ⟨St, Ut, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Û = ωU + (1− ω)UA, ω ∼ Uniform[0, 1], for each transition ⟨S,U,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt

(
R+ γminj∈{1,2} Qw̄j (S

′, π̄θ(S
′))−Qwi(S, Û)

)
∇Qwi(S, Û)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπ̄θ(S)
⊤∇ŨQw1(S, Ũ)|Ũ=π̄θ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

G.2 TD3: TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT

Algorithm 3 TD3 for continuous action spaces

Input exploration noise σTD3, target policy noise σ̃TD3, target noise clipping c
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, θ̄ ← θ, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = πθ(St) + ϵ, ϵ ∼ N (0, σTD3), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = πθ̄(S

′) + ϵ, ϵ ∼ clip(N (0, σ̃TD3),−c, c), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θπθ(S)
⊤∇ÃQw1(S, Ã)|Ã=πθ(S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i, θ̄ ← τθ + (1− τ)θ̄

end if
end for
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G.3 RP-AC: ACTOR-CRITIC WITH THE REPARAMETERIZATION (RP) ESTIMATOR

Algorithm 4 RP-AC for continuous action spaces

Input reparameterization function gθ : S × R→ A (for Gaussian policies, see Appendix D.1)
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At = gθ(ϵ;St), ϵ ∼ N (0, 1), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ = gθ(ϵ;S

′), ϵ ∼ N (0, 1), for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample ϵ ∼ N (0, 1) for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θgθ(ϵ;S)
⊤∇ÃQw1

(S, Ã)|Ã=gθ(ϵ;S)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

G.4 ST-AC: ACTOR-CRITIC WITH THE STRAIGHT-THROUGH (ST) ESTIMATOR

Algorithm 5 ST-AC for discrete action spaces

Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B

Use the straight-through trick to compute Ãθ = one hot(Ã) + πθ(·|S)− πϕ(·|S)|ϕ=θ

Update policy on B:

θ ← θ − αt∇θπθ(·|S)⊤∇ÃQw1(S, Ã)|Ã=Ãθ

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for
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G.5 LR-AC: ACTOR-CRITIC WITH THE LIKELIHOOD-RATIO (LR) ESTIMATOR

Algorithm 6 LR-AC for discrete action spaces

Initialize parameters w1,w2,θ, v, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Ã ∼ πθ(·|S) and A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

v← v + αt

(
Qw1

(S, Ã)− Vv(S)
)
∇Vv(S)

if t ≡ 0 (mod Nd) then
Sample Ã ∼ πθ(·|S), for each transition ⟨S,A, S′, R⟩ in B
Update policy on B:

θ ← θ − αt∇θ log πθ(Ã|S)
(
Qw1

(S, Ã)− Vv(S)
)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for

G.6 EAC: ACTOR-CRITIC WITH THE EXPECTED POLICY GRADIENT ESTIMATOR

Algorithm 7 EAC for discrete action spaces

Initialize parameters w1,w2, v, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

for t = 1 to T do
Take action At ∼ πθ(·|St), and observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Sample a mini-batch B from buffer B
Sample Ã ∼ πθ(·|S) and A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update critics on B:

wi ← wi + αt
(
R+ γminj∈{1,2} Qw̄j (S

′, A′)−Qwi(S,A)
)
∇Qwi(S,A)

if t ≡ 0 (mod Nd) then
Update policy on B:

θ ← θ − αt∇θ

∑
a∈A

πθ(a|S)Qw1(S, a)

Update target network weights:

w̄i ← τwi + (1− τ)w̄i

end if
end for
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H USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in a strictly auxiliary capacity during the prepa-
ration of this paper. Their use was limited to two areas: (1) assisting with writing refinement by
improving readability, grammar, and conciseness, without contributing to the technical content or
conceptual development; and (2) supporting workflow tasks such as drafting or adjusting scripts
for data processing and figure generation, with all outputs carefully reviewed and corrected by the
authors. LLMs were not used for generating research ideas, conducting literature searches, or pro-
ducing original technical material. Their involvement was confined to polishing communication and
light implementation support.
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