Under review as a conference paper at ICLR 2023

EMERGENT COLLECTIVE INTELLIGENCE FROM
MASSIVE-AGENT COOPERATION AND COMPETITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Inspired by organisms evolving through cooperation and competition between dif-
ferent populations on Earth, we study the emergence of artificial collective intel-
ligence through massive-agent reinforcement learning. To this end, We propose
a new massive-agent reinforcement learning environment, Lux, where dynamic
and massive agents in two teams scramble for limited resources and fight off the
darkness. In Lux, we build our agents through the standard reinforcement learn-
ing algorithm in curriculum learning phases and leverage centralized control via a
pixel-to-pixel policy network. As agents co-evolve through self-play, we observe
several stages of intelligence, from the acquisition of atomic skills to the develop-
ment of group strategies. Since these learned group strategies arise from individ-
ual decisions without an explicit coordination mechanism, we claim that artificial
collective intelligence emerges from massive-agent cooperation and competition.
We further analyze the emergence of various learned strategies through metrics
and ablation studies, aiming to provide insights for reinforcement learning imple-
mentations in massive-agent environments.

1 INTRODUCTION

Complex group and social behaviors widely exist in humans and animals on Earth. In a vast ecosys-
tem, the simultaneous cooperation and competition between populations and the changing environ-
ment serve as a natural driving force for the co-evolution of massive numbers of organisms (Wolpert
& Tumer, (1999 Dawkins & Krebs| [1979). This large-scale co-evolution between populations has
enabled group strategies for tasks individuals cannot accomplish (Ha & Tang}, [2022). Inspired by this
self-organizing mechanism in nature, i.e., collective intelligence emerges from massive-agent coop-
eration and competition, we propose to simulate the emergence of collective intelligence through
training reinforcement learning agents in a massive-agent environment. We hope this can become
a stepping stone toward massive-agent reinforcement learning research and an inspiring method for
complex massive-agent problems.

Recent progress in multi-agent reinforcement learning (MARL) demonstrates its potential to com-
plete complex tasks through multi-agent cooperation, such as playing StarCraft2 (Vinyals et al.|
2019) and DOTA2 (Berner et al.}2019). However, the number of agents is still limited to dozens in
those scenarios, far away from natural populations. To support large-scale multi-agent cooperation
and competition, we reintroduce the massive-agent setting into multi-agent reinforcement learning.
To this end, we propose Lux, a cooperative and competitive environment where hundreds of agents
in two populations scramble for limited resources and fight off the darkness. We believe Lux is a
suitable testbench for experimenting with collective intelligence because it provides an open envi-
ronment for hundreds of agents to cooperate, compete and evolve.

From the algorithmic perspective, the massive-agent setting poses great difficulties to reinforcement
learning algorithms since the credit assignment problem becomes increasingly challenging. Some
research (Lowe et al., [2017) focuses on the credit assignment problem between multi-agents, how-
ever, it lacks the scalability to massive-agent scenarios. To overcome that, we present a centralized
control solution for Lux using a pixel-to-pixel modeling architecture (Han et al.,|2019) coupled with
Proximal Policy Optimization (PPO) (Schulman et al., [2017) algorithm. Using that solution, we
avoid the problem of credit assignment, with up to a 90% win rate versus the state-of-the-art policy

Under review as a conference paper at ICLR 2023

(Tsaiah et al, 2021)) proposed by the Toad Brigade team (TB) which won first place in the Lux Al
competition on Kaggleﬁ

Through self-play and curriculum learning phases, we observe several stages of the massive-agent
co-evolution, from atomic skills such as moving and building to group strategies such as efficient
territory occupation and long-term resource management. Note that group strategies arise from indi-
vidual decisions without any explicit coordination mechanism or hierarchy, demonstrating how col-
lective intelligence arises with co-evolution. Through quantitative analyses, further evidence shows
that collective intelligence can emerge from massive-agent cooperation and competition, leading to
behaviors beyond our expectations. For example, agents learn to stand in a diagonal row and move
as a whole to segment off parts of the map as shown in Figure [T Without any prior knowledge,
this efficient strategy emerges from spontaneous exploration. Furthermore, we perform a detailed
ablation study to illustrate some implementation techniques which may be helpful in massive-agent
reinforcement learning.

(a) Blue is our policy and Yellow is TB. (b) Yellow is our policy and Blue is TB.

Figure 1: Two episodes between our policy and TB where our Workers stand in a diagonal row. Our
agents discover it as an efficient way to expand the territory and limit the enemy’s movement.

Our main contributions are 1) we reintroduce massive-agent reinforcement learning as a scenario
for studying collective intelligence and propose a new environment, Lux, as a starting point. 2)
we provide evidence that collective intelligence emerges from co-evolution through massive agents’
cooperation and competition in Lux. 3) we discuss the implementation details of our solution, which
may provide valuable insights into massive-agent reinforcement learning.

2 RELATED WORK

Multi-Agent Environments. Many environments such as Multi-agent Particle Environment (MPE)
and Google Research Football (Kurach et al.}[2020) are proposed to study multi-
agent cooperation and competition. For multi-agent cooperation, StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al, 2019) provides a common testbench. However, SMAC focuses on de-
centralized micromanagement scenarios with only approximately 30 agents in play. In massive-
agent environments, Neural MMO (Suarez et al.| 2021)) is an open-ended Massively Multi-player
Online (MMO) game environment with up to 1024 agents. MAgent (Zheng et all, 2018) is a grid
world environment that supports up to a million agents. We propose Lux, a massive-agent rein-
forcement learning environment, which can support thousands of agents simultaneously acting at
one step. Unlike previous massive-agent environments, Lux incorporates Real-Time-Strategy (RTS)
game dynamics that are similar to and MiniRTS 2017). Moreover,
Lux scales up the number of agents with frequent spawns and deaths, which opens up the potential
for complex strategies in such a large-scale and highly dynamic scenario.

Credit Assignment in MARL. Credit assignment between agents (Chang et all, [2003) is a crucial
challenge in multi-agent cooperation. Several value-based multi-agent algorithms
2017 [Rashid et al.,[2018}; [[gbal & Shal [2018)) decompose global value into individual values using
a linear model or neural network, which can be viewed as an implicit way of credit assignment.
Another way of doing this is computing an agent-specific advantage function. For example, [Foerster]
et al uses counterfactual regret to measure contributions to the team. In complex games,
Berner et al| (2019) and [Ye et al.| (2020) use hand-crafted team-based rewards for each agent as an
explicit method of credit assignment. Compared to the implicit value decomposition method, this

'"https://www.kaggle.com/c/lux-ai-2021/

https://www.kaggle.com/c/lux-ai-2021/

Under review as a conference paper at ICLR 2023

explicit reward-shaping method requires prior domain knowledge and lacks generalization ability.
However, both of them are limited to small population scenarios and are hard to scale to massive and
dynamic agents. handles this problem using grid-wise centralized policy instead of
decentralized policy. It uses a convolutional neural network to map from pixel-wise observations to
actions over each pixel, which avoids the credit assignment problem while achieving efficient multi-
agent collaboration. Following this, we adapt this pixel-to-pixel architecture to the Lux environment
with the PPO algorithm (Schulman et al.} 2017) and curriculum learning phases.

Collective Intelligence and Emergence Behaviors. Collective Intelligence, including self-
organization and emergent behaviors (Wolpert & Tumer, [1999; Woolley et al., 2010), has a long
history connected with biological and economic studies. Research on emergent behavior usually
emphasizes that group strategies emerge from multi-agent co-evolution in a designed environment
rather than hand-crafted collaboration mechanisms. [Baker et al| (2019) uses reinforcement learn-
ing agents and autocurricula (Leibo et al., 2019) in the Hide-and-seek environment, leading to the
emergence of tool use. |Yang et al.| (2018)) proposes using million-agent reinforcement learning to
study how the agents’ grouping behaviors will change with the environmental resources. [Zheng|
(2021) uses a two-level, deep RL framework to train agents and a social planner in an eco-
nomic environment, where optimal taxation policy emerges as the result of co-adaptation.
(2022) studies the emergence of bartering behavior in a microeconomics-based environment
with producers and consumers. Dynamics in those environments usually induce agents’ behaviors
within human comprehension, thus limiting the possible emergent strategies. Since RTS games pro-
vide a perfect Petri dish for collective intelligence, our study absorbs RTS game dynamics into the
environment where simple rules may induce complex group strategies.

3 Lux

Like the Earth, a suitable environment for collective intelligence to evolve must support massive
agents’ competition and cooperation. For that purpose, we propose an open-sourced environment
Lux, where hundreds of agents in two teams compete for resources and build cities as illustrated in

Figure[2]

& Uranium & Coal Hree

Agents

%Workers] “CityTiIes

Figure 2: A snapshot of Lux with hundreds of agents in two teams. Workers can collect resources
and build CityTiles. At night, CityTiles and Workers need fuel to stay alive and will be consumed by
darkness if fuel runs out. The team that owns more cities wins in the end.

Setups. The map is a 2D square grid of size 12 to 32, scattered with different resources. An
episode consists of 360 turns, split into 9 Day/Night cycles of 30 days and 10 nights. There are
two basic units named Worker and CityTile. Each team starts with one Worker and one CityTile.
Workers can collect resources and build CityTiles and CityTiles can also build new Workers. Workers
collect adjacent resources automatically and convert resources to fuel when standing upon a friendly
CityTile. At night, CityTiles and Workers consume fuel to stay alive and will be consumed by
darkness if the fuel runs out. At the end of the game, the team with more CityTiles wins. More
details about the environment are in Appendix [A-T]

Under review as a conference paper at ICLR 2023

Observation and Action Space. For observation, each team has perfect information about the
game state, including the global map, its own, and the opponent’s information. For actions, each
team needs to make decisions for every Worker and CityTile. A Worker can move in 4 cardinal
directions and build a CityTile when it has enough resources. Workers however cannot move onto
a tile with an enemy CityTile or Worker. A CityTile can build a Worker or research to increase the
team’s research points. Sufficient research points unlock the ability for the team’s Workers to mine
high-level resources that convert to more fuel like coal and uranium.

MARL in Lux. For MARL research, Lux raises a challenging situation for multi-agent modeling
and the credit assignment problem. Distinguished from other environments, the number of agents
in Lux is massive and dynamic. For a 32 x 32 map, the number of agents in a team can rise to
1000. Moreover, Workers and CityTiles are built and lost all the time, bringing difficulty for multi-
agent modeling of dynamic agents. A carefully-designed credit assignment scheme may be useful
in small-scale problems; however, with massive and dynamic agents, it becomes impractical due to
the combinatorial complexity. Furthermore, the win-or-lose sparse reward throws another challenge
on the hard exploration.

RTS in Lux. At first sight, Lux seems like a pocket-sized RTS game like StarCraft2. Agents in Lux
need to balance economic decisions and individual control, which requires high-level coordination
between hundreds of agents. However, the major difference between Lux and RTS games is the
way of controlling units. In RTS games, the low-level unit actions are executed by fixed rules,
which allows human players or Al to focus on macro-strategies and economic decisions. In Lux,
atomic actions such as moving and building are all controlled by the learned policy, resulting in an
action space of approximately 10'8°, magnitudes beyond StarCraft2 (Vinyals et al.,2019). Thus, a
successful policy needs to learn atomic skills and group strategies together, which is significant in
the emergence of collective intelligence.

4 METHODOLOGY

Overall, our policy is trained using the standard algorithm PPO (Schulman et al., 2017) with Gen-
eralized Advantage Estimation (GAE) (Schulman et al.||2016). For massive-agent coordination, we
use a pixel-to-pixel architecture as the centralized policy (Han et al.| 2019 [Isaiah et al.| 2021]), tak-
ing both observations and actions as images and using the ResNet (He et al., 2016) structure as the
backbone. To address the sparse reward problem, we design three phases with different rewards as a
progressive curriculum. For clarity, we refer to the “agent” as each unit on the map and refer to the
“policy” as the centralized policy network that controls every agent.

4.1 PIXEL-TO-PIXEL ARCHITECTURE

We model the massive-agent control problem using a centralized policy with a pixel-to-pixel archi-
tecture (Han et al.L|2019). The policy network takes images as input observations and outputs actions
over each pixel in the form of an action map. More implementation details are in Appendix [A.2]

Policy Network Architecture. The architecture of our policy network is pictured in Figure [3] The
input image (C x H x W) consists of C' channels containing information about itself, the opponent,
and the global state. We use a ResNet-style convolutional network as the backbone. For actions, we
use a convolutional layer with kernel size 1 and output channels as the action dimensions. Moreover,
we use a flattened layer and a fully-connected layer for the value estimation as the critic. A valid
action mask is used to eliminate unnecessary exploration.

Why Centralized Policy. In Lux, our policy needs to control hundreds of agents each time step.
While the decentralized policy in MARL is computationally efficient and easy to scale, it needs a
carefully-designed credit assignment mechanism. In Lux, however, as agents are massive and dy-
namic, the credit assignment problem becomes increasingly challenging. To avoid that, we adopt a
centralized policy controlling every agent over the map. This pixel-to-pixel architecture with a con-
volutional network leverages the advantage of centralized and decentralized methods. Convolutional
layers work as a parameter-sharing mechanism across agents, similar to shared policy networks in
decentralized methods. This parameter-sharing mechanism improves learning efficiency via data
reuse. Furthermore, the deep stacked structure provides a large receptive field for global information

Under review as a conference paper at ICLR 2023

Input Representation Action Dimension Output
CxHxW EXHxW Aworker/cityrite X H X W
h
< 2 L.""\%‘ P
) :
Resources = Residual Conv ValidMask
4 Blocks *8 (k=1) H
0000 Softmax Ko
A * Worker .|0100 \—R
> (€ ’n 00 n‘
Workers ‘ | 0001 Worker
29 | Actions
CityTiles
— =
N
[t 0000 Softmax ‘
[Cirile|-[o1 00 >
Global-Time FC + Expand \\ 0 :: ‘l’ (1] CityTile
- Actions

Figure 3: Policy network architecture. C' is the input channels and H, W denote the map height
and width. E is the feature map channel through the backbone. Output channels Aworker/CityTile are
the corresponding action dimensions.

extraction and multi-agent communication, which naturally avoids the trouble of credit assignment
(Han et al.,[2019).

4.2 CURRICULUM TRAINING PHASES

The objective of agents in Lux is to own more CityTiles than the opponent, but the final result only
provides a sparse reward (1 for win, —1 for lose), resulting in the hard exploration problem (Badia
et al.,2020). Reward shaping is a common method to handle this problem in reinforcement learning.
However, hand-crafted rewards can easily direct agents into specific behavioral patterns with limited
strategies. Hence, we design three phases with different rewards as a progressive curriculum. First,
we use a dense reward to guide the policy towards basic skills. Then we gradually reduce the learning
signals and utilize the sparse reward to encourage the policy to explore more diversified strategies.

Phase 1: Dense Rewards for Basic Skills. At first, we use hand-crafted dense rewards to encourage
basic skills. Specifically, four kinds of behaviors are given rewards, namely, the increase of Workers
and CiryTiles, Research Points and fuel. More details are in Appendix

Phase 2: Sparse Reward with Scaled Signals. In Phase 2, a reward is given only when an episode
ends. However, our policy still needs guidance through long-term reasoning. We modify the reward
with a slight signal about the win condition, i.e., £1/|Ngeif — Nop|, Wwhere Nye; ¢ and N, denote
the number of our own and the enemy’s CityTiles, encouraging to own more CityTiles for the win.

Phase 3: Win-or-Lose Sparse Reward. The win-or-lose sparse reward (1 for win and —1 for lose)
is applied in the final phase. After human-designed guidance in the first two phases, the win-or-lose
sparse reward encourages our policy to explore more advanced strategies.

5 EMERGENT COLLECTIVE INTELLIGENCE

Through massive-agent cooperation and competition, we have observed three stages of our agents’
evolution. Training from scratch, agents quickly acquire atomic skills such as collecting resources
and building cities. After around 5 million episodes, an elementary level of coordination appears on
the regional scale with dozens of agents. As training proceeds, the coordination expands from re-
gional to global scope, which includes long-term economic decisions and precise control of hundreds
of agents. Those global strategies naturally arise from individual decisions due to massive-agent in-
teraction and co-evolution without any explicit coordination mechanism, signifying the emergence
of collective intelligence.

5.1 ATOMIC SKILLS

The first step of our agents is to get a grasp of atomic skills. Guided by dense rewards, Workers
learn to move toward resources to collect fuel, and build and fuel the CityTiles, as shown in Figure

Under review as a conference paper at ICLR 2023

[@al However, at this stage agents are more likely to work alone and unable to make group decisions.
For example, Workers tend to build more CityTiles than they can support, leading to a sudden loss
of large cities as illustrated in Figure #b]as they run out of fuel.

(a) Workers collect resources and build CityTiles. (b) CityTiles run out of fuel and collapse.

Figure 4: Illustration of atomic skills in a self-play episode. Agents acquire atomic skills such as
collecting resources and building CityTiles. However, due to a lack of group coordination, CityTiles
often burn out fuel and collapse.

5.2 REGIONAL COORDINATION

As training proceeds, regional coordination appears, which involves dozens of agents in a local area.
For example, agents learn to carefully choose locations before building a CityTile and develop self-
organizing patterns for occupying resources efficiently. We describe a few examples of regional
strategies:

Construction Planning. As CizyTiles built next to each other can share fuel and reduce cost at night,
agents gradually learn that the locations of CityTiles are important in city survival and fuel saving.
We find that agents discover several patterns of construction planning as visualized in Figure 5} 1)
build CityTiles near the resources for quicker access to fuel sources. 2) build CityTiles in a long row
to form cities that act like the Great Wall to prevent enemies’ aggression. 3) build CityTiles in blocks
to reduce fuel costs at night.

(a) CityTiles built near resources. (b) CityTiles built in a row. (c) CityTiles built in blocks.

Figure 5: Three emergent patterns of construction planning. a) build near resources for quick
access to fuel. b) build in a row as the Great Wall for defense. c) build in blocks to save fuel.

We use the city survival ratio (the final number of CityTiles divided by the most number of CityTiles
in one episode) to measure how these building patterns work quantitatively. As shown in Figure [6a]
the regional-scale construction planning effectively helps CityTiles fight off the darkness.

Territory Division. We have also observed a self-organizing structure where several Workers stand
in a diagonal row shown in Figure [T} Those Workers simultaneously move forward and backward
as a whole to keep the formation, and when any of them die, a new Worker nearby will fill in.
In this shape, they can effectively guard and expand the team’s territory and limit the enemy’s
movement. We measure a statistic called Five-Diagonal (how many times five or more Workers
stand in a diagonal row in one game) to investigate how often this strategy is utilized. Results in
Figure [6D]illustrate that the frequency our agents use this strategy generally increases with training
in the long term, indicating it is an acquired strategy rather than a circumstance.

Under review as a conference paper at ICLR 2023

Five Diagonal

W

8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
Episodes (x 10%) # Episodes (x 109)

01 2 3 4 5 6

(a) City survival ratio: final number divided by (b) Five-diagonal: how many times five or more
the most number of CityTiles in one episode. Workers stand in a diagonal row in one episode.

Figure 6: Quantitative analysis of region coordination using city survival ratio and five-
diagonal. Both metrics are evaluated using self-play. a) The city survival ratio increases as training
continues, indicating that the regional construction planning effectively helps CityTiles live long and
prosper. b) The frequency of the five-diagonal shape increases during the course of training, which
demonstrates the gradual acquisition of this strategy.

5.3 GLOBAL STRATEGIES

As in micro-management scenarios of SMAC (Samvelyan et al.| 2019), regional coordination of
dozens of agents is often found in multi-agent cooperation. However, our agents go far beyond that,
achieving much larger-scale coordination between hundreds of agents. We provide interpretation
and analysis of several global strategies as follows:

Sustainable Development. A key component in Lux is the balance of city development and re-
source consumption. In the early stages, the rapidly growing cities often face severe fuel shortages.
Gradually, our policy learns to develop cities at a sustainable speed in tune with fuel production
depending on the resource distribution and the opponent’s behavior. Another phenomenon we have
observed is the retention of trees. As trees are the only renewable resource in Lux, forest protection
is significant in securing long-term fuel supplies. Our agents intentionally preserve trees from exces-
sive deforestation and build CityTiles near the woods in defense of the enemy’s aggression. Another
metric, total wood collect (the total collected woods divided by originally spawned woods) is used to
measure how this forest protection strategy influences our fuel supplies. Results in Figure [7a| show
how these protection strategies significantly improve the utilization efficiency of wood, resulting in
our agent collecting more than 500% of the original wood on the map at times.

60,000

W 50,000
< 40,000
H

E 30000
L

20000

Total Wood Collect

10,000

0 —
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340360
Episodes (x 10) #Tums

(a) Total wood collect: total wood collected di- (b) Total fuel: total fuel storage in one episode
vided by originally spawn woods. using our latest model in a fixed map.

Figure 7: Quantitative analysis of global strategies using total wood collect and total fuel. The
metrics are evaluated using self-play. a) The utilization efficiency of wood increases as our policy
grows the sense of forest protection. b) In one episode, our fuel storage accumulates until turn 240.
After that, it tries to build more CityTiles for the win.

All In For The Win. Another surprising strategy is that when the episode is about to end, our policy
will rapidly harvest all the protected trees and try to build as many CityTiles as possible for the win
as shown in Figure Furthermore, we observe that sometimes cities retain very little fuel at the
end of an episode, evidence that almost all the resources have been fully utilized, as any resources
left at the end would be a waste. Efficiently using all remaining resources before the end is very
challenging because it needs the overall calculation of total fuel consumption by all Workers and
CityTiles, in addition to precise control of every agent. We think this strategy perfectly demonstrates
the emergence of collective intelligence through the combination of long-term economic decisions
and massive-agent mobilization.

Under review as a conference paper at ICLR 2023

6 EXPERIMENTS

In this section, we perform ablation studies to reflect on our policy implementation and general
reinforcement learning algorithms under massive-agent settings: 1) we investigate the necessity of
curriculum learning phases by training with different procedures. Results demonstrate that our cur-
riculum design can help tackle the hard exploration problem caused by sparse rewards in the early
stages of training and encourage the emergence of complex strategies beyond human design. 2) we
further demonstrate the generalization ability of our model across different map sizes. When eval-
uating on maps of size 32, the policy trained on size 12 still retains some basic strategies. After a
fine-tuning phase of only 1.8 million episodes, the transferred policy achieves a 90% win rate against
TB on maps of size 32. The results indicate our model can learn generalizable representations suit-
able for the environment through learned spatial structures via convolutional layers. 3) we compare
our centralized policy against a standard decentralized solution with carefully-designed team-based
rewards. The centralized policy achieves a 98% win rate. See implementation details in Appendix
[A.2] The decentralized policy implementation and experiment are in Appendix[A.3}

6.1 DESIGN OF CURRICULUM LEARNING PHASES

We perform experiments to investigate the necessity of our curriculum learning phases. Five differ-
ent procedures are applied: a) Only Phase 1; b) Phase 1 and 2 without Phase 3; c) Phase 1 and 3,
without Phase 2; d) Phase 1, 2, and 3 (the original procedure); e) Only Phase 3.

Phase 1 — Phase 1+2 — Phase 1+2+3 Phase 1+3 — Phase 3 Only

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Win rate

19.0 19.4 19.8 202 20.6 210 214
Episodes (x 10°)

[¢] 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 o~
i Episodes (x 10¢)

Figure 8: The win rate curves from different training phases. All win rates are evaluated against
TB on maps of size 12. Training with direct sparse rewards results in a 0% win rate, while training
only with Phase 1 dense rewards converges at around 50%. Compared to Phase 1+2, Phase 1+3
improves slower and results in a lower win rate of around 70%. Phase 1+2 achieves an 85% win-
rate, and Phase 1+2+3 further boosts it to above 90%.

Phase 1 utilizes dense rewards which are fundamental for helping the centralized policy acquire
atomic skills for individual agents. As shown in Figure [§] our policy can hardly learn any basic
skills when directly training with sparse rewards, resulting in a win rate of around zero due to the
hard exploration problem.

Phase 2 utilizes a scaled sparse reward which plays two roles in the whole learning procedure,
accelerating learning and improving performance. First, continuous learning with dense rewards
converges at a 50% win rate, but the win rate rapidly rises to 70% with Phase 2. On the other hand,
without Phase 2, switching from Phase 1 to Phase 3 is more challenging with a lower performance
even after training for a longer period. This shows that the scaled sparse reward can work as a proper
transition between dense rewards and a win-or-loss sparse reward (applied in Phase 3) as it explicitly
tells the policy that owning more cities is the key to winning.

Phase 3 utilizes a sparse win-loss reward which further boosts the final performance to above 90%.
As the Phase 2 training converges to a win rate of 85% without Phase 3, the win-loss sparse reward
pushes our policy to go further and explore, resulting in an overall 90% win rate.

Under review as a conference paper at ICLR 2023

6.2 GENERALIZATION OF REPRESENTATIONS FOR REINFORCEMENT LEARNING

We provide clear evidence that the learned representations from the convolutional neural network
and reinforcement learning algorithms can be generalized to different map sizes. First, we directly
transfer the policy net trained on maps of size 12 to size 32. As shown in Figure [9] basic skills
are retained on larger maps such as Workers collecting and fueling cities, even showcasing some
structured city construction planning to surround and protect wood resources. Secondly, after an ad-
ditional fine-tuning phase of around 1 million episodes, the policy quickly adapts to larger maps and
achieves an overall 90% win rate against TB, while training from scratch uses 1.6 million episodes
for a 20% win rate as shown in Figure

Phase
— Learning from Scratch — Learning from Transfer Model

Win rate
g
R

0%
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
Episodes (x 106)

Figure 9: Illustration of the general- Figure 10: The win-rate curves on 32 x 32 maps of
ization ability in a self-play episode. training from scratch and transfer. Both are evalu-
When the policy trained on maps of size ated against TB. After a fine-tuning phase of 1 million
12 is directly transferred to 32, some steps, the transferred policy achieves a 90% win rate,
strategies are retained such as Workers while training from scratch uses 1.6 million episodes
building and fueling cities with plans. for a 20% win rate.

The results demonstrate the generalization ability of our model, which provides insights into speed-
ing up policy training on large maps: we can pre-train our policy on small maps and then transfer
it to large maps with a fine-tuning phase. This procedure significantly reduces the training time
because smaller maps are faster for environment simulation and network update. For example, the
Lux environment simulation on CPU is 2.5x slower on maps of size 32 than size 12, and the policy
network update on GPU is 5x slower on maps of size 32. As training on maps of size 12 is both
time-saving and computationally efficient, our “Pre-train and Fine-tune” scheme achieves a higher
win rate with fewer training hours.

7 DISCUSSION AND FUTURE WORK

We have demonstrated that collective intelligence can emerge from massive-agent cooperation and
competition. As proof of concept, we propose Lux, an environment hosting hundreds of agents and
incorporating RTS game dynamics. Through standard reinforcement learning algorithms and pixel-
to-pixel centralized modeling, we observe several stages of agents’ strategy evolution. Our agents
exhibit ambitious group strategies based on accurate individual control of massive agents without
explicit coordination mechanisms, signifying the emergence of collective intelligence.

We hope our work with Lux will be a stepping stone toward artificial collective intelligence. In
Lux, we observe the number of agents can reach up to 2000 in a single timestep, but this still pales
in comparison to the millions or even billions of organisms cooperating and competing in nature.
The Lux environment can be easily extended to host more agents as the experiments in Appendix
[A74] but simulation and inference become extremely slow reaching the million-agent level. Going
forward, the environment design and engineering as well as the training algorithm need a lot of
modifications to adapt to such a scale. We also acknowledge that the RTS game dynamics in Lux
may not directly coincide with real-world problems. However, with Lux as a blueprint, economic
rules and dynamics like[Zheng et al| (2021)) can be incorporated, which may provide some reference
for economic decisions and policies in the real world.

Under review as a conference paper at ICLR 2023

REFERENCES

Adria Puigdomenech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal Piot,
Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and
Charles Blundell. Never give up: Learning directed exploration strategies. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=Sye57xStvBl

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. CoRR, abs/1909.07528, 2019.
URLhttp://arxiv.org/abs/1909.07528.

Battlecode. Battlecode, 2022. URL https://battlecode.org/.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal J6zefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Yu-Han Chang, Tracey Ho, and Leslie Pack Kaelbling. All learning is local: Multi-agent learning
in global reward games. neural information processing systems, 2003.

Richard Dawkins and John Richard Krebs. Arms races between and within species. Proceedings of
the Royal Society of London. Series B. Biological Sciences, 205(1161):489-511, 1979.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. national conference on artificial intelligence, 2017.

David Ha and Yujin Tang. Collective intelligence for deep learning: A survey of recent develop-
ments. Collective Intelligence, 1(1):26339137221114874, 2022.

Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, and Tong
Zhang. Grid-wise control for multi-agent reinforcement learning in video game Al. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2576-2585. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
hanl9a.htmll

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Shariq Igbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. international
conference on machine learning, 2018.

Pressman Isaiah, Kirwin Liam, and Sturrock Robert. Kaggle Lux AI 2021, 12 2021. URL https:
//github.com/IsaiahPressman/Kaggle_Lux_AI_2021.

Michael Bradley Johanson, Edward Hughes, Finbarr Timbers, and Joel Z. Leibo. Emergent bartering
behaviour in multi-agent reinforcement learning. CoRR, abs/2205.06760, 2022. doi: 10.48550/
arXiv.2205.06760. URL https://doi.org/10.48550/arXiv.2205.06760.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly. Google
research football: A novel reinforcement learning environment. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 4501-4510.
AAAI Press, 2020.

10

https://openreview.net/forum?id=Sye57xStvB
http://arxiv.org/abs/1909.07528
https://battlecode.org/
http://arxiv.org/abs/1912.06680
https://proceedings.mlr.press/v97/han19a.html
https://proceedings.mlr.press/v97/han19a.html
https://github.com/IsaiahPressman/Kaggle_Lux_AI_2021
https://github.com/IsaiahPressman/Kaggle_Lux_AI_2021
https://doi.org/10.48550/arXiv.2205.06760

Under review as a conference paper at ICLR 2023

Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research. arXiv
preprint arXiv:1903.00742, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foer-
ster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv: Learning, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural mmo platform for
massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL
https://datasets—-benchmarks—-proceedings.neurips.cc/paper/2021/
file/44f683a84163b3523afe57c2e008bc8c—Paper—roundl.pdf.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C. Lawrence Zitnick. Elf: An
extensive, lightweight and flexible research platform for real-time strategy games. Advances in
Neural Information Processing Systems (NIPS), 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Micha¢l Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

David H Wolpert and Kagan Tumer. An introduction to collective intelligence. arXiv preprint
¢s/9908014, 1999.

Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and Thomas W Mal-
one. Evidence for a collective intelligence factor in the performance of human groups. science,
330(6004):686-688, 2010.

Yaodong Yang, Lantao Yu, Yiwei Bai, Ying Wen, Weinan Zhang, and Jun Wang. A study of ai pop-
ulation dynamics with million-agent reinforcement learning. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, pp. 2133-2135,
Richland, SC, 2018. International Foundation for Autonomous Agents and Multiagent Systems.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, et al. Towards playing full moba games with deep reinforcement learning.
Advances in Neural Information Processing Systems, 33:621-632, 2020.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

11

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf

Under review as a conference paper at ICLR 2023

Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher. The Al
economist: Optimal economic policy design via two-level deep reinforcement learning. CoRR,
abs/2108.02755, 2021. URL https://arxiv.org/abs/2108.02755.

A APPENDIX

A.1 DETAILED RULES OF LUX

For ease of understanding, the environment rules including unit types and action spaces are simpli-
fied in the main text. In this part, we provide a detailed description of the environment design and
rules. The version of Lux we use is compatible with the version on Kaggle Lux AI S1 competitiorEI
The rules can also be found at https://www.lux-ai.org/specs-2021 and the following
text is a reformatted and slightly modified version of the original rules.

Background. The night is dark and full of terrors. Two teams must fight off the darkness, collect
resources, and advance through the ages. Daytime finds a desperate rush to gather and build the
resources to carry you through the impending night. Plan and expand carefully — any city that fails
to produce enough light will be consumed by darkness.

Environment. In the Lux AI Challenge Season 1, two competing teams control a team of Units and
CityTiles that collect resources to fuel their Cities, with the main objective to own as many CityTiles
as possible at the end of the turn-based game. Both teams have complete information about the entire
game state and use that information to optimize resource collection, compete for scarce resources
against the opponent, and build cities to gain points. Each competitor must program their policy in
their language of choice. Each turn, your agent gets 3 seconds to submit their actions, excess time
is not saved across turns. In each game, you are given a pool of 60 seconds that is tapped into each
time you go over a turn’s 3-second limit. Upon using up all 60 seconds and going over the 3-second
limit, your agent freezes and can no longer submit additional actions.

The Map. The world of Lux is represented as a 2D grid. Coordinates increase east (right) and south
(down). The map is always a square and can be 12, 16, 24, or 32 tiles long. The (0, 0) coordinate is
at the top left.

Figure 11: The specification of the map in Lux.

The map has various features including Resources (Wood, Coal, Uranium), Units (Workers, Carts),
CityTiles, and Roads. In order to prevent maps from favoring one player over another, it is guaranteed
that maps are always symmetric by vertical or horizontal reflection. Each player will start with a
single CityTile and a single Worker on that CityTile.

Resources. There are 3 kinds of resources: Wood, Coal, and Uranium (in order of increasing fuel
efficiency). These resources are collected by Workers, then dropped off once a Worker moves on
top of a CityTile to then be converted into fuel for the city. Some resources require research points
before they are possible to collect. Wood in particular can regrow. Each turn, every wood tile’s
wood amount increases by 2.5% of its current wood amount rounded up. Wood tiles that have been
depleted will not regrow. Only wood tiles with less than 500 wood will regrow.

https://www.kaggle.com/c/lux-ai-2021/

12

https://arxiv.org/abs/2108.02755
https://www.lux-ai.org/specs-2021
https://www.kaggle.com/c/lux-ai-2021/

Under review as a conference paper at ICLR 2023

Table 1: The specifications of resource collection and convert.

Resource Type | Research Points Pre-requisite Fuel Value per Unit Units Collected per Turn
Wood 0 1 20
Coal 50 10)
Uranium 200 40 2

Collection Mechanics. At the end of each turn, Workers automatically receive resources from
all adjacent (North, East, South, West, or Center) resource tiles they can collect resources from
according to the current symmetric formula:

Iterating over uranium, coal, then wood resources:

» Each unit makes resource collection requests to collect an even number of resources from
each adjacent tile of the current iterated resource such that the collected amount takes the
unit’s cargo above capacity. E.g. Worker with 60 wood adjacent to 3 wood tiles asks for 14
from each, receives 40 wood, and wastes 2.

* All tiles of the current iterated resource then try to fulfill requests. If they can’t, they make
sure all unfulfilled requests get an equal amount, and the leftover is wasted. E.g. if 4
Workers are mining a tile of 25 wood, but one of them is only asking for 5 while the others
are asking for 20 wood each, then first all Workers get 5 wood each, leaving 5 wood left
over for 3 more Workers with space left. This can be evenly distributed by giving 1 wood
each to the last 3 Workers, leaving 2 wood left that is then wasted.

Workers cannot mine while on CityTiles. Instead, if there is at least one Worker on a CityTile, that
CityTile will automatically collect adjacent resources at the same rate as a Worker each turn and
directly convert it all to fuel. The collection mechanic for a CityTile is the same as a Worker and you
can treat a CityTile as an individual Worker collecting resources.

Actions. Units and CityTiles can perform actions each turn given certain conditions. In general, all
actions are simultaneously applied and are validated against the state of the game at the start of a
turn. The next few sections describe the Units and CityTiles in detail.

CityTiles. A CityTile is a building that takes up one tile of space. Adjacent CityTiles collectively
form a City. Each CityTile can perform a single action provided the CityTile has a Cooldown < 1.

Actions:

* Build Worker - Build Worker unit on top of this CityTile (cannot build a Worker if the
current number of owned Workers + carts equals the number of owned CityTiles).

* Build Cart - Build Carts unit on top of this CityTile (cannot build a cart if the current number
of owned Workers + carts equals the number of owned CityTiles).

* Research - Increase your team’s Research Points by 1.

Units. There are two unit types, Workers, and Carts. Every unit can perform a single action once
they have a Cooldown < 1. All units can choose the move action and move in any of the 5 direc-
tions, North, East, South, West, or Center. Moreover, all units can carry raw resources gained from
automatic mining or resource transfer. Workers are capped at 100 units of resources and Carts are
capped at 2000 units of resources. Whenever a unit moves on top of a friendly CityTile, the City that
CityTile forms converts all carried resources into fuel.

There can be at most one unit on tiles without a CityTile. Moreover, units cannot move on top of the
opposing team’s CityTiles. However, units can stack on top of each other on a friendly CityTile. If
two units attempt to move to the same tile that is not a CityTile, this is considered a collision, and
the move action is canceled.

Workers. Actions:

¢ Move - Move the unit in one of 5 directions, North, East, South, West, or Center.
* Pillage - Reduce the Road level of the tile the unit is on by 0.5.

13

Under review as a conference paper at ICLR 2023

Table 2: The specifications of cooldown.

Unit Type | Base Cooldown
CityTile 10
Worker 2
Cart 3

Table 3: The specifications of file burn, n,q; denotes the number of adjacent friendly CityTiles.

Unit Type | Fuel Burn in City Fuel Burn Outside City
CityTile 23 — 5 X Nggj N/A
Worker 0 10
Cart 0 4

* Transfer - Send any amount of a single resource-type from a unit’s cargo to another (start-
of-turn) adjacent Unit, up to the latter’s cargo capacity. Excess is returned to the original
unit.

* Build CityTile - Build a CityTile right under this Worker, provided the Worker has 100 total
resources of any type in their cargo (full cargo), and the tile is empty. If the building is
successful, all carried resources are consumed, and a new CityTile is built with O starting
resources.

Carts. Actions:

¢ Move - Move the unit in one of 5 directions, North, East, South, West, Center.

* Transfer - Send any amount of a single resource-type from a unit’s cargo to another (start-
of-turn) adjacent Unit, up to the latter’s cargo capacity. Excess is returned to the original
unit.

Cooldown. CityTiles, Workers, and Carts all have a cooldown mechanic after each action. Units
and CityTiles can only act when they have Cooldown < 1. At the end of each turn, after Road has
been built and pillaged, each unit’s Cooldown decreases by 1 and decreases by the level of the Road
the unit is on at the end of the turn. CityTiles are not affected by road levels, and cooldown always
decreases by 1. The minimum Cooldown is 0. After an action is performed, the unit’s Cooldown
will increase by a Base Cooldown, as specified in Table

Roads. As Carts travel across the map, they start to create roads that allow all Units to move faster.
At the end of each turn, Cart will upgrade the road level of the tile it ends on by 0.75. The higher
the road level, the faster Units can move and perform actions. All tiles start with a road level of 0
and are capped at 6. Moreover, CityTiles automatically have a max road level of 6. Workers can
also destroy roads via the pillage action which reduces road levels by 0.5 each time. If a City is
consumed by darkness, the road level of all tiles in the City’s CityTiles will go back to 0.

Day/Night Cycle. The Day/Night cycle consists of a 40-turn cycle, the first 30 turns being day
turns, the last 10 being night turns. There are 360 turns in a match, forming 9 cycles. During
the night, Units and Cities need to produce light to survive. Each turn of the night, each Unit and
CityTile will consume an amount of fuel, see Table E] for rates. Units in particular will use their
carried resources to produce light whereas CityTiles will use their fuel to produce light. Workers
and Carts will only need to consume resources if they are not on a CityTile. When outside the City,
Workers and Carts must consume whole units of resources to satisfy their night needs, e.g. if a
Worker carries 1 wood and 5 uranium on them, they will consume a full wood for 1 fuel, then a full
unit of uranium to fulfill the last 3 fuel requirements, wasting 37 fuel. Units will always consume
the least efficient resources first.

Lastly, at night, Units gain 2x more Base Cooldown. Should any Unit during the night run out of
fuel, they will be removed from the game and disappear into the night forever. Should a City run
out of fuel, however, the entire City with all of the CiryTiles it owns will fall into darkness and be
removed from the game.

14

Under review as a conference paper at ICLR 2023

Game Resolution order. To help avoid confusion over smaller details of how each turn is resolved,
we provide the game resolution order here and how actions are applied. Actions in the game are
first all validated against the current game state to see if they are valid. Then the actions, along with
game events, are resolved in the following order and simultaneously within each step:

CityTile actions along with increased cooldown.

Unit actions along with increased cooldown.

Roads are created.

Resource collection.

Resource drops on CityTiles.

If night time, make Units consume resources and CityTiles consume fuel.

Regrow wood tiles that are not depleted to 0.

® N0k w D=

Cooldowns are handled/computed for each unit and CityTile.

The only exception to the validation criteria is that units may move smoothly between spaces, mean-
ing if two units are adjacent, they can swap places in one turn. Otherwise, actions such as one unit
building a CityTile, then another unit moving on top of the new CityTile, are not allowed as the
current state does not have this newly built city and units cannot move on top of other units outside
of CityTiles.

Win Conditions. After 360 turns the winner is whichever team has the most CityTiles on the map.
If that is a tie, then whichever team has the most units owned on the board wins. If still a tie, the
game is marked as a tie. A game may end early if a team no longer has any more Units or CityTiles.
Then the other team wins.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Detailed information on our policy implementation is illustrated in this section, including feature
engineering, network design, and reinforcement learning algorithm implementation.

PPO implementation. Standard PPO loss (Schulman et al., 2017) is used as the policy loss to
optimize the policy net and to estimate the advantage, we apply GAE (Schulman et al., [2016) with
the trajectory length as 32. For Phase 1 training with dense rewards, we set the GAE parameter
A = 0.95, the discount factor v = 0.99. For Phase 2 and 3 training with sparse rewards, we set
A = 1,7 = 1. We apply PPO2 with a clip operation and set the clipping ratio ¢ = 0.1. Mean
squared loss is used to optimize the critic’s value head and the weight of the value loss is set as 0.5.
The entropy loss is also computed to encourage exploration with a coefficient of 0.1. We use Adam
(Kingma & Bal [2014) as the optimizer with the learning rate 1le — 4. For computational resources,
we use an NVIDIA-V100 GPU and 600 CPU cores.

Input. Input features fed into our policy network consists of two parts: 1) the vector containing
global information such as timestep and total fuel. Features in the global information vector and
their corresponding data specifications are listed in Table[d] 2) the image input containing the map
information and the locations of our own and enemy’s Workers and CityTiles are listed in Table[3]

Dense Reward Design. The detailed dense reward design is listed in Table[6] Four types of rewards
are given for specific behaviors of CityTiles and Workers. The total reward is the sum of four sub-
rewards.

Data Preprocessing. The whole data preprocessing procedure is illustrated in Figure[T2] The global
information vector is split into two parts, the one-hot features of dimension 51 and the other features
of dimension 18. The one-hot features are fed into a linear layer with an output dimension of 9
for embedding. For unifying input into image shapes, the embedding vector of length 9 and the
other global information vector of length 18 are expanded as the image sizes in separate channels,
where every pixel in each channel is of the same value. After that, these expanded image features
9x HxW and 18 x H x W, H and W are the map height and width) along with the original image
features (37 x H x W) are passed through separate convolutional neural networks with a kernel size
of 1. Then three parts of input images are concatenated together in the channel dimension. Through

15

Under review as a conference paper at ICLR 2023

Table 4: Input features Part 1: global information vector.

Feature Description Type Range Normalization Coefficient
Current Cycle One-Hot [0,8] N/A
Current Turn In This Cycle One-Hot [0,39] N/A
If At Night One-Hot [0,1] N/A
Own CityTile Numbers Int [0,1024] 100
Enemy CityTile Numbers Int [0,1024] 100
Own Unit Numbers Int [0,1024] 100
Enemy Unit Numbers Int [0,1024] 100
Own Research Points Int [0,200] 200
Enemy Research Points Int [0,200] 200
Own Total Fuel Int [0,10] 2300
Enemy Total Fuel Int [0,10] 2300
Own Average Fuel Per CityTile Float [0,10%] 230
Enemy Average Fuel Per CityTile Float [0,10%] 230
Own Total Fuel Cost Int [0,10°] 230
Enemy Total Fuel Cost Int [0,10%] 230
Own Average Fuel Cost Per CityTile Float [0,23] 23
Enemy Average Fuel Cost Per CityTile Float [0,23] 23
If Own Team Can Collect Coal Bool [0,1] N/A
If Enemy Team Can Collect Coal Bool [0,1] N/A
If Own Team Can Collect Uranium Bool [0,1] N/A
If Enemy Team Can Collect Uranium Bool [0,1] N/A
Global information vector Map-feature
(69) 37+ H*W)
A
[|
One-hot (51) Others (18)
J
{ 1x1 Conv2D (9« H « W)][1><1 Conv2D (18 H u/)}
[Concatenate (27 « H « w)]
|

[1x1 Conv2D (27 + H +) }—v[Concatenate (64 « 1 « W)]

[1x1 Conv2D (128 « H « W)]

|

[Output J

Figure 12: The Data Preprocessing Procedure. Global information is split into two parts, one-hot
and others. One-hot vector is first embedded through a fully-connected layer and then expands as the
map size. After passing the 1 x 1 Conv2D, one-hot and other features are concatenated in channels,
going through another 1 x 1 Conv2D. The global features and map features are concatenated with
another 1 x 1 Conv2D with input channels as 64 and output channels as 128.

another convolutional layer with a kernel size of 1, input channels as 64, and output channels as 128,
the tensors as the ResNet backbone input is in shape 128 x H x W.

16

Under review as a conference paper at ICLR 2023

Table 5: Input features Part 2: image features.

Feature Description Type Normalization Coefficient
If No Worker Bool N/A
If Own Worker Bool N/A
If Enemy Worker Bool N/A
If No Cart Bool N/A
If Own Cart Bool N/A
If Enemy Cart Bool N/A
If No CityTile Bool N/A
If Own CityTile Bool N/A
If Enemy CityTile Bool N/A
Road Level Float 6
Worker Cooldown Float 10
If Worker Can Act Bool N/A
Cart Cooldown Float 10
If Cart Can Act Bool N/A
CityTile Cooldown Float 10
If CityTile Can Act Bool N/A
If It is Resource Bool N/A
Wood Amount Int 100
If Wood Can Regrow Bool N/A
Coal Amount Int 100
Uranium Amount Int 100
Worker Wood Carry Amount Int 100
Worker Coal Carry Amount Int 100
Worker Uranium Carry Amount Int 100
If Worker Reaches Carry Limit ~ Bool N/A
Cart Wood Carry Amount Int 100
Cart Coal Carry Amount Int 100
Cart Uranium Carry Amount Int 100
CityTile Fuel Cost Int 100
CityTile Average Fuel Float 230
If CityTile Can Survive Tonight Bool N/A
Fuel CityTile Needed to Survive Int 230
If Worker is at CityTile Bool N/A
If Cart is at CityTile Bool N/A
X Relative Distance to Center Float N/A
Y Relative Distance to Center Float N/A

Table 6: Design details of Phase 1: dense rewards.

Units Behaviors Weights
O Research Points Increases 0.01
CityTiles yypits Built 0.5
Fuel Increases 0.0001
Workers iy Tiles Built 1

ResNet Backbone. The ResNet backbone consists of 8 Residual blocks. Each Residual block
comprises two convolutional layers and a Squeeze-and-Excitation(SE) layer. The detailed structure
of the Residual Block is shown in Figure T3]

Output. After the ResNet backbone, we use multiple heads for the output actions and value. The
learned representation from the ResNet backbone is first passed through a Spectral Normalization
layer. For the action head, we use three separate heads for the Workers, Carts and CityTiles. Each
head is a convolutional layer with kernel size as 1 and output channels as the corresponding action

17

Under review as a conference paper at ICLR 2023

Residual Block SE Block

AvgPool2D

(128« H =+ W) (128 +«H+W)

5x5 Conv2D

(128)

5x5 Conv2D

(128)

(128)

SE Block

T
D
LReLU -
RE

(128 «H+W)

(128 + H + W)

Figure 13: Residual Block Design and Squeeze-and-Excitation Layer. Each Residual block con-
sists two convolutional layers (kernel size = 5, padding = 2, stride = 1) and LeakyReLU as the
activation function. Squeeze-and-Excitation(SE) layer consists of a 2D Average Pooling, and two
fully-connected layers.

dimensions (19 for Worker, 17 for Cart and 4 for CityTile). For the critic’s head, we use an Average
Pooling to transform the representation of size 128 x H x W to a vector of length 128. Then we
use a fully-connective layer to get a single value for the critic’s estimation.

Representation (128« H « W)

Spectral Norm (128+H « W)

¥]] }
[1x1 Conv2D } [1x1 Conv2D] [1x1 Conv2D] [AvgPool2D }

l (19+H*W) l (A7 +H*W) l (4*H+W) l (128)

Worker Actions Cart Actions CityTile Actions Value

Figure 14: Output actions and value. First through a spectral normalization layer, three action
heads, and a value head are appended. 1 x 1 Conv2D is used for output actions of Worker, Cart, and
CityTile. AvgPool2D and a fully-connected layer are used for value estimation.

Valid Action Mask. Valid action mask is a common technique in reinforcement learning to elim-
inate unnecessary explorations and accelerate the learning process. We calculate the valid action
mask based on the following rules:

» Workers: All actions are invalid when cooldown > 1. When cooldown < 1, moving to
enemy CityTiles or tiles with other Workers on it is invalid; moving to friendly CityTile is
always valid; and building a CityTile is valid only when its resource achieves 100. Doing
nothing is always valid.

* CityTiles: All actions are invalid when cooldown > 1. When cooldown < 1, building a
Worker is valid when the number of workers are less than the number of CityTiles; research
is valid when the team’s research point < 200. Doing nothing is always valid.

A.3 DECENTRALIZED POLICY IMPLEMENTATION AND ABLATION STUDIES

In this section, detailed information on our decentralized policy implementation is described, in-
cluding input features, network design, and rule-based agents.

18

Under review as a conference paper at ICLR 2023

Table 7: Decentralized policy input: global information.

Feature Description Type Range
Number of Agents Observed Int 320
Global CityTile Number One-hot [0,320]
Global Unit Number One-hot [0,320]
Current Cycle One-hot [0,9]
Current Turn in this cycle One-hot [0,39]
If At Night Bool N/A
Own Research Point Int [0,200]
If Own Team Can Collect Coal Bool N/A

If Own Team Can Collect Uranium Bool N/A

Table 8: Decentralized policy input: self information.

Feature Description Type Range
Location X Int [0,31]
Location Y Int [0,31]
Location X One-Hot [0,31]
Location Y One-Hot [0,31]
Type Bool N/A
If At City Bool N/A
Alive Bool [N/A
Cooldown One-Hot [0,9]
If At Night Bool N/A
Wood Carry Amount Int [0,100]
Coal Carry Amount Int [0,100]
Uranium Carry Amount Int [0,100]
Wood Carry Amount One-Hot [0,100]
Coal Carry Amount One-Hot [0,100]
Uranium Carry Amount One-Hot [0,100]
Fuel Int [0,4000]
Fuel One-Hot [0,4000]

Input. The input of our decentralized policy can be divided into four parts: global information
(listed in Table , self information (listed in Table , other agents (team and enemy) information
(listed in Table[9) and map information (listed in Table [I0).

Reward Shaping. Each agent receives three types of rewards: 1) Its own reward to encourage cer-
tain behaviors such as survival, building cities, collecting resources, and fueling cities. 2) CityTile
reward. Though the CityTile is a rule-based reward, this reward is used to guide the Workers’ behav-
ior to support the CityTiles. 3) Team reward. It consists of a final win reward and average reward of
the team to encourage cooperation among agents.

Network Design. The input is split into seven parts, i.e., global features, self features, friend Worker
features, friend CityTile features, enemy Worker features, enemy CityTile features, and image fea-
tures. For the former six vector features, we use six different two-layer fully-connected networks for
feature extraction. And for those features involving multiple units, we perform max pooling along
units. For the image features, we use three convolutional layers and flatten the learned representa-
tions. Then those representations are concatenated together and passed through two fully-connected
layers for the actions and values.

Rule-based Agents. For simplicity, we only use Worker as reinforcement learning agents and
CityTiles as rule-based agents. The decision rules of CityTiles are simple and intuitive: 1) Build
a Worker if a CityTile can. 2) If it cannot build a Worker and the team’s research point < 200,
research. 3) Do nothing otherwise.

19

Under review as a conference paper at ICLR 2023

Table 9: Decentralized policy input: other agents’ information.

Other Agents Feature Description Type Range
Is Friend Bool N/A
Location X Int [0,31]
Location Y Int [0,31]
Distance Int [0,62]
Own Worker x 160 If At City Bool N/A
Cooldown One-Hot [0,3]
Wood Carry Amount Int [0,100]
Coal Carry Amount Int [0,100]
Uranium Carry Amount Int [0,100]
Is Friend Bool N/A
Location X Int [0,31]
Location Y Int [0,31]
Distance Int [0,62]
Own CityTile x 160 Cooldown One-Hot [0,9]
Average Fuel Per CityTile Float [0,2300]
Fuel Cost Per Night Int [0,23]
If Can Survive Tonight Bool N/A
Fuel Needed to Survive Tonight Int [0,230]
Is Friend Bool N/A
Location X Int [0,31]
Location Y Int [0,31]
Distance Int [0,62]
Enemy Worker x 160 If At City Bool N/A
Cooldown One-Hot [0,3]
Wood Carry Amount Int [0,100]
Coal Carry Amount Int [0,100]
Uranium Carry Amount Int [0,100]
Is Friend Bool N/A
Location X Int [0,31]
Location Y Int [0,31]
Distance Int [0,62]
Enemy CityTile x 160 Cooldown One-Hot [0,9]
Average Fuel Per CityTile Float [0,2300]
Fuel Cost Per Night Int [0,23]
If Can Survive Tonight Bool N/A
Fuel Needed to Survive Tonight Int [0,230]

Compared with Decentralized Control. To illustrate our pixel-to-pixel centralized control solu-
tion, we perform a comparative experiment with the decentralized control solution. Competing with
the decentralized control solution, the centralized control solution achieves 98% win rate comput-
ing by 100 runs. As shown in Figure the decentralized policy can acquire basic skills such
as collecting and building CityTiles. Encouraged by the team-based reward, decentralized agents
even acquired a basic level of regional cooperation. However, since the cooperation is induced by
pre-engineered rewards, it can only be applied to special scenarios and cannot be extended to other
complex situations. For example, in a local map with woods, the decentralized agents are at an
advantage initially, but due to their cooperation lacking adaptivity, our agents gradually build cities
surrounding them and limit their development to gain the advantage. As a result, at Turn 120, the
centralized policy has taken control of every resource on the map. Moreover, more group strategies
emerged from the evolution of the centralized policy, for instance, being aggressive in sending some
Workers to occupy and protect the key resources from its opponent.

20

Under review as a conference paper at ICLR 2023

Global feature Self feature Unit feature Citytile feature Map feature
(698) (405) (9 * 160 Units) T (9 * 160 Cities) (17 %15 * 15)

4x4 Conv2D

(32+14+14)

4x4 Conv2D

(32x7+7)

3x3 Conv2D

(16 %4+ 4)

Flatten + FC

(128)

°
2 2
] g
[[y

Padding = 1

FC + RelU FC + RelLU

FC + RelLU FC + RelLU

(128 * 160 Units)

FC + RelU

(64 * 160 Units)

(128 * 160 Cities)

FC + RelU

(64 * 160 Cities)

Stride =2

FC + RelU FC + RelU

(64) (64)

Stride =2

MaxPool MaxPool

(64) (64)

FC + RelLU
(512)

FC + RelU

(128)

@™
Actions Value

Figure 15: Decentralized policy net architecture. For the global and self features, we use two
fully-connected layers for extraction. For unit features and CityTile features, we use two linear
layers and then apply MaxPooling along the units. Three convolutional layers with a flattened and
linear layer are used for map features. Then the outputs are concatenated together, using two fully-
connected layers for the output actions and value.

Advantage

Figure 16: One episode between the decentralized and centralized policy. Yellow is the decen-
tralized policy, and Blue is the centralized policy. In a local battle, Blue is at an advantage at first,
but with better coordination, Yellow turns things around within just 30 turns.

21

Under review as a conference paper at ICLR 2023

Table 10: Decentralized policy input: map information.

Map Information Feature Description Type Range
Is Wood Here Bool N/A
Wood Reserves Int [0,1000]
Resource Ma Is Coal Here Bool N/A
P Coal Reserves Int [0,1000]
Is Uranium Here Bool N/A
Uranium Reserves Int [0,1000]
Is Friend Worker Bool N/A
Is Enemy Worker Bool N/A
Worker Cooldown Int [0,3]
Worker Map Worker Wood Carry Amount It [0,100]
Worker Coal Carry Amount Int [0,100]
Worker Uranium Carry Amount Int [0,100]
Is Friend CityTile Bool N/A
Is Enemy CityTile Bool N/A
CityTile Cooldown Int [0,9]
. Average Fuel Per CityTile Float [0,2300]
City Map Fuel Cost Per Night Int [0,23]
If Can Survive Tonight Bool N/A

Fuel Needed to Survive Tonight Int [0,230]

Road Level

Bool N/A

Table 11: Decentralized policy reward design.

Reward Type Feature Description Weights
Worker Death Penalty -1
Worker Survive One Night Turn 0.05
Worker Survive Ten Night Turns 0.5

Worker Reward ~ Worker Build a CityTile 1 per CityTile
Built City Fuel Saving 0.05 x (23—Fuel Cost)
Worker Fuel Increase 0.005 per fuel
Worker Fuel Donation 0.01 per fuel
CityTile Death penalty -1
CityTile Survive One Night Turn 0.05
CityTile Survive Ten Night Turns 0.5

CityTile Reward CityTile Research Point Increase 0.02 per point
Research Point reaches 50 1
Research Point reaches 200 4
CityTile Build a Worker 1
Final Win Reward 100

Team Reward

Team Average Reward

0.1x average of friend reward

A.4 MORE GENERALIZATION STUDIES

In section we demonstrate the generalization of our model by transferring the policy trained
on maps of size 12 to size 32. More studies are conducted to further investigate the generalization
ability of our proposed model on larger maps. Results show that even transferred to larger maps, our
model still retains a surprising ability of massive-agent coordination.

We use the model trained on 32 x 32 maps as the base model and evaluate it on different map
sizes without fine-tuning. On maps of sizes 48 and 64, our policy shows the fantastic mastery of
massive-agent coordination as shown in Figure

22

Under review as a conference paper at ICLR 2023

Figure 17: Policy transfer on maps of size 64. There are 1069 CityTiles and 1059 units for the
orange team, and 779 CityTiles and 768 units for the blue team. In larger maps, our policy demon-
strates the generalization ability of coordination between thousands of agents.

6 Lux Al Challenge Viewer
Tile Properties
P
(83,67)
General

Rosd Love:

Figure 18: Policy transfer on maps of size 128. The large map and the cooldown mechanism
limit the ability to build large cities fulfilling the map. However, our policy still exhibits skills and
strategies they acquire on 32 x 32 maps. This large-scale setting eventually causes the web viewer
unresponsive.

23

Under review as a conference paper at ICLR 2023

Furthermore, we make a bold attempt on the 128 x 128 maps. However, due to the cooldown
mechanism, agents can hardly travel across the map within 360 turns, which makes it impossible to
build large cities fulfilling the map like they do in 32 x 32 maps. Moreover, in a larger map, the
environment simulation is much slower, which takes about 30 minutes for one episode. It indicates
that although Lux has the scalability for millions of agents, the game core and the dynamics need a
lot of modification to adapt to larger scales. Nevertheless, we find our agents still exhibit skills and
strategies they acquire on 32 x 32 maps as in Figure [T8] which demonstrates the potential of our
method at a million-agent scale.

24

	Introduction
	Related work
	Lux
	Methodology
	Pixel-to-Pixel Architecture
	Curriculum Training Phases

	Emergent Collective Intelligence
	Atomic skills
	Regional Coordination
	Global Strategies

	Experiments
	Design of Curriculum Learning Phases
	Generalization of Representations for Reinforcement Learning

	Discussion and future work
	Appendix
	Detailed Rules of Lux
	Additional Implementation Details
	Decentralized Policy Implementation and Ablation Studies
	More Generalization Studies

