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ABSTRACT

Learning disentangled representations is crucial for Time Series, offering bene-
fits like feature derivation and improved interpretability, thereby enhancing task
performance. We focus on disentangled representation learning for home appli-
ance electricity usage, enabling users to understand and optimize their consump-
tion for a reduced carbon footprint. Our approach frames the problem as dis-
entangling each attribute’s role in total consumption (e.g., dishwashers, fridges,
etc). Unlike existing methods assuming attribute independence, we acknowledge
real-world time series attribute correlations, like the operating of dishwashers and
washing machines during the winter season. To tackle this, we employ weakly
supervised contrastive disentanglement, facilitating representation generalization
across diverse correlated scenarios and new households. Our method utilizes in-
novative l-variational inference layers with self-attention, effectively addressing
temporal dependencies across bottom-up and top-down networks. We find that
DIoSC (Disentanglement and Independence-of-Support via Contrastive Learn-
ing) can enhance the task of reconstructing electricity consumption for individual
appliances. We introduce TDS (Time Disentangling Score) to gauge disentan-
glement quality. TDS reliably reflects disentanglement performance, making it
a valuable metric for evaluating time series representations. Code available at
https://anonymous.4open.science/r/DIoSC.

1 INTRODUCTION
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Figure 1: Real-world data often showcases at-
tributes exhibiting strong positive correlation.

Disentangled representation learning is cru-
cial in various fields like computer vision,
speech processing, and natural language pro-
cessing (Bengio et al., 2014). There have been
efforts to learn disentangled time series repre-
sentation (Woo et al., 2022; Yao et al., 2022),
with the aim to improve generalization, robust-
ness, and explainability. We call a representa-
tion disentangled when identified attributes in
the data are specifically coded in the structure
of its latent units. How this can be achieved re-
mains an open research question. In (Locatello
et al., 2019), it is shown that disentangling re-
quires some kind of supervised learning and in-
ductive bias. Moreover, standard methods such
as β-VAE, TCVAE, and NVAE (Higgins et al., 2016) rely on the too stringent assumption of sta-
tistical independence among ground truth attributes. In real-world time series, attributes are often
correlated. In the application of this study, the attributes correspond to the contributions of specific
devices in an aggregated consumption signal. We illustrate the correlation of the attributes in Fig 1,
where green boxes contain typical consumption for their respective appliances and purple ones show
consumption profiles that are correlated to those of the other appliances. Existing methods in this
context, such as (Yang et al., 2021a; Woo et al., 2022), often assume independent attributes. In
this work, we explore a broader aspect of disentangling time series by relaxing the assumption of
statistical independence in the latent representation.
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Figure 2: Our framework relies on Disentanglement and Independence-of-Support via Contrastive (Diosc) to
encourage the latent space z to exhibit a support factorization, permitting some level of dependency. Represen-
tations of positive pairs attract each other, while negative repels their corresponding representations. The latent
attributes exhibit causal correlations (Shanmugam, 2018), our framework allows for scenarios where unlikely
(but exist in data) combinations occur ((i) and (ii) leading to the existence of (iii)). It’s worth noting that forcing
strict statistical independence does not prevent these cases.

Let us more precisely detail a key application for time series disentanglement : household energy
consumption disaggregation, also known as Non-Intrusive Load Monitoring (NILM). Given only
the main consumption of a household x ∈ Rc×T , seen as a c-variate time series observed at times
t = 1, . . . , T , the NILM algorithm identifies the active consumption ym ∈ RT of each operating
appliance m. Such a task has received a growing interest and still raises unsolved problems. The
fact that many households rely on past bills to adjust future energy use underscores the importance
of energy disaggregation algorithms in reducing carbon footprints. Recent work (Bucci et al., 2021;
Yang et al., 2020; Nalmpantis & Vrakas, 2020) hold promising results, yet challenges in generaliza-
tion and robustness persist. In this work, we tackle NILM with a disentanglement perspective and
study the disentanglement as well as the downstream disaggregation task performances.

Contributions and Main results. Our approach stands out by relying on weak contrastive learn-
ing using support factorization on the prior (rather than strict statistical independence) and Atten-
tive l-Variational Inference. We evaluate our method qualitatively and quantitatively across various
datasets with ground-truth labels, examining the generalization capabilities of the learned represen-
tations on correlated data. In summary:

1. We define a new regularization term, DIoSC, whose goal is to address latent space mis-
alignment issues and to preserve disentanglement. This is achieved by promoting specific
Pairwise (dis-)similarities over the latent sub-variables (c.f. §4).

2. Our experiments across three datasets and diverse correlation scenarios demonstrate that
Diosc significantly enhances robustness to attribute correlation, yielding up to a +61.4%
for reconstruction and +21.7% improvement in disentanglement metrics (RMIG, DCI, and
TDS) compared to state-of-the-art methods (c.f. §5.3).

3. We propose l-variational-based self-attention for extracting high semantic representations
from time series, ensuring complex representations without temporal locality.

4. To evaluate disentangelement we proposed Time Desintengling score, alig with the per-
formance in downstream task. We implemented our framework in a user-friendly library,
making it the first time-series disentanglement framework.1.

2 RELATED WORK

On The Non-Intrusive Load Monitoring and Representation Learning. Recent work (Bucci
et al., 2021; Nalmpantis & Vrakas, 2020) has produced promising results for separation source
power. Nevertheless, they encounter challenges related to generalization and robustness when con-
fronted with out-of-distribution scenarios. Several approaches have been suggested to address these
challenges. Some methods tackle them through either transfer learning or by enhancing the learned
representations for each individual appliance. Exploring ways to enhance representation learning
in this field has been the focus of recent studies (Woo et al., 2022; Vahdat & Kautz, 2021; Maaløe

1https://anonymous.4open.science/r/DIoSC
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et al., 2019). However, achieving an informative and disentangled representation remains an open
and challenging question. Existing models, like RNN-VAE (Chung et al., 2015) for sequential data
and D3VAE (Li et al., 2023), assume statistically independent attributes. This assumption hampers
their performance on real-world data and makes them less applicable to out-of-distribution scenar-
ios. Developing models that effectively capture informative and disentangled representations in a
realistic and versatile manner continues to be a significant challenge.

Time Series Disentanglement in the Realm of Correlated Attributes. Traditional methods for
time series disentanglement often emphasize enforcing statistical independence among representa-
tion dimensions (Do & Tran, 2021; Klindt et al., 2020), even when dealing with highly correlated
data. In recent computer vision disentanglement methods, there has been an exploration of using
auxiliary information to improve identifiability, moving away from the assumption of statistical in-
dependence (Roth et al., 2023). However, both (Träuble et al., 2021; Roth et al., 2023) point out the
limitations of this approach due to non-identifiability. Another study by (Wang & Jordan, 2022a)
proposes support factorization for disentanglement from a causal perspective, incorporating a Haus-
dorff objective akin to (Roth et al., 2023). In our unique approach, we tackle time series disentan-
glement without explicit auxiliary variables or prior models. Instead, we achieve pairwise factor-
ized support through contrastive learning, departing from the traditional independence assumption.
This method pioneers disentanglement in correlated time series by emphasizing independence-of-
support through contrastive learning during training. This contrasts with methods like (Ren et al.,
2021), where representation discovery relies on contrastive learning of pre-trained generative mod-
els with assumed independence factorization during training. To our knowelege, we are the first to
use weakly supervised contrastive to disentangle time series with an l-VAE in correlated scenarios.

3 PROBLEM STATEMENT

We consider a c-variate time series observed at times t = 1, . . . , T , we denote by x ∈ Rc×T the
c × T resulting matrix with rows denoted by x1, . . . , xc. Each row can be seen as a univariate
time series. In the context of electric load applications, we have c = 3 and x1, x2, x3 respectively
represents the sampled active power, the sampled reactive power, and the sampled apparent power.
Our goal is to recover the following decomposition of the active power x1:

x1 =

M∑
m=1

ym + ξ , (1)

where ym ∈ RT denotes the contribution of the m-th electric device, among the total of M de-
vices identified within the household, ξ ∈ RT contains the contribution of unknown appliances and
additive noise. We denote by y the M × T matrix obtained by stacking active power devices’ con-
tributions. The Non-Intrusive Load Monitoring (NILM) mapping, denoted as x 7→ y, is typically
learned from a training set X = {x̃i}Ni=1, where each x̃i = (xi,yi) represents a pair of input-output
samples used for training purposes.

Our approach belongs to the general framework of Variational Auto-Encoders VAEs, and thus relies
on two main ingredients: 1) a generative model (pθ) based on a latent variable, and a decoder gθ; 2)
a variational family (qϕ), which approximates the conditional density of the latent variable given the
observed variable based on an encoder fϕ. In a VAE, both (unknown) parameters θ and ϕ are learnt
from the training set X . A key idea for defining the goodness of fit part of the learning criterion is
to rely the Evidence Lower Bound (ELBO), which provides a lower bound on (and a proxy of) the
log-likelihood

log pθ(x̃) ≥ Eqϕ(z|x̃) [log pθ(x̃|z)]− KL(qϕ(z|x̃) ∥ p(z)) , (2)

where we denoted the latent variable by z, defined as a dz × (M + K) matrix and p denotes
its distribution. The use of ELBO goes back to traditional variational Bayes inference. Further-
more, in the context of VAE, the inference network is defined as qϕ and the generative model as
pθ through an encoder/decoder pair of neural networks (fϕ, gθ). In the NILM, fϕ provides an
approximation of z = {z1, . . . , zM+K} from x while gθ provides an approximation of y from
z. A standard choice in a VAE is to rely on Gaussian distributions and, for instance, to set
qϕ(z|x) = N (z;µ(x, ϕ), σ2(x, ϕ)), where µ(x, ϕ) and σ2(x, ϕ) are the outputs of the encoder
fϕ. As Discussed in Section 1, various criterion functions such as β/TC/Factor/DIP-VAE have
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been introduced, aiming to learn a disentangled latent variable z and align it with the correspond-
ing attributes. However, these methods typically assume statistical independence among attributes,
leading to the assumption: p(z) = p(z1) . . . p(zM+K). Contrary to this assumption, appliances are
not used independently; rather, they used simultaneously, and their profiles may exhibit correlation
(though less likely), thereby challenging the validity of Independent Factorization.

Definition 3.1 Independence-of-Support Factorization (IoS). For a latent variable z =
{z1, . . . , zM+K} sampled from p(z), if Z = Z1 × . . . × ZM+K , where Z is the support of p(z),
and Zj denotes the supports of marginal distributions of zj , then z1, . . . , zM+K are considered to
have independent support.
Although, work of (Wang & Jordan, 2022b; Roth et al., 2023), correlated attributes have been taken
into account by replacing the independence constraint by Hausdorff Factorized Support (HFS) as-
sumption to fulfill IoS (cf. def. 3.1) and its variants. However, the numerical stability challenge in
incorporating a pairwise Hausdorff Distance (HDF) constraint prompts exploration of an alterna-
tive. We propose using a weakly supervised contrastive Pairwise Similarity penalty to ensure IoS
constraint satisfaction and improved stability. Further details are provided in the following section.

4 PROPOSED METHODS

To solve the NILM problem effectively in real-world scenarios, we seek an ideal disentangled repre-
sentation. Rather than using individual decoders g(m)

θ for each appliance m = 1, . . .M , we propose
a single deep network for simultaneous and more efficient disentangling. To achieve this, we em-
ploy the following strategies: 1) Disentanglement and Independence-of-Support via Contrastive
Learning (DIoSC), which first promotes similarity between the latent representations zm when the
device m is present in both xi and its augmentation while inducing dissimilarity in negative cases.
Additionally, we relax independent factoring to IoS, recognizing the non-independence of device
activations, rather than insisting on independent latent activations; 2) we propose using an Atten-
tive l-Variational Auto-Encoder integrate self-attention mechanisms, proven effective in natural lan-
guage processing (Vaswani et al., 2017), to enhance the model’s ability to capture intricate patterns
and achieve robust reconstruction. In the upcoming sections, we elaborate on each strategy and
articulate the comprehensive objective function.

4.1 DISENTANGLING BASED SUPPORT FACTORIZATION VIA WEAKLY SUPERVISED CONTRASTIVE

In the realm of contrastive learning (Khosla et al., 2021), the fundamental concept involves com-
pelling a model to generate distinct latent features for semantically different inputs. Extending this
notion, our approach aims to imbue the latent variables zm with the capacity to both reconstruct ym
and withstand the introduction of noise on appliance m. We also assign to zm the task of being able
to differentiate the status (active/non-active) of the machine m. Consider x a mixed power sample
where we chose (at random) a machine m activated, and z = {z1 . . . zm . . . zM+K} the correspond-
ing latent mapped by fϕ. We generate a positive augmentation set for x using time-based augmenta-
tion (see §5.1), we denote the latent mapped for positive augmentation z+ = {z+1 . . . z+m . . . z+M+K}.
This resulting in positive pairs denoted as (zm, z+m), where the corresponding latents zm and z+m are
expected to be close to each other. Conversely, we characterize negative pairs (zm, z−m) as pairs
derived from a set of samples in which machine m is active in the first sample and inactive in the
second (i.e., a sample where m is inactive). The standard contrastive loss in this setting would be:

Li
self = −

∑
m

log
exp(sim(zm, z+m)/τ)∑

negative pairs exp(sim(zm, z−m)/τ)
, (3)

where sim(·, ·) denotes the cosine similarity, and τ ∈ R+ is a temporal parameter to adjust scale.
In this equation the sum in the numerator extends to all negative pairs generated for a sample i
and its size depends on the batch size. In multiclass settings like NILM, the contrastive loss (Eq. 3)
struggles when multiple samples share the same appliance latent zm due to labeled data. A suggested
generalization (Khosla et al., 2021) tackles labeled cases. However, drawbacks include the lack of
z invariance and challenges with limited or noisy labels, especially in obtaining both negative and
positive labels for time series.

Disentanglement, Invariant, and Axis-Alignment Latents. When the mth component of z, de-
noted by zm, remains invariant regardless changes in x, zm is meaningless and contains no informa-
tion from x. We consider that the latent space aligned when the variations of latent variables zm only

4



Under review as a conference paper at ICLR 2024

Time

Mixed Power 
Variables

Res (𝑙)

Time

Unmixing Appliance 
Active Power

𝑝( 𝑧!|𝑧"!)

+

𝑞( 𝑧!|𝑿(𝒕), 𝑧%!)

+

⨁

𝐓𝛉𝐥

𝐡𝛟𝐥(𝟏𝐊𝛟𝐥(𝟏

⨁

𝐡𝛟𝐥𝐊𝛟𝐥

𝐐*
𝐥

𝑻𝜽𝒍

𝑲𝜽
𝒍

𝐊𝛉%𝐥𝒛(𝒍'𝟏) 𝐓𝛉%𝐥

𝐊𝛟+𝐥 𝐡𝛟+𝐥

𝐊𝛟𝐥 𝐡𝛟𝐥

Res

Res

𝐓𝜽𝐥

-𝑻𝜽𝒍

Self Attention
(𝐐𝛉𝐥 , 𝐊𝛉%𝐥,𝐓𝛉%𝐥)

Self Attention
A(𝑸𝛟𝒍 , 𝑲𝛟

.𝒍,𝒉𝛟.𝒍)

𝐊*𝐥𝑸𝛟𝒍

)𝐡𝛟𝐥

𝐓𝛉𝐥'𝟏

Residual Block 
Decoder (𝑙)

𝒛(𝟎) 𝒛(𝟎)
𝐓𝛉
(𝟎)

+

𝐊𝛉
(𝟎)

𝒛(𝒍)

Res (𝑙)

SE

WeightNorm

BN + SeLU + Dropout

Dilated Causal Conv

WeightNorm

SeLU + Dropout

Dilated Causal Conv

+

SE

WeightNorm

BN + SeLU + Dropout

Instance Normalizing

WeightNorm

BN+SeLU + Dropout

Dilated Causal Conv

+

1x
1 

Co
nv

Residual Block 
Decoder (𝑙)

⋮ ⋮
𝑙𝑒𝑣𝑒𝑙 (𝑙) 𝑙𝑒𝑣𝑒𝑙 (𝑙)

⋮⋮

Figure 3: Performing Attentive l-Variational Inference entails processing power input x ∈ Rc×T through l

levels of residual blocks (Res(l)), generating key and query feature maps. Parameters [K(L+1)
q , T

(0)
p , K

(0)
p ]

are initially set to zero, and h(L+1) ∆
= x.

have an influence on the m-th output of the decoder gθ applied to z. Both terms form the basis of the
disentanglement principle. Thus, z is considered disentangled when there is a one-to-one correspon-
dence between each ground truth ym and the corresponding zm in the representation. To uphold this
despite the constraint of limited labels, hard to get both negative and positive in NILM, and with-
out relying on static attribute independence, we leverage weak contrastive learning (Zimmermann
et al., 2022; Zbontar et al., 2021), and adjusting it for disentanglement. The disentanglement loss
we propose integrates two core components: i⃝ a component seeks to minimize information overlap
between zm and its negatives z−m; ii⃝ a term compelling similarity between zm and its augmented
z+m accommodating potential changes to cover the variability factor of variation in ground-truth at-
tributes, ensuring both invariance, alignment and enabling the discrimination task. Nevertheless,
this is not sufficient to obtain an IoS. We next, demonstrate how this constraint could encompass an
extra assumption relaxing the latent to IoS, as outlined below.
Assumption 4.1 Relaxing Independent Factorization to IoS. Based on def. 3.1, we consider an
empirical support Z ≈ Z where Z = {zi}bi=1, and b the mini-batch size. Ensuring IoS this implies
that Z aligns with its Cartesian product Z×. To achieve pairwise factorized support, we minimize
sliced/pairwise contrastive, approximating Z and Z× = z:,1 × . . .× z:,M+K , where z:,m ∈ Rb×dz .
Building upon Assumption 4.1, which incorporates the invariant and alignment properties, we im-
pose a constraint on a given mini-batch Z of size b. Specifically, we ensure that the elements Z:,m are
close to their corresponding augmented Z+

:,m and far from any negative Z−
:,m, while simultaneously

preserving the independence of the Support (IoS). This involves minimizing the distance between
sets Z:(m, ̸=m) and Z:,m×Z:,̸=m for all appliances m. Owing the discriminating nature of contrastive
learning over data, this IoS constraint can be met by focusing on contrastive learning Z:,m and its
augmentation Z+

:,m without involving the Cartesian product × between support latent. Essentially,
our approach contrastive effectively addresses the same instance discrimination task as when con-
sidering the Cartesian product over all possible combinations. This observation aligns with insights
from a disentanglement causality perspective 2 (Wang & Jordan, 2022a). Further explanations are
given in §5.3.

LDiosc = η
∑
m

∑
negative pairs

D(zm, z−m)2

︸ ︷︷ ︸
i⃝

+
∑
m

∑
positve pairs

(
1−D(zm, z+m)

)2
︸ ︷︷ ︸

ii⃝

, (4)

where D(·, ·) is the cosine similarity distance. It is shown that both terms contribute equally to the
improvement, i.e. η = 1. We denote LDiosc-2, case where the cartesian product still holds between
latent variables for both positive and negative latents.

4.2 ATTENTIVE l-VARIATIONAL AUTO-ENCODERS

To avoid time locality during dimension reduction, and keep long-range capability we refer to
an in-depth Temporal Attention with l-Variational layers. NVAE (Vahdat & Kautz, 2020; Apos-

2This study embraces a causal of representation learning, contrasting with DIoSC’s relaxation of the inde-
pendence assumption to Independence-of-Support (IoS) via contrastive.
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tolopoulou et al., 2021) proposed an in-depth autoencoder for which the latent space z is level-
structured and attended locally (Apostolopoulou et al., 2021), this shows an effective results for
image reconstruction. We employ Temporal Multihead Self-attention (Vaswani et al., 2017) for
constructing beliefs of variational layers, allowing effective handling of long context sequences.
l-Variational Inference is illustrated in Fig. 3, where the construction of Temporal context T̂ (l)

p at
level l relies on a preview contexts i.e l − 1 denoted T

(<l)
p , query map Q

(l)
p , and its key map

K
(<l)
p . This approach enables the model to attend to information from different representation

subspaces at various scales. The use of Multihead self-attention aids in capturing diverse relation-
ships and patterns. The detailed mechanism is given in Appendix. B. For the remainder, we assume
that DIoSC uses attentive variational inference l. We adopt the Gaussian residual parametrization
between the prior and the posterior. The prior is given by p(zl|z(<l)) = N (µ(T l

p, θ), σ(T
l
p, θ).

The posterior is then given by q(zl|x, z(<l)) = N (µ(T l
p, θ) + ∆µ(T̂ l

q, ϕ), σ(T
l
p, θ) ·∆σ(T̂ l

q, ϕ))
where µ(·), σ(·), ∆µ(·), and ∆σ(·) are transformations implemented as convolutions layers.
Hence, the term LKL in Eq. 2 adding the residual and then the LKL is given by: LKL(x;ϕ, θ) =

LKL(x;ϕ, θ) +
∑(l)

l=1 0.5×
(

∆µ(l)2

σ(l)2 +∆σ(l)2 − log∆σ(l)2 − 1
)

.

4.3 SETTING OVERALL OBJECTIVE FUNCTION

Our final objective function combines the regularization (Eq. 2) and the VAE loss (Eq. 2), which
consisting of a reconstruction term Lrec, a LKL term. We present balancing parameters, denoted as
λ and β, with λ governing disentanglement and β balancing emphasis between the reconstruction
and KL divergence terms.

L(D, ϕ, θ) = E
X

b∼X

[
λLDiosc +

1

b

∑
x∈X,y∈Y

Lrec(ŷ,y;ϕ, θ) + βLKL(x;ϕ, θ)
]
. (5)

4.4 HOW TO EVALUATE DISENTANGLEMENT FOR TIME SERIES?

Metric Align-axis Unbiased No. Condition
β-VAE
FactorVAE ✓
RMIG ✓ ✓
SAP ✓ ✓
DCI ✓ ✓
TDS (Ours) ✓ ✓ ✓

Table 1: TDS Compared to SOTA met-
ric. (Red row the worst, Blue the best).

Evaluating disentanglement in series representation is more
challenging than established computer vision metrics. Exist-
ing time series methods rely on qualitative observations and
predictive performance, while metrics like Mutual Informa-
tion Gap (MIG) (Li et al., 2023) have limitations with con-
tinuous labels. To address this, we adapted RMIG (Carbon-
neau et al., 2022) for continuous labels and used DCI met-
rics from (Do & Tran, 2021). Our evaluation, including DCI,
RMIG. The β-VAE and FactorVAE scores, can be found in Appendix. B.6. However, these mea-
sures suffer from limitations with sequential data and do not provide measures of attribute alignment
under ground truth variation. To overcome this, consider cross-correlation between latent variables
zm (latent anchor) and its augmentation z+m with respect to ground truth attribute ym. Yet, practical
challenges arise with multiple attributes, as this measure can be sensitive to variations within the
same attribute. To address this, we introduce the compact Time Disentanglement Score.

TDS =
1

dim(z)

∑
n ̸=m

∑
k

||zm − z+n,k||2

Var[zm]
, (6)

where z+n,k is an augmentation of zm, and Var[zm] variance of zm. When a set of latent variables are
not axis-aligned, each variable can contain a decent amount of information regarding two or more
attributes. A wide gap between unaligned variables indicates an entanglement. TDS excels in axis
alignment (c.f. Table. 1), is unbiased across hyperparameters.

5 EXPERIMENTS

5.1 ARCHITECTURE SETTINGS AND FRAMEWORK DATA AUGMENTATION

Residual Blocs. We enhance our Residual model by replacing traditional components in residual
blocks with Sigmoid Linear Units (SiLU) (Elfwing et al., 2017). SiLU offers advantages such as
faster training, robust feature learning, and superior performance compared to weight normalization.
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Diosc (L = 8) KL ↓ RMSE ↓ Time (s) ↓
ReLU 0.734 0.734 28800
SiLU 0.671 0.671 21600
ReLU+SE 0.721 0.721 32760
SiLU+SE 0.582 0.582 23040

Table 2: Metrics on UK-Dale (↓ lower is
better [Top-1,Top-2]) for Diosc Variants ac-
tivation function and SE, for L = 8.

Our framework is given in Fig. 3, we set L = 16, and we
fix an time window input to 256 steps, for the latent space
dimension we fix dz = 16.

Squeeze-and-Excitation on Spatial and Temporal: The
SE block improves neural networks by selectively em-
phasizing important features and suppressing less rele-
vant ones. Extending SE for time series data enhances
the capture of significant temporal patterns in sequences.

Pipeline Augmentation for Electric Load Monitoring. Four augmentations were sequentially ap-
plied to all contrastive methods’ pipeline branches. The parameters from the random search are: 1)
Crop and delay: applied with a 0.5 probability and a minimum size of 50% of the initial sequence.
2) Cutout or Masking: time cutout of 5 steps with a 0.8 probability. 3) Channel Masks pow-
ers: each power (reactive, active, and apparent) is randomly masked out with a 0.4 probability. 4)
Gaussian noise: random Gaussian noise is added to window activation ym and x with a standard
deviation of 0.1. The impact of each increase is detailed in the Appendix. B.2.

Pipeline Correlated Sampling Attributes. We evaluate the model’s robustness to data correla-
tions by examining various pairs, primarily focusing on linear correlations between two appliances
and scenarios where one device correlates with two others. For this, we parameterize these corre-
lations by sampling from a common distribution p(y1, y2) ∝ exp

(
−||y1 − αy2||2/2σ2

)
, where α

is a scaling factor, and σ indicates the strength of the correlation. We extends the (Träuble et al.,
2021) framework beyond time series and adapts it to cover correlations between multiple devices
operating in a T time window. Scenario examples include: No Correlation (σ = ∞); Pair: 1
(clothes dryer/oven, σ = 0.3); Pair: 2 (washing machine/dishwasher, σ = 0.4), and Random pair
(randomly selected pairs, σ = 0.8). Additional correlation pairs are detailed in Appendix. B.3.

5.2 EXPERIMENTAL SETUP

Datasets. We conducted experiments on three public datasets: UK-DALE (Kelly & Knottenbelt,
2015), REDD (Kolter & Johnson, 2011), and REFIT (Murray et al., 2017) providing power mea-
surements from multiple homes. We focus on six appliances: Washing Machine, Oven, Dishwasher,
Cloth Dryer, Fridge. We performed cross-tests on different dataset scenarios, each with varying
sample sizes. Specifically, scenario A involved training on REFIT and testing on UK-DALE, 18.3k
samples with time window T = 256, and frequencey of 60Hz, the test set consisted of 3.5k samples,
scenario B involved training on UK-DALE and testing on REFIT with 13.3k samples, and scenario
C involved training on REFIT and testing on REDD with 9.3k samples. The augmentation pipeline
is applied for all scenarios. For training and testing under correlation, we use the corresponding
sampling.

Baseline and Evaluation. We compare DIoSCwith downstream task models in energy,
Bert4NILM (Yue et al., 2020) as a baseline and S2P (Yang et al., 2021b), S2S (Chen et al., 2018a),
for those model we keep the same configuration as the original implémentation. We provide also
variant β-TC/Factor/-VAE implemented for time series, compared to D3VAE (Li et al., 2023) and
NVAE (Vahdat & Kautz, 2021), and RNN-VAE (Chung et al., 2015). We compare these model
using RMSE, and we compute disentanglement metrics: RMIG, DCI, TDS. The metrics have been
evaluated by both, either sampling from the correlated data or from the uncorrelated distribution.

Experimental Platform. We conduct 5 seeds of experiments, reporting the averaged results and
standard deviation. Based on the grid search, we found that Diosc’s best performance is obtained by
(λ = 2.3, β = 1.5). The experiments are performed on four NVIDIA A100 GPUs. Hyperparameter
settings are available in Appendix B.

5.3 PERFORMANCE AND INFORMATIVITY OF CONTRASTIVE

Finding: DIoSC performs better in Out-of-distribution (under correlated data).

To assess DIoSC’s regularization robustness to correlated appliances, we examine scenarios involv-
ing pairs defined in §5.1. From Fig. 6.1 the increased disentanglement through Diosc gives consis-
tent improvements in all cases, and gets more pronounced in the low data regime, indicating higher
sample efficiency, as expected from better disentanglement even the correlated in pairs. Fig. 3 show
the regression results as we see even when signals are correlated the disentangling is acheived and
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relative improvements up to +20% in RMSE. We find factorization of supports using Diosc on the
training data is strongly relate to downstream disentanglement even when experiencing strong cor-
relation during training.
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Figure 4: Prediction Clothes dryer under in correlated case (left) and uncorrelated case (right) over a time
window of 256min. Moving from left to right, the graph illustrates the aggregated power (P,Q,S) alongside the
ground-truth (Green) to be identified under correlation with Oven (Orange).

Sc. Methods No Corr σ =∞ Pairs: 1 σ = 0.3 Pairs: 2 σ = 0.4 Random Pair σ = 0.8

Metrics –> DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓

A

Bert4NILM - - 56.4 ±2.58 - - 70.2±1.45 - - 72.08±0.96 - - 70.92±1.15
S2S - - 54.3 ±3.12 - - 69.5±3.56 - - 72.31±2.45 - - 69.95±3.26
β-VAE 72.4±3.10 0.96±.15 48.6 ±2.32 72.4±3.10 0.96±.15 52.6 ±2.31 72.4±3.10 0.96±.15 54.73±1.54 74.29±2.04 1.08±.09 52.99±1.91
β-TCVAE 78.0±1.09 0.94±.13 43.2 ±2.23 78.0±1.09 0.94±.13 49.2 ±1.13 77.23±0.76 0.94±.13 50.87±1.17 79.74±0.84 1.07±.11 49.65±1.43
FactorVAE 68.4±2.41 0.97±.03 47.7 ±1.35 68.4±2.41 0.97±.03 53.2 ±1.02 69.78±1.43 0.97±.03 54.32±0.64 69.95±1.63 1.00±.02 53.45±0.82
HFS 79.8 ± .10 0.64 ± .05 57.2 ± 2.15 79.8 ± .10 0.64 ± .05 61.3 ± 1.82 79.56±0.28 0.64±.05 62.33±1.23 80.37±.05 0.72±.03 61.64±1.52
β-VAE + HFS 73.1±1.01 0.69±.02 34.4±1.89 73.1±1.01 0.69±.02 38.1±1.34 73.59±0.86 0.69±.04 39.65±0.87 74.25±0.59 0.73±.05 38.48±1.04
β-TCVAE + HFS 67.2±2.01 0.52±.02 24.3 ±1.81 67.2±2.01 0.52±.02 27.4 ±1.13 67.51±1.84 0.52±.07 28.94±0.66 68.79±1.27 0.58±.04 27.77±0.83
Diosc 63.5±1.35 0.49±.02 19.6±1.95 69.3±1.2 0.4±.02 22.3±1.79 70.3±0.82 0.49±.02 23.97±1.19 67.12±0.91 0.51±.01 22.63±1.49

B

Bert4NILM - - 57.85 ±1.88 - - 68.8±1.12 - - 73.41±1.35 - - 72.78±0.88
S2S - - 56.38 ±2.22 - - 67.8±2.76 - - 73.95±1.91 - - 70.92±2.25
β-VAE 73.78±2.68 1.08±.09 50.14 ±1.87 75.47±1.98 0.82±.10 51.7±1.79 70.8±2.62 0.85±.11 55.98±1.27 76.18±1.54 1.16±.08 54.83±1.58
β-TCVAE 79.57±0.84 1.07±.11 45.72 ±1.68 80.23±0.54 0.81±.09 48.3±0.94 76.2±0.54 0.83±.10 51.74±0.94 80.88±0.53 1.15±.10 51.15±1.10
FactorVAE 70.14±1.89 1.00±.02 49.02 ±1.05 71.89±1.24 0.94±.02 52.4±0.85 68.7±1.13 0.92±.02 55.24±0.42 71.57±1.27 1.06±.01 54.68±0.64
HFS 80.12±.05 0.72±.03 58.49 ±1.45 80.26±.03 0.56±.03 6.0±1.42 78.8±0.15 0.58±.03 63.79±0.97 80.61±.02 0.80±.02 63.22±1.17
β-VAE + HFS 74.47±0.61 0.73±.05 36.09±1.25 75.12±0.41 0.67±.02 37.4±1.04 72.8±0.52 0.64±.03 40.92±0.66 75.07±0.43 0.75±.03 39.68±0.80
β-TCVAE + HFS 68.54±1.36 0.58±.04 25.88 ±1.20 69.28±1.01 0.46±.01 26.7±0.88 66.7±1.51 0.45±.02 29.82±0.51 7.04±0.93 0.72±.02 40.49±0.64
Diosc 64.42±0.96 0.51±.01 21.35 ±1.80 65.11±0.66 0.39±.01 21.5±1.44 69.5±0.43 0.48±.01 24.94±0.87 65.05±0.71 0.55±.01 24.05±1.30

C

Bert4NILM - - 58.29 ±2.16 - - 75.6±1.68 - - 71.73±1.66 - - 76.05±1.87
S2S - - 56.28 ±2.43 - - 73.8±3.91 - - 74.76±3.75 - - 73.47±4.12
β-VAE 74.17±2.01 1.03±.09 50.18 ±1.92 73.84±1.56 0.72±.12 55.7±2.47 76.1±3.36 1.07±.17 56.32±2.31 73.95±1.93 1.16±0.11 55.90±2.40
β-TCVAE 79.21±0.89 0.98±.10 45.11 ±2.03 79.48±0.75 0.78±.08 50.9±1.27 78.85±0.94 1.05±.15 51.19±1.84 80.57±0.95 1.10±0.11 51.17±1.85
FactorVAE 70.23±1.70 0.99±.02 49.12 ±1.18 69.75±1.53 0.99±.03 56.4±1.11 70.92±1.58 0.99±.05 55.48±1.25 70.43±1.74 1.05±.02 54.61±1.34
HFS 8.04±.06 0.67 ± .03 59.04 ±1.74 80.11±.05 0.60±.04 62.9±1.98 79.91±0.36 0.69±.07 63.52±1.94 80.42±.06 0.73±.03 63.83±2.01
β-VAE + HFS 74.03±0.79 0.70±.01 35.65±1.59 74.14±0.82 0.74±.01 40.5±1.49 74.26±0.95 0.71±.06 40.32±1.38 74.84±0.51 0.78±.05 39.38±1.19
β-TCVAE + HFS 69.04±1.45 0.54±.01 25.85 ±1.45 68.37±1.31 0.47±.01 28.9±1.28 69.07±2.02 0.59±.09 30.38±1.24 69.84±1.43 0.62±.04 29.29±1.13
Diosc 64.87±1.07 0.50±.01 19.6±1.95 70.54±0.60 0.50±.01 21.1±1.92 71.2±0.94 0.44±.03 26.97±1.04 67.72±1.01 0.57±0.01 24.12±1.58

Table 3: Average scores DCI, TDS, and RMSE vary from No Correlation (left) to every appliance correlated
with one confounder (right) on uncorrelated test data. Red to blue, with bold indicating the best performance
per correlation. (↓ lower is better, ↑ higher is better [Top-1,Top-2]).

6 ABLATION STUDIES

6.1 DIOSC PRESERVES ITS ROBUSTNESS IN CORRELATED SCENARIOS

Finding: Diosc preserves its robustness in correlated scenarios and achieves comparable perfor-
mance to baseline models with less training sample data.

Training with the same l variational inference model with the different regularisation variants results
shows that Diosc outperforms SOTA as shown in Fig. 5, mainly in the uncorrelated cases with only
50% of labelled data, which corresponds to HDF (Roth et al., 2023).
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Figure 5: Relative RMSE (%) improvement over Bert4NILM for six devices using Diosc, β-VAE, and Fac-
torVAE, with the amount of labelled training data as a variable parameter.
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1 2 3 4 5 6 7

washing Machine
Dishwasher

Fridge
Oven
Stove

Clothes dryer

0.67 0.15 0.73 0.00 0.45 0.05 0.67

0.96 0.08 0.15 0.64 0.85 0.29 0.73

0.92 0.48 0.42 0.85 0.38 0.43 0.50

0.77 0.91 0.98 0.19 0.74 0.08 0.65

0.73 0.46 0.56 0.62 0.76 0.90 0.66

0.63 0.19 0.87 0.77 0.56 0.47 0.46

-TCVAE

1 2 3 4 5 6 7

0.40 0.22 1.00 0.19 0.99 0.77 0.63
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0.65 0.97 0.46 0.26 0.33 0.40 0.50

0.92 0.12 0.39 0.33 0.24 0.21 0.42

HDF
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0.29 0.35 0.86 0.20 0.27 0.76 0.42

0.27 0.83 0.39 0.23 0.28 0.35 0.43
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Figure 6: We find strong correlation between Diosc and disentanglement metrics vary with M (right), linked
to classifcation accuracy of each compenents zm on ym labeled test data (Left), Darker Blue → High accuracy.

With 80% of data, Diosc scores 14% better than HDF and 61.4% better than the baseline
Bert4NILM. In the correlated scenarios (pair 1 and 2), β/Factor/TC-VAE shows weaker perfor-
mance, while Diosc consistently outperforms HDF and the baseline.

6.2 IN-DEPTH SELF-ATTENTION l-VAES LEARN AN EFFECTIVE REPRESENTATION.

Method Depth (L) NRMSE ↓ RMIG ↓ TDS ↓
VAE (baseline) - 0.928 0.921 0.935
VAE (baseline)+Diosc - 0.929 0.924 0.931
FactorVAE - 0.942 0.931 0.973
β-TCVAE - 0.931 0.918 0.937
β-TCVAE+Diosc - 0.930 0.922 0.933
DIP-VAE - 0.932 0.915 0.939
DIP-VAE+Diosc - 0.928 0.926 0.930
Diosc 8 0.50 0.73 0.71
Diosc w/o Attention 8 0.54 0.71 0.72
Diosc 16 0.49 0.74 0.70
Diosc w/o Attention 16 0.52 0.72 0.73
Diosc 32 0.48 0.75 0.69

Table 4: Average Normalized RMSE, RMIG,
and TDS Scores for Variants Diosc w/,w/o At-
tention, as L Increases. (↓ lower values are bet-
ter [Top-1,Top-2], the Red row the worst on av-
erage, and the Blue the best).

Finding: As Diosc deepens, representation increases
over 20% (40% in TDS), downtasking boosts perfor-
mance, and attention mechanisms contribute a 10%
improvement.

In Table 7, we employ l-Variational Inference with the
Diosc regularizer, both with and without self-attention,
and explore its application with alternative structures
tailored for time series, particularly those residual in
D3VAE. Our observations reveal two key findings.
Firstly, incorporating Diosc with another regulariza-
tion method slightly enhances results, as the alterna-
tive regularizer assumes independent factorization, po-
tentially compromising the relaxing effect. Secondly,
Diosc demonstrates improved performance with increasing values of L, and the TDS correlates
positively with performance, while RMIG suggests that using Diosc with attention leads to well-
disentangled representations. Notably, the attention mechanism proves efficient by enhancing the
overall model performance.

6.3 ROBUSTNESS, DISENTANGLEMENT, AND STRONG GENERALIZATION

Finding: Diosc demonstrates robust disentanglement performance across varying dimensions,
while FactorVAE exhibits degradation as dimensionality increases M ↑.
In Fig. 6 (right), we report the disentanglement performance of Diosc and FactorVAE on the Uk-
dale dataset as M is increased. FactorVAE (Higgins et al., 2016) is the closest TC-based method
it uses a single monolithic Discriminator and the density-ratio trick to explicitly approximate TC.
Computing TC(z) is challenging to compute as M increases. The results for M = 10 (scalable
≈ ×3) are included for comparison. The average disentanglement scores for Diosc M = 7 and
M = 10 are lower and very close, indicating that its performance is robust in M . This is not the
case for HDF Factor/β-VAE. It performs worse on all metrics when m increases. Interestingly, HDF
M = 7 seems to recover its performance on most metrics. Despite this, the difference suggests that
HDF and Factor/β-VAE are not robust to changes in M . The optimal M for HDF and TC/β-VAE,
shown in Fig. 6 (left), indicates promising accuracy for HDF, despite being no better than Diosc.

7 CONCLUSION AND FUTURE WORK

To overcome the limitation of assuming independence in existing time series disentanglement meth-
ods, which doesn’t align with real-world correlated data, our approach focuses on recovering corre-
lated data. By weakly supervising the independence factorization assumption to independence-of-
support, our method achieves disentanglement by enabling the model to encode attribute variabil-
ity in the latent space. Using Diosc, a combination of contrastive regularization and l-Variational
Autoencoder for time series, we show that promoting pairwise factorized support suffices for dis-
entangling time series. Diosc excels in downstream tasks of NILM, showing over +61.4% relative
improvements regarding baseline across datasets with various correlation shifts. Enhanced disentan-
glement aids out-of-distribution generalization in representation learning. Future work may explore
support factorization for time series with causal notions.
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SUPPLEMENTARY MATERIAL

In order to facilitate a comprehensive examination of our paper, we present additional results and
furnish complete proofs for the assumptions articulated in the main manuscript. This supplementary
material is meticulously organized as follows:

– Appendix. A: l-Variational Autoencoder Procedure (Inference and Generative)

– Appendix. A: Algorithm Inference qϕ
– Appendix. A: Algorithm Generative pθ

– Appendix. B: Implementation Details and Extended Ablation Studies 5.1

– Appendix. B.1: Implementations Details.
– Appendix. B.3: Augmentation and Sampling correlated Appliances.
– Appendix. B.7.1: Ablation on using multiple autoencoders for training, each dedicated

to a specific latent variables.

– Appendix. C: Connection between DIoSC, Causality-Representation and the Information
Bottleneck Principle

Figure 7: PCA visualization on the latent variable of DIoSC. A distinct separation between samples
corresponds to the activation and inactivation of an appliance. The latent space exhibits clear dis-
tinguishability between instances of activation and non-activation of each appliance from the lefet
to right: Washing Machine, Oven, Dishwasher, Cloth Dryer, and Fridge. (Cyan represents non-
activated samples, while blue-purple indicates the activation of appliances in those samples).

A l-VARIATIONAL AUTOENCODER PROCEDURE (INFERENCE AND
GENERATIVE)

To avoid time locality during dimension reduction, and keep long-range capability we refer to an
in-depth Temporal Attention with l-Variational layers. Unlike NVAE (Vahdat & Kautz, 2020) for
which the latent space z is level-structured locally, in this work, we enable the model to establish
strong couplings, as depicted. The core problem we aim to address is to construct a feature T̂ (l)

(Time context) that effectively captures the most informative features from a given sequence T<l =

{T i}(l)i=1. Both T̂ (l) and T (l) are features with the same dimensionality: T̂ (l) ∈ RT×C and T i ∈
RT×C . In our model, we employ Temporal Attention to construct either the prior or posterior beliefs
of variational layers, which enables us to handle long context sequences with large dimensions T

effectively. The construction of T̂ (l) relies on a query feature Q(l) ∈ RT×Q of dimensionality Q
with Q ≪ C, and the corresponding context T (l) is represented by a key feature K(l) ∈ RT×Q.
Importantly, T̂ (l)(t) of time step i in sequence T depends solely on the time instances in T<l.

T̂ (l)(t) =
∑
i<l

αi→l(t) · T (l)(t) (7)

In words, feature Q(l)(t) ∈ RQ queries the Temporal significance of feature T (l)(t) ∈ RC , repre-
sented by K(l)(t) ∈ RQ, to form T̂ (l)(t) ∈ RC . αi→l(t) ∈ R is the resulting relevance metric of the
i-th term, with i < l, at time step t. The overall procedure is denoted as T̂ = A(T<l,Q(l),K(<l)).

A powerful extension to the above single attention mechanism is the multi-head attention introduced
in (Vaswani et al., 2017), which allows the model to jointly attend to information from different
representation subspaces at different scales. Instead of computing a single attention function, this
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method first projects Q, K, V onto h different vectors, respectively. An attention function A(·) is
applied individually to these h projections. The output is a linear transformation of the concatenation
of all attention outputs:

Multi-A(Q,K, V ) = ⊕{A(QWqi,KWki, V Wvi)}hi=1Wo, (8)
Where Wo, Wqi, Wki, Wvi are learnable parameters of some linear layers. QWqi ∈ Rnq×dhq ,
KWki ∈ Rnv×dhk , VWvi ∈ Rnv×dhv are vectors projected from Q, K, V respectively. dhq =

dq

h

and dhv = dv

h . Following the architecture of the transformer (Vaswani et al., 2017), we define the
following multi-head attention block:

Q0 = LayerNorm(⊕{QWq1}hi=1 + MultiAtt(Q,K, V )), (9)

MultiBloc-A(Q,K, V ) = LayerNorm(Q0 +Q0Wq0), (10)
where Wq0 ∈ Rdq×dq is a learnable linear layer.

A.1 Encodeur (Infrence Model qϕ)

As shown in Fig 2, the conditioning context T (l)
q of the posterior distribution results from combining

deterministic factor h(l) and stochastic factor T (l)
p provided by the decoder: T

(l)
q = h(l) ⊕ T

(l)
p .

To improve inference, we let layer l’s encoder use both its own h(l) and all subsequent hidden
representations h≥l, as shown in Fig 2. As in the generative model, the bottom-up path is extended
to emit low-dimensional key features K(l)

q , which represent hidden features h(l):

[h(l),K(l)
q ]← T(l)

q (hl+1 ⊕Kl+1
q ) for l = L,L− 1, ..., 1.

Prior works (Vahdat & Kautz, 2020) have sought to mitigate against exploding Kullback-Leibler
divergence (KL) in Eq 2 by using parametric coordination between the prior and posterior distri-
butions. Motivated by this insight, we seek to establish further communication between them. We
accomplish this by allowing the generative model to choose the most explanatory features in h≥l by
generating the query feature Q

(l)
q . Finally, the holistic conditioning factor for the posterior is:

T̂ (l)
q ← A(h≥l,Q(l)

q ,K≥l
q ) for l = L,L− 1, ..., 1. (11)

We adopt the Gaussian residual parametrization between the prior and the posterior. The prior
is given by p(zl|z(<l)) = N (µ(T l

p, θ), σ(T
l
p, θ). The posterior is then given by q(zl|x, z(<l)) =

N (µ(T l
p, θ) +∆µ(T̂ l

q, ϕ), σ(T
l
p, θ) ·∆σ(T̂ l

q, ϕ)) where the sum (+) and product (·) are pointwise,
and T l

q is defined in Eq 11. µ(·), σ(·), ∆µ(·), and ∆σ(·) are transformations implemented as
convolutions layers. Based on this, For LKL in Eq 2, the last term is approximated by: 0.5 ×(

∆µ(l)2

σ(l)2 +∆σ(l)2 − log∆σ(l)2 − 1
)

.

A.2 Decodeur (Generative Model pθ).

The conditioning factor of the prior distribution at variational layer l is represented by context feature
T

(l)
p ∈ RT×C . A convolution is applied on T

(l)
p to obtain parameters θ defining the prior. Res(l)p

is a non-linear transformation of the immediately previous latent information z(l) and prior context
T

(l)
p containing latent information from distant layers z(<l)l, such that T (l)

p = Res(l)p (z(l) ⊕ T
(l)
p ).

Res(l)p (·) is a transformation operation, typically implemented as a cascade of residual cells and

corresponds to the blue residual module. z(l) and T
(l)
p are passed in from the previous layer. Because

of the architecture’s locality, the influence of z(l) could potentially overshadow the signal coming
from T

(l)
p . To prevent this, we adopt direct connections between each pair of stochastic layers.

That is, variational layer l has direct access to the prior temporal context of all previous layers
T<l
p accompanied by keys K<l

p . This means each variational layer can actively determine the most
important latent contexts when evaluating its prior. During training, the temporal context Tp, Qp,
and Kp are jointly learned:

[T (l)
p ,Q(l)

p ,K(l)
p ]← Res(l)p (z(l) ⊕ (T (l)

p + η(l)p A(T<l
p ,Q(l)

p ,K<l
p ))) for l = L,L− 1, ..., 1. (12)
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Where η(l)p ∈ R is a learnable scalar parameter initialized by zero, T<l
p = {T i

p}
(l)
i=1 with T i

p ∈ RT×C ,

Q
(l)
p ∈ RT×Q, K<l

p = {Ki
p}

(l)
i=1 with Ki

p ∈ R×Q, and Q ≪ C. We initially let variational layer

l rely on nearby dependencies captured by T
(l)
p . During training, the prior is progressively updated

with the holistic context T̂ (l)
p via a residual connection.

Algorithm 1 Decoder of l-Variational Auto-encoder
Require: Inputs
Require: h = {h(l)}Ll=1: The hidden features.
Require: Qq = {klq}Ll=1: The data keys.
Ensure: Initialization T 0

p ≡ 0, Q1
p ≡ 0, Q(l)

q ≡ 0, and K
(l)
p ≡ 0.

while l ≥ L do
[Q

(l)
q , T

(l)
p , Q

(l)
p ,K

(l)
p ]← T (l)(z(l−1) ⊕ Tpl−1).

T
(l)
p ← T

(l)
p ⊕Q

(l)
q . ▷ Used to build the prior distribution.

if l > 1 then
Tp ← LayerNorm(Tpl−1).
T̂ (l) ← MultiHead-SelfAttention({Tl′}ll′=1, Q

(l), {kl′}ll′=1).
T

(l)
p ← T

(l)
p + γ(l)(T̂ (l) + LayerNorm(T̂ (l))).

else
T

(l)
p ← T (l).

end if
[µ(l), σ(l)]← Linear(l)(T (l)

p ). ▷ Compute mean and variance
p(zl|z(<l)) = N (µ

(l)
p , σ

(l)
p ). ▷ Used to form and sample from the posterior distribution.

if l < L then
[T (l), k(l)]← h(l) ⊕ T

(l)
p .

T̂ (l) ← MultiHead-SelfAttention({hl′}Ll′=l ∪ {Tl′ , kl′}Ll′=l, Q
(l), {kl′}Ll′=l).

Tql ← Tql + LayerNorm(Tql).
T

(l)
p ← T

(l)
p + γ(l)(T̂ (l) + LayerNorm(T̂ (l))).

else
T

(l)
p ← h(l) ⊕ T

(l)
p .

end if
[∆µ(l),∆σ(l)]← Linear(l)(T (l)

p ). ▷ Compute mean and variance
q(zl|x, z(<l)) = N (µ

(l)
p +∆µ

(l)
q , σ

(l)
p ∆σ(l)q). ▷ Parameterize Residual

zl ∼ q(zl|x, z(<l)). ▷ Sample latent variables
end while
Return:
Tp = {T (l)

p }Ll=1: Latent context features.
z = {zl}Ll=1: Inferred latent variables.
q(z|x) =

∏L
l=1 q(zl|x, z(<l)): Approximate posterior distribution of z.

p(z) = p(zl|z(<l)): Prior distribution of z.

B IMPLEMENTATION DETAILS AND EXTENDED ABLATION STUDIES

B.1 DATA SETS

In this section we expand further on the datasets we performed experiments on. Our experiement
are conducted experiments on three public datasets: UK-DALE (Kelly & Knottenbelt, 2015),
REDD (Kolter & Johnson, 2011), and REFIT (Murray et al., 2017) providing power measurements
from multiple homes (5 house for Uk-Dale, 6 for REFIT and 5 for REDD). Our focus was on six
appliances: Washing Machine, Oven, Dishwasher, Cloth Dryer, Fridge. We performed cross-tests
on different dataset scenarios, each with varying sample sizes. Specifically, scenario A involved
training on REFIT and testing on UK-DALE, 18.3k samples with time window T = 256, and fre-
quencey of 60Hz, the test set consisted of 3.5k samples, scenario B involved training on UK-DALE
and testing on REFIT with 13.3k samples, and scenario C involved training on REFIT and testing
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Figure 8: We assess the efficacy of augmentations on both Diosc and Diosc-2 models, and it is
evident that Gaussian noise enhances performance while decreasing the influence of channel power
and delay. This observation aligns with real-world scenarios, where a sensor’s data transmission
delay introduces a lag between the aggregated source and the power consumption of individual
appliances. The collective impact of all four augmentations suggests that the contrastive properties
regarding appliance profiles are adequately captured during training.

on REDD with 9.3k samples. The augmentation pipeline is applied for all scenarios. For training
and testing under correlation, we use the corresponding sampling.

Sc. Data Train Test Val

A
Number of Activation devices 29 250 6 281 6 371
Decompensation Samples 18977 3 501 4338
Number of Positives 11 260 2 383 2752

B
Number of Activation devices 10 250 2 281 6 371
Decompensation Samples 18904 3513 2338
Number of Positives 9260 9 383 2752

C
Number of Activation devices 9 132 3 181 1 371
Decompensation Samples 13977 9310 3338
Number of Positives 10160 5 383 1214

Table 5: Number of activation of device and Samples for Different Data Sets and Tasks

B.2 PIPELINE AUGMENTATION FOR ELECTRIC LOAD MONITORING.

Four augmentations were sequentially applied to all contrastive methods’ pipeline branches. The
parameters from the random search are:

1. Crop and delay: applied with a 0.5 probability and a minimum size of 50% of the initial
sequence.

2. Cutout or Masking: time cutout of 5 steps with a 0.8 probability.
3. Channel Masks powers: each power (reactive, active, and apparent) is randomly masked

out with a 0.4 probability.
4. Gaussian noise: random Gaussian noise is added to window activation ym and xm with a

standard deviation of 0.1 (augmentation 1) and 0.3 (augmentation 2). The impact of each
increase is detailed in Fig. ?? bellow.

B.3 PIPELINE CORRELATED SAMPLES.

Robustness of the model to correlations between data is assessed by examining different pairs.
We focus mainly on linear correlations between two different devices and on the case where one
device correlates with two others. To do this, we parameterize the correlations by sampling a
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Figure 10: Architecture of Diosc with attention l-Variational Inference.

dataset from the common distribution. We build on the correlation time series framework by
introducing a pairwise correlation between the attributes ym and yn as follows: p(ym, yn) ∝
exp

(
−||ym − αyn||2/2σ2

)
, where α is a scaling factor. A high value of σ indicates a lower correla-

tion between the normalised attributes ym and yn (No.Corr, σ =∞). We also extend this framework
to cover correlations between several attributes in the time window T . Therefore, we consider corre-
lation pair scenarios such as : No correlation; Pair:1 washer-dryer; Pair:2 dryer-oven and, finally,
a Random pair: approach with randomly selected appliances (see Fig. 9).

• No Corr.: No Correlation during training. (default evaluation setting)

• Pair: 1 washer-dryer.

• Pair: 2 dryer-oven.

• Pair: 3 lighting and television.

• Pair: 4 microwave and oven.

• Pair: 5 washer-dishwasher.

• Random Pairs,
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Figure 9: Correlation among paired samples at a constant value of σ.

B.4 FURTHER EXPERIMENTAL DETAILS

In this section, we expand on the details of our architecture. The full architecture of the en-
coder and decoder is depicted in Fig 10. Because we deal with time-series, we used causal
dilated convolutions to not break temporal ordering. We implement all our experiments using
the PyTorch framework (Paszke et al., 2019). For exact and fair comparability, we https:
//anonymous.4open.science/r/DisCo/.

Encoders fϕ and Decoders fθ Our model in Fig. 10) use a bidirectional encoder layers, which
hierarchically processes input data to generate a low-resolution latent code refined by a series of
upsampling layers. The initial phase involves a rudimentary encoder that produces a low-resolution
latent code. This code is then refined by a series of upsampling layers in the "Residual Decoders"
blocks build on causal convolution, gradually increasing the resolution. At each step of the refine-
ment process, the use of "Residual Encoders and Decoders" efficiently captures semantic features,
while the temporal attention in the "Residual Decoders," implemented by dilated causal conv (Zhao
et al., 2019), ensures the temporal dependence of z. In our architecture, the smallest dimension of z
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is set to z ∈ Rdz×(M+K) with dz = 16 and M = 6, K = 1, representing the number of appliances
to be separated in a mixed sequence of size T = 256.

Augmented data: All four augmentations are employed during the training process, and we have
opted to augment the data by 50% across all Scenarios A, B, and C.

Optimization In all our experiments, we used the Adam optimizer (Kingma & Ba, 2014) with an
initial learning rate of 10−3 and a cosine decay of the learning rate. We also reduced the learning
rate to 7 × 10−4 to enhance training stability and applied early stopping after 5 iterations. We set
α = 0.5 and β = 2.5 after a grid search for the best model convergence on the validation data.

Method Parameter Values

β-VAE β [0.1,0.2,0.3,0.4,0.5,0.6,0.7,1„2.5]
β-TCVAE β [0.1,0.2,0.3,0.4,0.5,0.6,0.7,1„2.5]
FactorVAE β [0.1,0.2,0.3,0.4,0.5,0.6,0.7,1„2.5]
HFS γ [0.1,0.2,0.3,0.4,0.5,0.6,0.7,1„2.5]
β-VAE + HFS γ [1,2,3,8,11,12,13,14,15,16]
DIOSC η [0.1,0.2,0.3,0.8,1,1.5,2,2.5,3,3.5]
DIOSC-2 η [0.1,0.2,0.3,0.8,1,1.5,2,2.5,3,3.5]

Table 6: Hyperparameter testing for each method.

B.5 IMPACT OF η, λ, β AND TRAINING STABILITY

In this section, we expand on the details the satability of training and perofromance acrross values
of η.
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Figure 11: Root Mean Squared Error (RMSE) for various values of η.
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Figure 12: RMSE in Watt2 across scenarios A, B, and C. We see the impact of λ on the reconstruc-
tion of powers of each appliances.
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B.6 IMPLEMENTATION OF METRICS AND STUDY CASE OF TDS

In implementing the disentanglement metrics, we adhere to the methodology outlined in (Locatello
et al., 2019), expanding it to accommodate time series data. For the computation of DCI metrics, we
employ a gradient boosted tree from the scikit-learn package.

B.6.1 β-VAE METRIC

(Higgins et al., 2016) suggest fixing a random attributes of variation in the underlying generative
model and sampling two mini-batches of observations x. Disentanglement is then measured as the
accuracy of a linear classifier that predicts the index of the fixed factor based on the coordinate-wise
sum of absolute differences between the representation vectors in the two mini-batches. We sample
two batches of 256 points with a random factor fixed to a randomly sampled value across the two
batches, and the others varying randomly. We compute the mean representations for these points and
take the absolute difference between pairs from the two batches. We then average these 64 values to
form the features of a training (or testing) point.

B.6.2 FACTORVAE METRIC

(Kim & Mnih, 2019) address several issues with this metric by using a majority vote classifier that
predicts the index of the fixed ground-truth attribute based on the index of the representation vector
with the least variance. First, we estimate the variance of each latent dimension by embedding 10k
random samples from the data set, excluding collapsed dimensions with variance smaller than .05.
Second, we generate the votes for the majority vote classifier by sampling a batch of 64 points, all
with a factor fixed to the same random value. Third, we compute the variance of each dimension
of their latent representation and divide it by the variance of that dimension computed on the data
without interventions. The training point for the majority vote classifier consists of the index of the
dimension with the smallest normalized variance. We train on 10k points and evaluate on 5k points.

B.6.3 MUTUAL INFORMATION GAP METRIC

(Chen et al., 2018b) argue that the BetaVAE metric and the FactorVAE metric are neither general nor
unbiased as they depend on some hyperparameters. They compute the mutual information between
each ground-truth factor and each dimension in the computed representation r(x). For each ground-
truth factor zk, they then consider the two dimensions in r(x) that have the highest and second
highest mutual information with zk. The Mutual Information Gap (MIG) is then defined as the
average, normalized difference between the highest and second highest mutual information of each
factor with the dimensions of the representation. The original metric was proposed evaluating the
sampled representation. Instead, we consider the mean representation, in order to be consistent with
the other metrics. We estimate the DIoSCrete mutual information by binning each dimension of the
representations obtained from 10,000 points into 20 bins. Then, the score is computed as follows:

MIG =
1

K

K∑
k=1

[I(vjk, zk)−max I(vj , zk)]

Where zk is a factor of variation, vj is a dimension of the latent representation, and jk =
argmaxj I(vj , zk).

Time series data often exhibit variations that may not always align with conventional metrics, espe-
cially when considering the presence or absence of underlying attributes. To address this challenge,
we introduce the Time Disentanglement Score (TDS), a metric designed to assess the disentangle-
ment of attributes in time series data. The foundation of TDS lies in an Information Gain perspective,
which measures the reduction in entropy when an attribute is present compared to when it’s absent.

TDS =
1

dim(z)

∑
n ̸=m

∑
k

||zm − z+n,k||2

Var[zm]
, (13)

In the context of TDS, we augment factor m in a time series window x with a specific objective:
to maintain stable entropy when the factor is present and reduce entropy when it’s absent. This
augmentation aims to capture the essence of attribute-related information within the data.
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B.7 METHOD ABLATION

B.7.1 USING MULTIPLE AUTOENCODERS FOR TRAINING, EACH DEDICATED TO A SPECIFIC
LATENT FACTOR.

As discussed in Section 4, we highlighted that employing a multimodal approach does not provide
significant advantages in separability tasks. Furthermore, it incurs higher costs compared to Diosco,
where all latent variables are funneled into a single unified model. Our hypothesis is grounded in
the belief that models equipped with knowledge about the interactions between latent variables can
more effectively disentangle them. This advantage outweighs the potential time cost associated with
training each model independently see Table. 8.

Method RMSE ↓ RMIG ↓ TDS ↓ Time ↓
Multi-Diosc (6 model) 1.459 0.917 0.931 42h34min
Multi-Diosc (6 model jointly train) 0.629 0.824 0.731 29h11min
Single Diosc 0.429 0.753 0.631 26h14min

Table 7: Average Normalized RMSE, RMIG, and TDS Scores for Variants Diosc and case training multi-
models for each appliances. (↓ lower values are better [Top-1,Top-2], the Red row the worst on average, and
the Blue the best).
B.7.2 ABLATION ON OTHER PAIRS CORRELATION

Sc. Methods No Corr σ =∞ Pairs: 3 σ = 0.5 Pairs: 4 σ = 0.6 Random Pair σ = 0.7

Metrics –> DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓

A

Bert4NILM - - 56.4 ±2.58 - - 70.2±1.45 - - 72.08±0.96 - - 70.92±1.15
S2S - - 54.3 ±3.12 - - 69.5±3.56 - - 72.31±2.45 - - 69.95±3.26
β-VAE 72.4±3.10 0.96±.15 48.6 ±2.32 72.4±3.10 0.96±.15 52.6 ±2.31 72.4±3.10 0.96±.15 54.73±1.54 74.29±2.04 1.08±.09 52.99±1.91
β-TCVAE 78.0±1.09 0.94±.13 43.2 ±2.23 78.0±1.09 0.94±.13 49.2 ±1.13 77.23±0.76 0.94±.13 50.87±1.17 79.74±0.84 1.07±.11 49.65±1.43
FactorVAE 68.4±2.41 0.97±.03 47.7 ±1.35 68.4±2.41 0.97±.03 53.2 ±1.02 69.78±1.43 0.97±.03 54.32±0.64 69.95±1.63 1.00±.02 53.45±0.82
HFS 79.8 ± .10 0.64 ± .05 57.2 ± 2.15 79.8 ± .10 0.64 ± .05 61.3 ± 1.82 79.56±0.28 0.64±.05 62.33±1.23 80.37±.05 0.72±.03 61.64±1.52
β-VAE + HFS 73.1±1.01 0.69±.02 34.4±1.89 73.1±1.01 0.69±.02 38.1±1.34 73.59±0.86 0.69±.04 39.65±0.87 74.25±0.59 0.73±.05 38.48±1.04
β-TCVAE + HFS 67.2±2.01 0.52±.02 24.3 ±1.81 67.2±2.01 0.52±.02 27.4 ±1.13 67.51±1.84 0.52±.07 28.94±0.66 68.79±1.27 0.58±.04 27.77±0.83
Diosc 63.5±1.35 0.49±.02 19.6±1.95 69.3±1.2 0.4±.02 22.3±1.79 70.3±0.82 0.49±.02 23.97±1.19 67.12±0.91 0.51±.01 22.63±1.49

B

Bert4NILM - - 57.85 ±1.88 - - 68.8±1.12 - - 73.41±1.35 - - 72.78±0.88
S2S - - 56.38 ±2.22 - - 67.8±2.76 - - 73.95±1.91 - - 70.92±2.25
β-VAE 73.78±2.68 1.08±.09 50.14 ±1.87 75.47±1.98 0.82±.10 51.7±1.79 70.8±2.62 0.85±.11 55.98±1.27 76.18±1.54 1.16±.08 54.83±1.58
β-TCVAE 79.57±0.84 1.07±.11 45.72 ±1.68 80.23±0.54 0.81±.09 48.3±0.94 76.2±0.54 0.83±.10 51.74±0.94 80.88±0.53 1.15±.10 51.15±1.10
FactorVAE 70.14±1.89 1.00±.02 49.02 ±1.05 71.89±1.24 0.94±.02 52.4±0.85 68.7±1.13 0.92±.02 55.24±0.42 71.57±1.27 1.06±.01 54.68±0.64
HFS 80.12±.05 0.72±.03 58.49 ±1.45 80.26±.03 0.56±.03 6.0±1.42 78.8±0.15 0.58±.03 63.79±0.97 80.61±.02 0.80±.02 63.22±1.17
β-VAE + HFS 74.47±0.61 0.73±.05 36.09±1.25 75.12±0.41 0.67±.02 37.4±1.04 72.8±0.52 0.64±.03 40.92±0.66 75.07±0.43 0.75±.03 39.68±0.80
β-TCVAE + HFS 68.54±1.36 0.58±.04 25.88 ±1.20 69.28±1.01 0.46±.01 26.7±0.88 66.7±1.51 0.45±.02 29.82±0.51 7.04±0.93 0.72±.02 40.49±0.64
Diosc 64.42±0.96 0.51±.01 21.35 ±1.80 65.11±0.66 0.39±.01 21.5±1.44 69.5±0.43 0.48±.01 24.94±0.87 65.05±0.71 0.55±.01 24.05±1.30

C

S2S - - 56.28 ±2.43 - - 73.8±3.91 - - 74.76±3.75 - - 73.47±4.12
β-VAE 74.17±2.01 1.03±.09 50.18 ±1.92 73.84±1.56 0.72±.12 55.7±2.47 76.1±3.36 1.07±.17 56.32±2.31 73.95±1.93 1.16±0.11 55.90±2.40
β-TCVAE 79.21±0.89 0.98±.10 45.11 ±2.03 79.48±0.75 0.78±.08 50.9±1.27 78.85±0.94 1.05±.15 51.19±1.84 80.57±0.95 1.10±0.11 51.17±1.85
FactorVAE 70.23±1.70 0.99±.02 49.12 ±1.18 69.75±1.53 0.99±.03 56.4±1.11 70.92±1.58 0.99±.05 55.48±1.25 70.43±1.74 1.05±.02 54.61±1.34
HFS 8.04±.06 0.67 ± .03 59.04 ±1.74 80.11±.05 0.60±.04 62.9±1.98 79.91±0.36 0.69±.07 63.52±1.94 80.42±.06 0.73±.03 63.83±2.01
β-VAE + HFS 74.03±0.79 0.70±.01 35.65±1.59 74.14±0.82 0.74±.01 40.5±1.49 74.26±0.95 0.71±.06 40.32±1.38 74.84±0.51 0.78±.05 39.38±1.19
β-TCVAE + HFS 69.04±1.45 0.54±.01 25.85 ±1.45 68.37±1.31 0.47±.01 28.9±1.28 69.07±2.02 0.59±.09 30.38±1.24 69.84±1.43 0.62±.04 29.29±1.13
Diosc 64.87±1.07 0.50±.01 19.6±1.95 70.54±0.60 0.50±.01 21.1±1.92 71.2±0.94 0.44±.03 26.97±1.04 67.72±1.01 0.57±0.01 24.12±1.58

Table 8: Average scores DCI, TDS, and RMSE vary from No Correlation (left) to every appliance correlated
with one confounder (right) on uncorrelated test data. Red to blue, with bold indicating the best performance
per correlation. (↓ lower is better, ↑ higher is better [Top-1,Top-2]).

B.8 PSEUDOCODE - DIOSC COSINE SIMILARITY

for X_data in loader : #Mini-batch
X, X_aug = augmented(X_data) # Find appliance activated
Z = f_phi(X)
Z_aug = f_phi(X)
loss = torch.tensor(.0, requires_grad=True)
for j in range(i+1, M):

# Select the dimensions i and j from Z
Z_i_j = torch.stack((Z[:, i], Z[:, j]), dim=-1)
Z_aug_i_j = torch.stack((Z_aug[:, i], Z_aug[:, j]), dim=-1)
# Compute the Cartesian product of the selected dimensions
# Iterate over pairs in the Cartesian product
for k in list(product(*Z_i_j.T):

support = torch.cat((k[0], k[1]), dim=0)
# Iterate over data points in Z_aug_i_j
for m in Z_aug_i_j.T:

cos_sim = torch.nn.functional.cosine_similarity(support,
m, dim=-1)

loss += cos_sim
loss.backward()
optimizer.step()
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Figure 13: PCA plot of learned representations on Scenario A for appliance. Labeled per activation
and non activation.
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C CONNECTION BETWEEN DIOSC, CAUSALITY-REPRESENTATION AND THE
INFORMATION BOTTLENECK PRINCIPLE

C.1 DISENTANGLEMENT BASED INDEPENDENCE-OF-SUPPORT VIA CONTRASTIVE

The information bottleneck principle applied to disentanglement posits that the objective of dis-
entangling is to learn a representation z which is informative about the sample but invariant (i.e.,
uninformative) to the specific distortions that are applied to this sample.

No. Alignment Augmentation on 𝑦! Augmentation on 𝑦" Augmentation on 𝑦#!,"

𝑧! 𝑧"

𝑦! 𝑦"

𝑧#Latents

Outputs

𝑧! 𝑧"

𝑦! 𝑦"

𝑧# 𝑧! 𝑧"

𝑦! 𝑦"

𝑧# 𝑧! 𝑧"

𝑦! 𝑦"

𝑧#

𝑡 = 1 𝑡 = 2 𝑡 = 3𝑡 = 0

Figure 14: Graphical Model Model Alignment steps of Diosc for case M = 2, and K = 1.

Disentangling based Independence-of-Support via contrastive can be viewed as a specific instanti-
ation of the information bottleneck objective. We explore in this appendix the connection between
DIoSC’ loss function and the Information Bottleneck (IB) principle (Ash, 2012). As a reminder, the
Diosc loss function is given by:

LDiosc = η
∑
m

∑
negative pairs

D(zm, z−m)2

︸ ︷︷ ︸
i⃝

+
∑
m

∑
positve pairs

(
1−D(zm, z+m)

)2
︸ ︷︷ ︸

ii⃝

, (14)

Applied to disentanglement, the IB principle posits that a desirable representation should be as
informative as possible about the sample represented while being as invariant (i.e., non-informative)
as possible to distortions of that sample, the data augmentations used. This trade-off is captured by
the following loss function:

IBθ = I(z,y)− βI(z,x) (15)
where I(., .) denotes mutual information, and β is a positive scalar trading off the desideratas of
preserving information and being invariant to distortions.

Using a classical identity for mutual information, we can rewrite equation as:

IBθ = [H(z)−H(z|y)]− β[H(z)−H(z|x)] (16)

where H(.) denotes entropy. The conditional entropy H(z|y)—the entropy of the representation
conditioned on a specific distorted sample cancels to 0 because the function gθ is deterministic, and
so the representation z conditioned on the input sample y is perfectly known and has zero entropy.
Since the overall scaling factor of the loss function is not important, we can rearrange equation
Eq. 16 as:

IBθ =
1− β

β
H(z)︸ ︷︷ ︸

i⃝

+H(z|x)︸ ︷︷ ︸
ii⃝

, (17)

Measuring the entropy of a high-dimensional signal generally requires vast amounts of data, much
larger than the size of a single batch. In order to circumvent this difficulty, we make the simplifying
assumption that the representation z is distributed as a Gaussian. The entropy of a Gaussian distri-
bution is simply given by the logarithm of the determinant of its covariance function(Ash, 2012).
The loss function becomes:

IBθ = Ex log |Dz|x|+
1− β

β
log |Dz| (18)

This equation is still not exactly the one we optimize for in practice. Indeed, our loss function is only
connected to the IB loss given by Eq. 18 through the following simplifications and approximations:
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• For β < 1, the optimal solution to the IB trade-off, as indicated by Eq. 18, sets the rep-
resentation as a constant independent of the input. This scenario results in uninteresting
representations and can be disregarded.

• For β ≥ 1, by replacing 1−β
β with a new positive constant η preceded by a negative sign, the

second term in Eq. 18 can be simplified. Augmentation of factor while maintaining a fixed
other enables the capture of information through this term and simultaneously eliminates
non-useful redundancies in the information by the first term.

• In practical terms, direct optimization of the determinant of covariance matrices proves
ineffective. Instead, we replace the second term in the loss of Eq. 18 by proxy involves
minimizing the Frobenius norm of the cosine similarity, this minimization influences only
the off-diagonal terms of the covariance matrix.
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