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Abstract

The improvement in translating natural lan-001
guage to structured query language (SQL) can002
be attributed to the advancements in large lan-003
guage models (LLMs). Open-source LLMs,004
tailored for specific database dialects such005
as MySQL, have shown great performance.006
However, cloud service providers are look-007
ing for a unified database manager service008
(e.g., Cosmos DB from Azure, Amazon Au-009
rora from AWS, Lindorm from AlibabaCloud)010
that can support multiple dialects. This re-011
quirement has led to the concept of multi-012
dialect query generation, which presents chal-013
lenges to LLMs. These challenges include014
syntactic differences among dialects and im-015
balanced data distributions across them. To016
address these issues, we propose MoMQ, a017
novel Mixture-of-Experts-based multi-dialect018
query generation framework across both rela-019
tional and non-relational databases. MoMQ020
incorporates dialect-specific expert groups to021
capture syntax features of individual dialects022
while minimizing cross-dialect interference in023
query generation. Additionally, we propose024
a multi-level routing mechanism enhanced by025
Dialect Router Loss (DRL) and a shared ex-026
pert group architecture, facilitating common027
knowledge transfer from high-resource dialects028
to low-resource ones. Furthermore, we have de-029
veloped a high-quality multi-dialect query gen-030
eration benchmark that covers relational and031
non-relational databases such as MySQL, Post-032
greSQL, Cypher for Neo4j, and nGQL for Neb-033
ulaGraph. Extensive experiments have shown034
that MoMQ performs effectively and robustly,035
even in resource-imbalanced scenarios.036

1 Introduction037

The ability to convert natural language into struc-038

tured query language (SQL) has made it much eas-039

ier to interact with relational database management040

systems. In recent years, the use of large language041

models (LLMs) has significantly improved SQL042

Find players who scored more than 50 points in a game at least once during the 2022-

2023 season and count the number of times they reached that mark.

User Question

SELECT player_name,

COUNT(*) AS

high_scoring_games

FROM game_stats

WHERE season = '2022 -2023'

AND points > 50 GROUP BY

player_name;

MySQL

SELECT player_name,

COUNT(*) FILTER (WHERE

points > 50) AS

high_scoring_games

FROM game_stats

WHERE season = '2022 -2023'

GROUP BY player_name;

PostgreSQL

MATCH (p:Player) -

[:PLAYED_IN]->(g:Game)

WHERE g.season = '2022 -

2023' AND g.points > 50

RETURN p.player_name,

COUNT(g) AS

high_scoring_games;

Cypher

LLM

#Table:

1. Players (player_id INT PRIMARY KEY, player_name

VARCHAR(100))

2. Games (game_id INT PRIMARY KEY, season VARCHAR(10),

game_date DATE)

3. game_stats (game_id INT, player_id INT, points INT, FOREIGN

KEY (game_id) REFERENCES games(game_id), FOREIGN KEY

(player_id) REFERENCES players( player_id))

#Vertex

1. Player (player_id INT,

player_name STRING)

2. Game (game_id INT, season

STRING, game_date DATE)

#Edge

1. played_in (src_player_id INT,

dst_game_id INT, points INT)

Relational Schema Graph Schema

Generate

Figure 1: Database queries exhibit notable syntax vari-
ations. For instance, PostgreSQL offers a distinctive
FILTER clause compared to MySQL, and Cypher’s
MATCH statement contrasts with the SELECT queries
used in SQL databases like MySQL and PostgreSQL.

generation tasks (Li et al., 2024b; Gao et al., 2024). 043

This shift has enhanced the quality of generated 044

queries, moving away from encoder-decoder-based 045

approaches (Li et al., 2023b; Fu et al., 2023; Li 046

et al., 2023a) to those driven by LLMs. Open- 047

source LLMs (Li et al., 2024b; Bai et al., 2023; Roz- 048

ière et al., 2024) that have been fine-tuned through 049

supervision have become the primary method due 050

to their lower data privacy risks and cost compared 051

to closed-source LLMs (Achiam et al., 2023; Bai 052

et al., 2023; Anil et al., 2023). These LLMs are typi- 053

cally designed to work best with a specific database 054

dialect, like MySQL. 055

However, for general database management ser- 056

vices in cloud computing, LLMs that support most 057

dialects are needed. Therefore, SQL generation 058

LLMs should not only cover major dialects like 059

MySQL and PostgreSQL but also non-relational 060

graph databases such as Neo4j (Neo4j, 2012) and 061

NebulaGraph (Wu et al., 2022). Figure 1 illustrates 062

the similarities and key distinctions in query syn- 063

tax across different databases. The primary vari- 064

ations within relational databases stem from the 065
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use of different keywords, while the contrast be-066

tween relational and non-relational databases is067

more fundamental, reflecting differences in query068

logic. These differences are collectively referred to069

as the database dialect issue(Zmigrod et al., 2024).070

Past research (Zhang and Yang, 2022; Standley071

et al., 2020; Crawshaw, 2020) has demonstrated072

that multi-task learning enables models to integrate073

knowledge from diverse sources, leading to im-074

proved performance. However, directly fine-tuning075

dense LLMs on multi-dialect data encounters sev-076

eral challenges: (1) Syntax variations across re-077

lational database dialects, such as the use of dis-078

tinct keywords in MySQL and PostgreSQL, and079

more pronounced differences between relational080

and non-relational databases, such as "SELECT"081

versus "MATCH", may hinder accurate query gen-082

eration. (2) The cost of annotating natural lan-083

guage to database query language is significant,084

and data for most dialects is limited. Importantly,085

the similarities in natural language questions and086

database schemas across dialects represent trans-087

ferable knowledge that is not fully utilized.088

To tackle these challenges, we propose MoMQ,089

a Mixture-of-Experts (MoE)-based multi-dialect090

query generation framework that unifies query091

generation for both relational and non-relational092

databases. Given the high cost of pre-training MoE093

structures from scratch, we build our MoE frame-094

work on top of a dense model. Unlike MoE Upcy-095

cling (Komatsuzaki et al., 2022), we incorporate096

multiple Low-Rank Adaptation (LoRA) modules097

(Hu et al., 2021) to design a detailed MoE struc-098

ture, as in Wu et al. (2024); Li et al. (2024a); Feng099

et al. (2024), while freezing the original model to100

retain pre-trained knowledge. We introduce special-101

ized dialect expert groups to isolate dialect-specific102

knowledge, minimizing interference during query103

generation. To tackle the imbalance in multi-dialect104

data, we introduce a shared expert group visible to105

all dialects, which facilitates knowledge transfer106

from high-resource to low-resource dialects. Fur-107

thermore, we propose a multi-level routing mech-108

anism that includes a dialect router and an expert109

router. The dialect router directs dialect-specific110

tokens to their respective expert groups while dis-111

tributing common tokens across all groups with112

the assistance of the Dialect Router Loss, enabling113

token-level knowledge transfer. The expert router114

activates the top-k experts in each dialect expert115

group for input tokens. To prevent routing collapse116

(Shazeer et al., 2017), we employ an Expert Bal-117

ance Loss to mitigate load imbalance. 118

We construct a comprehensive evaluation bench- 119

mark covering both relational and non-relational 120

graph databases, such as MySQL, PostgreSQL, 121

Cypher for Neo4j, and nGQL for NebulaGraph. Ex- 122

perimental results show that MoMQ outperforms 123

existing methods, achieving 3-5% improvements 124

in full-data scenarios and 4-6% in data-imbalanced 125

settings. Ablation studies further confirm the frame- 126

work’s robustness across different expert configu- 127

rations and validate its dialect transfer capabilities 128

through expert weight analysis. 129

Overall, we summarize our contributions as fol- 130

lows: 131

• We introduce MoMQ, a MoE-based frame- 132

work for unified query generation across rela- 133

tional and non-relational databases, enhancing 134

open-source LLMs’ multi-dialect capabilities. 135

• We propose a novel dialect-specialized archi- 136

tecture and a multi-level routing mechanism 137

that effectively mitigate potential interference 138

in multi-dialect generation and alleviate data 139

imbalance through enhanced knowledge trans- 140

fer. 141

• A high-quality multi-dialect generation bench- 142

mark has been constructed, providing an eval- 143

uation standard for related research. 144

• We also conducte empirical experiments and 145

analysis to validate the effectiveness and ro- 146

bustness of MoMQ under different settings. 147

2 Related Work 148

MoMQ is a multi-dialect query generation frame- 149

work that is highly related with the tuning-based 150

text-to-SQL task and Mixture-of-Experts. 151

Tuning-Based Text-to-SQL. Before the era of 152

large-scale models, the text-to-SQL task typically 153

employs an encoder-decoder-based architecture. 154

Research in this domain primarily focuses on en- 155

hancing the encoder’s ability to understand the 156

question and schema (Li et al., 2023b; Fu et al., 157

2023; Li et al., 2023a). With the advent of 158

large language models (LLMs), the text-to-SQL 159

task has gradually shifted towards LLM-based ap- 160

proaches(Achiam et al., 2023; Bai et al., 2023; Anil 161

et al., 2023; Li et al., 2024b,d; Pourreza and Rafiei, 162

2023). Supervised fine-tuning of open-source large 163

models such as LLama (Touvron et al., 2023), Start- 164

Coder (Li et al., 2023c), and Qwen (Bai et al., 2023) 165
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Figure 2: The overall structure of MoMQ. The original feed-forward network (FFN) is transformed into a MoE
structure, which consists of Shared Expert Group, Dialect Expert Group, and Multi-Level Routing Mechanism.
The pre-trained weights are frozen and LoRA modules inserted into Attention and FFN are fine-tuned for rapid
adaptation to multi-dialect query generation. The normalization layer is unfrozen due to its observed improvement.
The Dialect Router Loss and Expert Balance Loss are added to the training objectives to adjust multi-dialect routing
and mitigate routing collapse respectively.

has significantly improved both natural language166

understanding and SQL query generation capabili-167

ties.168

Mixture-of-Experts. In recent years, Mixture-of-169

Experts (MoE) has emerged as an effective struc-170

ture for reducing inference computational costs and171

enhancing multi-task learning capabilities in sce-172

narios where model parameters are continuously173

scaled up (Dai et al., 2024; Jiang et al., 2024; Zhao174

et al., 2024; Xue et al., 2024; Zoph, 2022; Fedus175

et al., 2022; Lepikhin et al., 2020; Du et al., 2022).176

A gate unit is then utilized for expert activation.177

However, training MoE models from scratch or178

converting dense models into MoE through upcy-179

cling requires substantial pre-training costs (Ko-180

matsuzaki et al., 2022; Lin et al., 2024; Xue et al.,181

2024). Recent studies have proposed the construc-182

tion of MoE based on the Low-Rank Adaptation183

(LoRA) module (Wu et al., 2024; Li et al., 2024a;184

Feng et al., 2024). This approach not only mitigates185

catastrophic forgetting of pre-trained knowledge186

in dense models but also enhances the multi-task187

learning capability.188

3 Methodology189

Task Definition. Given N natural language ques-190

tions Q = {q1, q2 · · · , qN }, a set of target query191

language dialects L = {l1, l2 · · · , lM} and a192

database schema D = {C, T }, where C and T 193

represent columns and tables. Formally, the goal is 194

to learn a mapping function as: 195

F : (Q,L,D) → S, (1) 196

where for each input question qi ∈ Q, schema D 197

and dialect lj ∈ L, the function F generates a valid 198

database query Si,j . 199

Architecture Overview. The overall architecture 200

of MoMQ is illustrated in Figure 2. MoMQ con- 201

structs MoE structure by leveraging LoRA mod- 202

ules as fine-grained experts. Dialect expert groups 203

for each dialect and a shared expert group visible 204

to all dialects are further introduced. The multi- 205

level routing mechanism, composed of a dialect 206

router and an expert router, ensures the correct rout- 207

ing of tokens between different expert groups and 208

within each group. When the tokens of different di- 209

alects are input, they are initially directed through 210

the dialect router to the appropriate dialect expert 211

groups. Within these groups, the tokens are further 212

routed by the expert router to the final activated 213

experts. Notably, all tokens are fully processed by 214

the shared expert group, which is beneficial for the 215

fusion and transfer of multi-dialect knowledge. Be- 216

sides, to better assist the dialect router in effectively 217

routing tokens of various dialects to the appropriate 218
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expert group, we introduce a novel Dialect Router219

Loss.220

3.1 MoE Construction221

MoE structures are constructed in a variety of ways,222

such as pre-training from scratch or replicating223

multiple FFNs followed by a step of continual224

pre-training, all of which require additional pre-225

training to inject knowledge into the MoE (Komat-226

suzaki et al., 2022; Lin et al., 2024; Xue et al.,227

2024). Inspired by recent works (Wu et al., 2024;228

Li et al., 2024a; Feng et al., 2024). We use a simple229

but efficient way to construct MoE, freezing the230

original LLMs and inserting multiple Low-Rank231

Adaptation (LoRA) (Hu et al., 2021) modules into232

FFN as fine-grained experts. Specifically, a trans-233

former FFN consists of two stacked layers, an up-234

projection layer and a down-projection layer. We235

replace the down-projection layer with multiple236

LoRA modules and deploy vanilla LoRA mod-237

ules in both the up-projection layer and the atten-238

tion layer to facilitate the model’s rapid adapta-239

tion to multi-dialect query generation. The LoRA240

module consists of two matrices, B ∈ Rm×r and241

A ∈ Rr×n, where r ≪ min(m,n), and defines242

the adapted weight matrix W′ as:243

W′ = W0 +BA, (2)244

where W0 ∈ Rm×n is the original pre-trained245

weight matrix that remains fixed during the adap-246

tation. All LoRA modules work parallel to the247

original layer to fully utilize the pre-trained knowl-248

edge.249

3.2 Dialect Expert Group250

In multi-dialect generation, there are non-trivial251

syntax differences between two database dialects.252

For example, in MySQL, the "DATE_ADD" func-253

tion can be used to add a specified time interval to a254

date or datetime value. While PostgreSQL uses the255

"INTERVAL" keyword along with the "+" operator256

to achieve a similar result. These differences will257

interfere with learning dialect-specific knowledge.258

To address this issue, we design multiple dialect259

expert groups to isolate dialect-specific knowledge,260

thereby mitigating interference and improving the261

quality of generated queries. The expert group con-262

sists of multiple LoRA experts and a top-k expert263

router. Each database dialect has a separate ex-264

pert group to learn knowledge of the corresponding265

query syntax. Concretely, given multiple dialect ex-266

pert groups G = {G1, G2, · · · , GM} in a specific267

Transformer layer, the output of the i-th expert 268

group is calculated as: 269

Hi
e =

N∑
k=1

gik ·Ei
k, (3) 270

271

gik =

{
sik, sik ∈ TopK({sik|1 ≤ j ≤ N},K)

0, otherwise
,

(4) 272273

sik = softmax(Wi
e ·H)k, (5) 274

where Ei
k is the k-th LoRA expert in the i-th ex- 275

pert group, and N is the total number of experts 276

in the group, gik denotes the k-th gate value for 277

the expert, sik denotes the token-to-expert affinity, 278

TopK(·,K) denotes the set comprising K highest 279

affinity scores among those calculated for the to- 280

kens in all N experts, Wi
e ∈ Rd×K is a trainable 281

matrix of the expert router, and H is the hidden 282

states of all input tokens input. Note that gik is 283

sparse, indicating that only K out of N gate values 284

are nonzero. This sparsity property ensures compu- 285

tational efficiency within an expert group, i.e., each 286

token will be assigned to and computed in only K 287

experts. 288

The routing mechanism within the expert group 289

faces the problem of load imbalance (Shazeer et al., 290

2017). This can lead to a situation known as routing 291

collapse, where the expert router continually selects 292

a limited set of experts, thereby inhibiting adequate 293

training for the others. In order to mitigate the 294

risk of routing collapse, we employ an expert-level 295

balance loss, which is computed as follows: 296

LBal = N ·
N∑
i=1

fi · Pi, (6) 297

298

fi =
1

KT

T∑
t=1

1(Token t selects Expert i), (7) 299

300

Pi =
1

T

T∑
t=1

si,t, (8) 301

where T is the number of processed tokens, 1 is 302

the indicator function, fi is the fraction of tokens 303

dispatched to expert i and Pi is the fraction of the 304

router probability allocated for expert i. 305

3.3 Shared Expert Group 306

There is a lack of inherent information commu- 307

nication between different dialects by using only 308

a separate expert group for each dialect. When 309
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encountering data imbalance, it can negatively im-310

pact the common knowledge transfer from high-311

resource dialects to low-resource dialects. Mean-312

while, multiple experts may converge in acquiring313

shared knowledge in their respective parameters,314

thereby resulting in redundancy in expert parame-315

ters. If there are shared experts dedicated to captur-316

ing and consolidating common knowledge across317

varying dialects, knowledge transfer will be more318

efficient and parameter redundancy will be allevi-319

ated.320

Toward this objective, we further add a shared321

expert group to integrate information across multi-322

ple dialects at the sentence level. Regardless of the323

router module, all tokens in a sentence will be deter-324

ministically assigned to experts in the shared expert325

group. Formally, the MoE output in the complete326

MoMQ architecture is formulated as follows:327

Ho =
M∑
i=1

Hi
e +

Ns∑
k=1

Es
k, (9)328

where M is the number of dialect expert groups,329

Ns is the number of shared experts and Es
k is the330

output of k-th shared expert.331

3.4 Dialect Router332

After the construction of multiple dialect expert333

groups, how to route the tokens of different dialects334

to the appropriate group remains to be addressed.335

Intuitively, the dialect router is able to make correct336

routing under the guidance of sentence-level dialect337

hard labels, thus forming a complete isolation be-338

tween different dialect expert groups. However,339

there may exist certain similarities between differ-340

ent dialects, e.g., "LIMIT" and "ORDER BY" in341

relational and non-relational database dialects are342

both valid tokens. Moreover, different dialects ex-343

hibit a high degree of similarity in the understand-344

ing of natural language questions and database345

schemas. If these similar tokens have the opportu-346

nity to enter multiple dialect expert groups, espe-347

cially from high-resource dialects to low-resource348

ones, may further facilitate token-level common349

knowledge transfer.350

To this end, we have designed a novel dialect351

router trained with a Dialect Router Loss (DRL) in-352

corporating dialect smoothing. Dialect smoothing353

is employed to further reduce dialect isolation by354

replacing hard dialect labels with a smooth distribu-355

tion. This distribution assigns a lower value to the356

true dialect while allocating a portion of the value357

mass to other dialects. Under the constraint of 358

DRL, tokens excluding dialect-specific ones have 359

a higher probability of being routed to various di- 360

alect experts group upon the output weight of the 361

dialect router, thus facilitating more comprehen- 362

sive dialect information exchange and knowledge 363

transfer. We add the DRL to the training objective 364

and it is formally defined as: 365

ỹt = yt(1− ϵ) +
ϵ

M
, (10) 366

367

LDR = − 1

LT

L∑
l=1

T∑
t=1

rlt log(ỹt), (11) 368

where yt represents one-hot vector label among M 369

dialect groups, ϵ ∈ [0, 1] is the smoothing factor, 370

ỹt is the label after smooth, rlt denotes the output 371

logits of dialect router in the l-th Transformer layer 372

for the t-th token, L is the total number of layers, 373

T it the total number of input tokens, and yt is the 374

dialect class label. 375

3.5 The Training Objectives 376

Finally, we formulate the multi-dialect query gen- 377

eration task as a text-to-text problem. The training 378

objective is to minimize the negative log-likelihood 379

of output y conditioned on the input question x 380

and the task prompt P. The fine-tuning loss on the 381

task is defined as: 382

LFT = −
∑
j

P(yj |y<j ;x,P)+αLDR+λLBal,

(12) 383

where α and λ are hyper-parameters that are used 384

to adjust the impact of auxiliary losses. 385

4 Experiments 386

4.1 Datasets 387

There is currently no unified benchmark for evaluat- 388

ing the performance of LLMs in multi-dialect query 389

generation. For text-to-SQL tasks, benchmarks like 390

Spider (Yu et al., 2018) and BIRD (Li et al., 2024c) 391

are widely used in English, while Chase (Guo et al., 392

2021) is used for Chinese. These benchmarks are 393

based on SQLite. Additionally, multilingual bench- 394

marks like MultiSpider (Dou et al., 2023) assess 395

multilingual comprehension. To address this gap, 396

we developed a training and evaluation dataset for 397

converting natural language to query language for 398

both relational and non-relational databases in En- 399

glish and Chinese. As shown in Table 2, our bench- 400

mark includes four dialects, with dataset construc- 401

tion details provided in Appendix A. All datasets 402
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Backbone Method Execution Accuracy Executable
MySQL PG Cypher nGQL Avg. MySQL PG Cypher nGQL Avg.

Qwen2-1.5B

ICL 19.92 20.43 7.63 4.16 10.74 37.60 46.95 75.00 40.62 50.04
Full Fine-Tuning 43.30 27.00 23.61 22.92 29.21 64.21 66.67 91.55 65.97 72.10
Full Fine-Tuning∗ 27.80 24.30 21.30 9.61 20.75 45.63 67.37 87.15 62.38 65.64

LoRA 49.20 32.16 25.12 26.97 33.36 67.28 69.84 92.94 71.53 75.40
MoMQ (Ours) 52.15 32.75 27.55 30.21 35.66 70.23 71.01 91.78 82.18 78.80

Qwen2-7B

ICL 54.98 45.87 16.31 7.63 31.19 73.80 78.85 67.70 40.27 65.15
Full Fine-Tuning 63.71 46.24 39.12 36.57 46.41 83.52 82.75 96.53 85.07 86.97
Full Fine-Tuning∗ 58.92 44.37 41.44 38.66 45.84 78.72 85.09 95.95 85.65 86.35

LoRA 63.35 44.95 38.31 27.31 43.48 84.87 83.80 95.83 82.52 86.76
MoMQ (Ours) 66.30 48.12 40.97 41.20 49.15 87.21 84.51 95.83 87.38 88.73

Qwen1.5-14B

ICL 41.69 42.29 19.79 3.12 26.72 61.62 68.81 69.79 37.15 59.34
Full Fine-Tuning 46.68 45.95 36.46 28.65 39.43 67.16 80.99 93.23 80.90 80.57
Full Fine-Tuning∗ 34.93 44.01 37.85 28.24 36.26 53.51 82.51 93.52 68.87 74.60

LoRA 50.55 45.89 36.11 28.59 40.29 70.85 81.93 91.67 79.17 80.90
MoMQ (Ours) 61.75 47.65 39.47 34.26 45.78 81.55 81.69 94.91 82.18 85.08

Table 1: Results in the full data setting. PG refers to PostgreSQL and * denotes single-dialect full fine-tuning.

underwent manual inspection and filtering to en-403

sure query correctness and executability.404

Dialect Split Source Count

MySQL
Train Spider + BIRD + Chase 3,000
Test BIRD 280

PG
Train BIRD 3,000
Test SQL-Eval1 304

Cypher
Train

Text-To-Cypher2 3,000
Test 288

nGQL
Train

NL2GQL(Zhou et al., 2024)
3,000

Test 288

Table 2: The statistics of data for each dialect.

4.2 Experimental Setup405

Evaluation Metric. We consider two prevalent406

evaluation metrics: execution accuracy (EX) and407

executable (EXEC). The EX metric evaluates408

whether the predicted and ground-truth queries409

yield the same execution results on the database.410

The EXEC metric evaluates whether the generated411

query can be executed correctly in the correspond-412

ing database without syntax errors.413

Models. MoMQ can be used on a variety of open-414

source LLMs. We select three model sizes of cur-415

rent SOTA models, namely Qwen2-1.5B, Qwen2-416

7B, and Qwen1.5-14B from HuggingFace3, as417

backbones respectively to validate MoMQ’s multi-418

dialect query generation capabilities and robustness.419

All models use the Instruct or Chat version instead420

of the Base version to obtain better performance.421

The implementation details are shown in Appendix422

B.423

1https://github.com/defog-ai/sql-eval
2https://github.com/neo4j-labs/text2cypher
3https://huggingface.co/

Baselines. We compare MoMQ with the follow- 424

ing methods: (1) In-context Learning (ICL), which 425

adds one example into the prompt without updat- 426

ing any model parameters; (2) Single-dialect full 427

fine-tuning, which fine-tunes all parameters of the 428

model in each dialect data; (3) Multi-dialect full 429

fine-tuning, which fine-tunes in a mixed dataset of 430

multiple dialects; (4) Vanilla LoRA, which freezes 431

the pre-trained model and replaces all linear layers 432

with LoRA modules in a mixed dataset of multiple 433

dialects. All the baselines use the same prompt 434

template, as shown in Appendix C. 435

4.3 Results 436

Full Data. Experimental results in Table 1 indi- 437

cate that MoMQ significantly outperforms both 438

single-dialect and multi-dialect full fine-tuning 439

over nearly 3-5% on EX and EXEC in the full 440

data setting. Additionally, MoMQ shows consis- 441

tent improvement as the model size increases from 442

1.5B to 14B. Notably, for the 1.5B model, the EX 443

for MySQL and nGQL improves by nearly 10%. 444

This demonstrates the capability of MoMQ to effec- 445

tively isolate dialect-specific knowledge and lever- 446

age generalized knowledge across multiple dialects 447

for improved performance. Meanwhile, MoMQ 448

is robust enough to achieve stable improvements 449

across various backbones. We further conducted a 450

case study on the 7B model, as shown in Appendix 451

D. 452

Imbalanced Data. We evaluate MoMQ’s trans- 453

fer capabilities in two data imbalance settings. The 454

first, MySQL high-resource, samples the entire 455

MySQL dataset and 128 samples from each of 456

the other three dialects. As shown in Table 3, 457

MoMQ consistently outperforms full fine-tuning 458
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Backbone Method Execution Accuracy Executable
MySQL PG Cypher nGQL Avg. MySQL PG Cypher nGQL Avg.

Qwen2-1.5B
ICL 19.92 20.43 7.63 4.16 10.74 37.60 46.95 75.00 40.62 50.04

Full Fine-Tuning 30.87 23.76 15.74 3.13 18.37 48.46 56.50 80.79 59.38 61.28
LoRA 35.55 27.30 17.82 4.17 21.21 53.01 60.28 85.42 48.73 61.86

MoMQ (Ours) 39.73 24.35 19.21 6.25 22.39 60.27 60.05 86.46 59.72 66.62

Qwen2-7B
ICL 54.98 45.87 16.31 7.63 31.19 73.80 78.85 67.70 40.27 65.15

Full Fine-Tuning 60.27 45.39 27.66 11.46 36.20 78.84 82.03 92.36 50.35 75.90
LoRA 61.38 43.62 27.32 3.94 34.06 81.30 79.43 91.90 33.91 71.64

MoMQ (Ours) 63.22 46.93 28.59 9.95 37.17 81.30 81.32 92.82 45.37 75.21

Qwen1.5-14B
ICL 41.69 42.29 19.79 3.12 26.72 61.62 68.81 69.79 37.15 59.34

Full Fine-Tuning 39.98 41.25 26.04 5.79 28.26 57.69 71.75 90.28 62.04 70.44
LoRA 43.05 41.02 23.03 1.74 27.21 60.39 70.45 82.41 31.48 61.18

MoMQ (Ours) 53.38 45.39 26.50 13.54 34.70 74.91 75.77 87.50 64.58 75.69

Table 3: Results in the MySQL high-resource setting. All available data from MySQL is utilized, while 128
examples are sampled from each of the other dialects.

Backbone Method Execution Accuracy Executable
MySQL PG Cypher nGQL Avg. MySQL PG Cypher nGQL Avg.

Qwen2-1.5B
ICL 19.92 20.43 7.63 4.16 10.74 37.60 46.95 75.00 40.62 50.04

Full Fine-Tuning 28.41 27.42 21.76 1.62 19.80 44.40 54.61 87.73 49.65 59.10
LoRA 31.98 25.77 24.77 3.47 21.50 48.71 59.46 91.90 49.19 62.31

MoMQ (Ours) 33.09 22.81 26.04 5.79 21.93 49.20 64.18 92.59 55.90 65.47

Qwen2-7B
ICL 54.98 45.87 16.31 7.63 31.19 73.80 78.85 67.70 40.27 65.15

Full Fine-Tuning 61.13 47.99 43.17 5.67 39.49 78.48 81.68 96.18 47.57 75.98
LoRA 62.12 50.35 38.66 4.17 38.82 80.32 83.69 94.56 36.46 73.76

MoMQ (Ours) 62.12 48.46 44.68 10.53 41.45 78.84 82.39 95.72 56.02 78.24

Qwen1.5-14B
ICL 41.69 42.29 19.79 3.12 26.72 61.62 68.81 69.79 37.15 59.34

Full Fine-Tuning 36.65 47.99 38.08 3.70 31.61 54.12 78.49 94.33 60.30 71.81
LoRA 46.99 43.50 31.02 2.43 30.98 63.10 72.22 90.39 50.00 68.93

MoMQ (Ours) 43.42 46.45 40.05 10.19 35.03 57.32 79.67 94.79 65.86 74.41

Table 4: Results in the Cypher high-resource setting. All available data from Cypher is utilized, while 128 examples
are sampled from each of the other dialects.

and LoRA, achieving nearly a 5% improvement in459

average EX for the 14B model.460

The second, Cypher high-resource, samples the461

entire Cypher dataset and 128 samples from each462

of the other three dialects. As shown in Table 4,463

MoMQ generally outperforms other methods, par-464

ticularly excelling in Cypher and nGQL due to465

their high syntactical similarity, enabling effective466

transfer of dialect-common knowledge. However,467

other methods occasionally perform better, such as468

in MySQL and PG, primarily due to insufficient469

training data for relational dialects and the greater470

differences between relational and non-relational471

databases, which hinder knowledge transfer.472

5 Analysis473

To further validate the effectiveness, robustness,474

and interpretability of MoMQ, we design a variety475

of analytical experiments. All experiments are con-476

ducted using the Qwen2-7B backbone in the full477

data setting.478

Ablation Study. To evaluate the effectiveness479

and impact of different components of MoMQ, we480

conduct ablation studies on Qwen2-7B. As shown481

Component Ablation
Shared Expert Group ✓ × × × ×
Dialect Router Loss ✓ ✓ × × ×

Dialect Router ✓ ✓ ✓ × ×
Dialect Expert Group ✓ ✓ ✓ ✓ ×

Avg. EX 49.15 48.57 47.08 44.79 43.48

Table 5: Results of ablation studies on Qwen2-7B.

in Table 5, we remove different components from 482

MoMQ and evaluate the average EX. Upon con- 483

ducting the ablations, notable decreases in perfor- 484

mance are observed. Specifically, the exclusion of 485

the shared expert group results in a drop in average 486

EX from 49.15% to 48.57%. Further removal of 487

the dialect router loss leads to an additional decline, 488

with the average EX decreasing to 47.08%. In this 489

case, tokens are routed with hard dialect labels at 490

the sentence level, resulting in complete dialect 491

isolation. The most significant reduction occurs 492

when the dialect router is removed, resulting in an 493

average EX of 44.79%. In this case, tokens are ran- 494

domly assigned to the dialect expert groups without 495

any supervision. Finally, eliminating dialect expert 496

groups causes the entire structure to revert to LoRA, 497

further reducing the EX to 43.48%. These results 498
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underscore the critical contributions of the shared499

expert group, dialect router loss, dialect router, and500

dialect expert group to the overall performance of501

MoMQ.502

Effect of Expert Dimension. We further ana-503

lyze the impact of the expert dimension on the per-504

formance of MoMQ, where the expert dimension505

refers to the LoRA module’s rank. As illustrated in506

Table 6, MoMQ demonstrates a consistent increase507

in average EX as the expert dimension increases508

from 16 to 128. Specifically, with an expert dimen-509

sion of 128, MoMQ achieves the highest average510

EX of 49.15%. It is interesting to note that when511

the expert dimension is further increased to 256,512

there is a slight decrease in the average EX. This513

decline suggests a potential issue where a large514

expert dimension may lead to inadequate training515

within 3 epochs and consequently impact MoMQ’s516

performance negatively.

Expert Execution Accuracy
Dimension MySQL PG Cypher nGQL Avg.

16 65.56 44.33 39.93 34.49 46.08
64 64.95 46.10 42.82 36.00 47.47

128 66.30 48.12 40.97 41.20 49.15
256 65.19 48.23 41.20 39.24 48.46

Table 6: Results with different expert dimensions on
Qwen2-7B.

517

Effect of Expert Number. To comprehensively518

analyze the impact of the number of experts, we519

evaluate MoMQ with configurations of 8, 16, 32,520

and 64 experts, respectively. As shown in Table521

7, MoMQ demonstrates robust performance across522

all configurations, particularly excelling with 8 and523

32 experts. When the number of experts reaches524

64, there is also a certain decline in MoMQ’s per-525

formance. This is attributed to a similar reason as526

when the expert dimension reaches 256, indicating527

that the experts are not sufficiently trained.

Expert Execution Accuracy
Number MySQL PG Cypher nGQL Avg.

8 66.67 46.93 42.25 38.77 48.65
16 65.68 48.11 40.74 38.19 48.18
32 66.30 48.12 40.97 41.20 49.15
64 65.68 47.40 37.62 38.89 47.40

Table 7: Results with different expert numbers on
Qwen2-7B.

528

Expert Weight Distribution. To further analyze529

the effect of the multi-level routing mechanism, we530
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Figure 3: Expert weight distribution of generating the
nGQL query. A certain number of experts are activated
in each expert group and the nGQL expert group plays
a dominant role in this generation process.

collect the output logits of the dialect router and 531

the expert router from all Transformer layers when 532

generating the nGQL query in the case study. As 533

illustrated in Figure 3, under the constraint of the 534

Expert Balance Loss, expert weights within each 535

dialect expert group remain balanced after training. 536

At the same time, each dialect expert group has 537

activated experts, indicating that the expert groups 538

are not entirely isolated. Tokens from the nGQL di- 539

alect have the opportunity to influence other expert 540

groups, suggesting a degree of knowledge transfer. 541

Furthermore, we observe that the weights of the 542

nGQL expert group are significantly greater than 543

those of the other groups, demonstrating that the 544

nGQL experts play a dominant role in this genera- 545

tion process. This observation further validates the 546

effectiveness of the Dialect Router Loss. 547

6 Conclusion 548

In this paper, we introduce MoMQ, a Mixture-of- 549

Experts framework for multi-dialect query genera- 550

tion across relational and non-relational databases. 551

MoMQ assigns dedicated expert groups for each 552

dialect to isolate dialect-specific knowledge and 553

mitigate interference. We further design a novel 554

multi-level routing mechanism comprising a di- 555

alect router and an expert router to ensure correct 556

token-level routing and enhance knowledge shar- 557

ing through the Dialect Router Loss and a shared 558

expert group. We have also constructed a com- 559

prehensive multi-dialect dataset (covering MySQL, 560

PostgreSQL, Cypher, and nGQL) to support further 561

research in this area. 562
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Limitations563

MoMQ adopts a sparse MoE structure, where in-564

creasing the number of expert groups and experts565

per group leads to a larger model size and reduced566

training efficiency. Additionally, since the MoE567

structure is built on a dense model, inference re-568

quires activating all original model parameters, re-569

sulting in higher computational costs. Future work570

can explore parameter sparsification and pruning571

within expert groups to remove redundant dialect572

knowledge, enhancing both training and inference573

efficiency.574
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A Dataset Construction Details823

For MySQL, we each sampled 1,500 examples824

from the training sets of Spider and Chase for train-825

ing. Additionally, we selected the "superhero" and826

"student_club" databases from the dev set of BIRD827

as the test set. The syntax of all samples was accu-828

rately converted from SQLite to MySQL.829

Regarding PG, we obtained 3,000 samples from830

BIRD, transforming the original SQLite syntax into831

PostgreSQL syntax for the training set. As for the832

test set, we directly used SQL-Eval, an evaluation833

set released by Defog. It’s based on the schema834

from Spider but with a new set of hand-selected835

questions and queries grouped by query category.836

For Cypher, the samples were acquired from the837

open-source text-to-cypher dataset, which includes838

over 16 different graph schemas, along with graph839

information for evaluation. We sampled "fincen"840

and "movies" databases as the test set and used the841

remainder for training.842

In the case of nGQL, we utilized a dataset pub-843

lished by Zhou et al. (2024). It involves matching844

data from different Knowledge Graphs to the Nebu-845

laGraph format, as well as generating training and846

testing data.847

B Implementation Details848

Our experiments are conducted using PyTorch 2.3.1849

on a computer running the Ubuntu 20 operating sys-850

tem, equipped with 8 NVIDIA A100 80GB GPUs.851

We establish a shared expert group with 2 LoRA852

experts and four dialect-specific expert groups cor-853

responding to MySQL, PostgreSQL, Cypher, and854

nGQL. Each dialect expert group comprises 8855

LoRA experts, with each input token activating856

the top-2 experts. For models with different param-857

eter sizes, we employ varying expert dimensions:858

64 dimensions for the 1.5B model, 128 dimensions859

for the 7B model, and 256 dimensions for the 14B860

model. To optimize the objectives, we use the861

AdamW optimizer with parameters set to β1 = 0.9862

and β2 = 0.95. The learning rate is set to 1e−6 for863

full fine-tuning and 1e−6 for the others, accompa-864

nied by a weight decay of 0.1 and ϵ = 0.1 for the865

smoothing factor. We set α = 0.1 and λ = 0.001866

to adjust the impact of auxiliary losses. All exper-867

iments are run for 3 epochs. Each experiment is868

repeated three times with different random seeds,869

and the mean values are reported. The random870

seed is shared by all compared methods for a fair871

comparison.872

C Prompt Templates 873

As shown in Figure 4, the prompt template used in 874

multi-dialect query generation consists primarily of 875

the dialect identifier (blue), user question, database 876

schema, and references. The ICL method addition- 877

ally includes an examples section (red) to activate 878

the model’s latent query generation capabilities. 879

D Case Study 880

Figure 5 shows the comparison of different meth- 881

ods for generating nGQL and MySQL queries. 882

From the above results, only MoMQ generates the 883

correct queries. For nGQL dialect, the multi-dialect 884

full fine-tuning method uses the "MATCH" state- 885

ment instead of the "GO FROM" statement, which 886

is interfered by the Cypher syntax. Single-dialect 887

full fine-tuning and LoRA methods are unable to 888

generate the correct query, although it uses the right 889

nGQL syntax. For MySQL dialect, both full fine- 890

tuning and LoRA do not perform a join operation 891

on the table, indicating a lack of understanding of 892

the question and schema. These cases further il- 893

lustrate that MoMQ has a stronger resistance to 894

interference and a better understanding of common 895

information compared to other methods. 896
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You are a [PostgreSQL, MySQL, Cypher,nGQL] expert. You need to read and understand the following [Database

Schema], as well as any applicable [Reference]. Then, using your [PostgreSQL, MySQL, Cypher,nGQL] knowledge,

generate the corresponding query that answers the [UserQuestion].

[Database schema]

# Table: author……

[Reference]

……

[Example]

User Question : Which authors are not part of any organization?

Expected Output: SELECT DISTINCT name, aid FROM author WHEREoid IS NULL

[User Question]

Which conference published the most publications in the last 15 years? Give the conference name and publication

count.

[Query]

Prompt

Figure 4

Dialect: nGQL

Question: Find all the entities that like Steve Nash and how they 
relate to the target entity?

Schema:
# Relationship: like (likeness, src_vid, dst_vid, …)
…

Gold Query: GO FROM "Steve Nash" OVER like REVERSELY 
YIELD like._dst

Full Fine-Tuning

Full fine−Tuning∗

LoRA

MoMQ GO FROM "Steve Nash" OVER like REVERSELY YIELD like._dst

GO FROM "Steve Nash" OVER like YIELD like._dst

MATCH (v1) -[:like]-> (v) WHERE id(v1) == 'Steve Nash' RETURN 
(v1)-[:like]->(v)

GO FROM "Steve Nash" OVER like YIELD like._dst, like._src | GO 
1 STEPS FROM $-.like._dst OVER like YIELD like._src

Dialect: MySQL

Question: How many members of Business have the Medium 
size of tee shirt?

Schema:
#Table: member (member_id, link_to_major, …)
#Table: major (major_id, …)
…
Gold Query: SELECT COUNT(T2.member_id) FROM major AS 
T1 INNER JOIN member AS T2 ON T1.major_id = 
T2.link_to_major WHERE T1.major_name = 'Business' AND 
T2.t_shirt_size = 'Medium’

Full Fine-Tuning

Full fine−Tuning∗

LoRA

MoMQ
SELECT count(*) FROM member AS T1 JOIN major AS T2 ON 
T1.link_to_major = T2.major_id WHERE T2.major_name = 
"Business" AND T1.t_shirt_size = "Medium"

SELECT count(*) FROM member WHERE major_name = 
'Business' AND t_shirt_size = 'Medium'

SELECT count(*) FROM member WHERE major_name = 
'Business' AND t_shirt_size = 'Medium'

SELECT count(*) FROM member WHERE major_name = 
'Business' AND t_shirt_size = 'Medium'

Figure 5: Case study of generating nGQL and MySQL queries of different methods in the full data setting.
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