DISTRIBUTIONS AS ACTIONS: A UNIFIED FRAME-WORK FOR DIVERSE ACTION SPACES

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a novel reinforcement learning (RL) framework that treats parameterized action distributions as actions, redefining the boundary between agent and environment. This reparameterization makes the new action space continuous, regardless of the original action type (discrete, continuous, hybrid, etc.). Under this new parameterization, we develop a generalized deterministic policy gradient estimator, *Distributions-as-Actions Policy Gradient* (DA-PG), which has lower variance than the gradient in the original action space. Although learning the critic over distribution parameters poses new challenges, we introduce *interpolated critic learning* (ICL), a simple yet effective strategy to enhance learning, supported by insights from bandit settings. Building on TD3, a strong baseline for continuous control, we propose a practical actor-critic algorithm, *Distributions-as-Actions Actor-Critic* (DA-AC). Empirically, DA-AC achieves competitive performance in various settings across discrete, continuous, and hybrid control.

1 Introduction

Reinforcement learning (RL) algorithms are commonly categorized into value-based and policy-based methods. Value-based methods, such as Q-learning (Watkins & Dayan, 1992) and its variants like DQN (Mnih et al., 2015), are particularly effective in discrete action spaces due to the feasibility of enumerating and comparing action values. In contrast, policy-based methods are typically used for continuous actions, though they can be used for both discrete and continuous action spaces (Williams, 1992; Sutton et al., 1999).

Policy-based methods are typically built around the policy gradient theorem (Sutton et al., 1999), with different approaches to estimate this gradient. The likelihood-ratio (LR) estimator can be applied to arbitrary action distributions, including discrete ones. In continuous action spaces, one can alternatively compute gradients via the action-value function (the critic), leveraging its differentiability with respect to actions. This idea underlies the deterministic policy gradient (DPG) algorithms (Silver et al., 2014) and the use of the reparameterization (RP) trick for stochastic policies (Heess et al., 2015; Haarnoja et al., 2018). These approaches can produce lower-variance gradient estimates by backpropagating through the critic and the policy (Xu et al., 2019).

Despite the flexibility of policy gradient methods, current algorithms remain tightly coupled to the structure of the action space. In particular, different estimators and architectures are often required for discrete versus continuous actions, making it difficult to design unified algorithms that generalize across domains. Although the LR estimator is always applicable, it often requires different critic architectures for different action spaces and carefully designed baselines to manage high variance, especially in continuous or high-dimensional action spaces.

In this paper, we introduce the *distributions-as-actions framework*, an alternative to the classical RL formulation that treats the parameters of parameterized distributions as actions. For a Gaussian policy, for example, the distribution parameters are the mean and variance, and for a softmax policy, the distribution parameters are the probability values. The RL agent outputs these distribution parameters to the environment, and the sampling of the action is now part of the stochastic transition in the environment. Distribution parameters are typically continuous, even if the actions are discrete, hybrid or structured. By shifting this agent-environment boundary, therefore, we can develop one continuous-action algorithm for a diverse class of action spaces.

To develop algorithms under the new framework, we first propose the *Distributions-as-Actions Policy Gradient* (DA-PG) estimator, and prove it has lower variance than the corresponding update in the original action space. This reduction in variance can increase the bias, because the critic can be harder to learn. We develop an augmentation approach, called *interpolated critic learning* (ICL), to improve this critic learning. We then introduce a deep RL algorithm based on TD3 (Fujimoto et al., 2018), called *Distributions-as-Actions Actor-Critic* (DA-AC), that incorporates the DA-PG estimator and ICL. We evaluate DA-AC empirically to assess the viability of this new framework and the ability to use one algorithm for diverse action spaces. DA-AC achieves competitive and sometimes better performance compared to baselines in a variety of settings across continuous, discrete, and hybrid control. We also provide targeted experiments to understand the bias-variance trade-off in DA-AC, and show the utility of ICL for improving critic learning.

2 PROBLEM FORMULATION

We consider a Markov decision process (MDP) $\langle \mathcal{S}, \mathcal{A}, p, d_0, r, \gamma \rangle$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $p: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ is the transition function, $d_0 \in \Delta(\mathcal{S})$ is the initial state distribution, $r: \mathcal{S} \times \mathcal{A} \to \Delta(\mathbb{R})$ is the reward function, and γ is the discount factor. Here, $\Delta(\mathcal{X})$ denotes the set of distributions over a set \mathcal{X} . In this paper, we consider \mathcal{A} to be either discrete or continuous. We use $\pi(a|s)$ to represent the probability of taking action $a \in \mathcal{A}$ under state $s \in \mathcal{S}$ for policy π . The goal of the agent is to find a policy π under which the below objective is maximized:

$$J(\pi) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{S_0 \sim d_0, A_t \sim \pi(\cdot \mid S_t), S_{t+1} \sim p(\cdot \mid S_t, A_t)} \left[\gamma^t R_{t+1} \right] = \sum_{t=0}^{\infty} \mathbb{E}_{\pi} \left[\gamma^t R_{t+1} \right], \tag{1}$$

where the second formula uses simplified notation that we follow in the rest of the paper. The (state-)value function and action-value function of the policy are defined as follows:

$$v_{\pi}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\pi} \left[\gamma^{t} R_{t+1} | S_{0} = s \right], \quad q_{\pi}(s, a) \doteq \mathbb{E}_{\pi} \left[R_{1} + \gamma v_{\pi}(S_{1}) | S_{0} = s, A_{0} = a \right].$$
 (2)

In this paper, we consider actor-critic methods that learns a parameterized policy, denoted by π_{θ} , and a parameterized action-value function, denoted by $Q_{\mathbf{w}}$. Given a transition $\langle S_t, A_t, R_{t+1}, S_{t+1} \rangle$, $Q_{\mathbf{w}}$ is usually learned using temporal-difference (TD) learning:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma Q_{\mathbf{w}}(S_{t+1}, A_{t+1}) - Q_{\mathbf{w}}(S_t, A_t) \right) \nabla Q_{\mathbf{w}}(S_t, A_t), \tag{3}$$

where α is the step size, and A_{t+1} is sampled from the current policy: $A_{t+1} \sim \pi_{\theta}(\cdot | S_{t+1})$.

The policy is typically optimized using a surrogate of Equation (1):

$$\hat{J}(\pi_{\boldsymbol{\theta}}) = \mathbb{E}_{S_t \sim d, A_t \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[Q_{\mathbf{w}}(S_t, A_t) \right], \tag{4}$$

where $d \in \Delta(S)$ is some distribution over states. Below we outline three typical estimators for the gradient of this objective.

The likelihood-ratio (LR) policy gradient estimator uses $\hat{\nabla}_{\theta}\hat{J}(\pi_{\theta}; S_t, A) = \nabla_{\theta} \log \pi_{\theta}(A|S_t)Q_{\mathbf{w}}(S_t, A)$, where $A \sim \pi_{\theta}(\cdot|S_t)$. Since the LR estimator suffers from high variance, it is often used with the value function as a baseline:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{LR} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A) = \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_t) (Q_{\mathbf{w}}(S_t, A) - V(S_t)), \tag{5}$$

where $V(S_t)$ could either be parameterized and learned or be calculated analytically from $Q_{\mathbf{w}}$ when the action space is discrete and low dimensional.

The deterministic policy gradient (DPG) estimator (Silver et al., 2014) is used when the action space is continuous and the policy is deterministic ($\pi_{\theta} : \mathcal{S} \to \mathcal{A}$), and uses the gradient of $Q_{\mathbf{w}}$ with respect to the action:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DPG}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t) = \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A)|_{A = \pi_{\boldsymbol{\theta}}(S_t)}.$$
(6)

The reparameterization (RP) policy gradient estimator (Heess et al., 2015; Haarnoja et al., 2018) can be used if the policy can be reparameterized (i.e., $A = g_{\theta}(\epsilon; S_t)$, $\epsilon \sim p(\cdot)$, where $p(\cdot)$ is a prior distribution):

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon) = \nabla_{\boldsymbol{\theta}} g_{\boldsymbol{\theta}}(\epsilon; S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A)|_{A = g_{\boldsymbol{\theta}}(\epsilon; S_t)}.$$
 (7)

¹Note that the framework and methods proposed in this paper also apply to other complex types of action spaces. We focus on discrete and continuous action spaces in our presentation for simplicity.

Figure 1: Comparison between the classical reinforcement learning (RL) framework and the proposed distributions-as-actions framework. In the classical RL setting (col 1), the agent's policy π_{θ} consists of $\bar{\pi}_{\theta}$, which produces the distribution parameters, and a sampling function f that returns an action given these parameters. In the distributions-as-actions framework (col 2), the sampling function f is considered part of the environment, and the agent outputs the distribution parameters $\bar{\pi}_{\theta}(S_t)$ as its action. This shift redefines the interface between agent and environment, potentially simplifying learning and enabling new algorithmic perspectives.

3 DISTRIBUTIONS-AS-ACTIONS FRAMEWORK

The action space is typically defined by the environment designer based on domain-specific knowledge. Depending on the problem, it may be more natural to model the action space as either discrete or continuous. In both cases, the agent's policy at a given state s can often be interpreted as first producing distribution parameters $\bar{\pi}_{\theta}(s)$, followed by sampling an action $A \sim f(\cdot|\bar{\pi}_{\theta}(s))$ from the resulting distribution. With a slight abuse of notation, we denote $\bar{\pi}_{\theta}: \mathcal{S} \to \mathcal{U}$ as the part of the policy π_{θ} that maps states to distribution parameters, and by $f(\cdot|u)$ the distribution over actions defined by parameters $u \in \mathcal{U}$.

In the classical RL framework, both $\bar{\pi}_{\theta}$ and f are considered part of the agent, as in the left of Figure 1. In this work, we introduce the *distributions-as-actions framework*: the agent outputs distribution parameters $\bar{\pi}_{\theta}(s)$ as its action, while the sampling process $A \sim f(\cdot|\bar{\pi}_{\theta}(s))$ is treated as part of the environment, depicted on the right in Figure 1.

This reformulation leads to a new MDP in which the action space is the parameter space \mathcal{U} . The reward and transition functions in this MDP become:

$$\bar{p}(s'|s,u) \doteq \sum_{a \in \mathcal{A}} f(a|u)p(s'|s,a), \quad \text{or} \quad \bar{p}(s'|s,u) \doteq \int_{\mathcal{A}} f(a|u)p(s'|s,a) \, da,$$
 (8)

$$\bar{r}(s,u) \doteq \sum_{a \in \mathcal{A}} f(a|u)r(s,a), \quad \text{or} \quad \bar{r}(s,u) \doteq \int_{\mathcal{A}} f(a|u)r(s,a) \, da,$$
 (9)

depending on whether the original action space A is discrete or continuous, respectively.

This gives rise to the *distributions-as-actions MDP* (DA-MDP) $\langle \mathcal{S}, \mathcal{U}, \bar{p}, d_0, \bar{r}, \gamma \rangle$. We can define the corresponding value functions, and show they are connected to their classical counterparts.

$$\bar{v}_{\bar{\pi}}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} \left[\gamma^t R_{t+1} | S_0 = s \right], \quad \bar{q}_{\bar{\pi}}(s, u) \doteq \mathbb{E}_{\bar{\pi}} \left[R_1 + \gamma \bar{v}_{\bar{\pi}}(S_1) | S_0 = s, U_0 = u \right]. \tag{10}$$

Assumption 3.1. The set \mathcal{U} is compact. Moreover, when \mathcal{S} or \mathcal{A} is continuous, the corresponding set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1,
$$\bar{v}_{\bar{\pi}}(s) = v_{\pi}(s)$$
 and $\bar{q}_{\bar{\pi}}(s,u) = \mathbb{E}_{A \sim f(\cdot|u)}[q_{\pi}(s,A)]$.

The proofs of Proposition 3.2 and all other theoretical results are presented in Appendix A.

The main advantage of this framework is that it transforms the original action space into a continuous parameter space \mathcal{U} , regardless of whether the underlying action space \mathcal{A} is discrete, continuous, or structured. This unification allows us to develop generic RL algorithms that operate over a continuous transformed action space, enabling a single framework to accommodate a wide variety of

settings, including discrete-continuous hybrid action spaces (Masson et al., 2016). For example, we can apply DPG methods even in discrete action domains, where they were not previously applicable. We explore this direction in detail in Sections 4 and 5.

4 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ALGORITHMS

In this section, we introduce the *Distributions-as-Actions Policy Gradient* (DA-PG), a generalization of DPG for the distributions-as-actions framework. We show this estimator has lower variance, and then present a practical DA-PG algorithm for deep RL based on TD3.

4.1 DISTRIBUTIONS-AS-ACTIONS POLICY GRADIENT ESTIMATOR

DA-PG is the application of DPG to the distributions-as-actions MDP. We need to slightly modify the assumptions to reason about both the distribution parameter space and the original action space.

Assumption 4.1. The functions $\bar{\pi}_{\theta}(s)$, f(a|u), and their derivatives are continuous with respect to the variables u and θ . Moreover, when S or A is continuous, the functions p(s'|s,a), $d_0(s)$, r(s,a), $\bar{\pi}_{\theta}(s)$, f(a|u), and their derivatives are also continuous with respect to s, s', or a, respectively.

Theorem 4.2 (Distributions-as-actions policy gradient theorem). Under Assumptions 3.1 and 4.1, the gradient of the objective $J(\bar{\pi}_{\theta}) = \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} \left[\gamma^t R_{t+1} \right]$ with respect to θ can be expressed as

$$\nabla_{\boldsymbol{\theta}} J(\bar{\pi}_{\boldsymbol{\theta}}) = \mathbb{E}_{s \sim d_{\bar{\pi}_{\boldsymbol{\theta}}}} \left[\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s)^{\top} \nabla_{u} \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}(s, u)|_{u = \bar{\pi}_{\boldsymbol{\theta}}(s)} \right],$$

where $d_{\bar{\pi}_{\theta}}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_{\theta}}[\gamma^{t}\mathbb{I}(S_{t}=s)]$ is the (discounted) occupancy measure under $\bar{\pi}_{\theta}$.

The resulting gradient estimator of the surrogate objective $\hat{J}(\bar{\pi}_{\theta}) = \mathbb{E}_{S_t \sim d} \left[\bar{Q}_{\mathbf{w}}(S_t, \bar{\pi}_{\theta}(S_t)) \right]$ is

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_t)^{\top} \nabla_{U} \bar{Q}_{\mathbf{w}}(S_t, U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_t)}, \tag{11}$$

where $\bar{Q}_{\mathbf{w}}$ is a learned parameterized critic. Note that the DA-PG estimator shares the same mathematical form as the DPG estimator (Equation (6)). However, the roles of the components differ: In DA-PG, the policy $\bar{\pi}_{\theta}$ outputs distribution parameters rather than a single action, and the critic estimates the expected return over the entire action distribution, rather than for a specific action.

In fact, DA-PG is a strict generalization of DPG. When the policy is restricted to be deterministic, the distribution parameters effectively become the action, and the distributions-as-actions critic reduces to the classical action-value critic.

Proposition 4.3. If $\mathcal{U} = \mathcal{A}$ and $f(\cdot|u)$ is the Dirac delta distribution centered at u, then $\bar{\pi}_{\theta}$ and $\bar{Q}_{\mathbf{w}}$ are equivalent to π_{θ} and $Q_{\mathbf{w}}$, respectively. Consequently, the DA-PG gradient estimator becomes equivalent to DPG:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \hat{\nabla}_{\boldsymbol{\theta}}^{\text{DPG}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t).$$

Moreover, DPG's theoretical analysis can also be extended to the distributions-as-actions framework. In Appendix A, we generalize the convergence analysis of DPG to DA-PG, establishing a theoretical guarantee that holds for MDPs with arbitrary action space types.

4.2 Comparison to other estimators for stochastic policies

We now compare the proposed DA-PG estimator with classical stochastic policy gradient methods, highlighting its variance and bias characteristics across action spaces.

DA-PG can be seen as the conditional expectation of both the LR (Equation (5)) and RP (Equation (7)) estimators. This leads to strictly lower variance.

Proposition 4.4. Assume $Q_{\mathbf{w}} = q_{\pi_{\boldsymbol{\theta}}}$ in $\hat{\nabla}_{\boldsymbol{\theta}}^{LR} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A)$ and $\bar{Q}_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ in $\hat{\nabla}_{\boldsymbol{\theta}}^{DA-PG} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)$. Then, $\hat{\nabla}_{\boldsymbol{\theta}}^{DA-PG} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\hat{\nabla}_{\boldsymbol{\theta}}^{LR} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A)\right]$. Further, if the expectation of the action-conditioned variance is greater than zero, then $\mathbb{V}(\hat{\nabla}_{\boldsymbol{\theta}}^{DA-PG} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)) < \mathbb{V}(\hat{\nabla}_{\boldsymbol{\theta}}^{LR} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A))$.

Proposition 4.5. Assume A is continuous, $Q_{\mathbf{w}} = q_{\pi_{\theta}}$ in $\hat{\nabla}_{\theta}^{RP} \hat{J}(\pi_{\theta}; S_{t}, \epsilon)$, and $\bar{Q}_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\theta}}$ in $\hat{\nabla}_{\theta}^{DA-PG} \hat{J}(\bar{\pi}_{\theta}; S_{t})$. Then, $\hat{\nabla}_{\theta}^{DA-PG} \hat{J}(\bar{\pi}_{\theta}; S_{t}) = \mathbb{E}_{\epsilon \sim p} [\hat{\nabla}_{\theta}^{RP} \hat{J}(\pi_{\theta}; S_{t}, \epsilon)]$. Further, if the expectation of the noise-induced variance is greater than zero, then $\mathbb{V}(\hat{\nabla}_{\theta}^{DA-PG} \hat{J}(\bar{\pi}_{\theta}; S_{t})) < \mathbb{V}(\hat{\nabla}_{\theta}^{RP} \hat{J}(\pi_{\theta}; S_{t}, \epsilon))$.

Figure 2: Visualization of the **reward function** (col 1), **expected rewards of distribution parameters** (col 2), and **learned critics** using the *standard* update in Equation (12) (col 3) and the *interpolated critic learning* (ICL) update in Equation (14) (col 4) in policy evaluation (PE). **Top:** K-Armed Bandit. **Bottom:** Bimodal Continuous Bandit. With access only to samples from the evaluation policy, the standard update estimates values accurately at the target policy but fails to generalize. In contrast, the ICL update learns a critic that captures curvature useful for policy optimization.

In discrete action spaces, the LR estimator typically requires carefully designed baselines to manage high variance, especially as dimensionality increases. While biased alternatives like the straight-through (ST) estimator (Bengio et al., 2013) or continuous relaxations (Jang et al., 2016; Maddison et al., 2016) exist, they sacrifice unbiasedness even when using a perfect critic. DA-PG avoids this trade-off, providing the first unbiased RP-style estimator with low variance in the discrete setting.

In continuous action spaces, DPG offers zero variance but assumes fixed stochasticity (i.e., no learnable exploration). RP estimators allow for learning the stochastic parameters but exhibit higher variance. DA-PG offers the best of both worlds: it permits learning all policy parameters including those for stochasticity while retaining the zero-variance property per state.

Another direction to reduce variance is *expected policy gradient* (EPG; Ciosek & Whiteson, 2018; Allen et al., 2017). The idea is to integrate (or sum) over actions, yielding zero-variance gradients conditioned on a state: $\hat{\nabla}_{\boldsymbol{\theta}}^{\text{EPG}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{A_t \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[Q_{\mathbf{w}}(S_t, A_t) \right]$. However, this estimator is only practical in low-dimensional discrete action spaces (Allen et al., 2017) or in special cases within continuous settings—such as Gaussian policies with quadratic critics (Ciosek & Whiteson, 2020). In contrast, our estimator $\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)$ generalizes to a wider range of settings, including high-dimensional discrete, general continuous, and even hybrid action spaces.

Despite its lower variance, DA-PG may suffer from increased bias due to the increased complexity of the critic's input space. For discrete actions, the critic $\bar{Q}_{\mathbf{w}}$ inputs a vector of probabilities corresponding to discrete outcomes. For continuous actions, with Gaussian policies, the critic $\bar{Q}_{\mathbf{w}}$ inputs both the mean and standard deviation. This increased input dimensionality makes it harder to approximate the true value function, and if the critic is inaccurate, the overall benefit of lower gradient variance may be diminished—an effect we examine empirically in Section 5.5.

4.3 Interpolated critic learning

In this section, we propose a method to improve learning the distributions-as-actions critic $\bar{Q}_{\mathbf{w}}$. Similar to Equation (3), the standard TD update for $\bar{Q}_{\mathbf{w}}$ is

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma \bar{Q}_{\mathbf{w}}(S_{t+1}, \bar{\pi}_{\boldsymbol{\theta}}(S_{t+1})) - \bar{Q}_{\mathbf{w}}(S_t, U_t) \right) \nabla \bar{Q}_{\mathbf{w}}(S_t, U_t). \tag{12}$$

This update, however, does not make use of the sampled action A_t , and its relationship to the outcome state and reward. One direction to leverage this knowledge is to recognize that the transition can also be used to update the value at alternative parameters \hat{U}_t . This is possible because the action A_t could have been sampled from distributions parameterized by many other \hat{U}_t . As a result, the value at \hat{U}_t can be learned off-policy.

What, then, should we choose for \hat{U}_t ? To answer this, we ask: what properties should the critic have to support effective policy optimization in parameter space? Our answer is that the critic should provide informative gradient directions that guide the policy toward optimality. For MDPs, there always exists a deterministic optimal policy (Puterman, 2014). Therefore, we assume the existence of some $U_{A_t^*} \in \mathcal{U}$, a deterministic distribution corresponding to the optimal action A_t^* for state S_t . Ideally, the critic should exhibit curvature that points toward such optimal parameters U_t^* .

One candidate for \hat{U}_t is U_{A_t} , the deterministic distribution parameters associated with the sampled action A_t . However, merely learning accurate values at U_{A_t} does not ensure that the critic has smooth curvature from U_t toward high-value points. To encourage the critic to generalize better and provide smoother gradients, we propose using a linearly interpolated point between U_t and U_{A_t} :

$$\hat{U}_t = \omega_t U_t + (1 - \omega_t) U_{A_t}, \quad \omega_t \sim \text{Uniform}[0, 1].$$
 (13)

The critic is then trained to predict the value at \hat{U}_t using the following update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma \bar{Q}_{\mathbf{w}}(S_{t+1}, \bar{\pi}_{\boldsymbol{\theta}}(S_{t+1})) - \bar{Q}_{\mathbf{w}}(S_t, \hat{U}_t) \right) \nabla \bar{Q}_{\mathbf{w}}(S_t, \hat{U}_t). \tag{14}$$

We refer to this approach as *interpolated critic learning* (ICL).

To further provide intuition on ICL, we conduct a policy evaluation experiment in bandit problems, shown in Figure 2 (column 1). Figure 2 (column 3) and (column 4) show the learned critics using the standard update in Equation (12) and the ICL update in Equation (14), respectively. The critic learned by ICL has more informative curvature. In the continuous action case, the learned critic is sufficient to identify the optimal distribution parameters. More details can be found in Appendix B.2.

4.4 DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Since the DA-PG estimator is derived from DPG, we base our practical algorithm on TD3 (Fujimoto et al., 2018), a strong DPG-based off-policy actor-critic algorithm for continuous control. We replace the classical actor and critic with their distributions-as-actions counterparts and use the DA-PG gradient estimator (Equation (11)) and the ICL critic loss (Equation (14)) to update them, respectively. We omit the actor target network, as it does not improve performance (see Appendix B.4). The pseudocode for the algorithm, which we call *Distributions-as-Actions Actor-Critic* (DA-AC), is in Appendix E.

5 EXPERIMENTS

In this section, we conduct experiments to investigate DA-AC's empirical performance in continuous (Section 5.1), discrete (Sections 5.2 and 5.3), and hybrid (Section 5.4) control settings. In addition, we examine the effectiveness of the proposed interpolated critic learning in Section 5.5. Unless otherwise noted, each environment is run with 10 seeds, and error bars or shaded regions indicate 95% bootstrap confidence intervals.

5.1 Continuous control

We use OpenAI Gym MuJoCo (Brockman et al., 2016) and the DeepMind Control (DMC) Suite (Tunyasuvunakool et al., 2020) for continuous control. From MuJoCo, we use the most commonly used 5 environments; from DMC, we use the same 15 environments as D'Oro et al. (2023). Details about these environments are in Appendix B.4. We run each environment for 1M steps.

Algorithms We use TD3 (Fujimoto et al., 2018) as our primary baseline, as DA-AC is based on it. We also include an off-policy actor-critic baseline that uses the reparameterization (RP) estimator. This RP-AC algorithm closely resembles DA-AC but learns in the original action space and updates the policy using the RP estimator. For consistency, DA-AC and RP-AC use the default hyperparameters of TD3 and a Gaussian policy parameterization. Implementations details and pseudocode can be found in Appendices B.4 and E, respectively. For reference, we also evaluate the performance of SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017).

Figure 3: Relative final performance of DA-AC versus TD3 across 20 individual *continuous* control tasks (col 1), and average normalized returns of DA-AC and baselines on MuJoCo (col 2) and DeepMind Control (col 3) tasks. In individual task comparisons (col 1), results are averaged over 10 seeds per task. For average performance plots (cols 2-3), values are averaged over 10 seeds and tasks. Error bars show 95% bootstrap confidence intervals (CIs).

Figure 4: Learning curves in six DeepMind Control tasks with high-dimensional action spaces. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Results Figure 3 shows per-environment performance for DA-AC and TD3 and the aggregated results across environments for all algorithms. From Figure 3 (column 1), we can see that DA-AC achieves better performance in more environments compared to TD3. From Figure 3 (columns 2–3), we can see that DA-AC achieves better overall performance, outperforming most baselines significantly in the DMC Suite, particularly in high-dimensional environments (see Figure 4).

5.2 DISCRETE CONTROL

Following Ceron & Castro (2021), we use 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar environments (Young & Tian, 2019) for discrete control. We run each environment for 500k (classic control) or 5M (MinAtar) steps.

Algorithms We include off-policy actor-critic baselines that resemble DA-AC. These baselines learn in the original action space and update the policy with different gradient estimators, including the likelihood-ratio (LR-AC) and expected (EAC) policy gradient estimators. Here, LR-AC uses a state-value baseline analytically computed from action values. Although not common in prior work, we also include a variant that uses the straight-through (ST) estimator (Bengio et al., 2013), denoted as ST-AC. This baseline is the discrete counterpart of RP-AC, serving as a performance reference for alternative RP-based methods. For comparison, we also evaluate the performance of Discrete SAC (DSAC; Christodoulou, 2019), DQN (Mnih et al., 2015), and PPO (Schulman et al., 2017). The hyperparameters for DA-AC and X-AC baselines are adopted from the TD3 defaults and adjusted to

Figure 5: Average normalized returns of DA-AC and baselines on *discrete* control benchmarks, including classic control (col 1), MinAtar (col 2), discretized MuJoCo (col 3), and discretized Deep-Mind Control (col 4) tasks.

the corresponding benchmark based on those of DQN. More details and pseudocode can be found in Appendices B.5 and E, respectively.

Results From Figure 5 (columns 1–2), we can see that DA-AC is among the best-performing algorithms in both classic control and MinAtar, achieving comparable performance to DQN.

5.3 HIGH-DIMENSIONAL DISCRETE CONTROL

For this setting, we use the same 20 environment from the Section 5.1 but with a discretized action space. Specifically, we discretize each action dimension into 7 bins with uniform spacing. For example, the original action space in Humanoid-v4 is $[-0.4, 0.4]^{17}$, which is discretized to $0.4 \times \{-1, -\frac{2}{3}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1\}^{17}$. We run each environment for 1M steps.

Algorithms We use ST-AC, LR-AC, and PPO from the previous section as baselines. EAC, DSAC, and DQN are excluded, as they are not feasible in environments with high-dimensional actions. Note that DSAC relies on the unfeasible expected updates similar to EAC; without them, it fails to learn. LR-AC learns an additional state-value function as a baseline, since analytically deriving it from the action-value function is prohibitive in this high-dimensional setting. We use the same hyperparameters as those in Section 5.1. More details can be found in Appendix B.6.

Results As shown in Figure 5 (columns 3–4), DA-AC's average performance is higher than all baselines in both benchmarks. Note that the performance of DA-AC and PPO is slightly worse compared to the original continuous action setting (Figure 3).

5.4 Hybrid Control

In addition to continuous and discrete control settings, we also evaluate DA-AC's performance in parameterized action MDPs (PAMDPs), a hybrid control setting with parameterized actions (see Masson et al. (2016) for detailed discussion). We use 7 PAMDP environments from Li et al. (2021) and follow their experiment protocol. See Appendix B.7 for more details.

Algorithms We use PATD3 as our primary baseline, a DPG-based baseline specifically designed for parameterized action (PA) spaces. PATD3 builds on PADDPG (Hausknecht & Stone, 2015) and incorporates clipped double Q-learning from TD3, making it a suitable and directly comparable baseline for DA-AC, as both methods build on TD3. In DA-AC, the distribution

Figure 6: **Average normalized performance of DA-AC and baselines** on *hybrid* control tasks.

parameters include both the probability vector for the discrete actions and mean/log-std vectors for the continuous actions. We keep most hyperparameters the same as TD3's default unless otherwise adjusted to align with PATD3. In addition, we also include PDQN (Xiong et al., 2018) and HHQN (Fu et al., 2019) as additional baselines for reference. See Appendix B.7 for more details.

Results Figure 6 shows the average normalized performance of DA-AC and baselines. The learning curves in each individual environment can be found in Figure 16. We can see that DA-AC also often achieves better performance than the baselines.

433

434 435

436 437

444

445

446

447

448 449 450

451 452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469 470 471

472 473

474

475

476

477

478 479

480

481

482

483

484

485

Figure 8: Initial critic (col 1) and learned critics and policies at different training stages using DA-AC w/o ICL (cols 2 and 4) and DA-AC (cols 3 and 5). Top: K-Armed Bandit. Bottom: Bimodal Continuous Bandit. DA-AC produces more accurate value estimates at deterministic distribution parameters—corresponding to the vertices in the discrete case and the x-axis in the continuous case—and offers stronger gradient signals for policy optimization.

5.5 EFFECTIVENESS OF INTERPOLATED CRITIC LEARNING

We compare DA-AC and DA-AC w/o ICL, an ablated version that uses the standard critic update (Equation (12)). From Figure 7, we can see that DA-AC w/o ICL is generally worse than DA-AC for all settings.

To provide further insights into why we see this difference, we move to a bandit setting where visualization and analysis are intuitive. We use the same bandit environments from Figure 2, and run each algorithm for 2000 steps and 50 seeds. See Appendix B.3 for hyperparameters and other details.

Figure 7: Comparison between DA-AC and **DA-AC w/o ICL** in all settings.

Figure 9 in the appendix shows the superiority of DA-AC over DA-AC w/o ICL, as well as the bias-variance trade-off incurred by different gradient estimators. To assess the impact of ICL on critic quality, we visualize the learned critics from

a representative training run of DA-AC and DA-AC w/o ICL in Figure 8. In both discrete and continuous action settings, DA-AC yields a significantly improved critic landscape early in training.

CONCLUSIONS

We introduced the distributions-as-actions framework, redefining the agent-environment boundary to treat distribution parameters as actions. We showed that the policy gradient update has theoretically lower variance, and developed a practical deep RL algorithm called Distributions-as-Actions Actor-Critic (DA-AC) based on this estimator. We also introduced an improved critic learning update, ICL, tailored to this new setting. We demonstrated that DA-AC achieves competitive performance in diverse settings across continuous, discrete, and hybrid control.

This reframing allowed us to develop a continuous action algorithm that applies to diverse underlying action types. A key next step is to further exploit this reframing for new algorithmic avenues, including model-based methods, hierarchical control, or novel hybrid approaches. There are also key open questions around critic learning in this new framework. More advanced strategies for training the distributions-as-actions critic could also be explored, including off-policy updates at diverse regions of the parameter space or using a learned action-value function $Q_{\mathbf{w}}(s,a)$ to guide updates of $Q_{\mathbf{w}'}(s,u)$. This will also open up new questions about convergence properties for these new variants.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will provide a public code release covering DA-AC implementations in all control settings. Comprehensive hyperparameter choices and environment configurations are documented in Appendix B. All reported metrics are based on multiple random seeds, with uncertainty quantified using 95% bootstrap confidence intervals. The repository will further include instructions to reproduce our main experimental results.

REFERENCES

- Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdel-rahman Mohamed, George Konidaris, and Michael Littman. Mean actor-critic. *arXiv preprint arXiv:1709.00503*, 2017.
- Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. *Journal of artificial intelligence research*, 47: 253–279, 2013.
- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv* preprint arXiv:1308.3432, 2013.
- Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox, and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity. In *The Twelfth International Conference on Learning Representations*, 2024.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. *arXiv preprint arXiv:1606.01540*, 2016.
- Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and inclusive deep reinforcement learning research. In *International Conference on Machine Learning*, pp. 1373–1383. PMLR, 2021.
- Petros Christodoulou. Soft actor-critic for discrete action settings. *arXiv preprint arXiv:1910.07207*, 2019.
- Kamil Ciosek and Shimon Whiteson. Expected policy gradients. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. *Journal of Machine Learning Research*, 21(52):1–51, 2020.
- Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In *The Eleventh International Conference on Learning Representations*, 2023.
- Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep multiagent reinforcement learning with discrete-continuous hybrid action spaces. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 2329–2335, 2019.
- Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *International Conference on Machine Learning*, pp. 1587–1596. PMLR, 2018.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference on Machine Learning*, pp. 1861–1870. PMLR, 2018.
- Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space. In *International Conference on Learning Representations*, 2015.
- Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning continuous control policies by stochastic value gradients. *Advances in Neural Information Processing Systems*, 28, 2015.

- Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.
 - Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In *International Conference on Learning Representations*, 2016.
 - Boyan Li, Hongyao Tang, YAN ZHENG, Jianye HAO, Pengyi Li, Zhen Wang, Zhaopeng Meng, and LI Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action representation. In *International Conference on Learning Representations*, 2021.
 - Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables. In *International Conference on Learning Representations*, 2016.
 - Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parameterized actions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30, 2016.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.
 - A Paszke. PyTorch: An imperative style, high-performance deep learning library. *arXiv preprint arXiv:1912.01703*, 2019.
 - Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforcement learning. *Journal of Machine Learning Research*, 25(318):1–63, 2024.
 - Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
 - Matthew Kyle Schlegel, Volodymyr Tkachuk, Adam M White, and Martha White. Investigating action encodings in recurrent neural networks in reinforcement learning. *Transactions on Machine Learning Research*, 2023.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In *International Conference on Machine Learning*, pp. 387–395. PMLR, 2014.
 - Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. *Advances in Neural Information Processing Systems*, 12, 1999.
 - Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous control. *Software Impacts*, 6:100022, 2020.
 - Gautham Vasan, Mohamed Elsayed, Seyed Alireza Azimi, Jiamin He, Fahim Shahriar, Colin Bellinger, Martha White, and Rupam Mahmood. Deep policy gradient methods without batch updates, target networks, or replay buffers. *Advances in Neural Information Processing Systems*, 37:845–891, 2024.
 - Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine Learning*, 8:279–292, 1992.
 - Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8:229–256, 1992.
 - Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient: Convergence analysis. In *Uncertainty in Artificial Intelligence*, pp. 2159–2169. PMLR, 2022.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hybrid action space. *arXiv preprint arXiv:1810.06394*, 2018.

Ming Xu, Matias Quiroz, Robert Kohn, and Scott A Sisson. Variance reduction properties of the reparameterization trick. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 2711–2720. PMLR, 2019.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible reinforcement learning experiments. *arXiv* preprint arXiv:1903.03176, 2019.

A THEORETICAL ANALYSIS OF DA-PG

We provide the proofs of the theoretical results for the distributions-as-actions framework and Distributions-as-Actions Policy Gradient (DA-PG) in the main text in Appendices A.1 and A.2. In addition, we also extend a convergence proof of DPG from Xiong et al. (2022) to DA-PG in Appendix A.3.

A.1 Proofs of theoretical results in Section 3

Assumption 3.1. The set \mathcal{U} is compact. Moreover, when \mathcal{S} or \mathcal{A} is continuous, the corresponding set is also assumed to be compact.

Proposition 3.2. Under Assumption 3.1, $\bar{v}_{\bar{\pi}}(s) = v_{\pi}(s)$ and $\bar{q}_{\bar{\pi}}(s,u) = \mathbb{E}_{A \sim f(\cdot|u)}[q_{\pi}(s,A)]$.

Proof. Let π be the policy in the original MDP that first maps s to $u=\bar{\pi}(s)$ and then samples $A \sim f(\cdot|u)$. The state-value function $\bar{v}_{\bar{\pi}}(s)$ in the distributions-as-actions MDP is defined as:

$$\bar{v}_{\bar{\pi}}(s) = \sum_{k=0}^{\infty} \mathbb{E}_{\bar{\pi}} \left[\gamma^k \bar{r}(S_k, U_k) \mid S_0 = s \right],$$

where $U_k=\bar{\pi}(S_k)$. From Equation (8), $\bar{r}(s,u)=\mathbb{E}_{A\sim f(\cdot|u)}[r(s,A)]$. Also, the transition $\bar{p}(s'|s,u)=\mathbb{E}_{A\sim f(\cdot|u)}[p(s'|s,A)]$. Consider a trajectory S_0,U_0,S_1,U_1,\ldots in the distributions-asactions MDP (DA-MDP). This corresponds to a trajectory S_0,A_0,S_1,A_1,\ldots in the original MDP where $A_k\sim f(\cdot|U_k)$. The expected reward at time k in the DA-MDP, given S_k and $U_k=\bar{\pi}(S_k)$, is $\bar{r}(S_k,\bar{\pi}(S_k))=\mathbb{E}_{A_k\sim f(\cdot|\bar{\pi}(S_k))}[r(S_k,A_k)]$. The dynamics are also equivalent in expectation: $\mathbb{E}[S_{k+1}|S_k,U_k]=\mathbb{E}_{S'\sim\bar{p}(\cdot|S_k,U_k)}[S']=\mathbb{E}_{A_k\sim f(\cdot|U_k)}[\mathbb{E}_{S'\sim p(\cdot|S_k,A_k)}[S']]$. Thus, the sequence of states and expected rewards generated under $\bar{\pi}$ in the DA-MDP is identical in distribution to the sequence of states and rewards under π in the original MDP. Therefore, $\bar{v}_{\bar{\pi}}(s)=v_{\pi}(s)$.

For the action-value function $\bar{q}_{\bar{\pi}}(s, u)$:

$$\begin{split} \bar{q}_{\bar{\pi}}(s,u) &= \mathbb{E}_{\bar{\pi}} \left[\bar{r}(S_0,U_0) + \gamma \bar{v}_{\bar{\pi}}(S_1) \mid S_0 = s, U_0 = u \right] \\ &= \bar{r}(s,u) + \gamma \mathbb{E}_{S_1 \sim \bar{p}(\cdot \mid s,u)} [\bar{v}_{\bar{\pi}}(S_1)] \\ &= \mathbb{E}_{A \sim f(\cdot \mid u)} [r(s,A)] + \gamma \mathbb{E}_{A \sim f(\cdot \mid u)} \left[\mathbb{E}_{S_1 \sim p(\cdot \mid s,A)} [v_{\pi}(S_1)] \right] \\ &= \mathbb{E}_{A \sim f(\cdot \mid u)} \left[r(s,A) + \gamma \mathbb{E}_{S_1 \sim p(\cdot \mid s,A)} [v_{\pi}(S_1)] \right] \\ &= \mathbb{E}_{A \sim f(\cdot \mid u)} \left[\mathbb{E}_{\pi} [R_1 + \gamma v_{\pi}(S_1) | S_0 = s, A_0 = A] \right] \\ &= \mathbb{E}_{A \sim f(\cdot \mid u)} [q_{\pi}(s,A)]. \end{split}$$

The compactness assumption in Assumption 3.1 along with continuity from Assumption 4.1 ensures these expectations and value functions are well-defined.

A.2 PROOFS OF THEORETICAL RESULTS IN SECTION 4

Assumption 4.1. The functions $\bar{\pi}_{\theta}(s)$, f(a|u), and their derivatives are continuous with respect to the variables u and θ . Moreover, when S or A is continuous, the functions p(s'|s,a), $d_0(s)$, r(s,a), $\bar{\pi}_{\theta}(s)$, f(a|u), and their derivatives are also continuous with respect to s, s', or a, respectively.

Theorem 4.2 (Distribution parameter policy gradient theorem). Under Assumptions 3.1 and 4.1, the gradient of the objective function $J(\bar{\pi}_{\theta}) = \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}} \left[\gamma^t R_{t+1} \right]$ with respect to θ can be expressed as

$$\nabla_{\boldsymbol{\theta}} J(\bar{\pi}_{\boldsymbol{\theta}}) = \mathbb{E}_{s \sim d_{\bar{\pi}_{\boldsymbol{\theta}}}} \left[\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s)^{\top} \nabla_{u} \bar{Q}_{\bar{\pi}_{\boldsymbol{\theta}}}(s, u)|_{u = \bar{\pi}_{\boldsymbol{\theta}}(s)} \right],$$

where $d_{\bar{\pi}_{\theta}}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_{\theta}}[\gamma^{t}\mathbb{I}(S_{t}=s)]$ is the (discounted) occupancy measure under $\bar{\pi}_{\theta}$.

Proof. This theorem results from applying the deterministic policy gradient (DPG) theorem to the DA-MDP $\langle \mathcal{S}, \mathcal{U}, \bar{p}, d_0, \bar{r}, \gamma \rangle$, where $\bar{\pi}_{\theta}: \mathcal{S} \to \mathcal{U}$ acts as a deterministic policy. The objective function is $J(\bar{\pi}_{\theta}) = \mathbb{E}_{S_0 \sim d_0}[\bar{v}_{\bar{\pi}_{\theta}}(S_0)]$.

Following the DPG theorem derivation (Silver et al. (2014), Theorem 1), for a general deterministic policy $\mu_{\theta}: \mathcal{S} \to \mathcal{A}$, the policy gradient is:

$$\nabla_{\boldsymbol{\theta}} J(\mu_{\boldsymbol{\theta}}) = \mathbb{E}_{s \sim d_{\mu_{\boldsymbol{\theta}}}} \left[\nabla_{\boldsymbol{\theta}} \mu_{\boldsymbol{\theta}}(s)^{\top} \nabla_{a} q_{\mu_{\boldsymbol{\theta}}}(s, a) \big|_{a = \mu_{\boldsymbol{\theta}}(s)} \right].$$

In our context:

- The policy in the DA-MDP is $\bar{\pi}_{\theta}(s)$.
- The action space is \mathcal{U} , and actions are denoted by u.
- The critic $\bar{q}_{\bar{\pi}_{\theta}}(s, u)$ is the action-value function in this DA-MDP.
- The state distribution $d_{\pi_{\theta}}(s)$ is the discounted state occupancy measure under policy $\bar{\pi}_{\theta}$.

Assumptions 3.1 and 4.1 ensure that $\bar{\pi}_{\theta}(s)$ and $\bar{q}_{\bar{\pi}_{\theta}}(s,u)$ are appropriately differentiable and that the interchange of expectation and differentiation is valid. Substituting $\bar{\pi}_{\theta}$ for μ_{θ} and $\bar{q}_{\bar{\pi}_{\theta}}$ for $q_{\mu_{\theta}}$ yields the theorem's result:

$$\nabla_{\boldsymbol{\theta}} J(\bar{\pi}_{\boldsymbol{\theta}}) = \mathbb{E}_{s \sim d_{\bar{\pi}_{\boldsymbol{\theta}}}} \left[\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s)^{\top} \nabla_{u} \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}(s, u)|_{u = \bar{\pi}_{\boldsymbol{\theta}}(s)} \right].$$

The notation $\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s)^{\top} \nabla_{u} \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ in the theorem statement implies the appropriate vector or matrix product. If $\boldsymbol{\theta} \in \mathbb{R}^{k}$ and $u \in \mathbb{R}^{m}$, then $\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s)$ is an $m \times k$ Jacobian, $\nabla_{u} \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ is an $m \times 1$ vector, and the product $(\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(s))^{\top} \nabla_{u} \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ results in the $k \times 1$ gradient vector for $J(\bar{\pi}_{\boldsymbol{\theta}})$.

Proposition 4.3. If $\mathcal{U}=\mathcal{A}$ and $f(\cdot\mid u)$ is the Dirac delta distribution centered at u, then $\bar{\pi}_{\theta}$ and $\bar{Q}_{\mathbf{w}}$ are equivalent to π_{θ} and $Q_{\mathbf{w}}$, respectively. Consequently, the DA-PG gradient estimator becomes equivalent to DPG:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \hat{\nabla}_{\boldsymbol{\theta}}^{\text{DPG}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t).$$

Proof. The DA-PG gradient estimator is given by Equation (11):

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_t)^{\top} \nabla_{U} \bar{Q}_{\mathbf{w}}(S_t, U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_t)}.$$

Given the conditions:

- 1. $\mathcal{U} = \mathcal{A}$: The distribution-parameter space is the action space.
- 2. $f(\cdot|u) = \delta(\cdot u)$: Sampling $A \sim f(\cdot|u)$ yields A = u.

Under these conditions, $\bar{\pi}_{\theta}(S_t)$ outputs parameters $U \in \mathcal{U}$, which are directly actions in \mathcal{A} . Thus, we can write $\pi_{\theta}(S_t) = \bar{\pi}_{\theta}(S_t)$, where $\pi_{\theta}(S_t) \in \mathcal{A}$.

Next, consider the DA value function $\bar{q}_{\bar{\pi}_{\theta}}(S_t, U)$. From Proposition 3.2, $\bar{q}_{\bar{\pi}_{\theta}}(S_t, U) = \mathbb{E}_{A \sim f(\cdot|U)}[q_{\pi_{\theta}}(S_t, A)]$. Since $f(A|U) = \delta(A - U)$, the expectation becomes $q_{\pi_{\theta}}(S_t, U)$. So, $\bar{q}_{\bar{\pi}_{\theta}}(S_t, U) = q_{\pi_{\theta}}(S_t, U)$, where $U \in \mathcal{U} = \mathcal{A}$.

This means the DA critic $\bar{Q}_{\mathbf{w}}(S_t, U)$ is estimating the action-value function $q_{\pi_{\theta}}(S_t, U)$. Thus, we can write $\bar{Q}_{\mathbf{w}}(S_t, U) = Q_{\mathbf{w}}(S_t, U)$, where $U \in \mathcal{A}$.

Substituting these equivalences into the DA-PG gradient estimator:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(S_t)^{\top} \nabla_A Q_{\mathbf{w}}(S_t, A)|_{A = \pi_{\boldsymbol{\theta}}(S_t)}.$$

This is precisely the DPG gradient estimator (Equation (6)). Thus, $\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \hat{\nabla}_{\boldsymbol{\theta}}^{\text{DPG}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t)$.

Proposition 4.4. Assume $Q_{\mathbf{w}} = q_{\pi_{\boldsymbol{\theta}}}$ in $\hat{\nabla}^{\mathrm{LR}}_{\boldsymbol{\theta}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A)$ and $\bar{Q}_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ in $\hat{\nabla}^{\mathrm{DA-PG}}_{\boldsymbol{\theta}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)$. Then,

$$\hat{\nabla}_{\pmb{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\pmb{\theta}}; S_t) = \mathbb{E}_{A \sim \pi_{\pmb{\theta}}(\cdot | S_t)} \left[\hat{\nabla}_{\pmb{\theta}}^{\text{LR}} \hat{J}(\pi_{\pmb{\theta}}; S_t, A) \right].$$

Further, if the expectation of the action-conditioned variance is greater than zero, then

$$\mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\text{DA-PG}}\hat{J}(\bar{\pi}_{\pmb{\theta}};S_t)\right) < \mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\text{LR}}\hat{J}(\pi_{\pmb{\theta}};S_t,A)\right).$$

 Proof. Proposition 3.2 states $\bar{q}_{\bar{\pi}_{\theta}}(S_t, U) = \mathbb{E}_{A \sim f(\cdot|U)}[q_{\pi_{\theta}}(S_t, A)]$. Given $Q_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\theta}}$ and $Q_{\mathbf{w}} = q_{\pi_{\theta}}$, this becomes $\bar{Q}_{\mathbf{w}}(S_t, U) = \mathbb{E}_{A \sim f(\cdot|U)}[Q_{\mathbf{w}}(S_t, A)]$. Note that $Q_{\mathbf{w}}(S_t, A)$ and $\bar{Q}_{\mathbf{w}}(S_t, U)$ are distinct critic functions. The use of \mathbf{w} for both signifies that they are learned approximators. In the context of this proof, we can think of $Q_{\mathbf{w}}$ and $\bar{Q}_{\mathbf{w}}$ as separate approximators, each utilizing a corresponding subset of \mathbf{w} .

Starting with the DA-PG estimator (assuming continuous A; discrete case is analogous with sums):

$$\begin{split} \hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_{t}) &= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} \bar{Q}_{\mathbf{w}}(S_{t}, U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} \\ &= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} \mathbb{E}_{A \sim f(\cdot|U)} [Q_{\mathbf{w}}(S_{t}, A)]|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} \\ &= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \left(\nabla_{U} \int_{\mathcal{A}} f(A|U) Q_{\mathbf{w}}(S_{t}, A) \, dA \right) \Big|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} \\ &= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \left(\int_{\mathcal{A}} \nabla_{U} f(A|U) Q_{\mathbf{w}}(S_{t}, A) \, dA \right) \Big|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} \\ &= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \int_{\mathcal{A}} \nabla_{U} f(A|U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} Q_{\mathbf{w}}(S_{t}, A) \, dA \\ &= \int_{\mathcal{A}} \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} f(A|U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})} Q_{\mathbf{w}}(S_{t}, A) \, dA \\ &= \int_{\mathcal{A}} \nabla_{\boldsymbol{\theta}} f(A|\bar{\pi}_{\boldsymbol{\theta}}(S_{t})) Q_{\mathbf{w}}(S_{t}, A) \, dA. \end{split}$$

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows from the chain rule, where $\nabla_{\boldsymbol{\theta}} f(A|\bar{\pi}_{\boldsymbol{\theta}}(S_t)) = \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_t)^{\top} \nabla_U f(A|U)|_{U=\bar{\pi}_{\boldsymbol{\theta}}(S_t)}$.

Using $\pi_{\theta}(A|S_t) = f(A|\bar{\pi}_{\theta}(S_t))$ and the log-derivative trick, we can express the DA-PG estimator as:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \int_{\mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A|S_t) Q_{\mathbf{w}}(S_t, A) dA
= \int_{\mathcal{A}} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_t) \pi_{\boldsymbol{\theta}}(A|S_t) Q_{\mathbf{w}}(S_t, A) dA
= \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_t) Q_{\mathbf{w}}(S_t, A) \right].$$

The LR estimator is $\hat{\nabla}_{\boldsymbol{\theta}}^{\mathrm{LR}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A) = \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_t) (Q_{\mathbf{w}}(S_t, A) - V(S_t))$. Its expectation is $\mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\hat{\nabla}_{\boldsymbol{\theta}}^{\mathrm{LR}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A) \right]$. The term involving the baseline $V(S_t)$ vanishes in expectation:

$$\mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_{t})} \left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_{t}) V(S_{t}) \right] = V(S_{t}) \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_{t})} \left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_{t}) \right]$$

$$= V(S_{t}) \int_{\mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A|S_{t}) dA$$

$$= V(S_{t}) \nabla_{\boldsymbol{\theta}} \int_{\mathcal{A}} \pi_{\boldsymbol{\theta}}(A|S_{t}) dA = V(S_{t}) \nabla_{\boldsymbol{\theta}}(1) = 0.$$

Thus, $\mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\hat{\nabla}^{\mathrm{LR}}_{\boldsymbol{\theta}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A) \right] = \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S_t) Q_{\mathbf{w}}(S_t, A) \right]$. This shows $\hat{\nabla}^{\mathrm{DA-PG}}_{\boldsymbol{\theta}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t)} \left[\hat{\nabla}^{\mathrm{LR}}_{\boldsymbol{\theta}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A) \right]$.

For variance reduction, let $X = \hat{\nabla}^{LR}_{\boldsymbol{\theta}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, A)$ and $Y = \hat{\nabla}^{DA-PG}_{\boldsymbol{\theta}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)$. We have $Y = \mathbb{E}[X|S_t, \bar{\pi}_{\boldsymbol{\theta}}(S_t)]$ (expectation over A). By the law of total variance: $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|S_t, \bar{\pi}_{\boldsymbol{\theta}}(S_t))] + \mathbb{V}(\mathbb{E}[X|S_t, \bar{\pi}_{\boldsymbol{\theta}}(S_t)])$. This translates to

$$\mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\mathrm{LR}}\hat{J}(\pi_{\pmb{\theta}};S_t,A)\right) = \mathbb{E}_{S_t}\left[\mathbb{V}_A\left(\hat{\nabla}_{\pmb{\theta}}^{\mathrm{LR}}\hat{J}(\pi_{\pmb{\theta}};S_t,A)\Big|S_t\right)\right] + \mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\mathrm{DA-PG}}\hat{J}(\bar{\pi}_{\pmb{\theta}};S_t)\right).$$

If $\mathbb{E}_{S_t}\left[\mathbb{V}_A\left(\hat{\nabla}^{\mathrm{LR}}_{\pmb{\theta}}\hat{J}(\pi_{\pmb{\theta}};S_t,A)\Big|S_t\right)\right]>0$ (i.e., the action-conditioned variance is positive on average), then $\mathbb{V}\left(\hat{\nabla}^{\mathrm{DA-PG}}_{\pmb{\theta}}\hat{J}(\bar{\pi}_{\pmb{\theta}};S_t)\right)<\mathbb{V}\left(\hat{\nabla}^{\mathrm{LR}}_{\pmb{\theta}}\hat{J}(\pi_{\pmb{\theta}};S_t,A)\right).$

Proposition 4.5. Assume \mathcal{A} is continuous, $Q_{\mathbf{w}} = q_{\pi_{\boldsymbol{\theta}}}$ in $\hat{\nabla}^{\mathrm{RP}}_{\boldsymbol{\theta}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon)$, and $\bar{Q}_{\mathbf{w}} = \bar{q}_{\bar{\pi}_{\boldsymbol{\theta}}}$ in $\hat{\nabla}^{\mathrm{DA-PG}}_{\boldsymbol{\theta}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t)$. Then,

$$\hat{\nabla}_{\pmb{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\pmb{\theta}}; S_t) = \mathbb{E}_{\epsilon \sim p} \left[\hat{\nabla}_{\pmb{\theta}}^{\text{RP}} \hat{J}(\pi_{\pmb{\theta}}; S_t, \epsilon) \right].$$

Further, if the expectation of the noise-induced variance is greater than zero, then

$$\mathbb{V}\left(\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}}\hat{J}(\bar{\pi}_{\boldsymbol{\theta}};S_t)\right) < \mathbb{V}\left(\hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}}\hat{J}(\pi_{\boldsymbol{\theta}};S_t,\epsilon)\right).$$

Proof. For the RP estimator, the action is generated as $A = g_{\theta}(\epsilon; S_t)$, where $\epsilon \sim p(\cdot)$. For consistency with DA-PG notation, we can write $A = g(\epsilon; U)$, where $U = \bar{\pi}_{\theta}(S_t) \in \mathcal{U}$ represents all relevant learnable distribution parameters. Thus, the distribution $f(\cdot|U)$ of the random variable A is induced by $g(\epsilon; U)$ with $\epsilon \sim p(\cdot)$.

Similar to the proof of Proposition 4.4, given the critics are the corresponding true action-value functions, we have:

$$\bar{Q}_{\mathbf{w}}(S_t, U) = \mathbb{E}_{A \sim f(\cdot | U)}[Q_{\mathbf{w}}(S_t, A)] = \mathbb{E}_{\epsilon \sim p}\left[Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t)))\right],$$

where we use a change of variables to express the expectation in terms of the noise ϵ .

Now, we can express the DA-PG gradient as:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_{t}) = \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} \bar{Q}_{\mathbf{w}}(S_{t}, U)|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})}
= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} \mathbb{E}_{\epsilon \sim p} [Q_{\mathbf{w}}(S_{t}, g(\epsilon; U))]|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})}
= \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \mathbb{E}_{\epsilon \sim p} [\nabla_{U} Q_{\mathbf{w}}(S_{t}, g(\epsilon; U))|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})}]
= \mathbb{E}_{\epsilon \sim p} [\nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S_{t})^{\top} \nabla_{U} Q_{\mathbf{w}}(S_{t}, g(\epsilon; U))|_{U = \bar{\pi}_{\boldsymbol{\theta}}(S_{t})}]
= \mathbb{E}_{\epsilon \sim p} [\nabla_{\boldsymbol{\theta}} Q_{\mathbf{w}}(S_{t}, g(\epsilon; \bar{\pi}_{\boldsymbol{\theta}}(S_{t})))].$$

The differentiability under the integral sign is justified by Assumption 4.1. The last line follows from the chain rule, where $\nabla_{\theta}Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t))) = \nabla_{\theta}\bar{\pi}_{\theta}(S_t)^{\top}\nabla_{U}Q_{\mathbf{w}}(S_t, g(\epsilon; U))|_{U=\bar{\pi}_{\theta}(S_t)}$.

On the other hand, the RP gradient is:

$$\begin{split} \hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon) &= \nabla_{\boldsymbol{\theta}} g_{\boldsymbol{\theta}}(\epsilon; S_t)^{\top} \nabla_{A} Q_{\mathbf{w}}(S_t, A)|_{A = g_{\boldsymbol{\theta}}(\epsilon; S_t)} \\ &= \nabla_{\boldsymbol{\theta}} g(\epsilon; \bar{\pi}_{\boldsymbol{\theta}}(S_t))^{\top} \nabla_{A} Q_{\mathbf{w}}(S_t, A)|_{A = g(\epsilon; \bar{\pi}_{\boldsymbol{\theta}}(S_t))} \\ &= \nabla_{\boldsymbol{\theta}} Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\boldsymbol{\theta}}(S_t))), \end{split}$$

where we use the chain rule again in the last equation: $\nabla_{\theta}Q_{\mathbf{w}}(S_t, g(\epsilon; \bar{\pi}_{\theta}(S_t))) = \nabla_{\theta}g(\epsilon; \bar{\pi}_{\theta}(S_t))^{\top}\nabla_{A}Q_{\mathbf{w}}(S_t, A)|_{A=g(\epsilon; \bar{\pi}_{\theta}(S_t))}$. Thus, we have:

$$\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) = \mathbb{E}_{\epsilon \sim p} \left[\hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon) \right].$$

The variance reduction argument is similar to that in Proposition 4.4. Let $X = \hat{\nabla}^{\mathrm{RP}}_{\theta} \hat{J}(\pi_{\theta}; S_t, \epsilon)$ and $Y = \hat{\nabla}^{\mathrm{DA-PG}}_{\theta} \hat{J}(\bar{\pi}_{\theta}; S_t)$. We have $Y = \mathbb{E}[X|S_t, \epsilon]$ (expectation over ϵ). By the law of total variance: $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|S_t, \epsilon)] + \mathbb{V}(\mathbb{E}[X|S_t, \epsilon])$. This translates to

$$\mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\text{RP}}\hat{J}(\pi_{\pmb{\theta}};S_t,\epsilon)\right) = \mathbb{E}_{S_t}\left[\mathbb{V}_{\epsilon}\left(\hat{\nabla}_{\pmb{\theta}}^{\text{RP}}\hat{J}(\pi_{\pmb{\theta}};S_t,\epsilon)\Big|S_t\right)\right] + \mathbb{V}\left(\hat{\nabla}_{\pmb{\theta}}^{\text{DA-PG}}\hat{J}(\bar{\pi}_{\pmb{\theta}};S_t)\right).$$

If $\mathbb{E}_{S_t} \left[\mathbb{V}_{\epsilon} \left(\hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon) \middle| S_t \right) \right] > 0$ (i.e., the noise-induced variance is positive on average), then $\mathbb{V} \left(\hat{\nabla}_{\boldsymbol{\theta}}^{\text{DA-PG}} \hat{J}(\bar{\pi}_{\boldsymbol{\theta}}; S_t) \right) < \mathbb{V} \left(\hat{\nabla}_{\boldsymbol{\theta}}^{\text{RP}} \hat{J}(\pi_{\boldsymbol{\theta}}; S_t, \epsilon) \right).$

A.3 CONVERGENCE ANALYSIS FOR DA-PG

We present a convergence result for the distributions-as-actions policy gradient (DA-PG), which is a direct application of the convergence of the deterministic policy gradient (DPG; Xiong et al., 2022). We assume an on-policy linear function approximation setting and use TD learning to learn

Algorithm 1 DA-PG-TD

882

883

884

885

886 887

888

889 890 891

892

893

894

895

896

897

899

900

901 902

903

904

905

906

907

908

909

910

911

912 913 914

915

916 917

```
1: Input: \alpha_w, \alpha_\theta, w_0, \theta_0, batch size M.
866
                    2: for t = 0, 1, ..., T do
                               for j = 0, 1, ..., M - 1 do
868
                    4:
                                    Sample s_{t,j} \sim d_{\theta_t}.
                    5:
                                    Generate u_{t,j} = \bar{\pi}_{\theta_t}(s_{t,j}).
870
                                    Sample s_{t+1,j} \sim \bar{p}(\cdot|s_{t,j}, u_{t,j}) and r_{t,j}.
                    6:
                                   Generate u_{t+1,j} = \bar{\pi}_{\theta_t}(s_{t+1,j}).

Denote x_{t,j} = (s_{t,j}, u_{t,j}).

\delta_{t,j} = r_{t,j} + \gamma \phi(x_{t+1,j})^\top w_t - \phi(x_{t,j})^\top w_t.
871
                    7:
                    8:
872
873
                    9:
                  10:
874
                              w_{t+1} = w_t + rac{lpha_w}{M} \sum_{j=0}^{M-1} \delta_{t,j} \phi(x_{t,j}). for j = 0, 1, \dots, M-1 do
                  11:
875
                  12:
876
                                    Sample s'_{t,i} \sim \nu_{\theta_t}.
                  13:
877
                  14:
878
                               \theta_{t+1} = \theta_t + \frac{\alpha_{\theta}}{M} \sum_{j=0}^{M-1} \nabla_{\theta} \bar{\pi}_{\theta_t}(s'_{t,j}) \nabla_{\theta} \bar{\pi}_{\theta_t}(s'_{t,j})^{\top} w_t.
                  15:
879
                  16: end for
880
```

the critic. See Algorithm 1 for the analyzed DA-PG-TD algorithm. We follow the notation of Xiong et al. as much as possible for comparison with their results.

Following their notation, the parameterized policy is denoted as $\bar{\pi}_{\theta}$ and the objective function $J(\bar{\pi}_{\theta})$ (Equation (1)) is denoted as $J(\theta)$. The distributions-as-actions policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \nu_{\theta}} \left[\nabla_{\theta} \bar{\pi}_{\theta}(s) \nabla_{u} \bar{q}_{\bar{\pi}_{\theta}}(s, u) |_{u = \bar{\pi}_{\theta}(s)} \right], \tag{15}$$

where $\nu_{\theta}(s) \doteq \sum_{t=0}^{\infty} \mathbb{E}_{\bar{\pi}_{\theta}}[\gamma^{t}\mathbb{I}(S_{t}=s)]$ is the discounted occupancy measure under $\bar{\pi}_{\theta}$. We also define the stationary distribution of $\bar{\pi}_{\theta}$ to be $d_{\theta}(s) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\bar{\pi}_{\theta}}[\mathbb{I}(S_{t}=s)]$. Under linear function approximation for the critic function, the parameterized critic can be expressed as $\bar{Q}_{w}(s,u) = \phi(s,u)^{\top}w$, where $\phi: \mathcal{S} \times \mathcal{U} \to \mathbb{R}^{d}$ is the feature function.

We will first list the full set of assumptions needed for the convergence result, followed by the convergence theorem. In addition, we incorporate the corrections to the result of Xiong et al. from Vasan et al. (2024), which extends the result to the reparameterization policy gradient. Following Vasan et al., the corrections are highlighted in red.

Assumption A.1. For any $\theta_1, \theta_2, \theta \in \mathbb{R}^d$, there exist positive constants $L_{\bar{\pi}}, L_{\phi}$ and λ_{Φ} , such that (1) $\|\bar{\pi}_{\theta_1}(s) - \bar{\pi}_{\theta_2}(s)\| \le L_{\bar{\pi}} \|\theta_1 - \theta_2\|, \forall s \in \mathcal{S};$ (2) $\|\nabla_{\theta}\bar{\pi}_{\theta_1}(s) - \nabla_{\theta}\bar{\pi}_{\theta_2}(s)\| \le L_{\psi} \|\theta_1 - \theta_2\|, \forall s \in \mathcal{S};$ (3) the matrix $\Psi_{\theta} := \mathbb{E}_{\nu_{\theta}} \left[\nabla_{\theta}\bar{\pi}_{\theta}(s) \nabla_{\theta}\bar{\pi}_{\theta}(s)^{\top} \right]$ is non-singular with the minimal eigenvalue uniformly lower-bounded as $\sigma_{\min}(\Psi_{\theta}) \ge \lambda_{\Psi}$.

Assumption A.2. For any $u_1,u_2\in\mathcal{U}$, there exist positive constants $L_{\bar{p}},L_{\bar{r}}$, such that (1) the distributions-as-actions transition kernel satisfies $|\bar{p}(s'|s,u_1)-\bar{p}(s'|s,u_2)|\leq L_{\bar{p}}\|u_1-u_2\|, \forall s,s'\in\mathcal{S};$ (2) the distributions-as-actions reward function satisfies $|\bar{r}(s,u_1)-\bar{r}(s,u_2)|\leq L_{\bar{r}}\|u_1-u_2\|, \forall s,s'\in\mathcal{S}.$

Assumption A.3. For any $u_1, u_2 \in \mathcal{U}$, there exists a positive constant $L_{\bar{q}}$, such that $\|\nabla_u \bar{q}_{\bar{\pi}_{\theta}}(s, u_1) - \nabla_u \bar{q}_{\bar{\pi}_{\theta}}(s, u_2)\| \le L_{\bar{q}} \|u_1 - u_2\|, \forall \theta \in \mathbb{R}^d, s \in \mathcal{S}.$

Assumption A.4. The feature function $\phi: \mathcal{S} \times \mathcal{U} \to \mathbb{R}^d$ is uniformly bounded, i.e., $\|\phi(\cdot, \cdot)\| \leq C_{\phi}$ for some positive constant C_{ϕ} . In addition, we define $A = \mathbb{E}_{d_{\theta}} \left[\phi(x) (\gamma \phi(x') - \phi(x))^{\top} \right]$ and $D = \mathbb{E}_{d_{\theta}} \left[\phi(x) \phi(x)^{\top} \right]$, and assume that A and D are non-singular. We further assume that the absolute value of the eigenvalues of A are uniformly lower bounded, i.e., $|\sigma(A)| \geq \lambda_A$ for some positive constant λ_A .

Proposition A.5 (Compatible function approximation). A function estimator $\bar{Q}_w(s,u)$ is compatible with a policy $\bar{\pi}_{\theta}$, i.e., $\nabla J(\theta) = \mathbb{E}_{\nu_{\theta}} \left[\nabla_{\theta} \bar{\pi}_{\theta}(s) \nabla_{u} \bar{Q}_{w}(s,u)|_{u=\bar{\pi}_{\theta}(s)} \right]$, if it satisfies the following two conditions:

1.
$$\nabla_u \bar{Q}_w(s, u)|_{u = \bar{\pi}_{\theta}(s)} = \nabla_{\theta} \bar{\pi}_{\theta}(s)^{\top} w;$$

2.
$$w = w_{\xi_{\theta}}^*$$
 minimizes the mean square error $\mathbb{E}_{\nu_{\theta}}\left[\xi(s;\theta,w)^{\top}\xi(s;\theta,w)\right]$, where $\xi(s;\theta,w) = \nabla_u \bar{Q}_w(s,u)|_{u=\bar{\pi}_{\theta}(s)} - \nabla_u \bar{q}_{\pi_{\theta}}(s,u)|_{u=\bar{\pi}_{\theta}(s)}$.

Given the above assumption, one can show that the distributions-as-actions policy gradient is smooth (Lemma A.6), and that Algorithm 1 converges (Theorem A.7).

Lemma A.6. Suppose Assumptions A.1-A.3 hold. Then the distributions-as-actions policy gradient $\nabla J(\theta)$ defined in Equation (15) is Lipschitz continuous with the parameter L_J , i.e., $\forall \theta_1, \theta_2 \in \mathbb{R}^d$,

$$\|\nabla J(\theta_1) - \nabla J(\theta_2)\| \le L_J \|\theta_1 - \theta_2\|,$$
 (16)

$$\textit{where } L_{J} = \left(\frac{1}{2}L_{\bar{p}}L_{\pi}^{2}L_{\nu}C_{\nu} + \frac{L_{\psi}}{1-\gamma}\right)\left(L_{\bar{r}} + \frac{\gamma R_{\max}L_{\bar{p}}}{1-\gamma}\right) + \frac{L_{\bar{\pi}}}{1-\gamma}\left(L_{\bar{q}}L_{\bar{\pi}} + \frac{\gamma}{2}L_{\bar{p}}^{2}R_{\max}L_{\bar{\pi}}C_{\nu} + \frac{\gamma L_{\bar{p}}L_{\bar{r}}L_{\bar{\pi}}}{1-\gamma}\right).$$

Theorem A.7. Suppose that Assumptions A.1-A.4 hold. Let $\alpha_w \leq \frac{\lambda}{2C_A^2}$; $M \geq \frac{48\alpha_w C_A^2}{\lambda}$; $\alpha_\theta \leq \min\left\{\frac{1}{4L_I}, \frac{\lambda\alpha_w}{24\sqrt{6}L_IL_I}\right\}$. Then the output of DA-PG-TD in Algorithm 1 satisfies

$$\min_{t \in [T]} \mathbb{E} \|\nabla J(\theta_t)\|^2 \le \frac{c_1}{T} + \frac{c_2}{M} + c_3 \kappa^2,$$

$$\begin{aligned} \text{where } c_1 &= \frac{8R_{\max}}{\alpha_{\theta}(1-\gamma)} + \frac{144L_h^2}{\lambda\alpha_w} \|w_0 - w_{\theta_0}^*\|^2, c_2 = \left[48\alpha_w^2(C_A^2C_w^2 + C_b^2) + \frac{96L_w^2L_\pi^4C_{w_\xi}^2\alpha_\theta^2}{\lambda\alpha_w}\right] \cdot \frac{144L_h^2}{\lambda\alpha_w} + \\ 72L_\pi^4C_{w_\xi}^2, c_3 &= 18L_h^2 + \left[\frac{24L_w^2L_h^2\alpha_\theta^2}{\lambda\alpha_w} + \frac{24}{\lambda\alpha_w}\right] \cdot \frac{144L_h^2}{\lambda\alpha_w} \text{ with } C_A = 2C_\phi^2, C_b = R_{\max}C_\phi, C_w = \\ \frac{R_{\max}C_\phi}{\lambda_A}, C_{w_\xi} &= \frac{L_\pi C_{\bar{q}}}{\lambda_\Psi(1-\gamma)}, L_w = \frac{L_J}{\lambda_\Psi} + \frac{L_\pi C_{\bar{q}}}{\lambda_\Psi^2(1-\gamma)} \left(L_\pi^2L_\nu + \frac{2L_\pi L_\psi}{1-\gamma}\right), L_h = L_\pi^2, C_{\bar{q}} = L_{\bar{r}} + L_{\bar{p}} \cdot \frac{\gamma R_{\max}C_\phi}{1-\gamma}, L_\nu = \frac{1}{2}C_\nu L_{\bar{p}}L_{\bar{\pi}}, \text{ and } L_J \text{ defined in Lemma A.6, and we define} \end{aligned}$$

$$\kappa := \max_{\theta} \|w_{\theta}^* - w_{\xi_{\theta}}^*\|. \tag{17}$$

Remark A.8. Apart from the corrections highlighted in red, the convergence result retains the same mathematical form as the DPG convergence result (see Theorem 1 of Xiong et al. (2022)). However, the associated constants differ, as they are defined with respect to the distributions-as-actions formulations of the MDP, policy, and critic. Notably, the distributions-as-actions policy class strictly generalizes the deterministic policy class. Consequently, this convergence result constitutes a strict generalization of the DPG convergence result.

The proofs of Lemma A.6 and Theorem A.7 follow the same lines as that of Lemma 1 and Theorem 1 of Xiong et al.. We refer the reader to Xiong et al. for proofs and discussion and Vasan et al. for details about the corrections.

B EXPERIMENTAL DETAILS

Our implementation builds upon a PyTorch (Paszke, 2019) implementation of TD3 from CleanRL (Huang et al., 2022), distributed under the MIT license. The source code is currently being cleaned up and will be open-sourced following paper acceptance.

Since the performance distribution in reinforcement learning (RL) is often not Gaussian, we use 95% bootstrap confidence intervals (CIs) for reporting the statistical significance whenever applicable, as recommended by Patterson et al. (2024). We use scipy.stats.bootstrap with 10,000 resamples from SciPy to calculate the bootstrap CIs. For all bar plots, we plot the final performance, which is computed using the average of the return collected during the final 10% training steps.

B.1 POLICY PARAMETERIZATION AND ACTION SAMPLING

When the action space is multidimensional, we treat each dimension independently. For simplicity, our exposition will focus on the unidimensional case in the remaining of the paper.

Discrete action spaces We use the categorical policy parameterization: $A \sim f(\cdot|[p_1,\cdots,p_N]^\top)$, where $f(x|[p_1,\cdots,p_N]^\top) = \prod_{i=1}^N p_i^{\mathbb{I}(x=i)}$ is the probability mass function for the categorical distribution. For DA-AC, we choose the probability vector $u = [p_1,\cdots,p_N]^\top$ as the distribution parameters. We define the distribution parameters corresponding to an action A to be the one-hot vector $U_A = \text{one_hot}(A)$.

Continuous action spaces Assume the action space is $[a_{\min}, a_{\max}]$. We use the Gaussian policy parameterization that is used in TD3: $A = \text{clip}(\mu + \epsilon, a_{\min}, a_{\max}), \epsilon \sim \mathcal{N}(0, \sigma)$. Same as TD3, we restrict the mean μ to be within $[a_{\min}, a_{\max}]$ using a squashing function:

$$\mu = \frac{u_{\mu} + 1}{2}(a_{\text{max}} - a_{\text{min}}) + a_{\text{min}}, \quad u_{\mu} = \tanh(\text{logit}_{\mu}),$$

where $\operatorname{logit}_{\mu} \in \mathbb{R}$ is the actor network's output for μ . While TD3 uses a fixed $\sigma_{\text{TD3}} = 0.1 * \frac{a_{\max} - a_{\min}}{2}$, we allow the learnable standard deviation to be within a range $\sigma \in [\sigma_{\min}, \sigma_{\max}]$:

$$\log \sigma = \frac{u_{\sigma} + 1}{2} * (\log \sigma_{\max} - \log \sigma_{\min}) + \log \sigma_{\min}, \quad u_{\sigma} = \tanh(\operatorname{logit}_{\sigma}),$$

where $\log \mathrm{it}_{\sigma} \in \mathbb{R}$ is the actor network's output for σ . For RP-AC, the reparameterization function is $g_{\theta}(\epsilon; S_t) = \mathrm{clip}(\mu_{\theta}(S_t) + \sigma_{\theta}(S_t)\epsilon, a_{\min}, a_{\max}), \epsilon \sim \mathcal{N}(0, 1)$. For DA-AC, we choose the distribution parameters to be $u = [u_{\mu}, u_{\sigma}]^{\top} \in [-1, 1]^2$ so that the parameter space is consistent across the mean and standard deviation dimensions. Since we lower bound the standard deviation space to encourage exploration, we define the distribution parameters corresponding to an action A to be $U_A = [\frac{2A}{a_{\max} - a_{\min}}, -1]^{\top}$ to approximate the Dirac delta distribution, which corresponds to $\mu = A$ and $\sigma = \sigma_{\min}$.

Hybrid action spaces For environments with hybrid action spaces, DA-AC simply uses the policy parameterizations described above for the corresponding discrete and continuous parts.

B.2 POLICY EVALUATION IN BANDITS

K-Armed Bandit We use a K-armed bandit with K=3 and a deterministic reward function:

$$r(a_1) = 0$$
, $r(a_2) = 0.5$, $r(a_3) = 1$.

Bimodal Continuous Bandit We use a continuous bandit with a bimodal reward function that is deterministic. Specifically, the reward function is the normalized summation of two Gaussians' density functions whose standard deviations are both 0.5 and whose means are -1 and 1, respectively:

$$r(a) = e^{-\frac{(a+1)^2}{0.5}} + e^{-\frac{(a-1)^2}{0.5}}.$$

We restrict the action space to be $[a_{\min}, a_{\max}] = [-2, 2]$. The standard standard deviation is constrained to $[\sigma_{\min}, \sigma_{\max}] = [e^{-3}, e]$.

Figure 9: Learning curves of DA-AC, DA-AC w/o ICL, and baselines on the K-Armed Bandit (col 1) and Bimodal Continuous Bandit (col 2) tasks. Results are averaged over 50 seeds. Shaded regions show 95% bootstrap CIs. ICL substantially improves DA-AC's performance, enabling it to match LR-AC and RP-AC in these simple settings.

Critic network architecture To be consistent with the RL settings, we use the same critic network architecture as those in Appendices B.4 and B.6. Specifically, we use a two-layer MLP network with the concatenated state and action vector as input. We reduce the hidden size from 256 to 16 and use a dummy state vector with a value of 1.

Experimental details We keep the policy evaluation (PE) policy fixed and update the distributions-as-actions critic function for 2000 steps using either Equation (12) or Equation (14). In K-Armed Bandit, the PE policy is $\bar{\pi}_{PE} = u_{PE} = [1/3, 1/3, 1/3]$; in Bimodal Continuous Bandit, the PE policy is $\bar{\pi}_{PE} = u_{PE} = [0, 0.5]$ (corresponding to $\mu = 0$ and $\log \sigma = 0.0$). The hyperparameters are the same as those of DA-AC in Table 3, except that the actor is kept fixed to the corresponding PE policy.

B.3 POLICY OPTIMIZATION IN BANDITS

Environments We use the same K-Armed Bandit and Bimodal Continuous Bandit environments as Appendix B.2.

Algorithms In addition to DA-AC and DA-AC w/o ICL, we also include LR-AC and RP-AC as a reference, as they should be quite effective in these settings because of a much simpler critic function. Note that our goal is not to show that DA-AC can outperform other baselines in these toy settings, but rather to illustrate how ICL substantially improves critic learning in DA-AC. Here, LR-AC uses the average of the action values as the baseline. We also include LR-PG, RP-PG, and DA-PG, variants of LR-AC, RP-AC, and DA-AC that have access to their corresponding true value functions to remove the confounding factor of learning the critic.

Experimental Details We use the same critic network architecture as in Appendix B.2. Similarly, we use the same actor network architecture as those in Appendices B.4 and B.6. Specifically, we use a two-layer MLP network with the state vector as input. We reduce the hidden size from 256 to 16 and use a dummy state tensor with a value of 1. The hyperparameters are in Table 3. For LR-PG, RP-PG, and DA-PG, the critic function is calculated analytically; otherwise, their hyperparameters are the same as their counterparts with a learned critic function. See Figure 9 for learning curves.

Results with alternative learning rates While we choose a fixed learning rate for all algorithms for a more controlled comparison in Section 5.5, we note that interpolated critic learning (ICL) also improves the performance of DA-AC under other learning rates. Apart from 0.01, we report the results with learning rates 0.001 and 0.1 in Figure 10.

B.4 CONTINUOUS CONTROL

Environments From OpenAI Gym MuJoCo, we use the most commonly used 5 environments (see Table 1). From DeepMind Control Suite, we use the same 15 environments as D'Oro et al.

Figure 10: Learning curves of DA-AC, DA-AC w/o ICL, and baselines using learning rates 0.001 (cols 1–2) and 0.1 (cols 3–4). Results are averaged over 50 seeds. Shaded regions show 95% bootstrap CIs. An aggressive learning rate of 0.1 often leads to premature convergence to suboptimal points for most algorithms. Consistent with Figure 9, ICL demonstrates improved performance for DA-AC when a more conservative learning rate is employed.

Figure 11: Average normalized returns with and without actor target network (ATN) on Mu-JoCo (col 1) and DMC (col 2) tasks. Values are averaged over 10 seeds and 5 (MuJoCo) or 10 (DMC) tasks. Error bars show 95% bootstrap CIs.

(2023), which are mentioned to be neither immediately solvable nor unsolvable by common deep RL algorithms. The full list of environments and their corresponding observation and action space dimensions are in Table 2. Returns for bar plots are normalized by dividing the episodic return by the maximum possible return for a given task. In DMC environments, the maximum return is 1000 (Tunyasuvunakool et al., 2020). For MuJoCo environments, we establish maximum returns based on the highest values observed from proficient RL algorithms (Bhatt et al., 2024): 4000 for Hopper-v4, 7000 for Walker2d-v4, 8000 for Ant-v4, 16000 for HalfCheetah-v4, and 12000 for Humanoid-v4.

Experimental details Similar to TD3, DA-AC and RP-AC also adopt a uniform exploration phase. During the uniform exploration phase, the distribution parameters $u = [u_{\mu}, u_{\sigma}]^{\top}$ are uniformly sampled from $[-1, 1]^2$. These three algorithms use the default hyperparameters of TD3 (see Table 4). For SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), we use the implementations and tuned hyperparameters in CleanRL (Huang et al., 2022). See Figure 13 for learning curves in each individual environment.

Figure 12: Relative final performance of DA-AC with continuous actions versus with discrete actions across 20 individual control tasks. Results are averaged over 10 seeds per task.

Impact of the actor target network We also investigate the impact of using an actor target network (ATN) in DA-AC and the baselines. While TD3 already employs an ATN, both DA-AC and RP-AC do not. We additionally test DA-AC w/ ATN and RP-AC w/ ATN and TD3 w/o ATN. From Figure 11, we can see that the actor target network does not have a significant impact in general.

B.5 DISCRETE CONTROL

Environments We use the same 4 Gym classic control (Brockman et al., 2016) and 5 MinAtar (Young & Tian, 2019) environments as in Ceron & Castro (2021).

Experimental details for Gym environmentsWe use the existing implementations and tuned hyperparameters of DQN (Mnih et al., 2015) and PPO in CleanRL (Tables 8 and 10). For DA-AC, ST-AC, LR-AC, and EAC, we adjust relevant off-policy training hyperparameters based on those of DQN, including batch size, gradient steps per step, network size, replay buffer size. We also disables double Q-networks to better align with DQN. See Table 5 for the updated parameters from Table 4. We use a similar setup for Discrete SAC (DSAC; Christodoulou, 2019), as shown in the same table. The learning curves can be found in Figure 14.

Experimental details for MinAtar environments The MinAtar setups for DQN and PPO are adopted from their implementations and tuned hyperparameters for Atari (Bellemare et al., 2013) in CleanRL (Tables 9 and 11). Similar to the above, we adjust relevant off-policy training hyperparameters based on DQN for DA-AC, ST-AC, LR-AC, and EAC (Table 6). We use a similar setup for DSAC but decrease its uniform exploration steps according to its hyperparameters for Atari in CleanRL (Table 6). For consistency, we use the same critic network for DA-AC, ST-AC, LR-AC, EAC, and DSAC, which takes actions as input. The learning curves can be found in Figure 14.

Joint encoding of CNN observation features and actions While concatenation is used for joint encoding of observations and actions for state-based observations in MuJoCo/DMC/Gym environments, it might not be efficient for encoding latent features and actions (Schlegel et al., 2023). Inspired by Schlegel et al., we use the flattened outer product of the CNN observation features (with a dimension of 128) and the vectorized action representations (with a dimension of $|\mathcal{A}|$) as the joint encoding. The action representations are the action probabilities for DA-AC, while they are one-hot embedding of actions for other algorithms. We then use an additional hidden layer with a small number of hidden units (8 in MinAtar) with negligible overhead to extract higher-level features.

B.6 HIGH-DIMENSIONAL DISCRETE CONTROL

Details We use the same 20 environments as Appendix B.4. Similar to the continuous control case, we also include a uninform exploration phase for all discrete control algorithms. For LR-AC and ST-AC, the action is randomly sampled from a uniform categorical distribution. For DA-AC, the logits of the distribution parameters (in this case, the probability vector) are sampled from $\mathcal{N}(0,1)^N$, where N is the number of possible discrete outcomes. All algorithms use the default hyperparameters of TD3 (see Table 4). See Figure 15 for learning curves in each individual environment.

Comparison to continuous control We plot the relative final performance of DA-AC with continuous actions versus with discrete actions in Figure 12. We can see that the performance of DA-AC with discrete actions can often compete with DA-AC with continuous actions.

B.7 HYBRID CONTROL

Environments We use 7 parameterized-action MDP (PAMDP; Masson et al., 2016) environments from Li et al. (2021). Please see their Appendix B.1 for the descriptions of the environments.

Experimental details Contrary to other settings, which report training episodes' return, we report performance in evaluation phases following Li et al.. During evaluation phases, DA-AC uses discrete actions with the highest probability for the discrete components and mean actions for the continuous components. We use the implementations provided by Li et al. for baselines, including PADDPG (Hausknecht & Stone, 2015), PDQN (Xiong et al., 2018), and (Fu et al., 2019). All

 the baselines incorporate clipped double Q-learning from TD3, with PADDPG renamed to PATD3. The hyperparameters of DA-AC are made aligned with the baselines (Table 12). Since PDQN uses per-environment tuned γ in Li et al., our results are slightly different than theirs as we use a fixed $\gamma=0.99$ for PDQN to be consistent with other algorithms. Learning curves can be found in Figure 16.

B.8 Computational resource requirement

All training for bandits was conducted on a local machine with AMD Ryzen 9 5900X 12-Core Processor. Each training run was executed using a single CPU core and consumed less than 256MB of RAM. Most runs completed 2000 training steps within 10 seconds.

All training for the MuJoCo simulation tasks was conducted on CPU servers. These servers were equipped with a diverse range of Intel Xeon processors, including Intel E5-2683 v4 Broadwell @ 2.1GHz, Intel Platinum 8160F Skylake @ 2.1GHz, and Intel Platinum 8260 Cascade Lake @ 2.4GHz. Each training run was executed using a single CPU core and consumed less than 2GB of RAM. The training duration varied considerably across environments, primarily influenced by the dimensionality of the observation space, the complexity of the physics simulation, and, in the case of discrete action spaces, the dimensionality of the action space. Most algorithms typically completed 1 million training steps in approximately 7 hours per run. However, LR-AC required a longer training period of roughly 9 hours due to the additional computational overhead of learning an extra neural network.

Table 1: Observation and action dimensions of OpenAI Gym MuJoCo environments.

Environment	Observation dimension	Action dimension
Hopper-v3	11	3
Walker2d-v3	17	6
HalfCheetah-v3	17	6
Ant-v3	27	8
Humanoid-v3	376	17

Table 2: Observation and action dimensions of DeepMind Control Suite environments.

Domain	Task(s)	Observation dimension	Action dimension
pendulum	swingup	3	1
acrobot	swingup	6	1
reacher	hard	6	2
finger	turn_hard	12	2
hopper	stand, hop	15	4
fish	swim	24	5
swimmer	swimmer6	25	5
cheetah	run	17	6
walker	run	24	6
quadruped	walk, run	58	12
humanoid	stand, walk, run	67	24

C HYPERPARAMETERS

Table 3: Hyperparameters for both continuous (col 3) and discrete (col 2) bandits that are different from Table 4. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respectively. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC uses the same hyperparameters as DA-AC (D).

Hyperparameter	DA-AC (D)	DA-AC (C)
Batch size	8	
Learning rate (actor / critic)	0.0)1
Neurons per hidden layer	(16, 16)	
Discount factor (γ)	N/A	
Replay buffer size	2000	
Policy update delay (N_d)	1	
Uniform exploration steps	N/A	
Learnable σ range ([$\sigma_{\min}, \sigma_{\max}$])	N/A	$[e^{-3},e]$

Table 4: Hyperparameters of actor-critic algorithms for both MuJoCo/DMC continuous (cols 3–5) and discrete (col 2) control environments. DA-AC is applied to both settings, denoted as DA-AC (C) and DA-AC (D), respectively. For simplicity, we assume $[a_{\min}, a_{\max}] = [-1, 1]$ for continuous control algorithms. RP-AC uses the same hyperparameters as DA-AC (C); LR-AC and ST-AC use the same hyperparameters as DA-AC (D).

Hyperparameter	DA-AC (D)	DA-AC (C)	TD3	SAC
Batch size		256		
Optimizer		Adan	n	
Learning rate (actor / critic)		0.0003		0.0003 / 0.001
Target network update rate (τ)		0.005	5	
Gradient steps per env step		1		
Number of hidden layers		2		
Neurons per hidden layer		(256, 256)		
Activation function		ReLU	J	
Discount factor (γ)	0.99			
Replay buffer size	1×10^{6}			
Policy update delay (N_d)	2			
Uniform exploration steps	25,000			5,000
Learnable σ range ([$\sigma_{\min}, \sigma_{\max}$])	N/A	[0.05, 0.2]	N/A	N/A
Target entropy	N/A			$ \mathcal{A} $
Target policy noise clip (c)	N/A		0.5	N/A
Target policy noise $(\tilde{\sigma}_{TD3})$	N/A		0.2	N/A
Exploration policy noise (σ_{TD3})	N/A		0.1	N/A

Table 5: Hyperparameters of actor-critic algorithms for Gym environments that are different from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

Hyperparameter	DA-AC	DSAC
Batch size	128	
Learning rate (actor / critic)	0.0003	
Target network update rate (τ)	0.01	
Gradient steps per env step	1 (every 10 env steps)	
Neurons per hidden layer	(120, 84)	
Replay buffer size	1×10^{4}	
Policy update delay (N_d)	by update delay (N_d)	
Uniform exploration steps	12,500	2,500
Target entropy	N/A	0.89 A

Table 6: Hyperparameters of actor-critic algorithms for MinAtar environments that are different from Table 4. EAC, LR-AC, and ST-AC use the same hyperparameters as DA-AC.

DA-AC **DSAC** Hyperparameter Batch size 0.0003Learning rate (actor / critic) Gradient steps per env step 1 (every 4 env steps) Number of Conv. layers Conv. channels Conv. filter size Conv. stride Number of MLP layers (128, 8)Neurons per MLP layer 1×10^{5} Replay buffer size Policy update delay (N_d) Uniform exploration steps 50,0004,000 $0.89|\mathcal{A}|$ N/A Target entropy

Table 7: Hyperparameters of PPO in MuJoCo/DMC continuous- and discrete-control environments.

Hyperparameter	PPO
Optimizer	Adam
Learning rate (actor / critic)	3×10^{-4}
Discount factor (γ)	0.99
GAE parameter (λ)	0.95
Rollout length (timesteps per update)	2048
Minibatch size	32
Number of epochs per update	10
Number of hidden layers	2
Neurons per hidden layer	(64, 64)
Activation function	Tanh
Clipping parameter (ϵ)	0.2
Entropy coefficient	0.0
Value loss coefficient	0.5
Max grad norm	0.5
Reward normalization	Enabled
Observation normalization	Enabled
Learning rate schedule	Linear decay

Table 8: Hyperparameters of PPO in Gym environments that are different from Table 7.

Hyperparameter	PPO
Rollout length (timesteps per update)	128
Number of epochs per update	4

Table 9: Hyperparameters of PPO in MinAtar environments that are different from Table 7. Since MinAtar already normalizes the observations and rewards, we disable the normalization wrappers.

Hyperparameter	PPO
Learning rate (actor / critic)	2.5×10^{-4}
Rollout length (timesteps per update)	128
Number of epochs per update	4
Number of Conv. layers	1
Conv. channels	16
Conv. filter size	3
Conv. stride	1
Number of MLP layers	1
Neurons per MLP layer	(128,)
Activation function	ReLU
Entropy coefficient	0.01
Reward normalization	Disable
Observation normalization	Disable

Table 10: Hyperparameters of DQN in Gym environments.

Hyperparameter	DQN		
Batch size	128		
Optimizer	Adam		
Learning rate	2.5×10^{-4}		
Discount factor (γ)	0.99		
Hard target network update	Every 500 env steps		
Gradient steps per env step	1 (every 10 env steps)		
Number of hidden layers	2		
Neurons per hidden layer	(120, 84)		
Activation function	ReLU		
Replay buffer size	1×10^4		
Min replay size before learning	10,000		
Linear ε -greedy range	$1.0 \rightarrow 0.05$		
Linear ε -greedy steps	2.5×10^5		

Table 11: Hyperparameters of DQN in MinAtar environments.

Hyperparameter	DQN	
Batch size	32	
Learning rate	1×10^{-4}	
Hard target network update	Every 1000 env steps	
Gradient steps per env step	1 (every 4 env steps)	
Number of Conv. layers	1	
Conv. channels	16	
Conv. filter size	3	
Conv. stride	1	
Number of MLP layers	1	
Neurons per MLP layer	(128,)	
Replay buffer size	1×10^5	
Min replay size before learning	40,000	
Linear ε -greedy range	$1.0 \to 0.01$	
Linear ε -greedy steps	5×10^5	

Table 12: Hyperparameters of actor-critic algorithms for PAMDP environments.

Hyperparameter	DA-AC	PATD3	HHQN	PDQN
Batch size		1	28	
Optimizer		Ad	lam	
Learning rate (actor / critic)		0.0003		0.0001 / 0.001
Target network update rate (τ)		0.005		0.001 / 0.01
Gradient steps per env step			1	
Number of hidden layers			2	
Neurons per hidden layer		(256	, 256)	
Activation function		Re	LU	
Discount factor (γ)		0.	.99	
Replay buffer size	1×10^{5}			
Policy update delay (N_d)	2			
Uniform exploration steps	5,000 N/A			
Learnable σ range ($[\sigma_{\min}, \sigma_{\max}]$)	[0.05, 0.2] N/A			
Target policy noise clip (c)	N/A 0.5 N/A		N/A	
Target policy noise $(\tilde{\sigma}_{TD3})$	N/A 0.2 N/A		N/A	
Exploration policy noise (σ_{TD3})	N/A 0.1		N/A	
Ornstein-Uhlenbeck noise		N/A		Enable
Linear ε -greedy range	N/A		$1.0 \rightarrow 0.01$	
Linear ε -greedy steps	N/A			1×10^3
Max grad norm	N/A 0.5		0.5	

D ADDITIONAL PLOTS

Figure 13: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 continuous control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Figure 14: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 4 Gym and 5 MinAtar discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Figure 15: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in 20 MuJoCo/DMC discrete control tasks. Results are averaged over 10 seeds. Shaded regions show 95% bootstrap CIs.

Figure 16: Learning curves of DA-AC, DA-AC w/o ICL, and baselines in $7\ hybrid$ control tasks. Results are averaged over $10\ seeds$. Shaded regions show 95% bootstrap CIs.

1620 Ε **PSEUDOCODE** 1621 1622 1623 1624 1625 1626 1627 Obtain initial state S_0 1628 for t = 1 to T do 1629 1630 1631 1633 Update critics on B: 1634 1635 1637 if $t \equiv 0 \pmod{N_d}$ then Update policy on B: 1639

DA-AC: DISTRIBUTIONS-AS-ACTIONS ACTOR-CRITIC

Algorithm 2 DA-AC for diverse action spaces

Input action sampling function $f: \mathcal{U} \to \Delta(\mathcal{A})$ (see Appendix B.1 for f in different settings) Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B}

Take action $A_t \sim f(\cdot|U_t)$ with $U_t = \bar{\pi}_{\theta}(S_t)$, observe R_{t+1} , S_{t+1}

Add $\langle S_t, U_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}

Sample a mini-batch B from buffer B

Sample $\hat{U} = \omega U + (1 - \omega)U_A$, $\omega \sim \text{Uniform}[0, 1]$, for each transition $\langle S, U, A, S', R \rangle$ in B

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{j \in \{1,2\}} Q_{\bar{\mathbf{w}}_j}(S', \bar{\pi}_{\boldsymbol{\theta}}(S')) - Q_{\mathbf{w}_i}(S, \hat{U}) \right) \nabla Q_{\mathbf{w}_i}(S, \hat{U})$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \bar{\pi}_{\boldsymbol{\theta}}(S)^{\top} \nabla_{\tilde{U}} Q_{\mathbf{w}_1}(S, \tilde{U})|_{\tilde{U} = \bar{\pi}_{\boldsymbol{\theta}}(S)}$$

Update target network weights:

$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$$

end if end for

1640 1641 1642

1643 1644

1645

1646

1647 1648 1649

1650 1651

1652 1653

1654

1655

1656

1657

1658

1659

1661

1662 1663 1664

1665

1669

1671 1672

1673

TD3: TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT

Algorithm 3 TD3 for continuous action spaces

Input exploration noise σ_{TD3} , target policy noise $\tilde{\sigma}_{TD3}$, target noise clipping c Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2, \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}$, replay buffer \mathcal{B} Obtain initial state S_0

for t = 1 to T do

Take action $A_t = \pi_{\theta}(S_t) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_{\text{TD3}})$, and observe R_{t+1}, S_{t+1}

Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B}

Sample a mini-batch B from buffer B

Sample $A' = \pi_{\bar{\theta}}(S') + \epsilon$, $\epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}_{TD3}), -c, c)$, for each transition $\langle S, A, S', R \rangle$ in B Update critics on B:

$$\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} + \alpha_{t} \left(R + \gamma \min_{j \in \{1,2\}} Q_{\bar{\mathbf{w}}_{j}}(S', A') - Q_{\mathbf{w}_{i}}(S, A) \right) \nabla Q_{\mathbf{w}_{i}}(S, A)$$

if $t \equiv 0 \pmod{N_d}$ then Update policy on B:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(S)^\top \nabla_{\tilde{A}} Q_{\mathbf{w}_1}(S, \tilde{A})|_{\tilde{A} = \pi_{\boldsymbol{\theta}}(S)}$$

Update target network weights:

$$\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i, \quad \bar{\boldsymbol{\theta}} \leftarrow \tau \boldsymbol{\theta} + (1 - \tau) \bar{\boldsymbol{\theta}}$$

end if end for

1674 E.3 RP-AC: ACTOR-CRITIC WITH THE REPARAMETERIZATION (RP) ESTIMATOR 1675 1676 **Algorithm 4** RP-AC for continuous action spaces 1677 1678 Input reparameterization function $q_{\theta}: \mathcal{S} \times \mathbb{R} \to \mathcal{A}$ (for Gaussian policies, see Appendix B.1) 1679 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} Obtain initial state S_0 for t = 1 to T do 1681 Take action $A_t = g_{\theta}(\epsilon; S_t), \epsilon \sim \mathcal{N}(0, 1)$, and observe R_{t+1}, S_{t+1} 1682 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1683 Sample a mini-batch B from buffer B1684 Sample $A' = g_{\theta}(\epsilon; S'), \epsilon \sim \mathcal{N}(0, 1)$, for each transition $\langle S, A, S', R \rangle$ in B 1685 Update critics on B: $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{i \in \{1,2\}} Q_{\bar{\mathbf{w}}_i}(S', A') - Q_{\mathbf{w}_i}(S, A) \right) \nabla Q_{\mathbf{w}_i}(S, A)$ 1687 1688 1689 if $t \equiv 0 \pmod{N_d}$ then Sample $\epsilon \sim \mathcal{N}(0,1)$ for each transition $\langle S, A, S', R \rangle$ in B Update policy on *B*: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} g_{\boldsymbol{\theta}}(\epsilon; S)^\top \nabla_{\tilde{A}} Q_{\mathbf{w}_1}(S, \tilde{A})|_{\tilde{A} = g_{\boldsymbol{\theta}}(\epsilon; S)}$ 1693 1694 1695 Update target network weights: 1696 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$ 1698 end if 1699 end for 1700 1701 1702 ST-AC: ACTOR-CRITIC WITH THE STRAIGHT-THROUGH (ST) ESTIMATOR 1703 1704 **Algorithm 5** ST-AC for discrete action spaces 1705 1706 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} Obtain initial state S_0 1707 $\mathbf{for}\ t = 1\ \mathsf{to}\ T\ \mathbf{do}$ 1708 Take action $A_t \sim \pi_{\theta}(\cdot|S_t)$, and observe R_{t+1} , S_{t+1} 1709 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1710 Sample a mini-batch B from buffer \mathcal{B} 1711 Sample $A' \sim \pi_{\theta}(\cdot|S')$ for each transition $\langle S, A, S', R \rangle$ in B 1712 Update critics on B: 1713 $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{i \in \{1,2\}} Q_{\bar{\mathbf{w}}_i}(S', A') - Q_{\mathbf{w}_i}(S, A) \right) \nabla Q_{\mathbf{w}_i}(S, A)$ 1714 1715 1716 if $t \equiv 0 \pmod{N_d}$ then 1717 Sample $A \sim \pi_{\theta}(\cdot|S)$, for each transition $\langle S, A, S', R \rangle$ in B 1718 Use the straight-through trick to compute $\tilde{A}_{\theta} = \text{one_hot}(\tilde{A}) + \pi_{\theta}(\cdot|S) - \pi_{\phi}(\cdot|S)|_{\phi=\theta}$ 1719 Update policy on B: 1720 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (\cdot | S)^\top \nabla_{\tilde{\boldsymbol{A}}} Q_{\mathbf{w}_1} (S, \tilde{\boldsymbol{A}})|_{\tilde{\boldsymbol{A}} = \tilde{\boldsymbol{A}}_{\boldsymbol{\alpha}}}$ 1721 1722 1723 Update target network weights: 1724 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$ 1725 1726 end if

1727

end for

1728 E.5 LR-AC: ACTOR-CRITIC WITH THE LIKELIHOOD-RATIO (LR) ESTIMATOR 1729 1730 1731 **Algorithm 6** LR-AC for discrete action spaces 1732 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \boldsymbol{\theta}, \mathbf{v}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} 1733 Obtain initial state S_0 1734 for t = 1 to T do 1735 Take action $A_t \sim \pi_{\theta}(\cdot|S_t)$, and observe R_{t+1} , S_{t+1} 1736 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1737 Sample a mini-batch B from buffer \mathcal{B} 1738 Sample $A \sim \pi_{\theta}(\cdot|S)$ and $A' \sim \pi_{\theta}(\cdot|S')$ for each transition $\langle S, A, S', R \rangle$ in B 1739 Update critics on B: 1740 $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{i \in \{1, 2\}} Q_{\bar{\mathbf{w}}_i}(S', A') - Q_{\mathbf{w}_i}(S, A) \right) \nabla Q_{\mathbf{w}_i}(S, A)$ 1741 1742 $\mathbf{v} \leftarrow \mathbf{v} + \alpha_t \left(Q_{\mathbf{w}_1}(S, \tilde{A}) - V_{\mathbf{v}}(S) \right) \nabla V_{\mathbf{v}}(S)$ 1743 1744 if $t \equiv 0 \pmod{N_d}$ then Sample $\tilde{A} \sim \pi_{\theta}(\cdot|S)$, for each transition $\langle S, A, S', R \rangle$ in B 1746 Update policy on B: 1747 1748 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\tilde{A}|S) \left(Q_{\mathbf{w}_1}(S, \tilde{A}) - V_{\mathbf{v}}(S) \right)$ 1749 1750 1751 Update target network weights: 1752 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$ 1753 end if 1754 end for 1755 1756 1757 1758 EAC: ACTOR-CRITIC WITH THE EXPECTED POLICY GRADIENT ESTIMATOR 1759 1760 1761 **Algorithm 7** EAC for discrete action spaces 1762 Initialize parameters $\mathbf{w}_1, \mathbf{w}_2, \mathbf{v}, \bar{\mathbf{w}}_1 \leftarrow \mathbf{w}_1, \bar{\mathbf{w}}_2 \leftarrow \mathbf{w}_2$, replay buffer \mathcal{B} 1763 Obtain initial state S_0 1764 for t = 1 to T do 1765 Take action $A_t \sim \pi_{\theta}(\cdot|S_t)$, and observe R_{t+1}, S_{t+1} 1766 Add $\langle S_t, A_t, S_{t+1}, R_{t+1} \rangle$ to the buffer \mathcal{B} 1767 Sample a mini-batch B from buffer \mathcal{B} Sample $\tilde{A} \sim \pi_{\theta}(\cdot|S)$ and $A' \sim \pi_{\theta}(\cdot|S')$ for each transition $\langle S, A, S', R \rangle$ in B 1768 Update critics on B: 1769 1770 $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha_t \left(R + \gamma \min_{i \in \{1,2\}} Q_{\bar{\mathbf{w}}_i}(S', A') - Q_{\mathbf{w}_i}(S, A) \right) \nabla Q_{\mathbf{w}_i}(S, A)$ 1771 1772 if $t \equiv 0 \pmod{N_d}$ then 1773 Update policy on *B*: 1774 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha_t \nabla_{\boldsymbol{\theta}} \sum_{a \in \mathcal{A}} \pi_{\boldsymbol{\theta}}(a|S) Q_{\mathbf{w}_1}(S, a)$ 1775 1776 1777 Update target network weights: 1778

1779 1780

1781

end if

end for

 $\bar{\mathbf{w}}_i \leftarrow \tau \mathbf{w}_i + (1 - \tau) \bar{\mathbf{w}}_i$

F USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in a strictly auxiliary capacity during the preparation of this paper. Their use was limited to two areas: (1) assisting with writing refinement by improving readability, grammar, and conciseness, without contributing to the technical content or conceptual development; and (2) supporting workflow tasks such as drafting or adjusting scripts for data processing and figure generation, with all outputs carefully reviewed and corrected by the authors. LLMs were not used for generating research ideas, conducting literature searches, or producing original technical material. Their involvement was confined to polishing communication and light implementation support.