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Abstract001

Large language models (LLMs) exhibit the002
ability to generalize given few-shot examples003
in their input prompt, an emergent capability004
known as in-context learning (ICL). ICL allows005
models to generalize without explicit weight006
updates. Despite its empirical success, the007
underlying mechanism of ICL remains opaque.008
It is unclear whether LLMs perform structured009
reasoning akin to Bayesian inference or rely010
solely on pattern matching. In this work, we011
investigate the Bayesian nature of ICL in a012
controlled setting by analyzing LLMs’ ability to013
model biased coin flips. Our findings reveal sev-014
eral key insights: (1) LLMs often possess biased015
priors, leading to initial divergence in zero-shot016
settings, (2) in-context evidence outweighs017
explicit bias instructions provided in a prompt,018
(3) when updating beliefs, they broadly adhere019
to Bayesian posterior updates, with deviations020
stemming from miscalibrated priors rather than021
incorrect updates, and (4) attention magnitude022
has little impact on Bayesian inference.023

1 Introduction024

Large language models (LLMs) designed for next-025

token prediction have gained significant popularity,026

largely because of their ability to generalize beyond027

language prediction and perform a wide range028

of novel tasks without requiring explicit weight029

updates (Brown et al., 2020). This emergent ability,030

referred to as In-Context Learning (ICL), remains031

the backbone of modern test-time prompting tech-032

niques, including chain-of-thought prompting (Wei033

et al., 2022) and prompt chaining (Wu et al., 2022).034

Despite significant empirical success, the under-035

lying mechanisms of ICL are still unknown. Many036

aspects of how models adapt their own predictive037

distributions given a context and to what extent in-038

context learning aligns with principles of statistical039

inference remain unclear. In particular, it is unclear040
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Figure 1: When we ask large language models (LLMs)
to model sequences with in-context learning (ICL), how
do they adapt their posterior probabilities given the
provided examples? This figure explores how model
probabilities change as we add new ICL examples in a
biased coin-flipping experiment. The X-axis represents
steps in the trajectory, while the Y-axis shows the
predicted parameter of a Bernoulli distribution. Our
results reveal that, while LLMs often have poorly
calibrated priors, their updated parameter estimates
broadly align with Bayesian behavior.

whether models are merely memorizing patterns 041

from their training data or if they are performing 042

structured reasoning akin to Bayesian inference. 043

A prominent explanation for ICL’s behavior 044

is based on Bayesian learning. Prior works have 045

suggested that models can approximate Bayesian 046

learning in certain scenarios by updating an implicit 047

prior distribution over latent structures when 048

provided with contextual information (Xie et al., 049

2021; Hahn and Goyal, 2023; Akyürek et al., 2022; 050

Zhang et al., 2023; Panwar et al., 2023). However, 051

these works explore the mechanism in environments 052

where the true posterior distribution is unknown 053

(such as question-answering or language modeling), 054

or in restricted theoretical settings with known 055
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posterior distributions but with constraints on056

model architecture or data type. Thus, the true057

degree to which pre-trained LLMs explicitly follow058

Bayesian update rules at test time, and whether059

their behavior aligns with normative probabilistic060

reasoning, remains an intriguing open question.061

In this work, we strip away the complexity062

induced by traditional approaches to investigating063

ICL in LLMs and explore a simple, yet non-trivial,064

stochastic phenomenon: their ability to model065

the outcomes of biased coin flips. This simple066

setting provides a controlled environment where067

we can analyze whether pre-trained LLMs im-068

plicitly construct and update priors similarly to a069

Bayesian manner when presented with sequential070

observations of stochastic events. By examining071

how models estimate coin biases and incorporate072

new evidence, we can precisely characterize their073

convergence to Bayesian behavior, and explore074

several effects, including attention, scale, and the075

impact of instruction tuning, without inducing076

significant distributional complexity.077

In this work we find several results, including078

(1) that language models often have biased priors079

for stochastic phenomena and that such priors lead080

to significant initial divergence in their ability to081

perform zero-shot modeling; (2) that LLMs often082

disregard explicit evidence in constructing their083

prior distributions, and are more responsive to in-084

context evidence-based updates; (3) that LLMs fol-085

low Bayesian update rules when considering new086

evidence, with much of the divergence between true087

and expected posteriors derived from the prior up-088

date; and (4) the magnitude of attention seems to089

have minimal influence on how evidence is incor-090

porated into the posterior update process. Taken to-091

gether, these results imply LLMs are capable of, and092

do, implicitly perform, Bayesian modeling in sim-093

ple cases, and that in more complex environments,094

poor priors, rather than failures of updates due to in-095

context learning, may cause reduced performance.096

2 Background & Related Work097

Representing probabilities in language models.098

As LLMs have proliferated across a wide set of099

applications, many have examined whether LLMs100

can properly represent the concept of probability.101

Much of this examination has been through the102

lens of model calibration and alignment. Zhu103

and Griffiths (2024) show that LLMs are biased104

judges of probability much in the same fashion as 105

human probability judgments. Gu et al. (2024) asks 106

whether LLMs can play dice and finds that while 107

LLMs know what probability is, they struggle to 108

accurately sample from distributions. They attempt 109

to solve this through tool use, but find that this is 110

not a guaranteed solution to the problem. Meister 111

et al. (2024) evaluates how well LLMs can align 112

to human groups’ distributions over a diverse set 113

of opinions. They find that LLMs are good at 114

describing biased distributions but are incapable 115

of simulating these distributions. 116

In this work, we explore the ability of LLMs 117

to simulate biased probability distributions and 118

explore the mechanism of in-context learning as 119

a natural method by which LLMs can align their 120

priors to requested distributions. 121

In-context learning. Brown et al. (2020) intro- 122

duces in-context learning (ICL) as a mechanism for 123

few-shot generalization in language models. Al- 124

though ICL usage has surged, users rarely employ it 125

as a method to align models with target distributions. 126

Further, issues with models’ sensitivity to the posi- 127

tioning of tokens in their prompts have complicated 128

the effective use of ICL as an alignment technique. 129

Lu et al. (2022) demonstrates that the positioning 130

of information within an ICL prompt affects model 131

performance and devises a permutation-based ap- 132

proach to overcoming this bias. Liu et al. (2023) 133

extends this analysis to highlight a persistent “lost- 134

in-the-middle” effect, in which information in the 135

middle of a prompt is down-weighted. 136

Our work shows that in-context rollouts of a 137

probability distribution correlate well with the 138

mean of a Bayesian posterior, and we further show 139

that LLMs have a time-variant discount factor over 140

the ICL prompt. 141

Bayesian updating in language models. Many 142

authors have explored the mechanism by which ICL 143

emerges in language models. Xie et al. (2021) finds 144

that ICL can be viewed as a language model im- 145

plicitly performing Bayesian inference—i.e., ICL 146

emerges via modeling long-range coherence during 147

pretraining. Jiang (2023) shows that emergent 148

capabilities of LLMs, such as ICL, are Bayesian 149

inference on the sparse joint distribution of 150

languages. Wang et al. (2024) react to the ordering 151

sensitivity of ICL prompts and pose ICL as a natural 152

side effect of LLMs functioning as latent variable 153
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models. Finally, Zhang et al. (2023) posit that ICL154

is an implicit form of Bayesian model averaging.155

In this work, we confirm the ordering sensitivity156

of ICL prompts and further show empirically157

that ICL has several implicit Bayesian modeling158

behaviors, however demonstrate that it is unlikely159

that attention magnitude is a key component of the160

formalization.161

3 Preliminaries162

Bayesian systems: General Bayesian systems163

are expected to update their beliefs in a manner164

consistent with Bayes’ rule. Given some evidence,165

D, a prior distribution p(θ) and a likelihood p(D|θ),166

the posterior distribution is obtained via:167

p(θ|D)=
p(D|θ)p(θ)

p(D)
(1)168

where p(D) is the marginal likelihood (or evidence)169

ensuring the posterior is properly normalized.170

While prior work (Falck et al., 2024) has explored171

additional assumptions (such as exchangeability),172

here we aim to explore the fundamental update173

process in a restricted environment.174

Modeling coin-flips as Bayesian processes: In175

our setup, we model a biased coin by treating the176

probability of obtaining heads, denoted by θ, as177

a random variable with a binomial distribution.178

Suppose we perform n independent coin flips and179

observe k heads and n−k tails. The likelihood of180

the observed data is given by:181

p(D|θ)=θk(1−θ)n−k (2)182

A common choice for the prior distribution of183

θ is the Beta distribution due to its conjugacy with184

the binomial likelihood:185

p(θ)=
θα−1(1−θ)β−1

B(α,β)
(3)186

where B(α,β) is the Beta function. By applying187

Bayes’ theorem, the posterior distribution is thus188

proportional to the product of the likelihood and the189

prior:190

p(θ|D)∝p(D|θ)p(θ) (4)191

∝θk(1−θ)n−k ·θα−1(1−θ)β−1 (5)192

=θα+k−1(1−θ)β+n−k−1 (6)193

And the posterior distribution for θ is also a Beta 194

distribution: 195

θ|D∼Beta(α+k,β+n−k). (7) 196

It is often useful to consider the case where we 197

have no strong prior beliefs about the coin’s bias, 198

leading us to adopt a uniform prior for θ. The 199

uniform prior over the interval [0,1] is a special case 200

of the Beta distribution with parameters α=1 and 201

β=1, i.e., p(θ)=Beta(θ;1,1)=1. When using the 202

uniform prior, the posterior distribution becomes: 203

p(θ|D)∝θk(1−θ)n−k, (8) 204

This Bayesian framework allows us to update our 205

beliefs about the coin’s bias as more coin-flip data 206

is collected, providing both a point estimate and a 207

measure of uncertainty for θ. 208

Experimental design: We focus on open-source 209

language models and extract stochastic represen- 210

tations directly from the underlying learned model 211

distributions. Consider a sequence of tokens 212

x={x1,x2,...,xn} (9) 213

drawn from a vocabulary V (with |V | elements). A 214

large next-token prediction-based language model, 215

M, approximates a probability distribution over 216

the next token: 217

pM(xi+1 |x1:i) (10) 218

where x1:i={x1,x2,...,xi}. 219

To evaluate stochastic processes, we define a 220

fixed set of possible outcomes Ω= {o1,o2,...,ok}, 221

where each outcome o∈Ω is a sequence of tokens 222

corresponding to a specific string value (e.g., 223

when modeling a coin flip, the outcomes “heads” 224

and “tails” might correspond to token sequences 225

[_heads] and [_tails], respectively). For each 226

outcome o, we compute the probability given a 227

prompt—analogous to updating our beliefs in a 228

Bayesian framework—as follows: 229

pM(o |prompt)=
|o|∏
i=1

pM(oi |o1:i−1,prompt)

(11) 230

where |o| denotes the number of tokens in o 231

and o1:i−1 represents the subsequence of tokens 232

preceding the ith token in o. 233
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Because these outcomes are a subset of all234

possible token sequences thatM could generate,235

we renormalize the distribution over the support236

Ω. We denote the renormalized model distribution237

as p̂M(o) for o∈Ω (see subsection C.2 for further238

details on the renormalization process).239

In our experiments, we measure the total240

variation distance (TVD) between the true posterior241

distribution p∗(o) and the normalized model242

distribution p̂M(o) over the support Ω:243

δ(p∗,p̂M)=
1

2

∑
o∈Ω
|p∗(o)−p̂M(o)| (12)244

This distance metric quantifies the discrepancy245

between the two distributions—zero indicating246

perfect alignment and higher values indicating247

greater divergence.248

We would like to clearly state that we are not249

claiming that LLMs themselves are explicitly250

Bayesian, rather, we ask the question: do model251

predictive distributions have Bayesian behavior? In252

this paper we treat models themselves as point-wise253

estimators of distributional parameters (in our case,254

we use them to estimate the parameters of a binomial255

distribution), and ask if those point-wise estimates256

align with reasonable Bayesian frameworks.257

We evaluate several models, including Gemma-2258

(Team et al., 2024), Phi-2/Phi-3.5 (mini) (Abdin259

et al., 2024), Llama-3.1 (8B) (Dubey et al., 2024),260

Mistral 7B (Jiang et al., 2023), and OLMoE261

(7B) (Muennighoff et al., 2024), along with their262

instruction-tuned variants. For scaling experiments,263

we leverage the Pythia Scaling Suite (Biderman264

et al., 2023) For more details regarding these265

models, please refer to Appendix D.266

4 Understanding the LLM Prior267

Due to data-intensive pre-training, language models268

inherently encode a prior over θ (the likelihood269

of heads in the coin-flip). We are interested in270

understanding these priors and understanding how271

to update the priors via explicit prompting.272

To extract a prior over heads and tails, we query273

the models for a coin flip through 50 different274

prompt variants (e.g. “I flipped a coin and275

it landed on”), and compute the normalized276

logit value ascribed to heads (discussed in detail in277

Appendix C). As shown in Figure 2, all language278

models evaluated begin with fundamental priors279

0.0 0.2 0.4 0.6 0.8 1.0

OLMoE-1B-7B-0924

Gemma-2-2B

Gemma-2B-Instruct

Llama3.1-8B

Llama3.1-8B-Instruct

Phi-3.5-mini-Instruct

Phi-2

Mistral-7B-Instruct

Mistral-7B

Model Priors Over the Probability of Heads ( )

Figure 2: Model priors: All language models evaluated
present a bias towards heads.

for θ that are heads-biased, and in some cases, 280

significantly so. This observation is reflected in 281

the tokenization structure itself; in some cases, 282

models do not see sufficient data to assign a full 283

token to [_tails] and instead encode this in a 284

pair of tokens (which we handle when computing 285

probability, see Appendix C). Thus, models begin 286

divergent from an unbiased estimate of coin priors. 287

Effect of explicit biasing via prompting. Next, 288

we explore if we can encourage models to update 289

their priors by providing an explicit value for θ in 290

the prompt. We define a set of biasing statements, 291

i.e. describing unfair coins, of the form “When I 292

flip coins, they land on heads X% of the 293

time.”, and run a set of trials, evaluating the TVD 294

between models’ probabilities over outcomes and 295

the expected distribution for the biased θ. 296

Results from this experiment are presented in 297

Figure 3. Given an explicit bias in the input prompt, 298

non-instruct LLMs fail to converge to the expected 299

biased distribution with their token probabilities fol- 300

lowing their originally computed prior—generally 301

showing a tendency to ascribe ≈ 60%-80% prob- 302

ability to heads, independent of explicit context. 303

Instruct models performed slightly better, though 304

they still exhibited a bias toward heads. Addition- 305

ally, instruct models showed improved performance 306

at the extremes of bias values, with TVD values 307

dropping for 0% and 100% heads biases (matching 308

observations from Zhao et al. (2021)). 309

Effect of model size on priors. Scaling the lan- 310

guage model size has shown effectiveness in many 311

tasks. Therefore, we explore whether scaling also 312

boosts performance on modeling expected biased 313

distribution. We use Pythia Scaling Suite (Biderman 314
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Figure 3: Biased coins: Plots of mean total variation distance (TVD, ↓) against bias (θ) for non-instruct (left) and
instruct (right) models when aggregated across prompts (N=50) for the biased coin flip experiment. Shaded areas
show one standard deviation. While non-instruct models both (1) ignore biasing instructions in the prompts and
(2) almost always generate a biased distribution (≈70% heads), instruct-based models pay better attention to biasing
information, and perform significantly better when modeling extreme bias (always generating heads/tails).

et al., 2023) that covers model size ranging from315

70M to 12B and test on different biased θ. Results316

from this experiment are presented in Figure 4. For317

a given bias, scaling the model size does not substan-318

tially change the language models’ priors or improve319

the performance of modeling expected distributions.320

However, the relative ordering among different bi-321

ases does shift as the model size increases.
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Figure 4: Biased coins and parameter scaling: Mean
total variation distance (TVD, ↓) vs. model size for
different bias percentages. We use the models from the
Pythia Scaling Suite. As the size of the model increases,
the performance does not change for a certain bias. The
relative ordering among different biases does shift as the
model size increases

322

5 Does In-Context Learning323

Improve Parameter Estimates?324

Next, we are interested in understanding if and325

how LLMs incorporate in-context evidence into326

their posteriors. Specifically, rather than explicitly327

describing the underlying distribution as before,328

we implicitly specify it by providing the LLM329

with a sequence of samples from that distribution330

in its prompt (e.g., “I flipped a coin and it 331

landed on heads, then on tails, then on 332

tails, then on tails, then on...” for a coin 333

biased toward tails). We then assess the expected 334

distribution of the coin flip outcomes under each 335

model after presenting these ICL prompts. 336

Figure 5, shows results from the coin flip exper- 337

iment on Llama-3.1-8B and Llama-3.1-8B-Instruct 338

(see Appendix E for results from other models). 339

We find that models converge to the expected 340

distribution as more evidence is provided via 341

in-context learning. 342

5.1 Effect of model scale 343

We investigate if larger models are better able to 344

incorporate in-context-based evidence. Chinchilla- 345

scaling Hoffmann et al. (2022) would suggest 346

that larger models would also have more powerful 347

emergent behaviors such as ICL. 348

In Figure 6, we show the results of running the 349

ICL experiments on the Pythia Suite for θ = 0.20 350

(See subsection E.2 for all settings of θ). Although 351

ICL performance generally improves as the number 352

of examples grows, we find that model scale 353

has negligible impact on order dynamics, with 354

models performing comparably across scales. 355

Surprisingly, however, larger models appear worse 356

at incorporating model updates on the whole, 357

with most TVD values higher for the 12B model 358

compared to their respective smaller models. 359

5.2 Do models perform pure Bayesian updates? 360

To explore if models actually perform Bayesian 361

updates during a single trial, we look directly at 362
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Figure 5: Biased coins and ICL: Mean total variation distance (TVD, ↓) vs. bias percentage for several ICL example
lengths for Llama3.1-8B model (left) and Llama3.1-8B-Instruct (right). As the number of in-context samples
increases, the performance of the models at modeling the stochastic process improves as well. Notably, adding as
few as 3 in-context examples significantly improves performance, but even adding 100 in-context examples does
not fully allow the model to capture the biased distribution. For other models, see Appendix E.
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Figure 6: ICL and parameter scaling: Mean total
variation distance (TVD, ↓) vs. model size across the
Pythia Scaling Suite family with a biasing statement for
θ=0.20. Model size does not have a clear impact on the
benefits from ICL.

several “online” ICL trajectories. To generate these363

trajectories, instead of drawing trajectories entirely364

from a single distribution, we instead model a365

generative process containing 100 steps, where the366

first 50 samples are drawn ∼ Bernoulli(θ1) and367

the second 50 samples are drawn∼Bernoulli(θ2),368

where θ1 = 0.75 and θ2 = 0.25. This trajectory,369

shown in Figure 1 (the black line), gives a moving370

target which evolves over time for the model to371

approximate. In this dynamic environment, we then372

explore how well the LLM’s pointwise estimates373

are modeled by a Bayesian update process.374

To define this Bayesian update process, we first375

note that classical Bayesian filtering updates a Beta376

prior Beta(α, β) with each observation, treating377

all data equally. Given a prior and a binomial378

likelihood, the posterior is also Beta-distributed:379

p(θ|D)=Beta(α+k,β+n−k), (13)380

where k is the number of heads observed in n coin 381

flips. 382

In dynamic environments, on the other hand, 383

recent data may be more relevant. To model this, 384

we can introduce an exponential decay factor γ, 385

modifying the updates to: 386

α←γα+I(H), β←γβ+I(T ) (14) 387

where I(H) and I(T ) indicate the latest result. This 388

ensures older observations gradually contribute 389

less, allowing the model to adapt. The posterior 390

mean remains: 391

E[p]=
α

α+β
(15) 392

This decay ensures older data contributes less, 393

allowing adaptation to shifts in θ. For γ=1.0, this 394

remains the classical Bayesian filtering update. 395

Returning to our environment, Figure 7 shows 396

a single example roll-out of both classical and the 397

gamma-modified Bayesian filter, along with the as- 398

sociated model probabilities. We can see that while 399

the general shape of the trajectory fits the model 400

behavior, pure Bayesian filtering (i.e. γ=1.0) alone 401

does not explain the behavior of the model. Instead, 402

using a γ < 1, implying a shortened time horizon, 403

fits the behavior almost perfectly in some cases, 404

empirically suggesting that models are performing 405

local Bayesian updates with a slight discount factor. 406

Extending this idea, we leverage L-BFGS-B Zhu 407

et al. (1997) to fit a γ value to each model, with the 408

results shown in Table 1. We can see in this table that 409

the value of γ is notably different for each model, 410

suggesting that models have architecture-specific 411
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Figure 7: Posterior evolution during Bayesian filtering: The figure shows a single rollout of classical Bayesian
filtering alongside model predictive probabilities in a 100-sample coin flip ICL task. While the overall shape of the
model’s predictions aligns with Bayesian updates, the direct application of standard Bayesian filtering (γ=1.0) does
not fully explain the observed behavior. Instead, the empirical fit suggests that models implicitly apply a localized
Bayesian update with a shorter time horizon, aligning better with a slightly discounted filtering process.

Table 1: Bayesian filtering best fit γ value.

Model Best-Fit γ

OLMoE-1B-7B-0924 0.3268
Gemma-2-2B 0.4910
Gemma-2-2B-Instruct 0.3087
Llama3.1-8B 0.8807
Llama3.1-8B-Instruct 0.4655
Phi-2 0.8781
Mistral-7B 0.6903
Mistral-7B-Instruct 0.9107

time-horizon behavior. Interestingly, instruction-412

tuned models generally have much lower γ values413

than their non-instruction-tuned counterparts. This414

implies that these models may be more local when415

performing ICL and are more willing to switch416

behaviors when prompted with new ICL evidence.417

5.3 Does attention impact updates?418

Some prior work, such as Zhang et al. (2023),419

suggests that attention helps to weight the Bayesian420

update. In this section, we aim to leverage our421

simplified setup to empirically understand the422

impact that attention has on the convergence423

behavior of the model. We use the same setup as424

subsection 5.2 but instead draw the center K sam-425

ples∼Binom(K,θ1) and the outer M =100−K426

samples∼Binom(M,θ2).427

Figure 8 plots the relationship between total428
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Figure 8: Relationship between total attention and model
point-estimate extremity under the Bayesian posterior
(γ = 1.0). Overall, the extremity of the model point
estimate under the Bayesian model appears uncorrelated
with the attention.

attention and model point-estimate extremity under 429

the Bayesian posterior (γ =1.0) (i.e. the value of 430

the CDF of the true posterior at the model point 431

estimate). We can see that the amount of attention 432

paid to any segment is generally uncorrelated 433

with the overall quality of the point estimate (θ1 : 434

(R= 0.02,p= 0.48), θ2 : (R=−0.03,p= 0.36)), 435

suggesting that the total magnitude of the attention 436

paid to each segment does not dramatically impact 437

model quality. 438

In addition, the fraction of attention has a similar 439

lack of correlation, as shown in Figure 9, which 440
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Figure 9: Fraction of attention assigned to samples from
θ1 versus the deviation between the model-predicted
distribution and the true posterior mean for LLaMA-
3.1-8B. The findings suggest that the relative attention
paid to in-context examples does not directly predict the
model’s update performance.

suggests that paying any special attention (in terms441

of magnitude) to any particular ICL example is442

uncorrelated with downstream performance during443

model updates.444

Interestingly, the an important indicator of atten-445

tion is the (non-estimated) true parameter value. We446

can see in Figure 10 that when M is low (i.e. few sam-447

ples are drawn from θ2, the model only pays atten-448

tion to θ2 when it matches the θ1 distribution. When449

M is high, the model pays attention more to samples450

from θ2 when θ2 is more likely to bias the distribu-451

tion. These observations support a nuanced view of452

model attention: models pay relatively more atten-453

tion to data which is more likely to lead to changes454

in the final distribution, but higher/lower attention455

is somewhat uncorrelated with final model quality.456

6 Discussion & Conclusion457

In this work, we investigate the ability of large458

language models (LLMs) to model simple stochas-459

tic processes, specifically coin flips, through460

in-context learning (ICL). By stripping away461

complexities inherent in previous ICL studies, we462

provide a controlled setting to analyze how LLMs463

implicitly construct and update priors. Our findings464

reveal that while LLMs often begin with priors465

that reflect head-biased coins, they approximate466

Bayesian updates when incorporating new evidence,467

suggesting that limitations in stochastic modeling468

stem primarily from flawed priors rather than469

failures in in-context adaptation.470

Correctly modeling stochastic behavior in LLMs471

has far-reaching implications. Recent work has472
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Figure 10: The fraction of attention on samples from
θ2 vs. the true posterior distribution of the mixture for
different values of M for LLama-3.1-8B. Lines represent
the degree-2 line of best fit. When M is low, the model
primarily attends to θ2 when it aligns with θ1. As M
increases, the model pays more attention to θ2 when it
significantly influences the final distribution.

explored language models as “world models,” 473

assuming they can accurately simulate probability 474

distributions and stochastic processes. This 475

paradigm has gained traction across diverse fields, 476

including robotics simulations (Dagan et al., 2023; 477

Song et al., 2024; Zhao et al., 2024), human behav- 478

ior modeling (Aher et al., 2023; Park et al., 2023; 479

Moon et al., 2024; Axtell and Farmer, 2022; Argyle 480

et al., 2023; Loyall, 1997), and scientific reasoning 481

(Shojaee et al., 2024), among others (Ge et al., 2024; 482

Yang et al., 2024; Nottingham et al., 2023; Xie et al., 483

2024). However, here, we demonstrate that, out of 484

the box, LLMs fail to correctly simulate even simple 485

stochastic processes such as coin flips. Instead, their 486

alignment with true probabilistic reasoning only 487

emerges as they incorporate increasing amounts of 488

in-context evidence. We further show that as the 489

underlying distributions dynamically transition, 490

the model’s predictions do so in a correspondingly 491

Bayesian way, albeit with notable time-discounting 492

effects in how evidence is weighted. 493

Overall, our work highlights both the limitations 494

and emergent strengths of LLMs in probabilistic 495

modeling. While their initial priors are poorly cal- 496

ibrated, ICL enables them to approximate Bayesian 497

reasoning, providing a pathway toward improving 498

their ability to simulate stochastic environments. By 499

grounding these behaviors in simple and explainable 500

settings, we take a step toward refining the LLM- 501

as-world-model framework, ensuring more reliable 502

and interpretable performance in complex domains. 503
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7 Limitations504

While this paper provides insight into how LLMs505

approximate Bayesian inference in stochastic506

modeling, our approach has certain limitations507

that highlight both methodological constraints508

and fundamental challenges in treating LLMs as509

Bayesian reasoners.510

One key limitation is that our evaluation method511

captures only a restricted slice of the full posterior512

distribution. In Bayesian inference, the posterior513

should account for the entire probability space, but514

our approach only evaluates the model’s explicit to-515

ken probabilities for a predefined set of completions.516

For example, if the expected response is “The coin517

came up ‘heads’”, the model might alternatively518

generate “The coin landed on the edge of heads” or519

“The coin was slightly tilted toward heads”. While520

we verify that these are low-probability outcomes521

in our experiments, they still represent probability522

mass that is not incorporated into our evaluation.523

If LLMs allocate significant probability to such524

alternatives, our benchmark may misrepresent their525

ability to perform Bayesian updates accurately.526

Furthermore, while our experiments assess LLM527

performance in simple Bayesian updating tasks,528

they do not fully capture the complexities of real-529

world probabilistic reasoning. Bayesian inference530

in natural settings often requires reasoning over531

continuous distributions, hierarchical priors, or532

distributions with long tails. Our analysis focuses533

on discrete, categorical predictions, which may534

not generalize well to more complex probabilistic535

environments where likelihoods are less structured536

or where prior distributions must be inferred over537

high-dimensional latent spaces.538

Another methodological limitation arises in539

evaluating closed-source models. Since our540

approach relies on extracting logits to approximate541

posterior distributions, it cannot be directly applied542

to black-box models such as GPT-4 or Claude,543

where such internals are inaccessible. While an544

alternative approach using sampling via API calls545

could approximate the posterior, this method is546

costly and susceptible to distortions from API-side547

interventions such as caching, response smoothing,548

or temperature adjustments. These factors could549

introduce artifacts that obscure the model’s true550

Bayesian reasoning capabilities.551

Beyond these methodological constraints, there552

are deeper concerns about the limitations of LLMs553

as Bayesian agents. A fundamental challenge 554

in Bayesian modeling is the specification of a 555

well-calibrated prior. Our findings suggest that 556

LLMs often exhibit poorly calibrated priors when 557

performing in-context learning, which can lead 558

to systematic misestimation in early predictions. 559

While the models do update their beliefs in a manner 560

consistent with Bayesian inference, an inaccurate 561

prior can cause significant initial divergence from 562

the true posterior. This misalignment is particularly 563

concerning in high-stakes applications such as finan- 564

cial forecasting, scientific modeling, and decision- 565

making systems, where incorrect priors can 566

propagate errors through downstream reasoning. 567
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Appendix777

The appendix consists of the following further778

discussion:779

• Appendix A discusses the data used and cre-780

ated in this paper, and the licenses and usage.781

• Appendix B discusses the use of artificial782

intelligence in the creation of this manuscript.783

• Appendix C explains the methodologies784

including distribution normalization and785

comparisons with prior work.786

• Appendix D details the models used in787

this study, their specifications, and training788

sources.789

• Appendix E presents additional prior results790

for the coin flipping experiments.791

• Appendix F explores similar results to792

section 4 and section 5 but with dice rolling793

(as opposed to coin flips).794

A Data Usage795

This paper relies on several model artifacts796

including:797

• Gemma-2 (Team et al., 2024) released under798

the Gemma license.799

• Llama3.1 (Dubey et al., 2024) released under800

the Llama 3 Community License Agreement.801

• Phi-3.5 and Phi-3 (Abdin et al., 2024) released802

under the MIT license.803

• Mistral 7B (Jiang et al., 2023) released under804

the Apache 2.0 license.805

• Olmo 7B (Muennighoff et al., 2024) released806

under the Apache 2.0 license.807

• Pythia Scaling Suite (Biderman et al., 2023)808

released under the Apache 2.0 license.809

Our usage of the models is consistent with the810

above license terms. Our code for computing the811

analyses in this paper will be released under the812

MIT license.813

B Use of Artificial Intelligence 814

This paper includes contributions generated 815

with the assistance of AI tools. Specifically, 816

AI assistants including ChatGPT were used for 817

sentence/paragraph-level editing of the content, the 818

creation of LaTeX tables and figures from raw data 819

sources, and as a coding assistant through GitHub 820

Copilot. All intellectual and creative decisions, 821

including the final content and conclusions, remain 822

the responsibility of the authors. The use of AI in 823

this process was supervised to ensure accuracy and 824

alignment with the intended research outcomes. 825

C Methods 826

C.1 Preliminaries 827

We focus on open-source language models, and 828

extract stochastic representations directly from the 829

underlying learned model distributions. For a se- 830

quence of tokens, x={x1,x2,...xn} in a vocabulary 831

V (of size |V |), a large next-token prediction-based 832

language model,M, approximates a probability dis- 833

tribution over the next token: PM(xi+1|xi,...,x1). 834

To evaluate stochastic processes, for each process 835

we define a fixed set of possible “outcomes” that 836

a sample from the process can take. Formally, 837

each outcome o ∈ Ω= {o1 ...ok} is a sequence of 838

tokens corresponding to a string value (for example, 839

when flipping an coin, the outcomes are “heads” 840

and “tails”, corresponding to token sequences 841

[_heads] and [_t,ails]). For each outcome, 842

we then aim to compute PM(o|prompt), where 843

the prompt is a sequence of tokens that both (1) 844

describes the process and (2) asks for a sample. 845

While several works estimate this probability by 846

sampling (Hopkins et al., 2023; Van Koevering and 847

Kleinberg, 2024), we found that sampling was often 848

unreliable, and thus, we extract this distribution 849

directly from the language model as: 850

PM(o|prompt)=
k∏

i=1

PM(oi|oi−1,...,o1,prompt)

(C.1) 851

Note here that for multi-token sequences, we 852

compute the probability conditioned on picking the 853

correct token, and we assume that there is only one 854

unique generator for the sequence o. Because these 855

outcomes are a subset of all of the potential token 856

sequences generated by the LLM, we re-normalize 857

the distribution over the support of the options. 858
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See subsection C.2 for more details about the859

re-normalization process.860

In this paper, we primarily measure the total861

variation distance (TVD) between the true distribu-862

tion P ∗(o) and the normalized model distribution863

P̂M(o) over the support Ω:864

δ(P ∗,P̂M)=
1

2

∑
ω∈Ω

∣∣∣P ∗(ω)−P̂M(ω)
∣∣∣ (C.2)865

The TVD is an intuitive distance measure, which866

arises as the optimal transport cost between the867

distributions given a unit cost function. When the868

TVD is high, the distributions are quite different,869

and when it is zero, the distributions are identical.870

In this paper, we explore the performance of sev-871

eral models including Gemma-2 (Team et al., 2024),872

Phi-2/Phi-3.5 (mini) (Abdin et al., 2024), Llama-3.1873

(8B) (Dubey et al., 2024), Mistral 7B (Jiang et al.,874

2023) and OLMoE (7B) (Muennighoff et al., 2024)875

along with their instruction-tuned variants. For876

more details on the models, see Appendix D.877

C.2 Distribution Normalization878

Because the set of outcomesΩ is only a small part of879

the possible sequences that the LLM can generate,880

it is often necessary to re-normalize the probability881

distribution against the supportΩ, instead of the full882

vocabulary space V . There are many options that883

could be picked for re-normalization. In our exper-884

iments, we choose to use a linear re-normalization:885

P̂M(o)=
PM(o|prompt)∑

ω∈ΩPM(ω|prompt)
(C.3)886

This is in contrast to prior work (Liu et al., 2024),887

who normalize using a softmax distribution:888

P̂M(o)=
exp(PM(o|prompt))∑

ω∈Ωexp(PM(ω|prompt))
(C.4)889

Unfortunately, in the limit of small probabilities,890

for pi,1<i< |Ω|, as pi→0:891

lim
pi→0,pj→0

epi∑
je

pj
=

1∑
je

pj
≈ 1

|Ω|
(C.5)892

This can significantly impact the computation893

of downstream measures. Normalizing linearly894

avoids this issue, but can sometimes cause numeric895

instability.896

C.3 Instruct Models Chat Templates 897

In order to make instruction-tuned models compat- 898

ible with our formulation for extracting token prob- 899

abilities, we employ chat templates in the following 900

manner. First, we construct the chat as follows: 901

1 chat = {’user’: instruct_prompt 902
, ’assistant ’: input_prompt} 903

Here instruct_prompt explicitly provides a 904

directive to the LLM such as "Please toss a coin 905

and tell me whether it landed on heads or 906

tails.". The input_prompt field contains the por- 907

tion to be completed by the LLM spoken in the first 908

person, such as "I tossed a coin and it landed 909

on". Next, in order to properly extract token 910

probabilities pertaining to the support of the random 911

process at the end of the input sequence, we modify 912

models’ chat templates to omit the EOT tokens. 913

C.4 Prompt Normalization 914

The specific prompt itself may have an impact on 915

the outcomes of the experiment, given the myriad 916

of ways that a coin flip can be specified. To help 917

alleviate this variance, in all experiments in the 918

paper we normalize across a large set of 50 potential 919

result prompts, shown in Figure C.1, and 5 instruct 920

prompts, shown in Figure C.2. 921

D Models 922

google/gemma-2-2b : Gemma-2 (Team et al., 923

2024) is a 2-billion parameter model from Google 924

DeepMind, built on a decoder-only Transformer 925

architecture. It uses a model dimension of 2304, 926

26 layers, 8 heads with Grouped-Query Attention 927

(GQA), and a feedforward dimension of 18,432. 928

The model features 256,128 vocabulary entries 929

using a SentencePiece tokenizer optimized for 930

multiple languages. Trained on 2 trillion tokens 931

from sources like web documents, code, and 932

scientific articles, it incorporates local sliding 933

window attention (4096 tokens) and global attention 934

(8192 tokens). It also uses knowledge distillation 935

from larger models, which enables it to achieve 936

strong results with more efficient training. 937

google/gemma-2-2b-it: Gemma-2-IT (Team 938

et al., 2024) is the instruction-tuned version of 939

Gemma-2, featuring the same architecture as 940

Gemma-2-2B. The model has been fine-tuned on 941

supervised datasets and further improved using 942

13



1 I just flipped a coin , and it came up
2 The result of my coin flip is
3 After flipping the coin , it landed on
4 I flipped a coin , and the outcome was
5 The coin flip resulted in
6 After tossing the coin , it ended up on
7 I tossed a coin , and it fell on
8 The coin I flipped landed on
9 The coin I tossed resulted in

10 Following the coin flip , it showed
11 The coin fell on
12 The flip of the coin resulted in
13 I flipped the coin , and it settled on
14 The result after flipping the coin is
15 The outcome of my coin flip is
16 I tossed the coin , and the outcome is
17 The result of my coin toss is
18 I flipped the coin , and it came up
19 The coin came to rest on
20 After flipping , the coin showed
21 The toss of the coin revealed
22 I flipped the coin , and it turned up
23 The coin toss ended with
24 After tossing the coin , it showed
25 The coin flipped over to
26 After flipping , the coin settled on
27 My coin toss resulted in
28 The outcome

of my coin flip turned out to be
29 I flipped

the coin , and its final position was
30 The coin fell , showing
31 I tossed the coin , and it landed showing
32 Following the toss , the coin showed
33 The flip resulted in the coin landing on
34 The coin toss revealed
35 The outcome of the coin landing is
36 After tossing , the coin landed on
37 I flipped the coin and saw it land on
38 After the flip , the coin showed
39 The result of tossing the coin was
40 When I flipped the coin , it landed on
41 The coin

showed this side after the flip:
42 The flip of the coin ended with
43 After tossing , the coin fell to show
44 The result of my toss came out as
45 The toss of the coin came to rest on
46 The coin after the flip landed on
47 I flipped the coin , and it ended on
48 The result

of the coin toss ended up being
49 I flipped a coin , and its final side was
50 The coin flip showed the result:
51

Figure C.1: A list of possible prompts describing a coin
flip result.

RLHF (Reinforcement Learning from Human Feed-943

back) for better instruction-following capabilities.944

It uses the same 256,128-entry vocabulary and945

was trained on similar data sources. Gemma-2-IT946

includes additional tuning to enhance safety and947

reduce hallucinations.948

1 Please complete this sentence: I just
flipped a coin , and it landed on

2 Finish this sentence
: The result of my coin flip is

3 Complete the sentence: After
flipping the coin , it landed on

4 Fill in the rest: I
flipped a coin , and the outcome was

5 Complete the
phrase: The coin flip resulted in

6

Figure C.2: A list of possible instruct prompts describing
a coin flip result.

meta-llama/llama-3.1-8B: Llama-3 (Dubey 949

et al., 2024) is a foundation model developed by 950

Meta, built with an 8 billion parameter dense Trans- 951

former architecture. The model has 32 layers, a 952

model dimension of 4096, a feedforward dimension 953

of 14,336, and 32 attention heads. It supports mul- 954

tilingual tasks, coding, and reasoning with a context 955

window of 8K tokens. Llama-3 was pre-trained on 956

a dataset of 15 trillion tokens, spanning a variety of 957

sources such as web documents, code, and multilin- 958

gual texts, with a vocabulary size of 128,000 tokens 959

using a tokenizer optimized for multilingual use. 960

meta-llama/llama-3.1-8B-Instruct: Llama-3- 961

Instruct (Dubey et al., 2024) is the instruction-tuned 962

variant of Llama-3, also comprising 8 billion 963

parameters, 32 layers, 4096 model dimensions, 964

and a feedforward dimension of 14,336. This 965

version is fine-tuned to follow human instructions 966

better, leveraging supervised fine-tuning and Direct 967

Preference Optimization (DPO). It is designed 968

for tasks requiring precise instruction following, 969

including coding, reasoning, and complex dialogue, 970

while supporting tools like code generation and mul- 971

tilingual text processing. It also includes additional 972

tuning to enhance safety and reduce hallucinations. 973

microsoft/phi-3.5-mini-instruct: Phi-3 (Abdin 974

et al., 2024) is a 3.8-billion parameter Transformer 975

model designed by Microsoft, optimized for both 976

small-scale deployment and high-performance 977

tasks. The model has 32 layers, 3072 hidden 978

dimensions, 32 attention heads, and a default 979

context length of 4K tokens, extendable to 128K 980

using LongRope. It was trained on 3.3 trillion 981

tokens, with a dataset comprising heavily filtered 982

publicly available web data and synthetic data. 983

Its instruction-following capability is enhanced 984

through supervised fine-tuning and Reinforcement 985

Learning from Human Feedback (RLHF) 986
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microsoft/phi-2: Phi-2 (Abdin et al., 2024) is987

a 2.7-billion parameter model, part of Microsoft’s988

Phi series, designed for efficient performance989

in smaller-scale models. Like Phi-3, it uses a990

transformer-based decoder architecture with991

Grouped-Query Attention (GQA) and a vocabulary992

size of 320641 tokens and is trained on a mixture of993

filtered web data and LLM-generated synthetic data.994

mistalai/Mistral-7B: Mistral-7B (Jiang et al.,995

2023) is a 7-billion parameter model developed by996

Mistral AI, built with a Transformer architecture997

optimized for efficiency and performance. The998

model has 32 layers, a model dimension of 4096, a999

feedforward dimension of 14,336, and 32 attention1000

heads. Mistral-7B uses Grouped-Query Attention1001

(GQA) and Sliding Window Attention (SWA) to1002

handle sequences up to 8192 tokens.1003

mistralai/Mistral-7B-Instruct: Mistral-7B-1004

Instruct (Jiang et al., 2023) is the instruction-tuned1005

variant of Mistral-7B, featuring the same archi-1006

tecture with 7 billion parameters, 32 layers, 40961007

model dimensions, and a feedforward dimension1008

of 14,336.1009

allenai/OLMoE-1B-7B: OLMoE-1B-7B1010

(Muennighoff et al., 2024) is a Mixture-of-Experts1011

LLM with 1B active and 7B total parameters1012

developed by Allen AI, designed for open access1013

and transparency. The model consists of 32 layers, a1014

model dimension of 4096, a feedforward dimension1015

of 11,008 (due to its SwiGLU activation), and 321016

attention heads. The vocabulary size is 50,2801017

tokens, based on a modified BPE tokenizer that1018

includes special tokens for anonymizing personally1019

identifiable information (PII). OLMo-7B was1020

trained on Dolma, which comprises 2.46 trillion1021

tokens from diverse sources like Common Crawl,1022

GitHub, Wikipedia, and scientific papers.1023

allenai/OLMoE-1B-7B-Instruct: OLMoE-1B-1024

7B-Instruct (Muennighoff et al., 2024) is a Mixture-1025

of-Experts LLM with 1B active and 7B total param-1026

eters that has been adapted via SFT and DPO from1027

OLMoE-1B-7B. Like OLMoE-1B-7B, it features1028

32 layers, a model dimension of 4096, and 32 atten-1029

tion heads, with a feedforward dimension of 11,008.1030

This variant was fine-tuned using a mixture of1031

human-annotated and distilled instruction data, opti-1032

mized further using Direct Preference Optimization1033

(DPO) for better alignment with human preferences.1034

Pythia Scaling Suite: Pythia (Biderman et al., 1035

2023) is a suite of 16 publicly available autoregres- 1036

sive language models, spanning parameter sizes 1037

from 70M to 12B, designed to facilitate scientific 1038

research into the dynamics of training and scaling 1039

in large language models. Each model in the suite 1040

was trained on the Pile dataset in a controlled, 1041

consistent manner, ensuring identical data ordering 1042

and architecture across scales. The suite includes 1043

models trained on both the original Pile dataset and 1044

a deduplicated version to allow comparative studies 1045

of data redundancy effects. Pythia’s intermediate 1046

checkpointing—offering 154 checkpoints per 1047

model—enables detailed longitudinal studies of 1048

model behavior over training. 1049

E Additional Results 1050

In this section, we present additional results for the 1051

coin flip experiments in section 4 and section 5. 1052

In Figure E.2, Figure E.3, Figure E.4, Figure E.5, 1053

and Figure E.6, we present the Mean total variation 1054

distance (TVD, ↓) against bias percentage for 1055

several ICL (In-Context Learning) example lengths 1056

across different models. These plots help analyze 1057

how well each model handles bias in a coin flip 1058

prediction task as the ICL context varies. The lower 1059

the TVD score, the better the model performs in 1060

generating unbiased predictions. 1061

E.1 Longer Convergence Chains 1062

In addition to a roll-out of length 100, we also 1063

looked at a roll-out of length 200, with the trajectory 1064

given in Figure E.1. We can see that in general, the 1065

convergence pattern matches the 100 sample case. 1066

E.2 ICL Scaling Results 1067

Here we present all the results from the ICL scaling 1068

experiments in Section 5.1. 1069

F Rolling Dice 1070

To explore the applicability of our results beyond 1071

coin flips, we also experiment with a similar simple 1072

distribution, rolling dice. We then ask the LLM 1073

to complete the prompt “I rolled a die and it 1074

landed on” over the choices of one through six. For 1075

biased variants, we provided explicit biasing state- 1076

ments within prompts to the model such as: “When 1077

I flip coins, they land on heads X% of the time,” 1078
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Figure E.1: Posterior evolution during Bayesian filtering: The figure shows a single rollout of classical Bayesian
filtering alongside model predictive probabilities in a 200-sample coin flip ICL task.
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Figure E.2: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Phi-3.5-mini-instruct model.

where X is a percentage between 0% and 100%, or1079

“When I roll dice, they land on N X% of the time.”1080

The results are shown in Figure F.8. For each1081

bias percentage, we averaged results across the six1082

die faces and 50 prompt variants, totaling 300 trials1083

per bias percentage. Non-instruct models generally1084

performed better than their instruct counterparts,1085

and best around a 50%-60% bias, struggling more1086

with higher biases. Instruct model performance1087

was more varied, with some models showing little1088

change in behavior and others improving as the bias1089

value increased.1090

Results on die-rolling for in-context learning1091

are shown below. While both instruction finetuned1092

and non-instruction-finetuned variants benefit1093

from increasing numbers of examples, the non-1094
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Figure E.3: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Llama-3.1-8B-Instruct model.

instruction-finetuned variants benefit more and 1095

generally exhibit better performance. 1096

In Figure F.3, Figure F.4, Figure F.5, Figure F.6, 1097

and Figure F.7, we present ICL plots measuring 1098

TVD for a variety of model variants on the simple 1099

dice rolling experiment. These results correlate 1100

well with the results observed in section 4, the coin 1101

flip experiments. 1102
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Figure E.4: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Llama-3.1-8B model.
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Figure E.5: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Gemma-2-2B-IT model.
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Figure E.6: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Gemma-2-2B model.
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Figure E.7: ICL and parameter scaling: Mean total variation distance (TVD, ↓) vs. model size across the Pythia
Scaling Suite family with a biasing statement for all values of θ. Model size does not have a clear impact on the
benefits from ICL.
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Figure F.1: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Llama3.1-8B model.
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Figure F.2: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Llama3.1-8B-Instruct model.
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Figure F.3: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Microsoft Phi-2 model.
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Figure F.4: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Microsoft Phi-3.5-mini-instruct
model.
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Figure F.5: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Google Gemma-2-2B model.
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Figure F.6: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Mistral-7B-Instruct model.
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Figure F.7: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Mistral-7B model.
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Figure F.8: Biased die rolls: Plots of mean total variation distance (TVD, ↓) against bias percentage for non-instruct
(left) and instruct (right) models when aggregated across prompts (N=50) for the biased die rolling experiment.
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