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Abstract

A deep neural network (DNN) has achieved great success in many machine learning
tasks by virtue of its high expressive power. However, its prediction can be easily
biased to undesirable features, which are not essential for solving the target task
and are even imperceptible to a human, thereby resulting in poor generalization.
Leveraging plenty of undesirable features in out-of-distribution (OOD) examples
has emerged as a potential solution for de-biasing such features, and a recent study
shows that softmax-level calibration of OOD examples can successfully remove the
contribution of undesirable features to the last fully-connected layer of a classifier.
However, its applicability is confined to the classification task, and its impact on
a DNN feature extractor is not properly investigated. In this paper, we propose
TAUFE, a novel regularizer that deactivates many undesirable features using OOD
examples in the feature extraction layer and thus removes the dependency on
the task-specific softmax layer. To show the task-agnostic nature of TAUFE, we
rigorously validate its performance on three tasks, classification, regression, and a
mix of them, on CIFAR-10, CIFAR-100, ImageNet, CUB200, and CAR datasets.
The results demonstrate that TAUFE consistently outperforms the state-of-the-art
method as well as the baselines without regularization.

1 Introduction

Undesirable features, which are informally defined as those not relevant to a target task, frequently
appear in training data; for example, the background is an undesirable feature for classifying animals
in images. The undesirable features are mainly caused by the statistical bias in in-distribution training
data. In fact, many undesirable features are statistically correlated with labels, even though they are
unnecessary and sometimes even harmful for the target task [1]; for example, the “desert” background
feature is correlated with “camels” because the camels frequently appear in a desert. However, such
undesirable features (e.g., desert background) rather yield unreliable predictions because they are
easily shifted in other unseen data (e.g., images of the camels on the road).

Meanwhile, deep neural networks (DNNs) are known to overly capture any high-frequency data
components which are even imperceptible to a human [2, 3]. This property is attributed to the
vulnerability of DNNs that can totally overfit to random labels or adversarial examples owing to their
extremely high capacity [3, 4, 5, 6]. Accordingly, DNNs are easily biased toward the undesirable
features as well, thereby often showing unsatisfactory generalization to unseen examples [7]. Thus, it
is very important to prevent overfitting to the undesirable features.

In this regard, a few research efforts have been devoted to remove the negative influence of undesirable
features by leveraging out-of-distribution (OOD) data [8, 9]. Under the assumption that in-distribution
and OOD data share undesirable features, OOD data is treated as a useful resource to alleviate the
aforementioned undesirable bias. Notably, a recent study [8] proposed a softmax-level calibration,
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Figure 1: Comparison of softmax-level and feature-level calibrations.

which assigns uniform softmax probabilities to all possible labels for all examples in OOD data.
Although this approach shows decent de-biasing performance in the classification task, the softmax-
level calibration has two limitations:

• Lack of Flexibility: The softmax-level calibration is designated only for the classification task.
However, the bias toward undesirable features occurs in numerous tasks, such as object localization
and bounding box regression. Therefore, a flexible, task-agnostic approach is required for easily
supporting other downstream tasks too.

• Feature Entanglement: Even desirable features can be entangled with undesirable ones by
assigning the uniform softmax probability invariably to all possible labels for OOD examples.
Thus, the negative influence of the undesirable features is not perfectly removed because they still
remain and affect the activation of desirable features (See § 3.3 for details).

In this paper, we propose a novel task-agnostic and feature-level calibration method, called TAUFE

(Task-Agnostic Undesirable Feature dEactivation), which explicitly forces a model to produce zero
values for many undesirable features in OOD examples. Differently from the softmax-level calibration
that regularizes the classification layer (Figure 1(a)), TAUFE exploits the penultimate layer right before
the classification layer and deactivates its activation only for OOD examples (Figure 1(b)). Thus,
TAUFE is applicable to any task that requires another task-specific layer other than the classification
layer, and the undesirable features are removed in the feature level without feature entanglement. The
superiority of the proposed feature-level calibration over the softmax-level calibration is proven by
theoretical and empirical analysis of the feature activation of the penultimate layer.

To validate its general efficacy, we conducted extensive experiments through three tasks: (i) image
classification for classification; (ii) bounding box regression for regression; and (iii) weakly supervised
object localization (WSOL) for a mix of them. We tested multiple pairs of in-distribution and OOD
data: CIFAR-10, CIFAR-100, ImageNet, CUB200, and CAR for in-distribution; and SVHN, LSUN,
and Places365 for OOD. The experiment results demonstrate that TAUFE consistently outperforms
the softmax-level calibrator [8] by up to 9.88% for classification and by up to 8.03% for the mix of
classification and regression.

Our main contributions are summarized as follows:

1. We propose a simple yet effective method, TAUFE, to deactivate undesirable features in learning,
which is easily applicable to any standard learning task with recent DNNs.

2. We provide an insight on how feature-level and softmax-level calibration differently affect feature
extraction by theoretic and empirical analysis on the penultimate layer activation.

3. We validate the task-agnostic nature of TAUFE through three tasks and show its performance
advantage over the state-of-the-art method.

2 Background and Related Work

Negative Impact of Undesirable Features. DNNs tend to overly capture all available signals
from training data even when they are not essential for solving a given task [2, 3]. The occurrence
of the undesirable features and their negative impact have been recently witnessed in various types
of learning tasks. In image classification, a classification model often uses background or texture
features as an undesirable shortcut for making a prediction instead of using the intrinsic shape of a
target class [3, 7]. In object detection, a detector model easily overfits to the background features for
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localizing target objects in a scene [10, 11]. In video action recognition, a recognition model often
relies on static cues in a single frame rather than temporal actions over consecutive frames [12, 13].
In natural language processing (NLP) tasks, a language model often makes its predictions based on
frequent but meaningless words instead of using semantically meaningful words [14].

Connection with Adversarial Examples. DNNs are easily deceived by adversarial perturbations of
the inputs, so-called adversarial examples [15]. Differently from standard learning, the undesirable
features are maliciously added and then make the model incur more errors. In addition, it is widely
known that such adversarial perturbations are transferable even from different domains [16]; that is,
an adversarial attack can drastically degrade the generalization capability of the classifier without
knowing its internals [16]. To remedy this problem, the use of OOD examples has gained great
attention in that they enhance the robustness against the adversarial examples by preventing the model
from overfitting to the undesirable features [8].

Removing Undesirable Feature Contribution. Numerous studies have attempted to prevent the
overfitting to the undesirable features in standard supervised learning tasks. A typical way is de-
biasing, which removes the undesirable feature contribution based on the pre-defined bias for the
target task. Geirhos et al. [7] took advantage of data augmentation techniques to generate de-biased
examples from training data. Lee et al. [17] and Shetty et al. [18] synthesized de-biased examples by
leveraging a generative model for image stylization or object removal. Wang et al. [19] quantified the
local feature bias by using the neural gray-level co-occurrence matrix. Bahng et al. [1] proposed a
framework that leverages a bias-characterizing model to remove pixel-level local undesirable features.
This family of methods successfully removes the pre-defined bias from the undesirable features, but
is not generalizable to other types of bias. Even worse, it is hard to identify the types of undesirable
features in advance since they are not comprehensible even to a human.

In this regard, motivated by the transferability of undesirable features in different domains, the
usefulness of OOD examples for de-biasing was started to be discussed. Although the representative
softmax calibrator, OAT [8], does not need a pre-defined bias type, it suffers from the two limitations,
lack of flexibility and feature entanglement. Many aspects, such as high generalizability and in-depth
theoretical analysis, are yet to be explored.

3 Proposed Method: TAUFE

In this section, we first formulate the problem following the setup in the relevant literature [3, 8, 9]
and then describe our method TAUFE. Moreover, we provide a theoretic analysis with empirical
evidence on how the softmax-level and feature-level calibrations work differently at the penultimate
layer in the perspective of feature extraction.

3.1 Problem Formulation

Let D = {xi, yi}Ni=1 be the target data obtained from a joint distribution over X ×Y , where X is the
in-distribution example space and Y is the target label space. A DNN model consists of a general
feature extractor fφ : X → Z ∈ Rd and a task-specific layer gθ : Z → Y . Then, the feature extractor
is considered as a compound of d sub-feature extractors fφj

such that fφ(x) = {fφ1
(x), . . . , fφd

(x)}
where fφj

: X → R. A feature is defined to be a function mapping from the example space X to a

real number, and a set of the features is denoted by F = {f ∈ fφ : X → R}.

We now formalize the desirableness of a feature. Let D̃ = {x̃i}Mi=1 be the out-of-distribution (OOD)
data obtained from a distribution over the OOD example space X̃ . Then, undesirable and desirable
features are defined by Definitions 3.1 and 3.2, respectively.

Definition 3.1 (UNDESIRABLE FEATURE). For each example x̃ in the OOD data D̃, we call a
feature undesirable if it is highly correlated with at least one true label in expectation. Thus, the set
Fundesirable(ρ) of undesirable features is defined by

Fundesirable(ρ) =
{
f ∈ F : Ex̃∈D̃

[
maxy∈Y |Corr

(
f(x̃), y

)| ] ≥ ρ
}
, (1)

where Corr is a function to produce the correlation between two given inputs (e.g., R2) and ρ is a
constant threshold. | · | is an absolute value function to convert a negative correlation into a positive
one. Intuitively speaking, an undesirable feature influences the model’s decision-making even if it is
not relevant to the target task (i.e., OOD examples).
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Definition 3.2 (DESIRABLE FEATURE). For each example x and its corresponding label y in the
in-distribution data D, we call a feature desirable if it is highly correlated with the true label in
expectation and does not belong to Fundesirable(ρ). Thus, the set Fdesirable(ε) of desirable features
is defined by

Fdesirable(ε) =
{
f ∈ F/Fundesirable(ρ) : E(x,y)∈D

[ |Corr
(
f(x), y

)| ] ≥ ε
}
, (2)

where ε is a constant threshold; Corr and ρ are the same as those for Definition 3.1.

Note that Definitions 3.1 and 3.2 are generally applicable to any supervised learning tasks including
classification and regression. By these definitions, a feature vector obtained by the feature extractor
could be a mixture of desirable and undesirable features. DNNs can totally memorize even undesirable
features owing to their high expressive power, leading to the statistical bias in in-distribution training
data. Therefore, the main challenge is to prevent the problem of biasing toward the undesirable
features, which will be discussed in the next section.

3.2 Main Concept: Feature-Level Calibration

We introduce the notion of the feature-level calibration, which directly manipulates the activations of
the general feature extractor fφ. The key idea is to force the feature activations of all OOD examples
to be zero vectors, thereby preventing the undesirable features from being carried over into the last
task-specific layer gθ. Equation (3) shows the difference in the objective function among standard
learning, OAT (softmax-level calibration) [8], and TAUFE (feature-level calibration):

STANDARD: min
φ,θ

E
(x,y)∈D

[
�
(
gθ
(
fφ(x)

)
, y
)]

,

OAT: min
φ,θ

E
(x,y)∈D

[
�
(
gθ
(
fφ(x)

)
, y
)]

+ λ E
x̃∈D̃

[
�
(
gθ
(
fφ(x)

)
, tunif

)]
,

TAUFE: min
φ,θ

E
(x,y)∈D

[
�
(
gθ
(
fφ(x)

)
, y
)]

+ λ E
x̃∈D̃

[
||fφ(x̃)||22

]
,

(3)

where tunif = [1/c, . . . , 1/c] and � is the target loss for each original task (e.g., cross-entropy loss
for classification or mean squared error (MSE) loss for regression). The first term is the same for
all three methods, but there is a difference in the second term. Both OAT and TAUFE use the OOD
examples (i.e., D̃) to avoid the memorization of the undesirable features, but only TAUFE is not
dependent on the task-specific layer gθ in its regularization mechanism. Therefore, this feature-level
calibration is easily applicable to any type of tasks for practical use and, at the same time, reduces the
impact of the undesirable features on the model’s prediction.

More importantly, TAUFE is remarkably simple. We contend that its simplicity should be a strong
benefit because simple regularization often makes a huge impact and gains widespread use, as
witnessed by weight decay and batch normalization.

Algorithm 1 describes the overall procedure of TAUFE, which is self-explanatory.

Algorithm 1 TAUFE

INPUT: D: target data, D̃: OOD data, epochs: total number of epochs, b: batch size
OUTPUT: φt, θt: network parameters

1: t ← 1;φt, θt ← Initialize the network parameters;
2: for i = 1 to N do
3: for j = 1 to |D|/b do
4: Draw a mini-batch B from D; /* A target mini-batch. */

5: Draw a mini-batch B̃ from D̃; /* An OOD mini-batch. */
6: /* Update for the feature extractor by the feature-level calibration. */
7: φt+1 = φt − α∇φ

(
E(x,y)∈B

[
�
(
gθt

(
fφt

(x)
)
, y
)]

+ λEx̃∈B̃
[||fφt

(x̃)||22
])

8: /* Update for the task-specific model by the standard manner. */
9: θt+1 = θt − α∇θ E(x,y)∈B

[
�
(
gθt

(
fφt

(x)
)
, y
)]

;
10: t ← t+ 1;
11: return φt, θt
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Figure 2: Effect of the softmax-level and feature-level calibrations on the penultimate layer activations.

3.3 Theoretical and Empirical Analysis

We analyze that the feature-level calibration works better than the softmax-level calibration in terms
of feature disentanglement on the penultimate layer activations. The use of OOD examples with the
softmax-level calibration has been theoretically proven to remove undesirable feature contributions
to the last linear classifier [8]. However, the proof holds under the strong assumption that desirable
and undesirable features should be disentangled perfectly before entering the last classifier layer.
Because this assumption does not hold in practice, we provide an in-depth analysis on the use of
OOD examples on the perspective of feature extraction without any assumption.

Theoretic Analysis of Softmax-Level Calibration. The effect of the softmax-level calibration is
tightly related with label smoothing, which is a regularization technique [20] that uses the target label
combined with a uniform mixture over all possible labels. Let z be the penultimate layer activation
and wk be a weight row-vector of the last linear classifier assigned to the k-th class. Then, the
logit zTwk for the k-th class can be thought of the negative Euclidean distance between z and a
weight template wk, because ||z−wk||2 = zT z+wT

k wk−2zTwk where zT z and wT
k wk are usually

constant across classes. Therefore, when OAT assigns the uniform softmax probability to OOD
examples, each logit zTwk is forced into being the same value, which means that the penultimate
layer activation z is equally distant to the templates (i.e., clusters) of all classes.

As shown in Figure 2(b), forcing all OOD examples into being equally distant to all class templates is
mathematically equivalent to locating them on the hyper-plane across the decision boundaries. While
the hyper-plane is orthogonal to the space composed of desirable features, it is likely onto a decision
boundary. Accordingly, the undesirable features move the activations of the desirable features toward
a decision boundary, and the two types of features are entangled. Overall, although the softmax-level
calibration helps remove undesirable features, it partially entangles the undesirable features with the
desirable features, degrading the prediction performance.

Theoretic Analysis of Feature-Level Calibration. In contrast to the softmax-level calibration, the
feature-level calibration explicitly forces the activations of all OOD examples into approaching the
zero vector [21], as shown in Figure 2(c). This regularization reduces the norm of all target examples
without changing the angle between the activations for different classes if they share undesirable
features. Since this angle plays a decisive role for classification [22], the feature-level calibration
removes the undesirable features while effectively maintaining the disentanglement between desirable
and undesirable features. See §B of the supplementary material for in-depth theoretical analysis.

Table 1: Average cosine similarity between all
activation pairs across different classes on CIFAR-
10 for Standard, OAT, and TAUFE.

Datasets Methods

In-dist. Out-of-dist. Standard OAT TAUFE

CIFAR-10 LSUN 0.116 0.286 0.095

Empirical Analysis. To empirically support
our analysis, in Table 1, we quantitatively cal-
culate the cosine similarity of activations across
all in-distribution classes. Compared with the
standard learning method, TAUFE (feature-level
calibration) decreases the cosine similarity be-
tween classes, whereas OAT (softmax-level cal-
ibration) rather increases the cosine similarity.
That is, OAT is prone to move the activations
of in-distribution examples toward the decision boundary, though it reduces the negative effect of
the undesirable features on the classification task. In contrast, it is noteworthy that TAUFE renders
the activations of different in-distribution classes more distinguishable. Furthermore, we visualize
the penultimate activations of the two in-distribution classes in CIFAR-10 together with those of
OOD examples in Figure 3. As shown in Figure 3(b), OAT simply locates the activations of OOD
examples around the decision boundary. However, TAUFE forces them into the zero vector without
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(a) Standard. (b) Softmax-level calibration (OAT). (c) Feature-level calibration (TAUFE).

Figure 3: TSNE visualization of the penultimate layer activations. In-distribution examples are in
pink for the automobile class and in blue for the bird class, while all OOD examples are in grey.

much change in the angles between different classes. Therefore, the empirical evidences confirm that
TAUFE successfully reduces the negative effect of undesirable features on the classification task.

4 Experiments

We compare TAUFE with the standard learning method (denoted as “Standard”) and the state-of-
the-art method OAT [8]. Standard trains the network without any calibration process for OOD
examples. In addition, we include the few-shot learning settings because DNNs are easily biased
toward the undesirable features especially when the number of training examples is small. All
methods are implemented with PyTorch 1.8.0 and executed using four NVIDIA Tesla V100 GPUs.
For reproducibility, we provide the source code at https://github.com/kaist-dmlab/TAUFE.
In support of reliable evaluations, we repeat every test five times and report the average.

To show high flexibility to diverse types of tasks, we rigorously validate the efficacy of TAUFE for
three popular visual recognition tasks: (i) image classification, (ii) bounding box regression, and (iii)
weakly supervised object localization (WSOL). Please note that OAT does not support the bounding
box regression task because of the absence of the softmax layer.

4.1 Task I: Image Classification

Dataset. We choose CIFAR-10, CIFAR-100 [23], and ImageNet [24] for the target in-distribution
data. For the CIFAR datasets, two out-of-distribution datasets are carefully mixed for evaluation—
LSUN [25], a scene understanding dataset of 59M images with 10 classes such as bedroom and living
room, and SVHN [26], a real-world house numbers dataset of 70K images with 10 classes. The
ImageNet dataset is divided into 12K images of 10 randomly selected classes (ImageNet-10) and 1.1M
images of the rest 990 classes (ImageNet-990); the former and the latter are used as in-distribution
data and OOD data, respectively. A large-scale collection of place scene images with 365 classes,
Places365 [27], is also used as another OOD data for ImageNet-10.

Training Configuration. For CIFAR datasets, ResNet-18 [28] is trained from scratch for 200 epochs
using SGD with a momentum of 0.9, a batch size of 64, a weight decay of 0.0005. To support the
original resolution, we drop the first pooling layer and change the first convolution layer with a kernel
size of 3, a stride size of 1, and a padding size of 1. An initial learning rate of 0.1 is decayed by
a factor of 10 at 100-th and 150-th epochs, following the same configuration in OAT [8]. For the
ImageNet-10 dataset, ResNet-50 is used without any modification, but the resolution of ImageNet-10
is resized into 64×64 and 224×224 in order to see the effect of different resolutions. Resized random
crops and random horizontal flips are applied for data augmentation.

TAUFE requires only one additional hyperparameter, the scaling factor λ for the feature-level cal-
ibration in Equation (3). The value of λ is set to be 0.1 and 0.01 for CIFARs and ImageNet-10,
respectively, where the best values are obtained via a grid search. The corresponding hyperparameter
in OAT for softmax-level calibration is set to be 1, following the original paper. In addition, both
few-shot and full-shot learning settings are considered for evaluation. Given the number N of the
examples for use in few-shot learning, N examples are randomly sampled over all classes from both
in-distribution and OOD data, and thus 2N examples in total are used for training. For full-shot
learning, N is set to be the total number of training examples in the target in-distribution data.
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Table 2: Classification accuracy (%) of TAUFE compared with Standard and OAT on two CI-
FARs (32×32), ImageNet-10 (64×64), and ImageNet-10 (224×224) under few-shot and full-shot
learning settings. The highest values are marked in bold.

Datasets
Methods

# Examples (N )

In-dist. Out-of-dist. 500 1,000 2,500 5,000 Full-shot

CIFAR-10
(32×32)

– Standard 38.58 52.63 72.94 82.38 94.22

SVHN
OAT 40.55 52.80 73.24 82.56 94.38

TAUFE 41.58 56.72 73.61 82.88 94.45

LSUN
OAT 40.73 53.16 73.51 82.71 94.61

TAUFE 42.51 56.79 74.15 83.73 95.02

CIFAR-100
(32×32)

– Standard 11.07 13.99 24.28 41.47 73.84

SVHN
OAT 10.92 14.56 24.67 42.21 74.82

TAUFE 11.30 15.13 24.91 43.61 75.38

LSUN
OAT 11.27 15.24 24.75 43.09 75.15

TAUFE 12.26 15.97 25.36 44.50 75.69

ImageNet-10
(64×64)

– Standard 38.82 43.66 56.17 66.80 78.30

ImageNet-990
OAT 38.95 44.09 57.29 69.41 79.29

TAUFE 42.80 46.04 60.40 70.51 81.09

Places365
OAT 41.06 43.81 56.47 67.20 79.30

TAUFE 43.25 47.61 60.02 68.25 80.89

ImageNet-10
(224×224)

– Standard 44.82 56.29 73.60 82.49 86.97

ImageNet-990
OAT 46.41 58.66 75.62 83.6 87.66

TAUFE 48.39 59.06 76.47 85.05 89.24

Places365
OAT 48.10 56.88 74.98 83.41 88.78

TAUFE 50.08 59.27 77.22 84.81 89.06

Performance Comparison. Table 2 shows the classification accuracy of the three methods under
few-shot and full-shot learning settings. Overall, TAUFE shows the highest classification accuracy
at any few-shot settings for all datasets. Specifically, TAUFE outperforms OAT by 0.07% to 9.88%,
though OAT also shows consistent performance improvement. OAT’s lower performance is attributed
to the property that it is prone to force the activations of in-distribution examples toward the decision
boundary as analyzed in § 3.3. Adding LSUN as OOD for CIFARs is more effective than adding
SVHN, because LSUN is more similar to CIFARs than SVHN, thus sharing more undesirable features.
For ImageNet-10, adding Places365 is more effective than adding ImageNet-990 when the number of
training examples is not enough, but adding ImageNet-990 becomes more effective as the size of
training data increases. Because ImageNet-990 has more diverse background scenes than Places365,
we conjecture that the effect of Places365 saturates faster than that of ImageNet-990 as more OOD
examples are exposed to the DNN model. Besides, no significant difference is observed depending
on the resolution of ImageNet-10.

Performance with Semi-Supervised Learning. We use a semi-supervised learning framework for a
baseline in addition to the standard supervised learning framework, because TAUFE can also improve
the accuracy of a semi-supervised classifier by deactivating the undesirable features. MixMatch [29],
a popular semi-supervised learner for image classification, is enhanced with TAUFE by up to 2.02%
and 2.34%, respectively, on two CIFAR datasets. § 7.1 shows the details.

Effect on Adversarial Robustness. We investigate the effect of TAUFE on adversarial robustness.
Overall, TAUFE improves the accuracy on adversarial examples by up to 2.76% when adding the
LSUN dataset as OOD. § 7.2 shows the details.

Effect on OOD Detection. As TAUFE is not intended to detect OOD examples, its effect on OOD
detection is not noticeable, as shown in § C of the supplementary material.

4.2 Task II: Bounding Box Regression

Bounding box regression is an essential sub-task for object localization and object detection. We
compare TAUFE with only Standard because OAT does not work for regression.
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Table 3: IoU (%) of TAUFE compared with Standard on CUB200 (224×224) and CAR (224×224)
under few-shot and full-shot learning settings. The highest values are marked in bold.

Datasets
Methods

L1 L1-IoU D-IoU

# Examples (N ) # Examples (N ) # Examples (N )

In-dist. Out-of-dist. 2,000 4,000 Full 2,000 4,000 Full 2,000 4,000 Full

CUB200
(224×224)

– Standard 66.41 73.10 76.42 66.57 73.28 76.67 66.82 73.18 76.57

ImageNet TAUFE 67.16 74.31 77.12 67.22 74.40 77.24 67.03 74.22 77.00
Places365 TAUFE 66.70 73.55 76.86 66.87 73.63 77.01 66.88 73.66 76.88

CAR
(224×224)

– Standard 83.06 85.50 90.56 83.52 86.54 91.25 83.62 87.93 91.09

ImageNet TAUFE 85.23 87.82 91.32 85.82 89.11 91.40 85.30 89.06 91.35
Places365 TAUFE 84.26 87.59 90.86 84.73 88.83 91.28 84.60 88.64 91.20

Table 4: GT-known Loc of TAUFE compared with Standard on CUB200 (224×224) and CAR
(224×224) under few-shot and full-shot learning settings. The highest values are marked in bold.

Datasets
Methods

# Examples (N )

In-dist. Out-of-dist. 2,000 4,000 Full-shot

CUB200
(224×224)

– Standard 54.45 58.37 64.02

ImageNet
OAT 55.24 60.24 64.91

TAUFE 59.68 61.88 65.56

Places365
OAT 56.97 60.01 64.27

TAUFE 58.24 60.90 64.84

CAR
(32×32)

– Standard 62.09 67.12 70.54

ImageNet
OAT 63.77 67.24 71.64

TAUFE 65.82 69.05 72.14

Places365
OAT 63.16 68.58 71.66

TAUFE 65.70 67.64 71.62

Dataset. Two datasets are used as the target in-distribution data for the bounding box regression
task—Caltech-UCSD Birds-200-2011 (CUB200) [30], a collection of 6,033 bird images with 200
classes, and Standford Cars (Car) [31], a collection of 8,144 car images with 196 classes. For each
image of 224×224 resolution, the two datasets contain a class label and bounding box coordinates of
the top-left and bottom-right corners. ImageNet2 and Places365 are used as OOD data.

Training Configuration. ResNet-50 is trained from scratch using SGD for 100 epochs. Following
the prior work [32], the last classification layer in ResNet-50 is converted to a box regressor that
predicts the bounding box coordinates of the top-left and bottom-right corners. In addition, we use
three types of different loss functions: (i) L1, a L1-smooth loss, (ii) L1-IoU, a combination of L1
and IoU, and (iii) D-IoU [33], a combination of L1, IoU, and the normalized distance between the
predicted box and the target box. The remaining configurations are the same as those in § 4.1.

Evaluation Metric. We adopt the Intersection over Union (IoU), which is the most widely-used

metric for bounding box regression and defined by IoU(bi, b̃i) =
1
k

∑N
i=1 |bi ∩ b̃i|/|bi ∪ b̃i| where bi

and b̃i are the ground-truth and predicted bounding boxes of the object in the i-th example.

Performance Comparison. Table 3 shows the IoU accuracy of the two methods. Overall, TAUFE

consistently boosts the performance on bounding box regression for all datasets regardless of the loss
type. Quantitatively, the box regression performance considerably improves with TAUFE by up to
2.97% when using L1-IoU. This result indicates that the use of OOD examples with the feature-level
calibration indeed alleviates the undesirable bias problem. Interestingly, adding ImageNet as OOD
for both CUB200 and CAR is more effective than adding Places365, possibly because ImageNet
contains a higher number of classes which reflect more diverse undesirable features.

2All bird and vehicle relevant classes are excluded from the ImageNet dataset.
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4.3 Task III: Weakly Supervised Object Localization (WSOL)

WSOL is a problem of localizing a salient foreground object in an image by using only weak
supervision (i.e., image-level class labels). It can be considered as a mix of classification and
regression because it uses class labels but aims at bounding box regression. The seminal WSOL work,
class activation mapping (CAM) [34], has shown that the intermediate classifier activations focus on
the most discriminative parts of the target object in the image. Thus, by simply averaging all local
activations, we can estimate how much the corresponding pixels contribute to discriminate the object
in the scene. CAM is used as the standard learning method. We refer the reader to the surveys [35]
for more details about WSOL.

Dataset. Like the bounding box regression task, CUB200 and CAR are used as in-ditribution data,
while Places365 and ImageNet are used as OOD data.

Training Configuration. ResNet-50 is trained from scratch for 100 epochs using SGD with a batch
size of 64. An initial learning rate of 0.1 is decayed by a factor of 10 at 50-th and 75-th epochs. The
remaining configurations are the same as those in § 4.1.

Evaluation Metric. We adopt the localization accuracy with known ground-truth class (GT-known

Loc), which is the most widely-used metric for WSOL and defined by GT_known_Loc(bi, b̃i) =
1
N

∑N
i=1 1

(
IoU(bi, b̃i) ≥ δ

)
where bi is the ground-truth box of the object in the i-th example and b̃i

is the tightest box around the largest connected component of the activation mask for the i-th example.
The IoU threshold δ is set to be 0.5, following the prior work [34, 35].

Performance Comparison. Table 4 shows the GT-known accuracy of the three methods. Overall,
TAUFE shows the best localization accuracy at any few-shot settings for all datasets. Specifically,
TAUFE outperforms OAT by 0.71% to 8.03%, though OAT also shows consistent performance
improvement. This result indicates that TAUFE successfully removes the undesirable features such as
background to locate an object in an image. Adding ImageNet as OOD is more effective than adding
Places365 for the same reason. Besides, the performance gain of TAUFE over Standard is typically
larger for few-shot learning than for full-shot learning, as observed in the other tasks.

5 Limitations and Future Work

Although TAUFE has shown consistent performance improvements in three types of real-world
machine learning tasks, there are some issues that need to be further discussed. First, the effectiveness
of an OOD dataset for given a target dataset and a task needs to be formulated theoretically. Owing
to the transferability of undesirable features, any OOD dataset can be effective but its effectiveness
varies as shown in § 4. The difference in the effectiveness may come from the amount of shared
undesirable features between the target dataset and each OOD dataset. Therefore, formulating the
effectiveness based on such factors is an interesting research direction. Second, the applicability of
TAUFE need to be verified for a wide range of learning frameworks including self-supervised learning,
semi-supervised learning, and meta-learning, because the bias toward undesirable features is likely to
be observed regardless of the learning frameworks. Thus, we will clarify the outcome of TAUFE with
varying the learning frameworks as future work.

6 Conclusion

In this paper, we propose TAUFE, a novel task-agnostic framework to reduce the bias toward
undesirable features when training DNNs. Since the existing softmax-level calibration method
confines its applicability to only the classification task, we overcome the limitation by introducing the
feature-level calibration that directly manipulates the feature output of a general feature extractor (e.g.,
a convolutional neural network). To remove the effect of undesirable features on the final task-specific
module, TAUFE simply deactivates many undesirable features extracted from the OOD data by
regularizing them as zero vectors. Moreover, we provide an insight on how differently feature-level
and softmax-level calibrations affect feature extraction by theoretic and empirical analysis on the
penultimate layer activation. The consistent performance improvement on three types of tasks clearly
demonstrates the task-agnostic nature of TAUFE. Overall, we believe that our work sheds the light on
the usability of the OOD data in diverse tasks.
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Table 5: Classification accuracy (%) of TAUFE under
few-shot semi-supervised learning settings.

In-dist. CIFAR-10 CIFAR-100

Out-of-dist. – SVHN LSUN – SVHN LSUN

Methods MixMatch TAUFEMix TAUFEMix MixMatch TAUFEMix TAUFEMix

Accuracy 88.32 90.02 90.10 51.38 52.32 52.58

Table 6: Accuracy (%) of TAUFE under
the PGD adversarial attacker.

In-dist. CIFAR-10

Out-of-dist. – – SVHN LSUN

Methods Standard PGD TAUFEPGD TAUFEPGD

Clean. acc.
/ Adv. acc.

94.22
/ 0.00

71.22
/ 44.26

72.35
/ 44.37

72.31
/ 45.48

7 Supplementary Experiments

7.1 Performance of TAUFE with Semi-Supervised Learning

Baseline. MixMatch [29] is one of the state-of-the-art semi-supervised learning frameworks for
image classification. By leveraging unlabeled examples with automatic label guessing and mix-up
techniques, MixMatch nearly reaches the accuracy of fully supervised learning using only a small
number of labeled examples.

Experiment Setting. CIFAR-10 and CIFAR-100 are used for in-distribution datasets, and LSUN
and SVHN are used for two OOD datasets. We use the default or best hyperparameter values
suggested by the authors [29]. Specifically, the sharpening temperature T is set to be 0.5, the number
of augmentations K to be 2, the Beta distribution parameter α to be 0.75, and the loss weight for
unlabeled examples λU to be 100. We fix the number of epochs to be 1,024 and the batch size to
be 64, and linearly ramp up λU in the first 16,000 optimization steps. We use 25 labeled examples
per class as initially labeled data, because MixMatch was shown to nearly reach the full-supervision
accuracy on that setting [29] .

Result. Table 5 shows the classification accuracy of TAUFE combined with MixMatch on two
CIFAR datasets under few-shot settings—i.e., N=250 for CIFAR-10 and N=2,500 for CIFAR-100;
TAUFEMix represents the TAUFE combined with MixMatch. TAUFEMix consistently improves the
performance of MixMatch on two CIFAR datasets. Similar to the supervised learning in § 4.1, adding
LSUN as OOD is more effective than adding SVHN; compared with MixMatch, the performance
of TAUFEMix is improved by up to 2.02% on CIFAR-10 and by up to 2.34% on CIFAR-100. This
result shows that TAUFE successfully deactivates the negative effect of undesirable features even in
the semi-supervised learning setting.

7.2 Effect of TAUFE on Adversarial Robustness

Baseline. We use the projected gradient descent (PGD) [36] attack / learning method, which employs
an iterative procedure of the fast gradient sign method (FGSM) [37] to find the worst-case examples
having the maximum training loss.

Experiment Setting. CIFAR-10 and CIFAR-100 are used for in-distribution datasets, and LSUN and
SVHN are used for two OOD datasets which are exposed in the training phase. The hyperparameters
of PGD are favorably set to be the best values reported in the original paper. The attack learning
rate ε is set to be 2, and PGDn indicates the PGD attacks with n iterative FGSM procedures. For
adversarial learning, the adversarial examples generated by PGD7 are used as the input of training.
To measure the adversarial accuracy, the adversarial examples generated by PGD100 are used for
testing. This combination of step numbers was also used in the PGD work [36].

Evaluation Metric. The clean accuracy is the classification accuracy on the original test data, while
the adverserial accuracy is that on the PGD100 perturbed adversarial examples of the test data.

Result. Table 6 shows the adversarial robustness of TAUFE compared with the standard learning
method. Overall, TAUFE improves the accuracy on adversarial examples by up to 2.76% when adding
the LSUN dataset as OOD examples. This result indicates that the undesirable feature deactivation of
TAUFE is helpful for the adversarial learning models.
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