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Abstract

Causal discovery, the learning of causality in a data mining scenario, has been of strong scien-
tific and theoretical interest as a starting point to identify “what causes what?” Contingent
on assumptions and a proper learning algorithm, it is sometimes possible to identify and
accurately estimate an underlying directed acyclic graph (DAG), as opposed to a Markov
equivalence class of graphs that gives ambiguity of causal directions. The focus of this paper
is in highlighting the identifiability and estimation of DAGs through a sequential sorting
procedure that orders variables one at a time, starting at root nodes, followed by children of
the root nodes, and so on until completion. We demonstrate a novel application of this general
sequential approach to estimate the topological ordering of the DAG corresponding to a linear
structural equation model with a non-Gaussian error distribution family. At each step of the
procedure, only simple likelihood ratio scores are calculated on regression residuals to decide
the next node to append to the current partial ordering. The computational complexity of
our algorithm on a p-node problem is O(pd), where d is the maximum neighborhood size.
Under mild assumptions, the population version of our procedure provably identifies a true
ordering of the underlying DAG. We provide extensive numerical evidence to demonstrate
that this sequential procedure scales to possibly thousands of nodes and works well for
high-dimensional data. We accompany these numerical experiments with an application to a
single-cell gene expression dataset. Our R package with examples and installation instructions
can be found at https://gabriel-ruiz.github.io/scorelingam/.

1 Introduction

With observational data alone, causal inference using an accurate directed acyclic graph (DAG) has been
shown to provide results that are up to par with the quintessential randomized controlled experiment (Pearl,
2009; Malinsky et al., 2019). However, it is difficult to imagine that this approach, with its reliance on strong
domain knowledge about the system of variables at hand, can be applied to cases with large numbers of
variables and little background on how they are all related. For example, specifying a DAG may be difficult
in bioinformatics and fields of science where “big data” was previously unavailable and we are now trying to
get a grasp of it. On the other hand, causal discovery—learning the DAG structure for Bayesian networks
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Figure 1: The original DAG (left) and its corresponding CPDAG (right), obtained by keeping the orientation
of edges corresponding to the v-structures Z → X ← U and Z → Y ← U , and removing the orientation from
all other edges. Note the ambiguity about the causal direction X → Y vs. X ← Y in the CPDAG.

from scratch—has its own pitfalls, such as a super-exponentially increasing number of networks in the search
space as the number of nodes grows and the fact that it is possible for multiple directed acyclic graphs and
the Bayesian networks they encode to map to the same joint distribution–a phenomenon called Markov
equivalence (Frydenberg, 1990; Verma & Pearl, 1990; Peters et al., 2017; Verma & Pearl, 2022). Nonetheless,
a large effort has been devoted to the structure learning of DAGs as a preliminary data mining step in the
scientific pipeline (Stekhoven et al., 2012; Nandy et al., 2017; Malinsky & Spirtes, 2017; Henckel et al., 2022;
Lee et al., 2022).

The present paper focuses on a sequential learning algorithm, which we show can be quite scaleable, along
with novel identification theory for a specific application. The main task of the approach we advocate for is
to sequentially estimate a topological ordering of the DAG, a permutation of node labels such that every
parent must precede its children. To help with scalability in practice, we also make use of a priori known
neighborhood sets, such as a Markov blanket of a node. In order to demonstrate the theoretical promise of
this procedure, we discuss existing identification results that make use of it. We also provide new theory for a
linear structural equation model (SEM) first studied in Shimizu et al. (2006). The novelty of our application
of the sequential sorting procedure to this SEM compared to the state-of-the-art for it is the scalability of our
procedure to a large number of nodes in the underlying graphical model.

Representative methods for causal discovery under the assumption of no unobserved confounding (causal
sufficiency) include the Peter-Clark (PC) algorithm (Spirtes & Glymour, 1991) and Greedy Equivalence
Search (GES) (Chickering, 2002). The PC algorithm is a constraint-based method due to its use of conditional
independence queries, while GES is considered a score-based method for the objective function it seeks to
optimize across the space of graphical models. Without additional structural assumptions, the best these
methods can generally do in the limit of sample size (n → ∞) is to obtain a Markov equivalence class
(MEC) of DAGs, visualized typically by a single Completed Paritially Directed Acyclic Graph (CPDAG)
as in Figure 1. Each DAG in the MEC, obtainable by orienting undirected edges in the CPDAG without
introducing a cyclic path nor a “v-structure,” encodes the same set of d-separation relations that imply
marginal and conditional independence relations between triplets of variable subsets in their underlying joint
distribution (Spirtes & Glymour, 1991).

When additional assumptions are justified, such as strict non-linearity of structural equations, or non-
Gaussianity of noise terms in a linear structural equation model, a unique DAG can be identified (Bühlmann
et al., 2014; Shimizu et al., 2006). When we are not willing to make the assumption of causal sufficiency, the
Fast Causal Inference (FCI) algorithm provides an alternative at the cost of a potentially less precise, though
possibly more accurate, graphical model compared to a DAG or CPDAG (Spirtes et al., 2000; Malinsky &
Spirtes, 2017). Beyond the case of independent and identically distributed (iid) copies from a distribution
that our DAG of interest satisfies the Markov property with respect to, Glymour et al. (2019) and Peters
et al. (2017) provide reviews on the trade-offs of different algorithms and what can and cannot be done when
there is additional structure, such as the case that the system of variables varies in time. In the context of
Earth system sciences, Runge et al. (2019) review causal discovery methods. Structure learning has also been
explored for its possibility to explain the black-box nature of state-of-the-art deep learning architectures (Sani
et al., 2020). Moreover, Zheng et al. (2018) and its extension to Zheng et al. (2020) provide an approach
to optimize a non-convex score function in DAG space by using a smooth characterization of an adjacency
matrix’s acyclicity constraint.
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1.1 Review of relevant work

Specific to our task of learning a topological ordering for an underlying acyclic graphical model, we now
review some relevant work. Let us first formally define a so-called topological ordering of a DAG, the target
parameter we seek to estimate. Let [m] = {1, . . . , m} for integer m ≥ 1. Moreover, let PAk ⊆ [p] denote the
nodes in the DAG with directed edges going into node k.
Definition 1.1. A topological ordering for a DAG G is given by a permutation π : [p]→ [p] such that every
parent node precedes its child in the ordering:

j ∈ PAk =⇒ π−1(j) < π−1(k).

Importantly, we note that the discrete search space across p! permutation functions in search of one that
satisfies Definition 1.1 can be quite cumbersome (Raskutti & Uhler, 2018; Solus et al., 2021). Several heuristic
score-based methods have been developed to cope with the search space, however, it remains the case that
score-based approaches for ordering search are NP hard in general (Chickering, 1996; Ye et al., 2021). Along
these lines, recent work by Ye et al. (2021) provides one approach under the case of a linear Bayesian network
with Gaussian noise. The similar non-parametric approach of Solus et al. (2021) and Wang et al. (2017)
requires a consistent conditional independence testing procedure to decide the presence or absence of an edge
in the DAG corresponding to a given π̃ in the search space. The empirical results of these approaches are all
promising. However, these works do not provide guarantees on whether the search can terminate at a point
well before querying all permutations or DAGs in order to achieve optimal (statistically consistent) results.

Complementary to these advances, we here study a simpler approach to estimate a permutation for which
the search has a pre-determined number of steps: O(pd) in the number of least squares residual updates,
where d ≤ p is the maximum neighborhood size of a node. The objective of our work is to estimate one such
permutation π from observed data X ∈ Rn×p of sample size n. We denote this estimate as π̂. To do so, we
will apply Algorithm 1 for t = 1, 2, . . . , p until all nodes are sorted. At step t, given an input partial ordering
At = (π̂(1), . . . , π̂(t − 1)), the algorithm selects a node π̂(t) /∈ At to append to the estimated ordering by
maximizing an appropriate score S(k,At; X) of interest.

Algorithm 1: Continue a Topological Ordering

Data: The partial ordering At and data matrix X ∈ Rn×p

Result: The continued partial ordering At+1
π̂(t)← arg maxk ̸∈At sk

At+1 ← At ∪ {π̂(t)}

There exist structure learning methods that use the general approach in Algorithm 1 to sequentially construct
a topological ordering. These approaches motivate our present work and include the following. Peters et al.
(2014) apply Algorithm 1 under an assumption of strictly nonlinear structural equations with additive noise.
Meanwhile, Ghoshal & Honorio (2017), Park (2020), Park & Kim (2020), and Chen et al. (2019) apply this
sequential sorting procedure under a bounded conditional variance assumption: a ≤ V[Xj |XP Aj ] ≤ b for each
j ∈ [p] and some unknown positive constants a ≤ b restricted by the signal a parent sends its child node.
Notably, Park (2020) contains an extended discussion on the case of a node’s possibly non-linear relation
with its parents, while Gao et al. (2020) further explore the computational scalability for the sequential
application of Algorithm 1 to estimate non-linear structural equation models under this bounded conditional
variance assumption. With respect to linear SEMs with non-Gaussian noise, applications of Algorithm 1
include Shimizu et al. (2011), Hyvärinen & Smith (2013), and Wang & Drton (2019), while Zeng et al. (2020)
construct the topological ordering in reverse starting with child-less nodes. We believe there exists potential
to scale up the estimation of each of these models. We focus on the linear SEM with non-Gaussian noise here.

1.2 Paper Contribution and Outline

Our application of Algorithm 1 is to a linear SEM with non-Gaussian noise under causal sufficiency, which
is known as the linear non-Gaussian acyclic model (LiNGAM). In terms of theoretical guarantees for the
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estimation of LiNGAM, Shimizu et al. (2006) and Shimizu et al. (2011) provide identifiabiliy results for
the respective LiNGAM learning procedures–that is, with knowledge of the true distribution defined by the
LiNGAM and an oracle for conditional independence queries in the case of latter. Meanwhile Wang & Drton
(2019) provide formal statistical consistency results for their LiNGAM-learning procedure.

Although the above methods have very nice theoretical guarantees, their practical application is limited as
they do not presently scale well to large graphs, say with thousands of nodes, as confirmed in the numerical
results in this paper. Therefore, we develop a fast sequential learning method that can estimate large graphs
in practice. At each step of this method, a node is selected to append to a partial ordering, so that after
p steps, where p is the number of nodes in the underlying graph, a full ordering of all the nodes will be
produced. Compared to the existing works on LiNGAM, the main contributions of our work are:

1. Based on a specified error distribution, we define a novel likelihood ratio score which is used at each
step in our sequential algorithm. The evaluation of the likelihood ratio only involves linear regression
and residual calculation. There are no tuning parameters.

2. We prove that at the population-level, this sequential algorithm will identify a true ordering of the
underlying DAG under proper assumptions on the LiNGAM.

3. Our sequential method is computationally tractable with computational complexity O(p2) for the
number of updates used in the entire algorithm. If prior knowledge on the Markov blankets of the
nodes is provided, the computational complexity can be further reduced to O(pd), where d is the
maximum size of the Markov blankets. This is in sharp contrast to traditional score-based approaches
for ordering search, which are NP hard in general (Chickering, 1996; Ye et al., 2021).

4. The computational complexity of the finite version of our procedure is O(pdmn) in the number of
operations needed. The term m < p is the maximum number of ancestors a node can have (see
Algortihm 2. Meanwhile, the procedure in Shimizu et al. (2011) is stated to be O(np3M2 + p4M3)
in the number of operations, where M is the maximal rank found by the low-rank decomposition
used in their kernel-based independence measure of choice. Moreover, Wang & Drton (2019) address
computational complexity in passing by stating that “the computational complexity of [their sorting
algorithm] is exponential in [the maximum number of parents a node can have], so in practice [the
maximum number of parents a node can have] must remain relatively small.”

The rest of the paper is organized as follows. In the rest of this section, we formally introduce the linear
SEM of interest. Next, in Section 2 we will introduce our approach: §2.2 discusses the conditions for this
approach to work; §2.3 provides a formal identifiability result; and §2.4 provides the finite sample version of
the algorithm. Section 3 presents simulation results for our procedure for small and large-sized Bayesian
networks, along with an application to single-cell gene expression data. Finally, we conclude with a summary
of our findings and discussion of future work.

1.3 Review of LiNGAM

We follow closely here the definition of a LiNGAM given by Shimizu et al. (2006).
Definition 1.2. (Linear Non-Gaussian Acyclic Model)
For p ≥ 2, let G be a DAG on p nodes and B ∈ Rp×p be the weighted adjacency matrix of G such that
Bjk ≠ 0 means j ∈ PAk, the parent set of node k. Let ϵ = (ϵ1, . . . , ϵp) such that ϵk ∼ g(·; θk) independently,
with g(·; θ) a density of a non-Gaussian distribution parameterized by θ ∈ Rq, and E[ϵj ] = 0 (j = 1, . . . , p).
We say X ∈ Rp follows a LiNGAM with DAG G if

Xk =
∑

j∈P Ak

BjkXj + ϵk, k = 1, . . . , p. (1)

Denote X’s probability density function (pdf) as f(x).
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The scalar form of the linear SEM in Equation 1 can be rewritten in vector form as X = BT X + ϵ. Put
M = (Ip −B)−T , a matrix with ones on its diagonal. Let ANk denote the ancestor set of node k: a ∈ ANk

means there exists a direct path starting at node a and ending at node k, a→ · · · → k. Then we arrive at
X = Mϵ in vector form and Xk = ϵk +

∑
j∈ANk

Mkjϵj in scalar form for all k ∈ [p]. Noting that M serves as
a mixing matrix for the independent components in ϵ, we may think of the estimation of this linear SEM
as an instance of Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000). Shimizu et al. (2006)
discuss the connection between LiNGAM and ICA.

2 Methodology and algorithm

In this section, we introduce both the population-level and finite-sample versions of our sorting procedure.
We also show that our choice of summary score S(k,At; X) in Algorithm 1 will lead to the identification of a
topological ordering of the true DAG G used to define the linear SEM of Definition 1.2. We first go over
some useful notation.

2.1 Summary of Notation

For a positive integer m, we write [m]= {1,2,. . . ,m}. For any set S, |S| will denote its cardinality: the number
of unique elements it contains. |S| = 0 means S = ∅, the set with no elements. For sets T ⊆ [m], S ⊆ [r], and
matrix A ∈ Rm×r, A·S ∈ Rm×|S| is the sub-matrix defined by indexing columns S in A, while AT · ∈ R|T |×r

is the sub-matrix given by indexing rows T in A. Similarly, AT S ∈ R|T |×|S| is the sub-matrix indexing rows
T and columns S of A. Similarly, for a vector v ∈ Rm, we will write vT ∈ R|T | to denote the subset of
entries indexed by T . We will also sometimes write (vj ; j ∈ T ) to denote vT . When the indexing sets are
singletons, S = {k} or T = {j}, we will simply write A·k, Aj·, Ajk, and vk, respectively. For two sets S and
T , we will make use of set operations such as their intersection: S ∩ T = {a : a ∈ S and a ∈ T}; their union:
S ∪ T = {a : a ∈ S or a ∈ T}; and their difference: S\T = {a : a ∈ S and a ̸∈ T}. For sets S1, . . . , SK , we
denote their intersection as

⋂K
j=1 Sj and their union as

⋃K
j=1 Sj .

We will refer to a directed acyclic graph by G = (V, E). G is a collection of singular vertices, V = [p],
and vertex pairs, E ⊆ V × V . Specifically, (j, k) ∈ E means that j has a directed edge into k in G. PAk

denotes the parent set of node k ∈ V: j ∈ PAk only if (j, k) ∈ E . The set of all of node j’s children, CHj ,
contains all nodes k such that (j, k) ∈ E . Let N̂k ⊆ V denote the set of nodes that are thought to be most
predictive of node k, which we will refer to as node k’s neighborhood. Let N̂kt := N̂k ∩ At, which is the
subset of the neighborhood set that has been ordered at step t of our procedure (Algorithm 1). For the
cases where |N̂kt| ≥ 1, we will make use of least squares residuals for calculating the score S(k,At). At the
population-level, the residual is

Rkt :=
{

Xk if |N̂kt| = 0
Xk − βT

ktXN̂kt
otherwise , (2)

where βkt is the least-squares regression coefficient vector,

βkt =
(
E
[
X

N̂kt
XT

N̂kt

])−1
E
[
X

N̂kt
Xk

]
.

Also,
ηkt := arg max

η
EX∼f(x) [log g(Rkt; η)] ,

while ϕ(rkt; σkt) is the density for N
(
0, σ2

kt = V[Rkt]
)
, i.e. the normal density that matches the mean and

variance of Rkt. The corresponding sample analogues of Rkt, βkt, ηkt and σkt, are discussed in §2.4.

2.2 Assumptions

Our main assumptions are on the distributions of the independent entries of the error vector ϵ. We consider
restricting our class of densities {g(·; θk)}1≤k≤p for the noise terms in Definition 1.2 to a scale-location family
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in which the θk > 0 are the scale parameters, such as the Laplace family of distributions, the Logistic family of
distributions, or a Scaled-t distribution family (same degrees of freedom). This is summarized in Assumption
2.1.
Assumption 2.1.
Let U ∼ g(·; θ0) with θ0 > 0 and E[U ] = 0. For each k = 1, 2, . . . , p, the density of the error ϵk satisfies

g(e; θk) = θ0

θk
g(θ0e/θk; θ0).

That is, ϵk
d= (θk/θ0)U , an equality in distribution.

Our next assumption for the linear SEM of interest is on linear combinations of the noise terms. This
condition is related to Lemma 2.6 in § 2.3.1, a key result about how to characterize the regression residuals
of Equation 2 as linear combinations of “independent components.”
Assumption 2.2. For any j = 1, 2, . . . , p and any a ∈ Rp with at least two non-zero entries, the linear
combination aT ϵ does not follow the same distribution as ϵj .

Notable disagreements with Assumption 2.2 are when the ϵj are all Gaussian distributed (not the case
for LiNGAM), or when the ϵj are all Poisson-distributed. Notable agreements with Assumption 2.2 (and
Assumption 2.1) are the cases where the ϵj are all Laplace-distributed, all Logistic-distributed, or all Scaled-t
distributed (same degrees of freedom). More generally, we may start with any reference distribution, then
specify the distribution for error terms in Definition 1.2 as re-scalings of the original reference distribution. So
long as the characteristic function (Forbes et al., 2010) for the sum of any two independent random variables
following a distribution in this scale-location family does not have the same form as the characteristic function
of the original distribution of a summand, then Assumption 2.1 and Assumption 2.2 are satisfied.

To allow for a quicker sorting procedure in practice, we may make use of an a priori known support set for
the neighborhood of each node in the DAG. We consider these neighborhood sets to arise based on domain
knowledge, previous studies, or a pre-processing step such as with neighborhood lasso regression (Meinshausen
& Bühlmann, 2006). We highlight this usage in Assumption 2.3.
Assumption 2.3. For node k, denote its neighborhood estimate as N̂k. Assume for each k = 1, 2, . . . , p that:

N̂k ⊇MBk := PAk ∪ CHk ∪
⋃

j∈CHk

PAj\{k},

where MBk is known as the Markov Blanket of node k: the set of its parents PAk, its children CHk, and its
co-parents

⋃
j∈CHk

PAj\{k}.

Remark 2.4. When we consider the population-level version of our algorithm in this section (i.e. we have
infinite n), we can take N̂k = [p]\{k} for each k so that Assumption 2.3 holds trivially. For the finite
sample version of our procedure discussed in Section 2.4, we will make use of Ordinary Least Squares (OLS)
linear regressions which require the design matrix to be of full column rank. So if p≪ n, we may also take
N̂k = [p]\{k} for each k. In the case that p≫ n or p ≈ n, sparse neighborhood sets, |N̂k| ≪ n, will reduce
the number of covariates in the required OLS regressions.

2.3 Our Choice of a Likelihood Ratio Score

In Algorithm 1, we will select the next node to continue our constructed topological ordering as:

π̂(t) = arg max
k ̸∈At

EX∼f(x)

[
log g(Rkt; ηkt)

ϕ(Rkt; σkt)

]
. (3)

Here, EX∼f(x)[·] denotes expectation with respect to X’s true density, f(x) in Definition 1.2.

Take a “valid” node to continue the ordering At as a node whose parent nodes are all contained in the set At.
And take an “invalid” node to continue the ordering At as a node whose parent nodes are not all in the set
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At. The log-likelihood ratio in Equation 3 can be thought of as a score that allows us to distinguish between
valid and invalid nodes by telling us “how non-Gaussian” the residual Rkt is. If the residual is explained
by a Gaussian distribution well relative to the non-Gaussian distribution in the assumed family, then we
expect the log-likelihood ratio to be smaller. Otherwise, if the Gaussian density is not a good fit relative to
g(rkt; ηkt), then we have stronger evidence to believe that node k is a valid node to continue the ordering.

In Theorem 2.5, we claim that using Equation 3 leads to the identification of a valid topological ordering–our
main result. The proof of Theorem 2.5 is in Appendix A.1. Key to the proof, we note that Equation 3 can
also be written equivalently using the difference of two KL-divergence (Cover & Thomas, 2005) terms:

π̂(t) = arg max
k ̸∈At

{DKL (fkt(rkt)||ϕ(rkt; σkt))−DKL (fkt(rkt)||gk(rkt; ηkt))}. (4)

Here, fkt(rkt) is the probability density function of the residual Rkt, which in general can be different from
the specified density g(rkt; ηkt). The first term in Equation 4 deals with the divergence of the Rkt’s true
distribution from a Gaussian distribution. This term will be largest when k is a valid node to append to
the current ordering. The second term in Equation 4 concerns the deviation between Rkt’s true distribution
and the specified distribution given by the probability density function g(rkt; ηkt). It will be non-zero when
node k is an invalid node to append to the current ordering. Section 2.3.1 elaborates on this explanation by
introducing the key lemmas for the proof of Theorem 2.5.
Theorem 2.5. Let X ∈ Rp follow a LiNGAM with DAG G. If Assumptions 2.1, 2.2 and 2.3 hold, then
applying Algorithm 1 at all steps t = 1, 2, . . . , p with the score

S(k,At) = EX∼f(x)

[
log g(Rkt; ηkt)

ϕ(rkt; σkt)

]
will identify a permutation π̂ = (π̂(1), . . . , π̂(p)) that is a topological ordering of G.

Theorem 2.5 suggests that the maximization at each iteration in which we apply Algorithm 1 can be done
easily. This differs from maximizing a score over a whole ordering which may also lead to identification of the
true MEC, but is in general NP hard (not tractable). Relatedly, Section 2.3.2 gives additional motivation
for the choice of S(k,At) in Theorem 2.5 as one that allows us to greedily optimize the mean log-likelihood
when the full ordering is only partially discovered.

2.3.1 Key Lemmas for the proof of Theorem 2.5

The formal proof of Theorem 2.5 in § A.1 below is an inductive application of the following reasoning
when applying Algorithm 1 at a given step t. Lemma 2.6 suggests that invalid nodes’ residuals, Rkt, are a
linear combination of two or more entries in the vector ϵ, while for valid nodes ℓ we have Rℓt = ϵℓ. Under
Assumption 2.2, this means that the term DKL (fkt(rkt)||gk(rkt; ηkt)) in Equation 4 will be zero only if node
k is valid to continue the ordering at step t.
Lemma 2.6 (Characterizing nodes’ residuals as linear combinations of independent components).
Assume that At is correct so far in the sense that for each a ∈ At, we have PAa ⊆ At. Also assume
Assumption 2.3 holds. We have that:

• If k ∈ St is a valid node to continue the ordering, i.e. PAk ⊆ At, then:

Rkt = Xk − βT
ktXN̂kt

= ϵk.

• Otherwise, if k is not a valid node, then Rkt is a linear combination of more than one independent
component in ϵ.

The natural follow up question is what the behavior is for the term DKL (fkt(rkt)||ϕ(rkt; σkt)) in Equation 4
when k is valid vs. invalid to continue the ordering. Lemma 2.7 provides this insight: for valid nodes to
continue an ordering, this term’s value is no less than the same term’s value for invalid nodes. Given this
and that the term DKL (fkt(rkt)||gk(rkt; ηkt)) in Equation 4 will be zero only if node k is valid to continue
the ordering at step t, Equation 4 (equivalently Equation 3) helps us select a valid node to continue the
topological ordering at step t.
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Lemma 2.7 (KL Divergence from Gaussianity for valid and invalid nodes’ residuals).
Let X ∈ Rp be a LiNGAM from Definition 1.2 that satisfies Assumptions 2.1 and 2.3. Assume that At is
correct in the sense that PAa ⊆ At for all a ∈ At. Let k ∈ [p]\At be an invalid node to continue the ordering
in the sense that there exists j ∈ PAk such that j ∈ [p]\At. And let ℓ ∈ [p]\At be a valid node to continue
the ordering in the sense that PA(ℓ) ⊆ At. Then the least squares residual Rℓt ∼ fℓt(rℓt) is no closer to
Gaussian than Rkt ∼ fkt(rkt) in the sense that:

DKL (fkt(rkt)||ϕ(rkt; σkt)) ≤ DKL (fℓt(rℓt)||ϕℓt(rℓt)) , (5)

where ϕkt and ϕℓt are the respective densities for

R̃kt ∼ N (E[Rkt],V[Rkt]) and R̃ℓt ∼ N (E[Rℓt],V[Rℓt]).

In light of Lemma 2.6, Lemma 2.7 makes sense under a Central Limit Theorem-like argument: a sum of two
or more random variables is closer to Gaussian than each summand alone. Of particular note, a key result
that helps show why Lemma 2.7 holds is Theorem 17.8.1 of Cover & Thomas (2005), a restatement of the
entropy-power inequality. This restatement says that the differential entropy for a sum of any two independent
random variables, U and V , is no less than the differential entropy for the sum of two strategically defined
Gaussian random variables, each having the same differential entropy as U and V (rather than the same first
two moments), respectively.

2.3.2 Greedy Choice of a Factor to Optimize the Joint Likelihood Function

We now give further motivation to the choice of the mean log-likelihood ratio score in Equation 3. Let vector
X ∼ f(x), where f(x) is the density induced by a LiNGAM as in Definition 1.2. Consider X’s expected
log-likelihood as a function of the permutation π:

L(π) =
p∑

j=1
EX∼f(x)

[
log g

(
Xj − [Bπ

·j ]T X; θπ
j

)]
, (6)

where θπ
j is the corresponding scale parameter according to Assumption 2.1. Here, Bπ is the acyclic weighted

adjacency matrix that arises from a population-level least squares objective such that the π(j)-th column is
given by:

Bπ
·π(j) = arg min

γ∈Rp×1: γk=0 ∀k

s.t π−1(k) ≥ j

EX∼f(x)
[
(Xπ(j) − γT X)2] .

That is, the column Bπ
·π(j) is comprised of the least squares coefficients when linearly regressing Xπ(j) onto

its predecessors, if any, in the ordering given by π. Now let ϕπ
j be the density for the Gaussian distribution

having the same first two moments as:
Rπ

j := Xj − [Bπ
·j ]T X.

Define

L̃(π) :=
p∑

j=1
EX∼f(x)

[
log ϕπ

j

(
Rπ

j

)]
and κ := EX∼f(x) [logN (X; 0,V[X])] .

Here, N (x;E[X],V[X]) denotes the density for a p-variate Gaussian distribution with the same first and
second order moments as X. Due to the relation between Bπ and the generalized Cholesky factorization of
V[X], Ye et al. (2021) shows that we actually have the equality:

L̃(π) = κ, for all π. (7)

The term κ is notably a constant that does not depend on π. Thus, maximizing Equation 6 with respect to π
is the same as maximizing the expected log-likelihood ratio given by:

(L − L̃)(π) =
p∑

j=1
EX∼f(x)

[
log

g
(
Rπ

j ; θπ
j

)
ϕπ

j

(
Rπ

j

) ] = L(π)− κ. (8)
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With all this in mind, we can think of our choice of a node to append to the ordering At at step t as greedily
choosing the largest summand,

EX∼f(x)

log
g
(

Rπ̂
π̂(t); θπ̂

π̂(t)

)
ϕπ̂

π̂(t)

(
Rπ̂

π̂(t)

)
 ,

to add to the known log-likelihood ratio at step t:

(L − L̃)t(π̂) :=

0 t = 1∑t−1
j=1 EX∼f(x)

[
log g(Rπ̂

π̂(j);θπ̂
π̂(j))

ϕπ̂
π̂(j)

(
Rπ̂

π̂(j)

) ] 2 ≤ t ≤ p + 1 .

That is, our sequential application of Algorithm 1 is attempting to greedily maximize Equation 8 one summand
at a time.

2.4 Finite Sample Sorting Procedure

Assume that we have a data matrix X ∈ Rn×p such that Xi·, the i-th row, is iid across i = 1, 2, . . . , n from a
distribution defined by a LiNGAM satisfying Assumptions 2.1 and 2.2. Also let Assumption 2.3 hold.

Analogous to the population version of our sorting procedure in Section 2.3, consider:

β̂kt =
(

XT

·N̂kt
X·N̂kt

)−1
XT

·N̂kt
X·k ∈ R|N̂kt|×1,

which exists so long as 1 ≤ |N̂kt| ≤ n and X·N̂kt
is of full column rank almost surely. Further, we define

R̂kt ∈ Rn×1 as

R̂kt =
{

X·k if |N̂kt| = 0
X·k −X·N̂kt

β̂kt if |N̂kt| ≥ 1 ,

the vector of residuals which we will use to estimate the pertinent scale parameter of Equation 3, denoted
as η̂kt and σ̂kt, respectively. Explicitly, we select the next node to continue an ordering using the empirical
analogue of the mean log-likelihood ratio in Equation 3:

π̂(t) = arg max
k ̸∈At

1
n

n∑
i=1

log g(R̂i,kt; η̂kt)
ϕ(R̂i,kt; σ̂kt)

, (9)

where R̂i,kt is the i-th entry of the vector R̂kt, while σ̂2
kt := 1

n∥R̂kt∥2
2 and η̂kt := arg maxη

∑n
i=1 log g(R̂i,kt; η).

For example, if ηkt is the scale parameter for a Laplace distribution, it can be seen that η̂kt = 1
n∥R̂kt∥1. In

this case, Equation 9 is equivalent to

π̂(t) = arg max
k ̸∈At

log σ̂kt

η̂kt
= arg max

k ̸∈At

∥R̂kt∥2

∥R̂kt∥1
. (10)

Remark 2.8. The Laplace update of Equation 10 exemplifies how simple the maximization of our likelihood
ratio score is. After the regression of each unsorted node Xk, k /∈ At, onto N̂kt, we only need to compare the
ratio between the two norms of the residual vector R̂kt across unsorted nodes to find π̂(t).

Algorithm 2 shows the pseudo-code for the sorting procedure we use in practice, with a strategic update of
regression residuals using partial regression that greatly reduces the computation cost. The computational
complexity for Algorithm 2 is O(pdmn) in the number of scalar to scalar multiplication, division, addition, or
difference operations. Here, m < p is the maximum number of ancestors a node can have, which is a bound
on the iterations for the inner-most for loop in Algorithm 2.

We have also provided the details on the estimation of the scale parameters for Logistic and Scaled-t
distributions in Appendix C.

9
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Algorithm 2: The sorting procedure in practice

Data: X ∈ Rn×p (standardized), {N̂k}p
k=1

Result: π̂(1), π̂(2), . . . , π̂(p)
# initialize mixing matrix
M← Ip×p

# initialize residual matrix
R ← X
# initialize scores
sk ← S(k; R), k = 1, 2, . . . , p.
# sort the nodes
for t = 1, 2, . . . , p + 1 do

π̂(t)← arg maxk ̸∈At
sk

# update residuals for neighbors of selected node.
for k ∈ N̂π̂(t)\At do

# update residuals with partial regression.
for a ∈ {j : Mπ̂(t)j ̸= 0, Mkj = 0} do

Mka ← (RT
·aR·a)−1RT

·aR·k
R·k ← R·k −MkaR·a

end
# update score
sk ← S(k,At; R)

end
end

3 Empirical Results

We now present empirical results for synthetic and real-data scenarios. For the boxplots of empirically
observed distributions in Figures 2, 3, and 5-7, the three horizontal lines on each box indicate the first, second,
and third quartile, respectively, while the vertical lines indicate the range of the empirical distribution.

3.1 Simulations on Small Networks

We now present simulation results for networks that are on the smaller end with 35 ≤ p ≤ 223. These
architectures are downloaded from the bnlearn.com Bayesian network repository. We compared our sorting
procedure to other LiNGAM learning procedures. Due to their readily available code, the algorithms of interest
are “DirectLiNGAM” (Shimizu et al., 2011), “HighDimLingam” (Wang & Drton, 2019), and “ScoreLiNGAM”
(our procedure). For each simulation setting, we conduct 30 replicates.

For each choice of G underlying a LiNGAM, our synthetic data generation schema was as follows. We
generated Bjk

i.i.d.∼ Uniform[−0.9,−0.4] ∪ [0.4, 0.9] for each (j, k) such that j ∈ PAk, and otherwise set
Bjk = 0. We generated θk

i.i.d.∼ Uniform[0.4, 0.7] across 1 ≤ k ≤ p, where θk is the scale parameter for the
error distributions as in Assumption 2.1. This specific range of simulation parameters for the weighted
adjacency matrix entries and scale parameters is chosen so that the marginal variance of Xj does not explode
when j is a node with many ancestors. Finally, we varied sample size as n = 0.5p, p, 2p, 10p, 50p. Note that
n = 0.5p and n = p represent the high-dimensional setting (p ≥ n).

Next, a dataset X ∈ Rn×p of iid samples is drawn from the distribution given by the LiNGAM parameterized
by (B, θ1, . . . , θp) and having errors ϵk ∼ g(·; θk) across k ∈ [p]. Moreover, we varied the family of the densities
g in Assumption 2.1 to be the Laplace, the Logistic, or the Scaled-t distribution (10 degrees of freedom)
scale-location families. Finally, ScoreLiNGAM and HighDimLiNGAM were run with knowledge of the true
Markov blanket for each node, while DirectLiNGAM was not as it does not have this option. Afterward, the
data matrix X was standardized so that each column has sample standard deviation equal to 1 and sample
mean equal to 0.

10
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Figure 2: The simulation results comparing LiNGAM estimation procedures. Color indicates sorting procedure.
The y axes in each plot indicate sorting estimation error according to Equation 11. The columns of the grid
of plots corresponds to the bnlearn.com network architecture used. The rows indicate the true and specified
scale-location family.

Figure 2 reports the results in terms of order estimation error (lower is better), which we define as:

Err(π̂) := 1
|E|

∑
(j,k)∈E

1{π̂−1(j) > π̂−1(k)}. (11)

Recall from § 2.1 that E is the edge set of the true DAG G. The indicator 1{π̂−1(j) > π̂−1(k)} in Equation 11
states whether the ordering with π̂ erroneously placed parent node j after child node k. The normalizing
constant

|E| =
p∑

j=1

p∑
k=1

1{Bjk ̸= 0},

the total number of directed edges in G, gives the order estimation error Err(π̂) a value between 0 and 1.
Given that the target parameter of our work is a topological ordering as in Definition 1.1, the error metric
in Equation 11 concisely captures the extent of a violation to this definition. Each edge j → k in the true
DAG imposes an independent constraint on a topological ordering. In this regard, Err(π̂) is the fraction of
these constraints not satisfied by the estimated ordering π̂. If a node with many parents is placed at the start
of an estimated ordering before many of those parents, then this error metric will penalize proportionally.
Likewise, this penalty will occur proportionally if a node with many children nodes is sorted after many of
those children.

Our ScoreLiNGAM achieved the highest accuracy for all high-dimensional settings (n ≤ p). DirectLiNGAM
became quite comparable until the sample size increased to n = 2p and did a bit better than ScoreLiNGAM

11
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Figure 3: An extension of the simulation results in Figure 2 comparing LiNGAM estimation procedures.
Here, we mis-specify the noise distribution for ScoreLiNGAM.

when n ≥ 10p (large sample size cases). Note that results are not presented for DirectLiNGAM when n = 0.5p
nor n = p, because it is not applicable for n ≤ p. For the Andes network, results for DirectLiNGAM are
also not presented as this procedure takes about 118 minutes for a single replicate, which adds up across
90 total replicates. On the other hand, HighDimLiNGAM is generally the least accurate algorithm across
all networks and sample sizes. Recall that the data matrix X is re-scaled. The lack of accuracy change for
HighDimLiNGAM is likely owed to the fact that this procedure is not invariant to a re-scaling of the data, as
ScoreLiNGAM and DirectLiNGAM are. We also note an apparent good property of DirectLiGAM: it does
not require the MB as input, yet it performs well in terms of accuracy at large values of n.

We also compared the three methods when the error distributions were mis-specified for ScoreLiNGAM in
Figure 3. The true error distributions were Logistic or Scaled-t, but we still used the Laplace update of
Equation 10 in ScoreLiNGAM. It is seen that its accuracy was comparable to the result when we correctly
specified the error distributions (the other three columns), suggesting some robustness of our method to
mis-specification in the error distribution family.

In terms of speed, Figure 4 summarizes this for the win95pts network. The advantage of our method is speed,
with our method being no less than 100 times faster the next fastest method. Note: HighDimLiNGAM’s
procedure is parallelized across 7 threads. For the setting with n/p = 0.5 on the win95pts network,
ScoreLiNGAM is more than 1000 times faster than HighDimLiNGAM. Appendix B contains details about
the implementation of each procedure, along with the machine used to run these experiments. Moreover,
Figure 8 in Appendix B contains sorting times for all the settings we considered; there is a similar pattern of
ScoreLiNGAM’s capability in terms of speed compared to the other methods.

In Appendix B.3, we present results on the barley, alarm, and mildew networks for the case that the data
matrix is not re-scaled as the results of this subsection. These results support our claim that HighDimLiNGAM
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Figure 4: The log10(avg. sorting time in seconds) scale for the various methods applied to the win95pts
network.

is sensitive to re-scaling, while DirectLiNGAM and ScoreLiNGAM are not. Next, Appendix B.4 obtains
results on these same three networks for the case that neighborhood sets must be estimated. These results
help us understand the sensitivity of our method to proper neighborhood specification.

Figure 5: Sorting errors for ScoreLiNGAM under p = 5000, 10000 and n = 0.1p, 0.25p, 0.5p. Color indicates
how the neighborhood sets are constructed.

13



Published in Transactions on Machine Learning Research (12/2022)

Figure 6: The mean log-likelihood on 1,000 genes for a subset of cells in the data of (Yao et al., 2021), across
50 repetitions.

3.2 Larger Network Results

We also simulated large networks with p = 5000, 10000 and n = 0.1p, 0.25p, 0.5p to further demonstrate
the scalability of ScoreLiGAM. We do not include results in these settings for DirectLiNGAM nor High-
DimLiNGAM as they would take too long to run. The network generation is such that 5% of nodes are
root nodes (no parents), and all other nodes have between 1 and 2 parents (with equi-probability) which
are selected at random from the set of predecessors in a randomly generated permutation. Moreover,
Bjk

i.i.d.∼ Uniform[−0.9,−0.4] ∪ [0.4, 0.9] across (j, k) such that j ∈ PAk, while θk
i.i.d.∼ Uniform[0.25, 0.9]

across 1 ≤ k ≤ p is the scale parameter for the Laplace noise in the synthetic LiNGAM. A new LiNGAM is
generated according to this schema for each data replicate.

Figure 5 presents simulation results for ScoreLiNGAM with two different a priori known neighborhood sets.
“True Markov Blanket” means that we set N̂kt = MBk for each 1 ≤ k ≤ p and run the sorting procedure
with these oracle sets. The results for “10 Most Correlated” use 20% of the data to specify N̂kt as the 10
most Pearson-correlated variables (in absolute value) to Xk for each 1 ≤ k ≤ p, and the other 80% of the
data to estimate the topological ordering.

It is encouraging to see in Figure 5 that the accuracy of our method is high even for such a challenging
high-dimensional setting. In fact, the average error rate is quite comparable to that for the smaller networks
reported in Figure 2. As expected, an accurate neighborhood set provides better sorting results. Further, our
method can run relatively quickly for large p, but its accuracy naturally is dictated by sample size. Figure 9
in Appendix B contains the sorting times to go along with Figure 5.

3.3 Application: Single-Cell Gene Expression Data

We now present an application of our method on the data of Yao et al. (2021)1. We seek a linear SEM
to model a gene regulatory network, where each Xk in Equation 1 is the expression level of a gene. We
focused our attention on their dataset for which isolated single cells were processed for RNA sequencing
using SMART-Seq v4 (labeled “Mouse Cortex+Hipppocampus (2019/2020)”). Noting Yao et al. (2021)’s
finding that cells’ gene expressions cluster according to region and cell type, the focus is a subset of the data

1Available at http://cells.ucsc.edu/?ds=allen-celltypes+mouse-cortex&meta=regionlabel in compressed TSV format.
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as follows. We focused on glutamatergic cells from the mice brains’ primary visual cortex. We also focus on
cells for which injection materials are not specified (see Saleeba et al. (2019) for background on neuronal
tracers). This takes us from 74,973 cells down to 7,159–the largest subset of all cell class, isocortex location,
and injection material combinations. Moreover, a sizable amount of genes had expression measurements of
exactly 0, so genes are also subset to those which were measured to be non-zero in 50% or more of these cells.
This took us from 45,768 to 10,012 gene expression measurements taken across 7,159 cells.

3.3.1 Comparison to another scalable linear SEM estimation procedure

As for large simulated networks in Section 3.2, DirectLiNGAM and HighDimLiNGAM were too slow for this
application. In order to compare ScoreLiNGAM to another linear structural equation modeling procedure, we
applied the package sparsebn (Aragam et al., 2019) to our data. This method is a score-based method that
maximizes a regularized Gaussian likelihood over the DAG space based on Aragam & Zhou (2015). To make
comparisons across 50 repetitions computationally viable, we randomly select p = 1000 of the original 10,012
genes. For each repetition, we randomly sampled 2,000 cells: half of the cells (n = 1000) were designated to
be in the training set, and the other half in test set; each data matrix was standardized such that columns
have sample standard deviation 1 and sample mean 0.

In the training set, 20% of cells were randomly selected to estimate the Pearson correlation matrix. We
specified the neighborhoods, N̂k, for ScoreLiNGAM as the 50 genes j ∈ [1000]\{k} with the largest Pearson
correlation (in absolute value) with gene k. The remaining 80% of training data was used to estimate a
topological ordering and the linear SEM’s coefficients (via ordinary least squares). For Sparsebn, no a priori
neighborhood selection was used: parent sets for the linear SEM were learned with 100% of the training
data using default options in the estimate.dag command, and the selection of the final DAG in the solution
path was done by the recommended select.parameter command. For Sparsebn, the linear SEM’s model
parameters were estimated according to the selected DAG. Moreover, the noise densities fit to the residuals
in the training set are either Gaussian or Laplace.

As can be seen in Figure 6, the Laplace density specification for the additive errors provides a significantly
higher mean log-likelihood on the test set compared to a Gaussian density for both methods. This shows
that the Laplace distribution, with its thicker tails than the Gaussian distribution, fits this data better.
Furthermore, ScoreLiNGAM showed substantially higher test-data likelihood than Sparsebn under both error
distributions for calculating the likelihood.

3.3.2 Application of ScoreLiNGAM to All 10,012 Genes

We now present the application of ScoreLiNGAM to all original p = 10, 012 genes discussed at the start of
this section. The application is as follows:

1. We randomly split the gene expression measurement matrix with 7,159 cells (rows) into two folds
having 358 (∼ 5%) and 6801 (∼ 95%) of the cells, respectively.

2. On the first fold, we ran neighborhood linear regressions in which we restrict coefficients to be
non-negative via R’s glmnet package (Friedman et al., 2010) with no ridge or lasso regularization.
We then selected the sets N̂k to correspond to genes N̂k ⊆ [p]\{k} such that coefficients are non-
zero. The non-negative coefficient constraint for each linear regression, known as non-negative least
squares, can itself be seen as a form of regularization that gives a sparse solution to the coefficient
vectors (Slawski & Hein, 2013). Indeed, this constraint in the neighborhood regressions resulted in
neighborhood sets of size 45 to 277 genes (of 10,011 possible genes), with a median of 145 genes
per neighborhood set. Our use of non-negative least squares regression is motivated by the use of
non-negative linear regression to impute single-cell gene expression measurements (Li & Li, 2018). It
is also computationally faster compared to neighborhood Lasso regression.

3. We then randomly split the second fold into two folds, 2A and 2B, having 3401 (∼ 47.5%) and 3400
(∼ 47.5%) of the original cells, respectively.

4. On Fold 2A, we estimated the permutation π̂ using ScoreLiNGAM.
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Figure 7: Across 30 replications, a comparison of the estimated coefficient of determination on Fold 2B for
each gene. We summarize the coefficient of determination across genes by taking the median, 80th, 90th, and
95th percentiles.

5. On Fold 2B, the validation fold, we estimated via linear least squares regression the 10,012 by 10,012
weighted adjacency matrix for the DAG corresponding to the topological ordering defined by π̂ and
such that the support of the k-th column is the set of indices N̂k ∩ {π̂(j)}0<j<π̂−1(k).

6. Using the weighted adjacency matrix estimate from the previous step, we then calculated linear least
squares residuals from the predictions given by the estimated parent set for each node k, on Fold 2B.

7. With the residuals of the last step, we calculated the coefficient of determination (R2
k): for each gene

k ∈ [10, 012], R2
k is an estimate of the proportion of variation explained by linearly regressing gene

k’s measurement on the estimated parent genes. It is 1 minus the ratio of gene k’s residual sum of
squares and the total sum of squares.

The result of this application is summarized in Figure 7. In order to make a comparison, we also calculated
residuals from the linear SEM induced by a randomly generated topological ordering, denoted in Figure 7 as
"Random." The two linear SEMs, with topological ordering given by ScoreLiNGAM or randomly generated,
select parent sets as the intersection of a node’s neighborhood set, N̂k, and the node’s predecessors in the
corresponding topological ordering if any. We repeat Steps 3-7 a total of 30 times.

Considering that some genes may have more estimated parents than others, and that a coefficient of
determination can be artificially large as the number of regressors increases, Figure 7 also includes the
adjusted coefficient of determination which incorporates a penalty for the number of regressors (Neter et al.,
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1983). The adjusted coefficient of determination is

1− (1−R2
k) nB − 1

nB − |P̂Ak|
,

where |P̂Ak| is the number of estimated parents for node k and nB = 3400 is the sample size in Fold 2B.

As we can see from Figure 7, ScoreLiNGAM gives higher coefficients of determination (adjusted and unadjusted)
on the test datasets (validation fold 2B) compared to a randomly generated permutation across all random
replications–as summarized by the median, 80th, 90th, and 95th percentiles taken across the 10,012 coefficients
of determination. Taking for granted the linearity assumption, the above higher-end percentiles of the R2

k

across all genes provide meaningful comparisons because it may very well be the case that a majority of
the genes have quite random expression patterns. Based on the 90th percentile for the adjusted coefficient
of determination in Figure 7, it appears that for 10% of all the genes, more than 51% of their expression
variation is explainable by its estimated parents in the linear SEM given by ScoreLiNGAM. As shown by
the 95th percentiles in Figure 7, for the top 5% of genes in terms of adjusted R2, 79% or more of the genes’
expression variation is explainable by its estimated parents in the linear SEM given by ScoreLiNGAM. These
R2 levels are significantly higher than those given by random permutations, with no overlap in the boxplots
in Figure 7.

Across the 30 replications, ScoreLiNGAM’s sorting time for all 10,012 genes had a median of 10.28 minutes,
confirming its scalability for such large and high-dimensional datasets of p > 10, 000 and n > 3, 000.

4 Discussion

In this paper, we claimed that sequentially applying Algorithm 1 can give interesting structure learning
results. We demonstrated this with a novel sequential procedure based on parametric specification that
provides an alternative to the state of the art for the identifiability and estimation of a linear DAG model
with non-Gaussian errors. We discussed the conditions, Assumptions 2.1 and 2.2, under which the proposed
causal discovery procedure will identify the valid DAG. We also proposed a relatively simple procedure that
can make strategic use of an a priori known neighborhood set for each node. Finally, we presented numerical
evidence that our procedure scales to large dimensions, which is otherwise not the case for the state-of-the-art
of LiNGAM. We accompanied these simulations with a real-data application.

Our motivation for learning a topological ordering is that it is a relatively simpler problem to tackle compared
to searching across the super-exponentially large space of DAG structures. Under Assumption 2.3 and
regardless of whether the order estimate satisfies Definition 1.1, a graph output by our Algorithm 2 will have
false positive edges corresponding to at least the number of times two non-adjacent nodes have a common
child in the true graph. This is because a Markov blanket contains all co-parents (or “spouses”). Moreover,
the number of incorrectly oriented true edges will be the total number of true edges times the accuracy metric
in Equation equation 11. Thus, to produce a good graph estimate given our estimated ordering, one needs an
additional step to apply a sparse regression of each Xj on the variables sorted in front of it to estimate the
support (parent set). This is the well-studied support recovery problem in sparse linear regression.

With regard to the linearity, scale-location family, and a priori known Markov blanket assumptions for
Theorem 2.5, we concede to the apparent limitation compared to assuming non-linear relations and making
less parametric assumptions. However, to us, there appears to be a trade-off between more general modeling
assumptions and scalability to a large number of variables, the latter of which our paper addresses. Recall the
application to the large-scale gene expression data in § 3.3.2, which demonstrates our method’s improvement
at linearly explaining variation in a large number of genes compared to a random permutation baseline.
The concern about whether the entries of the error vector need to follow the same distribution family is an
important one. It is not immediately clear how our current theoretical results, making use of information
theoretic quantities, will come about without this assumption. Extensions of our work may like to explore
whether this assumption can be relaxed. This relaxation is suggested by our simulation results where the
errors’ distribution family is mis-specified.
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As a practical manner, consider prospective applications to single cell gene expression data (scRNA-seq) as
in § 3.3. Recent work suggests a hierarchical structure between true (hidden) expressions and measured
expressions with missing, and possibly zero, counts (Sarkar & Stephens, 2021). Should the hierarchical nature
be justified, further work on causal discovery for gene co-expression models may need to incorporate the fact
that what we really would like is a graphical model, possibly causal if a domain expert agrees, on the true
(hidden) expressions. Along these lines, future causal discovery procedures for such data can build on the
procedures of McDavid et al. (2019) and Yu et al. (2020), which themselves build on Gaussian graphical
models, using a heavier tail distribution for residuals as we do here.

Further extensions of the work presented here include formal statistical guarantees along with extensions of
the likelihood ratio approach to nonlinear SEMs.

5 Broader Impact Statement

Our scalable causal discovery method comes with extra modeling assumptions, not to mention the fact
that we are making use of the causal sufficiency assumption (no unobserved confounders or selection bias).
Therefore, it is important for a responsible practitioner to not over-extend their conclusions with this or
related data mining methods.
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A Proof of Theorem 2.5

A.1 Formal Proof of Theorem 2.5

Proof of Theorem 2.5.
Our proof boils down to making the correct decision in Algorithm 1 at step 1, then making the correct choice
at step 2 assuming the choice in step 1 was correct, and so on.

For the sake of induction, let us assume that At is correct in the sense that PAa ⊆ At for all a ∈ At. This is
true at the base case t = 1 when At = ∅, since having made no ordering choices also means we have made no
mistakes.

Let k ∈ St be an invalid node to continue the ordering in the sense that PAk ∩ At ̸= ∅. And let ℓ ∈ St be a
valid node to continue the ordering in the sense that PA(ℓ) ⊆ At.

Lemma 2.7 tells us that the least squares residual Rℓt ∼ fℓt(rℓt) is no closer to Gaussian than Rkt ∼ fkt(rkt)
in the sense that:

DKL (fkt(rkt)||ϕ(rkt; σkt)) ≤ DKL (fℓt(rℓt)||ϕℓt(rℓt))

Furthermore, regularity Assumption 2.2 ensures that:

DKL (fkt(rkt)||gk(rkt; ηkt)) > 0.

On the other hand, so long as we properly specified the error density for node ℓ, we have that:

DKL (fℓt(rℓt)||gℓ(rℓt; ηℓt)) = 0.

Thus,

Efkt(rkt)

[
log gk(Rkt; ηkt)

ϕ(rkt; σkt)

]
= DKL (fkt(rkt)||ϕ(rkt; σkt))−DKL (fkt(rkt)||gk(rkt; ηkt))

< Efℓt(rℓt)

[
log gℓ(Rℓt; ηℓt)

ϕℓt(Rℓt)

]
= DKL (fℓt(rℓt)||ϕℓt(rℓt)) .

Altogether, this implies that

max
j∈St

S(j,At) > S(k,At).

and
ℓ = arg max

j∈St

S(j,At),

since ℓ and k were arbitrary valid and invalid nodes, respectively.

So at step t, we will always make the correct choice for a node to continue the ordering.

A.2 Proofs of Lemma 2.6 and Lemma 2.7

In this section, we formally prove Lemma 2.6 and Lemma 2.7.

A.2.1 Some Useful Shorthand Notation

Let us define some new strategic sets which contain indices in [p], and review some we have been using
already.
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• The set

At =
{
∅ t = 1
{π̂(1), . . . , π̂(t− 1)} t ≥ 2

.

This is the partial ordering at step t = 1, 2, . . . . In our population-level identification results, we will
typically assume it is correct at step t, which means that for all a ∈ At, PAa ⊂ At.

• St = [p]\At is the set of unordered nodes at step t.

• MBk = PAk ∪ CHk ∪j∈CHk
PAj is the Markov Blanket of node k.

• N̂k is the Markov Blanket superset such that N̂k ⊇MBk. In finite data, we will typically estimate
N̂k by a procedure such as neighborhood lasso regression, so this containment may not hold. For the
sake of this section, because we are deriving quantities at the population-level, we assume that N̂k is
known and contains the true Markov blanket. Note that trivially, we may consider N̂k = [p]\{k},
and the results of this section would still hold.

• N̂kt = At ∩ N̂k is the intersection of the Markov blanket superset with the partial ordering.

• Lkt =
⋃

j∈N̂kt
{j} ∪ ANj , which are either nodes of N̂kt or ancestors of nodes in N̂kt. When At is

correct, it is necessarily the case that Lkt ⊆ At for each k ̸∈ At.

• LC
kt, the complement of set Lkt which either contains nodes in At which are not in Lkt, i.e. the nodes

of At\Lkt, or which are unordered, i.e. we have that St ⊆ LC
kt.

Note that for each node k ∈ St we can write:

Xk = Mk·ϵ = MkLkt
ϵLkt

+ MkLC
kt

ϵLC
kt

, (12)

where the second equality holds since Lkt ∪ LC
kt = [p]. We can similarly write

X
N̂kt

= M
N̂kt·ϵ = M

N̂ktLkt
ϵLkt

. (13)

We omit a term with ϵLC
kt

since by definition of Lkt, the sub-mixing matrix M
N̂ktLC

kt

is a zero matrix.

Combining Equation 12 and Equation 13,

Rkt =
(

MkLkt
− βT

ktMN̂ktLkt

)
ϵLkt

+ MkLC
kt

ϵLC
kt

,

which we will make use of in the proof for Lemma 2.6 below.

A.2.2 Proof of Lemma 2.6

Proof of Lemma 2.6.
Case 1: Assume k is a valid node to continue the ordering in the sense that PAk ⊆ At. We want to show
that Rkt = ϵk. In this case, MkLC

kt
has a non-zero entry corresponding to only Mkk = 1. This is because

ANk = support (Mk·) \{k} ⊆ Lkt, which in turn holds because PAk ⊆MBk ∩ At ⊆ N̂kt. Thus we have

MkLC
kt

ϵLC
kt

= ϵk.

So we have left to show that (
MkLkt

− βT
ktMN̂ktLkt

)
ϵLkt

= 0.

Recall that B is the weighted adjacency matrix for the underlying LiNGAM. We have that support(B·k) = PAk.
Let us index the entries of the column vector B·k by N̂kt and denote this as B

N̂ktk
. One thing that could be

helpful to prove is that if k is valid, then:
βkt = B

N̂ktk
.
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Because support(B·k) = PAk and PAk ⊆ N̂kt, consider that

fXk = XT B·k + ϵk = XT

N̂kt
B

N̂ktk
+ ϵk,

with ϵk⊥⊥X
N̂ktk

and E[ϵk] = 0. Thus,

βkt =
(
E
[
X

N̂kt
XT

N̂kt

])−1 (
E
[
X

N̂kt
XT

N̂kt

]
B

N̂ktk
+ E

[
X

N̂kt
ϵk

])
=
(
E
[
X

N̂kt
XT

N̂kt

])−1
E
[
X

N̂kt
XT

N̂kt

]
B

N̂ktk

= B
N̂ktk

,

(14)

as we wanted.

It follows that Xk = BT

N̂ktk
X

N̂kt
+ ϵk = βT

ktXN̂kt
+ ϵk. This then means that Rkt = Xk − βT

ktXN̂kt
= ϵk, as

we wanted to show.

Case 2: Assume k is not a valid node. All we need in this case for our identifiability proof is that Rkt is
a linear combination of more than one independent component. This is the case because if k is invalid to
continue the ordering, then we have that there exists at least one j ∈ PAk such that j ∈ St (unordered) and
therefore j ∈ LC

kt. Recall that:

Rkt =
(

MkLkt
− βT

ktMN̂ktLkt

)
ϵLkt

+ MkLC
kt

ϵLC
kt

.

Note that it is necessarily the case that Mkj ̸= 0, otherwise j ̸∈ PAk. Thus, Rkt includes the sum Mkjϵj + ϵk.
That is, Rkt in this case is a linear combination of more than one independent component in ϵ. Note that
Rkt could be a linear combination of more entries in ϵ, in addition to ϵj and ϵk.

A.2.3 Some Information Theory Definitions and Results

We now present some straightforward information theoretic results. They are meant to help demonstrate
that our surrogate optimization (now a likelihood ratio) approach for Algorithm 1 leads to the identifiability
of a causal order. These lemmas are used later to prove Lemma 2.7, a key result that says valid nodes j in a
LiNGAM are no closer to Gaussian compared to invalid nodes k, conditional on the nodes in N̂jt and N̂kt,
respectively.
Definition A.1 (Differential Entropy).
For a continuous random variable X with density p(x), denote Ep(x) [·] to be expectation with respect to
p(x). The differential entropy of X is given by:

h (X) = Ep(x)

[
log 1

p(X)

]
.

Lemma A.2 (Restatement of the entropy power inequality).
Consider two independent random variables X ∼ p(x) and Y ∼ p(y), and let X ′ ∼ N (E[X ′],V[X ′]) and
Y ′ ∼ N (E[Y ′],V[Y ′]) be independent random variables such that h(X) = h(X ′) and h(Y ) = h(Y ′). Then:

h(X + Y ) ≥ h(X ′ + Y ′).

Proof. This is exactly Theorem 17.8.1 of Cover & Thomas (2005), so we refer the reader to their proof.
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Lemma A.3 (KL Divergence from Gaussianity).
Let X ∼ p(x) and q(x) the density for X̃ ∼ N (E [X] , Cov [X]).

DKL (p(x)||q(x)) = h(X̃)− h (X) . (15)

As in Lemma A.2, let X ′ ∼ N (E[X ′],V[X ′]) such that h(X) = h(X ′). We can equivalently write the KL
divergence from Gaussianity as:

DKL (p(x)||q(x)) = 1
2 log

(
V[X]
V[X ′]

)
.

Proof.
Because

h(X̃) = EX̃∼q(x)

{
log 1

q(X̃)

}
= EX∼p(x)

{
log 1

q(X)

}
,

by properties of this normal distribution (namely, that E[log q(X)] ∝ V[X] = V[X̃]) we have that:

DKL (p(x)||q(x)) = h(X̃)− h (X) .

Noting that the differential entropy for any N (µ, σ2) is 1
2 log(2πeσ2) and our assumption that h(X) = h(X ′),

we arrive at the second equality:

DKL (p(x)||q(x)) = 1
2 log

(
2πeV[X]
2πeV[X ′]

)
.

Note that also V[X] = V[X̃] ≥ V[X ′] ⇐⇒ DKL (p(x)||q(x)) ≥ 0, which is the case because KL-divergence is
always non-negative.

This well known result also implies that the normal distribution is the maximum entropy distribution when
we constrain the first and second order moments of each distribution to be the same.
Lemma A.4 (Same distance to Gaussianity).
Let ϵ̃k ∼ N (0,V[ϵk]) with density qk(·) for each k = 1, 2, . . . , p. Also let ϵ′

k ∼ N (0,V[ϵ′
k]) such that

h(ϵ′
k) = h(ϵk). If ϵ in our LiNGAM satisfies Assumption 2.1, then there exists a constant γ ≥ 0 such that

DKL (g(ϵk; θk)||qk(ϵk)) = γ

and
V[ϵk]
V[ϵ′

k] = γ̃ = exp(2γ)

for all k = 1, 2, . . . , p.

Proof.
From Lemma A.3, we have that:

DKL (g(ϵk; θk)||qk(ϵk)) = h(ϵ̃k)− h(ϵ′
k).

Noting Assumption 2.1 and properties of differential entropy under a rescaling, it follows that for U ∼ g(·; θ0):

h(ϵk) = h(U) + log(θk/θ0).

Let U ′ ∼ N (0,V[U ′]) such that h(U ′) = h(U). We have also that

h(ϵ′
k) = h(U ′) + log(θk/θ0),
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based on the construction of both ϵ′
k and U ′.

Similar to ϵ̃k, let U ∼ N (0,V[U ]). Thus, regardless of k = 1, 2, . . . , p, we have that:

1
2 log

(
2πeV[ϵk]
2πeV[ϵ′

k]

)
= h(ϵ̃k)− h(ϵ′

k) = h(U)− h(U ′) =: γ.

A.2.4 Proof of Lemma 2.7

Proof of Lemma 2.7.
For each j ∈ [p], let ϵ′

j be a normally distributed random variable such that h(ϵ′
j) = h(ϵj), while ϵ̃j is

distributed as N (E[ϵj ],V[ϵj ]). Here, for all j, k ∈ {1, 2, . . . , p}, ϵ̃j⊥⊥ϵ̃k (unless j = k) and ϵ̃j⊥⊥ϵ′
k (even if

j = k).

Recall also that for j ∈ St

Rjt =
(

MjLkt
− βT

jtMN̂jtLtj

)
ϵLtj

+ MjLC
tj

ϵLC
tj

=
∑
i∈[p]

δijϵi,

where the coefficients δij in the last equality are used for shorthand. Note that δjj = 1 always. And if j is
invalid to continue the ordering, then also δij ̸= 0 for at least one other i ∈ [p]\{j}, based on Lemma 2.6.

The relation between the quantities of interest is as follows:
DKL (fkt(rkt)||ϕ(rkt; σkt)) = h(R̃kt) − h (Rkt) by Lemma A.3

= h

∑
i∈[p]

δik ϵ̃i

− h

∑
i∈[p]

δikϵi

 Notice: R̃kt
d=
∑
i∈[p]

δik ϵ̃i

≤ h

∑
i∈[p]

δik ϵ̃i

− h

∑
i∈[p]

δikϵ′
i

 by Lemma A.2

=
1
2

log

(
2πe
∑

i∈[p] δ2
ikVar(ϵi)

2πe
∑

i∈[p] δ2
ik

Var(ϵ′
i)

)
by normality of the ϵ̃i, ϵ′

i

=
1
2

log

(
2πeγ̃

∑
i∈[p] δ2

ikVar(ϵ′
i)

2πe
∑

i∈[p] δ2
ik

Var(ϵ′
i)

)
by Lemma A.4

= γ

= DKL (fℓt(rℓt)||ϕℓt(rℓt)) ,

(16)

as we wanted (Recall Rℓt = ϵℓ by Lemma 2.6).

B More Figures

B.1 Sorting Time for Small Networks

The takeaway of Figure 8 is that ScoreLiNGAM is generally much faster. Consider the largest DAG, the Andes
network (p = 223), where the sorting time of ScoreLiNGAM is typically under 1 second across all sample
sizes, while for HighDimLiNGAM (parallelized across 7 threads) the sorting procedure takes between 10-1000
seconds across sample sizes. We note that ScoreLiNGAM is written with C++ using the Armadillo linear
algebra library and an R wrapper via the Rcpp package, while DirectLiNGAM is written in Python (https:
//github.com/cdt15/lingam) with a wrapper function in R using the reticulate package that is written
by this paper’s authors. HighDimLiNGAM is also written in C++ (https://github.com/ysamwang/highDNG)
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with an R wrapper, but it searches regressor subsets when computing low-dimensional linear regressions–the
likely reason for its slower time despite 7 parallel threads. All simulations were run on a Dell XPS 13 with
Intel Core™ i7-8550U CPU @ 1.80GHz × 8, 8 GB RAM, and 64-bit Ubuntu 20.04.3 LTS OS.

Figure 8: The simulation times for LiNGAM estimation procedures

B.2 Sorting Times for Large Networks

Figure 9 contains the sorting times to go along with Figure 5 in the main text.

B.3 Further simulations: Results without re-scaling the data matrix

See Figure 10 for results on the alarm, barley, and mildew networks.

B.4 Further simulations: Results without re-scaling the data matrix and neighborhood estimation

See Figure 11 for results on the barley, alarm, and mildew networks.

C Obtaining the scale-parameter for Empirical Mean Log-likelihood in Equation 9

As discussed in the main text, our sequential algorithm at step t ≥ 1 in practice requires the estimation of
the scale parameter, ηkt, in Equation 9. Here, we discuss the estimator for the three parametric assumptions
used in this paper. We make use of the respective definitions and properties in Forbes et al. (2010).

• Laplace Distribution: If ϵk ∼ Laplace(0, θk), we have that θk = E[|ϵk|] is the scale parameter.
When g(·; ηkt) is specified as the density for Laplace(0, ηkt), the maximum likelihood estimator we
use in practice is η̂kt = 1

n

∥∥∥R̂kt

∥∥∥
1
.
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Figure 9: Sorting times for ScoreLiNGAM under p = 5000, 10000 and n = 0.1p, 0.25p, 0.5p. Color indicates
how the neighborhood sets are constructed.

• Logistic Distribution: If ϵk ∼ Logistic(0, θk), then θk is the scale parameter. We have that
Var[ϵk] = π2

3 θ2
k. When g(·; ηkt) is specified as the density for Logistic(0, ηkt), we find that the plug-in

estimator η̂kt =
√

3
π σ̂kt to work satisfactorily.

• Scaled-t Distribution: If ϵk ∼ Scaled-t(0, ν, θk), then we say ϵk is equal in distribution to the
scale parameter, θk, times U ∼ t(0, ν), a Student’s t-distributed random variable having mean 0 and
degrees of freedom ν > 0. That is, ϵk

d= θkU . For ν > 2, we have that Var[ϵk] = θ2
k

(
ν

ν−2

)
. When

g(·; ηkt) is specified as the density for Scaled-t(0, ν, ηkt) with ν > 2 assumed to be known, we find
that the plug-in estimator η̂kt = σ̂kt

√
ν−2

ν to work satisfactorily.

In Equation 9 and in the plug-in estimators for the Logistic and Scaled-t specifications, we use

σ̂2
kt = 1

n

∥∥∥R̂kt

∥∥∥2

2
.
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Figure 10: An extension of the simulation results in Figure 2 comparing LiNGAM estimation procedures.
Here, we do not re-scale the data matrix.
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Figure 11: An extension of the simulation results in Figure 2 comparing LiNGAM estimation procedures.
Here, we do not re-scale the data matrix. For ScoreLiNGAM and HighDimLiNGAM, we use 20% of the
observations to estimate the correlation matrix and neighborhood sets, and the remaining 80% of observations
to estimate the topological orderings. For DirectLiNGAM, all 100% of observations are used to estimate the
ordering without neighborhood pre-specification
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