
Maximum Entropy On-Policy Actor-Critic via
Entropy Advantage Estimation

Jean Seong Bjorn Choe
School of Electrical Engineering

Korea University
garangg@korea.ac.kr

Jong-Kook Kim
School of Electrical Engineering

Korea University
jongkook@korea.ac.kr

Abstract

Entropy Regularisation is a widely adopted technique that enhances policy opti-
misation performance and stability. A notable form of entropy regularisation is
augmenting the objective with an entropy term, thereby simultaneously optimising
the expected return and the entropy. This framework, known as maximum entropy
reinforcement learning (MaxEnt RL), has shown theoretical and empirical suc-
cesses. However, its practical application in straightforward on-policy actor-critic
settings remains surprisingly underexplored. We hypothesise that this is due to the
difficulty of managing the entropy reward in practice. This paper proposes a simple
method of separating the entropy objective from the MaxEnt RL objective, which
facilitates the implementation of MaxEnt RL in on-policy settings. Our empirical
evaluations demonstrate that extending Proximal Policy Optimisation (PPO) and
Trust Region Policy Optimisation (TRPO) within the MaxEnt framework improves
policy optimisation performance in both MuJoCo and Procgen tasks. Additionally,
our results highlight MaxEnt RL’s capacity to enhance generalisation.

1 Introduction

Entropy regularisation is pivotal to many practical deep reinforcement learning (RL) algorithms.
Practical algorithms such as Trust Region Policy Optimization (TRPO) [Schulman et al., 2015a]
penalise the policy improvement or greedy step using Kullback-Leibler (KL) divergence (also called
as relative entropy) to regularise the deviations between consecutive policies. This method, often
termed KL regularisation, has been the foundational approach for contemporary deep RL algorithms
[Vieillard et al., 2020, Geist et al., 2019].

Another critical approach is to regularise the policy evaluation step by augmenting the conventional
RL task objective with an entropy term, thereby directing policies toward areas of higher expected
trajectory entropy. This scheme is often called Maximum Entropy RL (MaxEnt RL) [Ziebart, 2010,
Haarnoja et al., 2018, Levine, 2018]. MaxEnt RL formulation is known to improve the exploration
and robustness of policies by promoting stochasticity [Eysenbach and Levine, 2019, 2021]. In
practice, MaxEnt RL can simply be implemented by adding an entropy reward to the original task
reward.

Recent theoretical advancements inspired by the Mirror Descent theory have developed a unified
view of these approaches [Vieillard et al., 2020, Geist et al., 2019, Tomar et al., 2020], suggesting
that their combination could lead to faster convergence to the solution of the regularised objective
[Shani et al., 2020]. Furthermore, the latest studies on policy gradient (PG) methods have shown the
effectiveness of the MaxEnt RL in accelerating the convergence of PG algorithms [Mei et al., 2020,
Agarwal et al., 2021, Cen et al., 2022]. However, despite the enticing theoretical support, its practical
application remains underexplored, particularly in stochastic policy gradient methods in on-policy
settings.
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Figure 1: The normalised state visitation counts
from 100 rollouts with policies trained on the mod-
ified MiniGrid-Empty-8x8 task using a naive
MaxEnt algorithm (PPO with the augmented en-
tropy reward) and EAPO using 2 different dis-
count factors γH ∈ (0.9, 0.99) and TD(0) for en-
tropy estimation. We compare 3 different tempera-
tures τ ∈ (0.002, 0.003, 0.004). A discount factor
γV = 0.99 is used for the task reward. L is the
mean length of trajectories, with agents aiming to
minimise it (10 is optimal). See Appendix B.1 for
more details.

We hypothesise that this research gap is poten-
tially attributed to the difficulty of handling the
entropy reward in practice. Yu et al. [2022] em-
pirically analysed the problematic nature of the
entropy reward using Soft Actor-Critic (SAC)
[Haarnoja et al., 2018], an off-policy MaxEnt al-
gorithm. Authors pointed out that in an episodic
setting, the entropy return is largely correlated
to the episode’s length, thereby rendering the
policy overly optimistic or pessimistic, and even
in infinite-horizon settings, the entropy reward
can still obscure the task reward.

Inspired by this observation, we proposed a sim-
ple but practical approach to control the impact
of the entropy reward. In this paper, we intro-
duce Entropy Advantage Policy Optimisation
(EAPO), a method that estimates the task and
entropy objectives of the regularised (soft) ob-
jective separately. By employing a dedicated
discount factor for the entropy reward and util-
ising Generalised Advantage Estimation (GAE)
[Schulman et al., 2015b] on each objective sep-
arately, EAPO controls the effective horizon of
the entropy return estimation and the entropy
regularisation on policy evaluation. EAPO’s
simplicity requires only minor modifications to
existing advantage actor-critic algorithms. This
work extends the well-established PPO [Schul-
man et al., 2017b] and TRPO [Schulman et al.,
2015a].

Figure 1 illustrates the challenge of learning the
MaxEnt policy for an episodic task using a naive
implementation that simply augments the task reward with an entropy reward. In this task, the agent
is required to reach the goal state while performing the minimum number of actions. The naive
MaxEnt agent fails to learn the optimal stochastic policy, resulting in two failure modes: acting
almost deterministically when the temperature τ is low or wandering around indefinitely when τ is
high. In contrast, EAPO successfully achieves the near-optimal stochastic policy by utilising TD(0)
learning [Sutton and Barto, 2018] (i.e., set GAE λ to 0) for the entropy objective. Additionally, the
example demonstrates that lowering the discount factor for the entropy estimation γH helps prevent
the inflation of the entropy reward [Yu et al., 2022] and reduces sensitivity to the temperature.

In this work, we empirically demonstrate that EAPO allows the development of a practical MaxEnt
on-policy actor-critic algorithm. We test the efficacy of EAPO within deterministic environments
with the discrete action space to align with existing theories on the MaxEnt formulation [Levine,
2018] and the softmax policy gradient methods [Mei et al., 2020]. Specifically, we evaluate the
general training performance on 4 discretised [Tang and Agrawal, 2020] Mujoco continuous control
tasks, including those with an infinite horizon [Todorov et al., 2012]. We also test the robustness in
16 Procgen episodic environments [Cobbe et al., 2020]. Additionally, we examine the usefulness of a
MaxEnt policy in MiniGrid DoorKey environment [Chevalier-Boisvert et al., 2023].

2 Background

2.1 Preliminaries

This work considers a finite discounted deterministic Markov Decision Process (MDP)
⟨S,A, r, ρ, T , γV , γH⟩, where S is the set of states s and A is the set of actions a, and ρ is the
initial state distribution. T is the deterministic transition function T : S × A 7→ S, and r is the
reward function r : S × A 7→ R. γV and γH are the discount factors. We define the value func-
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tion of state s under the policy π as V π(s) := Es0=s,at∼π(·|st),st+1=T (st,at) [
∑∞

t=0 γ
t
V r(st, at)].

Also, the action-value of performing action a at state s under the policy π is Qπ(s, a) :=
Es0=s,a0=a,at>0∼π(·|st),st+1=T (st,at) [

∑∞
t=0 γ

t
V r(st, at)]. And define the advantage function Aπ

as Aπ(s, a) := Qπ(s, a) − Eπ(·|s) [Q
π(s, ·)] = Qπ(s, a) − V π(s). We also define the discounted

policy-induced trajectory entropy, or the entropy rate of state s under policy π as

V π
H(s) := Es0=s,at∼π(·|st),

st+1=T (st,at)

[ ∞∑
t=0

−γt
H log π(at|st)

]
. (1)

This trajectory entropy represents the Shannon entropy of the possible future trajectories’ distribution
in an MDP with deterministic dynamics [Levine, 2018, Tiapkin et al., 2023]. The objective of
Maximum Entropy Reinforcement Learning (MaxEnt RL), or often Regularised MDPs [Geist et al.,
2019, Neu et al., 2017] is to maximise the expectation of the sum of the value and the trajectory
entropy with respect to the initial state distribution:

J(π) = E s0∼ρ,at∼π,
st+1=T (st,at)

[ ∞∑
t=0

γt
V r(st, at)− γt

Hτ log π(at|st)

]
(2)

= Es0∼ρ [V
π(s0) + τV π

H(s0)] , (3)

where the temperature parameter τ ≥ 0 is a hyperparameter to be controlled to balance the significance
between these two objectives, and we introduce the distinct discount factors.

2.2 Soft advantage function

Analogous to the definition of the action-value function Qπ as the expected cumulative rewards after
selecting an action a [Sutton and Barto, 2018], we define Qπ

H as the expected future trajectory entropy
after selecting an action:

Qπ
H(st, at) := γHV π

H(T (st, at)) = γHV π
H(st+1). (4)

The definition arises naturally from the consideration that uncertainty exists due to the stochastic
policy at the current state, which has settled by the time an action is performed. Consequently, the
Qπ

H is simply the discounted trajectory entropy of the next state determined by the deterministic
transition function.

From the recursive relation of trajectory entropy from (1) and the defintion (4), the following relation
is derived:

V π
H(st) = Eat∼π(·|st) [− log π(at|st) +Qπ

H(st, at)] . (5)
We now define the entropy advantage function Aπ

H analogous to the conventional advantage function:

Aπ
H(st, at) := Qπ

H(st, at)− Ea∼π(·|st) [Q
π
H(st, a)]

= Qπ
H(st, at)− V π

H(st) + Ea∼π(·|st) [− log π(a|st)] . (6)

We let Ṽ π(s) := V π(s)+τV π
H(s) as the soft value function, and let Q̃π(s, a) := Qπ(s)+τQπ

H(s, a)
as the soft Q-function. Finally, we define the soft advantage function:

Ãπ(st, at) := Aπ(st, at) + τAπ
H(st, at) (7)

= Qπ(st, at)− V π(st) + τ(Qπ
H(st, at)− V π

H(st) + Ea∼π(·|st) [− log π(a|st)])
= Q̃π(st, at)− Ṽ π(st) + τEa∼π(·|st) [− log π(a|st)] . (8)

2.3 Soft policy gradient theorem

Shi et al. [2019] showed that it is possible to optimise the soft objective using direct policy gradient
from samples. Thus, we can use the soft advantage function to find the policy that maximises the
MaxEnt RL objective.
Theorem 1 (Soft Policy Gradient). Let J(π) the MaxEnt RL objective defined in 2. And πθ(a|s) be
a parameterised policy. Then,

∇θJ(πθ) = E s0∼ρ,
at∼π,

st+1=T (st,at)

[
(γt

V A(st, at) + γt
HτAπ

H(st, at))∇θ log πθ(at|st)
]
. (9)
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We provide the proof in Appendix A. While the exact soft policy gradient theorem requires the
corresponding exponential discount term for each advantage estimate, we use the approximate policy
gradient in this work:

∇θJ(πθ) ≈ E s0∼ρ,
at∼π,

st+1=T (st,at)

[
Ãπ(st, at)∇θ log πθ(at|st)

]
. (10)

It is worth noting that when the exact gradient is known, Mei et al. [2020] proved that the soft policy
gradient has the global convergence property and may converge faster than the policy gradient without
entropy regularisation despite the objective being biased. However, in our practical setup, this is not
guaranteed.

3 Related works

One of the most prominent aspects of the MaxEnt RL formulation that has been studied is the ability
to connect policy gradient methods and off-policy value-based methods that learn the soft Q-function
[Haarnoja et al., 2018, Nachum et al., 2017, O’Donoghue et al., 2016, Schulman et al., 2017a].
However, this work focuses on the soft policy gradient using the soft advantage estimation in an
on-policy setting.

Shi et al. [2019] explored the soft policy gradient method, emphasising its inherent simplicity. While
they employed the soft Q-function to guide the policy gradient, linking their method to off-policy
techniques, EAPO leverages the variance-reduced estimation of the entropy advantage function
to formulate the soft advantage function suitable for on-policy algorithms. Moreover, Shi et al.
[2019] introduced additional techniques to mitigate the challenging task of estimating the soft Q-
function. However, EAPO can seamlessly integrate with existing techniques, such as value function
normalisation, and GAE, due to its structural equivalence between its method for estimating the
entropy advantage function and the conventional advantage function.

A more common approach to applying entropy regularisation to PG methods is to add an entropy
cost term to the sample-based policy gradient estimator to maximise the policy entropy at each
sampled state, retaining the stochasticity of the policy during optimisation process [Mnih et al., 2016,
Schulman et al., 2017b]. While the entropy bonus term seeks to maximise policy entropy at visited
states, MaxEnt RL directs a policy toward regions of higher expected trajectory entropy, albeit at the
cost of bias imposed on the objective [Levine, 2018, Schulman et al., 2017a]. Despite its empirical
success, this method remains a heuristic approach without solid theoretical understanding[Ahmed
et al., 2019]. In this work, we show that the use of MaxEnt RL can replace the traditional entropy
cost term.

The algorithms studied in this work can be seen as an instance of algorithm that both KL regularisation
and entropy regularisation are applied [Vieillard et al., 2020, Geist et al., 2019]. However, this work
does not analyse how these two types of regularisations interact.

Yu et al. [2022] studied the harmful effect of having entropy regularisation on the policy evaluation
step and has motivated this research. Unlike their work, we draw a positive conclusion for the
use of entropy rewards. In our experiments comparing the entropy cost method, using the MaxEnt
framework instead of the entropy cost consistently improves the performance of on-policy algorithms.

Recent studies have investigated the theoretical properties of policy gradient methods [Agarwal et al.,
2021, Mei et al., 2020, Cen et al., 2022]. Notably, the authors have shown that combining Natural
Policy Gradient (NPG) methods [Kakade, 2001] and the entropy-regularised MDPs can speed up
the convergence. Although some authors [Khodadadian et al., 2021, Shani et al., 2020] have drawn
the connection between PPO and NPG methods rigorously in theoretical settings, it remains unclear
whether PPO-based EAPO, which extends PPO to the Regularised MDP setting, can benefit from the
theoretical guarantees.

4 Proposed method

4.1 Overview

In this section, we develop our Entropy Advantage Policy Optimisation (EAPO) method. At its core,
EAPO independently estimates both the value advantage function and the entropy advantage function
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and combines them to derive the soft advantage function. EAPO adopts a separate prediction head to
the conventional value critic to approximate the trajectory entropy of a state, which is then used for
entropy advantage estimation. We extend the PPO [Schulman et al., 2017b] and TRPO [Schulman
et al., 2015a] by substituting the advantage estimate with the soft advantage estimate and omitting the
entropy bonus term.

4.2 Entropy advantage estimation

The entropy advantage Aπ
H is estimated from the sampled log probabilities of the behaviour policy. We

utilise the Generalised Advantage Estimation (GAE) [Schulman et al., 2015b] for a variance-reduced
estimation of the entropy advantage:

ÂH,GAE(λH,γH)(st, at) :=

∞∑
l=0

(λHγH)lδHt+l, (11)

where δHt := − log π(at|st) + γHV π
H(st+1)− V π

H(st), and γH and λH are the discount factor and
GAE lambda for entropy advantage estimation, respectively. Note that the equation is the same as
the GAE for the conventional advantage, except the reward term is replaced by the negative log
probability. This simplicity is also consistent with the remark that the only modification required for
the MaxEnt policy gradient is to add the negative log probability term to the reward at each time step
[Levine, 2018].

4.3 Entropy critic

An entropy critic network, parameterised by ω, approximates the trajectory entropy V π
H , and it is

trained by minimising the mean squared error LH(ω) := Êt

[
1
2

(
V π
H(st;ω)− V̂ π

H(st)
)2

]
, where the

trajectory entropy estimate V̂ π
H(st) is calculated using TD(λH): V̂ π

H(st) = ÂH,GAE(λH,γH)(st, at) +
V π
H(st;ω). Throughout the conducted experiments, we implemented the entropy critic network to

share its parameters with the return value critic V V
ϕ , with only the final linear layers for outputting

its prediction distinct. This form of parameter sharing allows minimal computational overhead to
implement EAPO.

Further, we employ the PopArt normalisation [van Hasselt et al., 2016] to address the scale difference
of entropy and return estimates. It is important to note that the negative log probability − log π(at|st)
is collected for every timestep. In contrast, the reward can be sparse, leading to significant magnitude
variations based on the dynamics of the environment [Hessel et al., 2019]. This discrepancy can
pose challenges, especially when using a shared architecture. Thus, utilising the value normalisation
technique like PopArt is pivotal for the practical implementation of EAPO.

4.4 Entropy advantage policy optimisation

Subsequently, we integrate the entropy advantage with the standard advantage estimate Âπ
V , also

computed using GAE and return value critic parameterised by ϕ, analogously to the entropy advantage
estimation process we describe above. Then the soft advantage function Ãπ is

Ãπ(st, at) = ÂV,GAE(λV ,γV )(st, at) + τÂH,GAE(λH,γH)(st, at), (12)

where ÂV,GAE(λV ,γV ) is the value advantage estimation using GAE. Finally, we substitute the esti-
mated conventional advantage function in the policy objective of PPO and TRPO with Ãπ . The PPO
objective function becomes:

L(θ, ϕ, ω) = Êt

[
min(rt(θ)Ã

π(st, at), clip(rt(θ), 1− ϵ, 1 + ϵ)Ãπ(st, at))
]

+ c1(L
V (ϕ) + c2L

H(ω)), (13)

where rt(θ) is the probability ratio between the behaviour policy πθold(at|st) and the current policy
πθ(at|st), and c1, c2 and ϵ are hyperparameters to be adjusted. The value critic loss LV is also
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defined by the mean square error, LV (ϕ) = Êt

[
1
2

(
V (st;ϕ)− V̂ π(st)

)2
]

where V̂ π is the return

value estimate.

Similarly, the optimisation problem of TPRO becomes:

max
θ∈Θ

Êt

[
rt(θ)Ã

π
t (s, a)

]
, s.t. Êt[KL(πθold ||πθ)] ≤ δ, (14)

where δ is a hyperparameter.
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Figure 2: Left: Generalisation test results of EAPO agents with γH = 0.8, λH = 0.95 , and two
different temperatures τ = 0.02 and τ = 0.005 against PPO agents with entropy coefficients of 0.001
and 0.01 on 16 Procgen [Cobbe et al., 2020] benchmark environments. Agents are evaluated on 100
levels unseen during the training. EAPO consistently outperforms or at least matches PPO in all
environments. Results are averaged over 10 seeds, and the shaded area indicates the 95% confidence
interval. Right: The mean normalised score for both test and training, computed according to [Cobbe
et al., 2020].

5 Experiments

In this section, we evaluate the policy optimisation performance of EAPO against the corresponding
baseline on-policy algorithms, PPO and TRPO. Specifically, we assess the optimisation efficiency
for episodic tasks and the generalisation capability of EAPO on 16 Procgen [Cobbe et al., 2020]
benchmark environments. Moreover, we investigate EAPO’s efficacy on continuing control tasks
using 4 discretised popular MuJoCo [Todorov et al., 2012] environments, and we analyse the impact
of hyperparameters τ , γH and λH. Finally, we include MiniGrid-DoorKey-8x8 environment
[Chevalier-Boisvert et al., 2023] to examine if EAPO can help solve the hard exploration task.

We implemented EAPO using Stable-baseline3 [Raffin et al., 2019] and conducted experiments on
environments provided by the Envpool [Weng et al., 2022] library. All empirical results are averaged
over from 10 random seeds, with a 95% confidence interval indicated.

For the hyperparameter selection, we conducted a brief search for baseline algorithm hyperparameters
that perform reasonably well, tuning only the EAPO-specific hyperparameters such as γH to ensure
fair comparisons. Implementation details and hyperparameters are reported in Appendix B.
5.1 Procgen benchmark environments

We evaluate the performance and the generalisation capability of PPO-based EAPO on the 16 Procgen
benchmark environments [Cobbe et al., 2020]. These environments have a discrete action space
and use raw images as observations. Procgen suite includes episodic tasks with both positive (e.g.,
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Table 1: Mean episodic return at the final timestep of tests on 100 unseen levels on 16 Procgen
environments. We report the mean and the 95% confidence interval from 10 different seeds.

Env. EAPO γH:0.8 λH:0.95 EAPO γH:0.9 λH:0.0 PPO
τ :0.02 τ :0.005 τ :0.02 τ :0.005 c:0.01 c:0.001

CoinRun 8.34±0.24 8.31±0.22 7.59±0.51 8.33±0.36 8.13±0.22 7.38±2.48
StarPilot 54.33±3.41 52.12±1.95 53.28±2.57 54.24±3.13 49.4±3.72 50.57±2.4
CaveFlyer 7.03±0.32 6.48±0.57 7.17±0.3 6.62±0.56 6.32±0.7 6.3±0.63
Dodgeball 13.64±0.68 11.59±0.86 13.23±0.63 12.34±0.85 8.51±0.98 7.2±1.14
Fruitbot 27.28±0.74 26.5±0.9 27.19±1.14 26.57±1.32 25.91±1.26 25.34±1.18
Chaser 10.5±0.46 11.12±0.3 10.52±0.38 11.05±0.38 11.12±0.45 10.64±0.4
Miner 10.13±0.38 8.9±0.84 10.13±0.5 9.08±0.78 8.6±0.76 8.06±0.94
Jumper 5.7±0.46 5.76±0.27 5.84±0.54 5.45±0.48 5.21±0.45 5.17±0.44
Leaper 8.24±0.52 7.75±0.33 7.51±1.17 7.88±0.67 6.54±0.9 6.61±1.06
Maze 6.5±0.48 5.7±0.27 5.75±0.52 5.56±0.47 5.38±0.56 5.45±0.31
BigFish 19.89±2.14 17.88±1.46 19.83±2.4 18.73±2.87 12.84±1.54 12.56±2.86
Heist 3.75±0.66 2.97±0.67 4.22±0.58 3.06±0.49 2.11±0.54 1.68±0.5
Climber 7.43±0.87 8.0±0.5 6.29±0.74 7.22±0.52 6.78±0.68 6.22±0.48
Plunder 9.0±0.71 7.66±1.15 9.55±0.9 8.35±1.38 4.16±0.55 3.94±1.23
Ninja 6.49±0.47 6.07±0.46 6.43±0.41 6.21±0.37 6.09±0.63 5.87±0.58
BossFight 7.49±0.77 9.58±0.66 7.82±0.71 9.38±0.59 7.61±0.76 5.15±3.32

Norm. 0.54±0.06 0.5±0.05 0.52±0.07 0.51±0.06 0.42±0.07 0.38±0.11
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Figure 3: Top: Mean episodic trajectory entropy of EAPO (γH = 0.8, λH = 0.95) and PPO with
entropy cofficients c ∈ (0.01, 0.001), on a subset of Procgen environments during the test. The
trajectory entropy of an episode is calculated as the sum of the negative log probability of the actions
taken in the episode. Bottom: Mean episodic return of the selected environments during the test and
the training. The higher entropy policy (τ = 0.02) outperforms the lower entropy policy (τ = 0.005)
during the test while achieving matching performance during the training (Dodgeball, Leaper) and
exhibits a smaller generalisation gap (Dodgeball, Chaser, Leaper).
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Figure 4: Comparison of Mean episodic returns and mean episodic lengths of EAPO using different
discount factors γH ∈ (0.9, 0.99) for entropy return on 4 Procgen environments during the test.
Results are averaged over 5 random seeds.

BigFish) and negative (e.g., Climber) correlations between the episode length and the return, making
them suitable for testing MaxEnt RL algorithms. Following the evaluation procedure in [Cobbe et al.,
2020], we trained agents on 200 procedurally generated levels and tested the performance as the
mean episodic return on 100 unseen levels for each environment. We use the easy difficulty setting.

We employed a single set of hyperparameters for all environments. For hyperparameter tuning, we
used three representative environments: BigFish, Climber and Dodgeball. Each represents different
levels of correlation between episode length and the return. BigFish requires the agent to survive as
long as possible, Climber allows indefinite exploration, and in Dodgeball, the agent must survive
during the first phase and reach the goal quickly in the second stage.

Figure 2 and Table 1 summarise the generalisation test results of EAPO and baseline PPO agents with
varying τ and the entropy bonus coefficient. The mean normalised score is computed according to
[Cobbe et al., 2020]. EAPO, with a lower discount factor of γH = 0.8 and λH = 0.95 surpasses the
baseline PPO agent in most of the environments. Additionally, EAPO also outperforms the baseline
during the training phase, demonstrating its efficiency in policy optimisation. We also investigate
the impact of the GAE λH hyperparameter for the entropy advantage estimation. The result shows
that λH does not affect the performance significantly, suggesting that adjusting γH and τ would be
sufficient for most cases.

Figure 2 (Right) shows the improved generalisation capability of high entropy policies. The policy
trained with higher temperature τ favours high entropy trajectories (see Figure 3) and performs
similar or worse than the one with lower τ during the training but achieves better during the test. This
result is in coherence with the previous study of [Eysenbach and Levine, 2021] that a MaxEnt policy
is robust to the distributional shift in environments.

Figure 4 demonstrates that lowering the discount factor γH mitigates the reward inflation problem [Yu
et al., 2022]. A small γH significantly improves the performance in environments where agents can
traverse without meaningful reward gain (Dodgeball and Climber) while maintaining performance in
environment inherently requiring longer episodes (Bigfish, Bossfight).

5.2 Discretised continuous control tasks

We measure the performance of EAPO extending PPO (EAPO-PPO) and TRPO (EAPO-TRPO) on
continuing control tasks in 4 MuJoCo environments, comparing them against their corresponding
baselines. For the PPO baselines, we searched for the best entropy coeffcient within the set c ∈
(0.0001, 0.001, 0.01). Additionally, we tested the PPO and TRPO agent with the reward augmented
by the entropy reward −τ log π(at|st) to evaluate the impact of separating the MaxEnt objective.
Note that the entropy reward-augmented baseline is effectively regarded as EAPO with γH = γ and
λH = λ, but without the entropy critic. We discretise the continuous action space using the method
proposed by Tang and Agrawal [2020]. Experiments using continuous action space are provided in
Appendix C. The training curves are presented in Figure 5.

The result shows that by adjusting γH and λH, we can configure EAPO to outperform or match
the conventional entropy regularisation method throughout all environments. We found that the
best-performing values of γH and λH vary depending on the characteristics of the environment,
similar to their value counterparts γ and λ, respectively. Although EAPO demonstrates more stable
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Figure 5: Performance comparison on 4 MuJoCo tasks. We measured the mean episodic return
of the stochastic policy periodically over 100 episodes during the training. Results are averaged
from 10 random seeds, and the shaded area indicates the 95% confidence interval. Top: EAPO-PPO.
We compare EAPO to the PPO agent with the best-performing entropy coefficient, and with the
entropy reward augmented PPO. Bottom: EAPO-TRPO. We also compare with the entropy reward
augmented TRPO.
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Figure 6: The return and trajectory entropy comparison results of EAPO with τ = 1e− 5, γH = 0.8
and λH = 0 and PPO with entropy coefficent 0.01 and 0.001. Results are averaged from 10 random
seeds, and the shaded area indicates the 95% confidence interval.

performance compared to the entropy bonus, this relatively modest performance gain suggests that
EAPO may be less efficient for continuing tasks.

Figure 5 also demonstrates that the adjustability adopted by EAPO improves the naive implementation
of the MaxEnt policy that augments the entropy reward. We also provide ablation experiments on γH
and λH using PPO-based EAPO in Appendix C.

5.3 MiniGrid-DoorKey-8x8 environment

Finally, we evaluate the exploration performance of PPO-based EAPO on the
MiniGrid-DoorKey-8x8 environment [Chevalier-Boisvert et al., 2023]. Figure 6 shows
that EAPO, with the given hyperparameters, can solve this hard exploration task within 5,000,000
frames for all 10 seeds, whereas the baseline PPO only achieves the goal for 3 seeds. However,
unlike other tasks presented in this work, this task was highly sensitive to hyperparameters. As noted
by [Mei et al., 2020], entropy regularization may not effectively mitigate epistemic uncertainty. Our
results show inconclusive evidence for better exploration using MaxEnt RL in this context.
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6 Conclusion

We have introduced EAPO, a model-free on-policy actor-critic algorithm based on the maximum
entropy reinforcement learning framework. Our approach shows that a straightforward extension of
existing mechanisms for standard value learning in on-policy actor-critic algorithms to the trajectory
entropy objective can facilitate the practical implementation of MaxEnt RL. Through empirical
evaluations, our method has been shown to replace the conventional entropy regularisation method
and that a more principled entropy maximisation method enhances generalisation. While this paper
focuses on PPO and TRPO, one can seamlessly adapt EAPO to other advantage actor-critic algorithms
such as A3C [Mnih et al., 2016]. This adaptability lays the groundwork for deeper investigations
into the interactions between the MaxEnt RL framework and various components of reinforcement
learning algorithms. We anticipate that the inherent simplicity of on-policy algorithms and EAPO
will encourage broader applications of the MaxEnt RL algorithm to promising areas like competitive
reinforcement learning and robust reinforcement learning.
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A Proof of the soft policy gradient theorem

We begin with the proof of Shi et al. [2019]. Let us denote the discounted state distributions induced by
the policy π as ρπ(s) for the discount factor γV , and as ρπH(s) for the discount factor γH, respectively.
Then,

∇θJ(πθ) = E s0∼ρ,
at∼π,

st+1=T (st,at)

[
(Q̃π(st, at)− τ log π(at|st)− 1)∇θ log π(at|st)

]

=
∑
s

[
ρπ(s)[∇θ

∑
a

π(s|a)[Qπ(s, a)− V π(s)]]

+τρπH(s)[∇θ

∑
a

π(s|a)(Qπ
H(s, a)− log π(a|s))]

]
= Es∼ρπ,at∼π [∇θ log πθ(at|st)Aπ(st, at)] + τEst∼ρπ

H,at∼π [∇θ log πθ(at|st)Aπ
H(st, at)]

= E s0∼ρ,
at∼π,

st+1=T (st,at)

[
∇θ log πθ(at|st)γt

V A
π(st, at)

]
+ τE s0∼ρ,

at∼π,
st+1=T (st,at)

[
∇θ log πθ(at|st)γt

HAπ
H(st, at)

]
= E s0∼ρ,

at∼π,
st+1=T (st,at)

[
(γt

V A(st, at) + γt
HτAπ

H(st, at))∇θ log πθ(at|st)
]
. □

B Hyperparameters and implementation details

B.1 Details of the MiniGrid-Empty-8x8-v0 example

The action space of MiniGrid-Empty-8x8-v0 [Chevalier-Boisvert et al., 2023] consists of 7 discrete
actions: 2 actions for turning left or right, 1 action for moving forward, and 4 no-op actions. The
reward, calculated as 1− 0.9t/T is given only when the agent reaches the goal state, where t is the
number of steps taken and T is the maximum number of steps allowed. For T , the default value (256)
is used. We modified the turning actions so that they also move the agent forward to the corresponding
directions (i.e., no extra step is required to maneuver), enabling multiple optimal trajectories. This
modification reduces the optimal number of steps from 11 to 10. The observation used is the full
8× 8× 3 image without partial observability. We employ a simple CNN architecture from [Willems,
2023] as a shared feature extractor. The state visitation plots are generated from 100 rollouts using
policies trained over 4M frames. The mean trajectory entropy and the mean steps are averaged from
10 different random seeds. We select the representative heatmap for each setup from the run with
the trajectory entropy closest to the average trajectory entropy across all seeds. The normalised state
visitation frequency is calculated by dividing the number of visits to each state divided by the total
number of state visits in the trajectories.

B.2 Hyperparameters

We use the default values in stable-baseline3 [Raffin et al., 2019] and envpool [Weng et al., 2022]
libraries for the settings not specified in the table 2. EAPO-specific hyperparameters are reported in
Table 3. The parameters for the MuJoCo tasks are found in a coarse hyperparameter search.

B.3 Network architecture

For discretised MuJoCo tasks, we used simple tanh networks for the policy and the critics with
hidden layers of depth [64, 64] and [128, 128], respectively. We implemented the entropy critic as
the independent output layer that shares the hidden layers with the value network. For the continuous
MuJoCo tasks we use [256, 256] and [512, 512] for policy and critic networks and the state- and
action-dependent σ output for the Gaussian policy with the Softplus output layer.

In Procgen benchmark experiments, we adopt the same IMPALA CNN architecture used in Cobbe
et al. [2020]. The entropy critic is again a single final output layer that shares the CNN feature
extractor.
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Table 2: Common hyperparameters.

Parameter MuJoCo (PPO) MuJoCo (TRPO) Procgen Empty DoorKey

Timesteps 10M 10M 25M 4M 5M
Num. Envs 64 64 64 16 64
Num. Steps 128 64 256 128 128
Learning Rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4 1× 10−3

Batch Size 2048 1024 (critic) 2048 1024 1024
Epochs 4 4 (critic) 3 4 4
Discount Factor γV 0.99 0.99 0.995 0.99 0.995
GAE λV 0.95 0.95 0.8 0.95 0.995
Clip Range ϵ 0.2 0.2 0.1 0.2 0.2
Max Grad. Norm. 3.5 3.5 0.5 0.5 0.5
Adv. Norm. True True True True True
Obs. Norm. True True False False False
Rew. Norm. False False False False False
PopArt β 0.03 0.03 0.03 0.03 0.03
Value Loss Coeff. c 0.25 0.25 0.5 0.5 0.5
Entropy Coeff. (1e-2, 1e-3, 1e-4) None (1e-2, 1e-3) None [1e-5, 1e-4]
Target KL None 0.07 None None None

Table 3: EAPO specific hyperparameters.

Parameter Procgen Empty DoorKey MuJoCo (PPO) MuJoCo (TRPO)

γH (0.8, 0.9) (0.9, 0.99) 0.8

Ant 0.99 0.9
Walker2d 0.95 0.95
HalfCheetah 0.99 0.999
Humanoid 0.999 0.99

λH (0.95, 0.0) 0.0 0.0

Ant 0.001 0.8
Walker2d 0.99 0.95
HalfCheetah 0.001 0.8
Humanoid 0.001 0.8

τ (0.2, 0.005)

(0.002,

1e-5

Ant 0.02 0.1
0.003, Walker2d 0.1 0.4
0.004) HalfCheetah 0.1 0.2

Humanoid 0.01 0.2
c2 0.5 1.0 1.0 1.0 1.0

C Additional experiments
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Figure 7: Performance comparison on 4 MuJoCo continuous locomotion tasks.
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Figure 8: The ablation results on γH, λH, and τ for PPO-based EAPO.
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