
Under review as submission to TMLR

CLoQ: Enhancing Fine-Tuning of Quantized LLMs via Cali-
brated LoRA Initialization

Anonymous authors
Paper under double-blind review

Abstract

Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become
a highly efficient approach for downstream tasks, particularly in scenarios with limited
computational resources. However, applying LoRA techniques to quantized LLMs poses
unique challenges due to the reduced representational precision of quantized weights. In
this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs),
a simplistic initialization strategy designed to overcome these challenges. Our approach
focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized
counterpart with LoRA components during initialization. By leveraging a small calibration
dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components
for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of
this work is a novel theoretical result that enables the accurate and closed-form construction of
these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such
as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating
that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs,
especially at 2-bit.

1 Introduction

Large language models (LLMs) Achiam et al. (2023); Touvron et al. (2023); Jiang et al. (2023a); Guo et al.
(2024a) have achieved remarkable success across a wide range of domains and applications. With ongoing
advancements, the size and complexity of LLMs have grown exponentially, with some models now exceeding
billions or even trillions of parameters. Although this scaling has unlocked unprecedented capabilities, it
also introduces significant challenges, particularly in efficiently adapting these models to downstream tasks.
Traditionally, full fine-tuning has been the dominant approach for adapting pre-trained models, involving
updates to all model parameters. While effective in achieving state-of-the-art results, full fine-tuning is
resource-intensive, requiring substantial GPU memory to store both model weights and optimizer states.
These memory demands grow with the size of the model, making full fine-tuning increasingly impractical for
large-scale models in resource-constrained settings.

To address these challenges, parameter-efficient fine-tuning (PEFT) Houlsby et al. (2019), such as Low-Rank
Adaptation (LoRA) Hu et al. (2021) , has emerged as a promising approach. PEFT updates only a small
subset of parameters while keeping the majority of the model unchanged, enabling resource-efficient fine-tuning
of large-scale models. LoRA, for instance, introduces small, learnable low-rank matrices into the model’s
architecture. These matrices are optimized during fine-tuning while the original model weights remain frozen,
significantly reducing memory and computational requirements. This design leverages the insight that weight
updates often reside in a low dimensional subspace, allowing LoRA to achieve efficient adaptation with
minimal overhead.

In an orthogonal direction, model compression techniques , notably quantization Rastegari et al. (2016);
Hubara et al. (2018); Choi et al. (2018); Wang et al. (2018); Yin et al. (2016; 2018; 2019b;a); Li et al. (2023b);
Shao et al. (2023); Zhang et al. (2023); Frantar et al. (2022a); Zhang et al. (2024a), have been developed
to minimize GPU memory usage by converting high-precision weights into low-precision representations.

1



Under review as submission to TMLR

Initially designed for inference in memory-limited environments, quantization methods have since been
adapted to support fine-tuning. A notable advancement in this regard is QLoRA Dettmers et al. (2023) ,
which combines LoRA with quantization techniques to reduce GPU memory requirements for fine-tuning
significantly. By leveraging low-rank adaptation and quantized weights, QLoRA enables resource-efficient
fine-tuning of LLMs without compromising performance, making it a powerful tool for adapting large-scale
models to downstream tasks. However, extending LoRA to quantized LLMs introduces additional challenges,
as the reduced representational precision of quantized weights can disrupt standard initialization strategies,
impacting task performance. Recent works Li et al. (2023a); Yao et al. (2023); Liao et al. (2024); Guo et al.
(2024b) proposed minimizing quantization error through strategic initialization of the low-rank components
in LoRA, to align with the original weight states of the model. This strategy has demonstrated success in
fine-tuning lower-bit quantized LLMs.

Contributions. In this paper, we introduce CLoQ (Calibrated LoRA for Quantized LLMs), an efficient
layer-wise, data-driven initialization strategy specifically designed for quantized LLMs by leveraging a small
calibration dataset. CLoQ consists of two main steps: a post-training quantization phase to obtain quantized
weights and a generalized low-rank approximation phase under a linear transformation to compute the
corresponding optimal adapters. We derive a novel closed-form solution to the low-rank approximation
problem, which can be efficiently computed using just two singular value decompositions (SVDs).

Our CLoQ method requires no back-propagation, making it a highly efficient approach for fine-tuning
quantized models. We demonstrate the effectiveness of CLoQ through extensive validation on multiple
benchmark datasets. Our results show that CLoQ consistently outperforms existing LoRA methods for
quantized LLMs, particularly at ultra-low bit-widths. For instance, the fine-tuning accuracy of INT2 CLoQ
on the Llama2-13B model Touvron et al. (2023) surpasses that of INT4 QLoRA Dettmers et al. (2023) in the
arithmetic reasoning tasks, as shown in Table 3.

Figure 1: Fine-tuning results of Llama2-7B and Llama2-13B across various tasks. Left: the perplexity
measured on WikiText-2. Middle: the accuracy achieved on GSM8K. Right: the average accuracy across
multiple arithmetic reasoning tasks.

Notations. We clarify the mathematical notations that will be used throughout this paper: we denote
vectors by bold small letters and matrices by bold capital ones. For any matrix X ∈ Rm×n, X⊤ ∈ Rn×m

is the transpose of X, and Tr(X) :=
∑m

i=1 Xi,i denotes the trace of X when m = n. For any two
matrices X, Y ∈ Rm×n, ⟨X, Y ⟩ := Tr(X⊤Y ) =

∑m
i=1

∑n
j=1 Xi,jYi,j is the inner product. We denote the

2



Under review as submission to TMLR

Figure 2: The discrepancy ∥X(Q + ABT − W )∥ between the LoRA initialization and the original pre-trained
weight matrix, computed using the spectral norm and the Frobenius norm, respectively. The layer shown
in the figures above is randomly selected from the Llama2-7B model. The initialization is derived using
both CLoQ and LoftQ under INT2 quantization. Notably, CLoQ significantly reduces this discrepancy,
demonstrating its effectiveness.

Frobenius norm of X by ∥X∥F :=
√

Tr(X⊤X) =
√∑m

i=1
∑n

j=1 X2
i,j . In addition, for any diagonal matrix

Σ = diag(σ1, . . . , σn), we denote its square root by Σ
1
2 := diag(σ

1
2
1 , . . . , σ

1
2
n ).

2 Background

Integer Quantizer. Given a set of m weights w ∈ Rm, the widely-used b-bit uniform integer (INT) quantizer
Choi et al. (2018) determines the float scaling factor δ = max(w)−min(w)

2b−1 and zero-point z = −
⌊

min(w)
δ

⌉
,

where ⌊·⌉ is nearest-to-round operation. The quantizer projects w onto the equally spaced grids Q =
{z · δ, (z + 1) · δ, . . . ,

(
z + (2b − 1)

)
· δ}m to obtain the quantized weights

q = δ ·
(

clip
(⌊w

δ

⌉
+ z, 0, 2b − 1

)
− z

)
.

For channel-wise (or group-wise) quantization, the scaling factor δ is shared by the quantized weights within
the same channel (or group, respecitively).

Post-Training Quantization. Post-training quantization (PTQ) has been a cornerstone technique for
compressing LLMs. PTQ methods directly identify low-precision representations of a model without requiring
retraining, making them particularly well-suited for extremely large-scale AI models including LLMs. The
simplest approach in this category is data-free quantization, commonly referred to as RTN, which involves
rounding the pre-trained model weights to their nearest quantized states. More advanced PTQ algorithms,
such as OPTQ Frantar et al. (2022b), leverage a small calibration dataset to solve a least-squares problem
under discrete constraints:

min
Q∈Q

∥XQ − XW ∥2
F, (1)

to calibrate the quantization layer by layer. In this formulation, X denotes the activation or feature matrix
corresponding to a batch of calibration data for a fixed layer. This approach ensures that the quantization
process preserves the layer’s output by minimizing the discrepancy between the original and quantized
representations on the calibration dataset. Several efficient back-propagation-free algorithms Zhang et al.
(2023); Behdin et al. (2023); Zhang et al. (2024b) have been proposed to address (1).

Low-Rank Adaptation. LoRA Hu et al. (2021) enables efficient fine-tuning of large pre-trained models
by introducing two small, trainable matrices, A and B, which are added to the frozen weight matrix W .

3



Under review as submission to TMLR

The weights of the fine-tuned model are then expressed as W + AB⊤, where A ∈ Rm×r, B ∈ Rn×r, and
r ≪ min(m, n). During fine-tuning, only A and B are updated, while W remains fixed, significantly reducing
the number of trainable parameters and computational overhead. LoRA initializes its parameters as follows:

A ∼ N (0, σ2), B = 0,

ensuring that the initialization maintains perfect alignment with the pre-trained weights W . Recent research
has focused on developing variants of LoRA aimed at enhancing its performance Wang et al. (2024a;b); Liu
et al. (2024); Wang et al. (2024c).

3 Method

CLoQ is designed to enhance the fine-tuning of quantized LLMs by incorporating calibration data, building
upon OPTQ Frantar et al. (2022a) with a specific focus on the initialization of LoRA adapters. It utilizes
second-order information derived from input activations X to ensure that the low-rank adapter matrices
A and B are initialized in a manner that minimizes quantization error, particularly in relation to the
data distribution. This alignment allows CLoQ to improve the fine-tuning process by making the low-rank
adaptation more responsive to the model’s behavior during calibration, thereby reducing the mismatch
between the quantized model and its full-precision counterpart. Importantly, CLoQ uses the same calibration
data as OPTQ, ensuring that the initialization of LoRA adapters is both universal and effective across various
downstream tasks. In our experiments, we use the Wikitext dataset for calibration, offering a robust and
generalizable foundation for fine-tuning across a range of task domains.

3.1 Calibrated Quantization and Low-Rank Initialization

Given the activation matrix X associated with the calibration data, CLoQ aims to solve the following
optimization problem for LoRA initialization:

min
Q∈Q,A∈Rm×r,B∈Rn×r

∥X(Q + AB⊤ − W )∥2
F, (2)

where X ∈ R(b·l)×m is the activation matrix associated with a calibration data set of b samples, each
represented as an l × m sub-matrix and stacked along the row dimension. Q ⊂ Rm×n is an appropriate
set of all feasible quantized weights. The objective of (2) is to ensure that the initialized weights for the
LoRA model, Q + AB⊤, closely approximate the pre-trained model weights W ∈ Rm×n when applied to the
activation matrix.

This problem can, in theory, be solved using an alternating minimization (AltMin) method, whose t-th
iteration reads:

Qt+1 = arg min
Q∈Q

∥X(Q + At(Bt)⊤ − W )∥2
F

At+1, Bt+1 = arg min
A,B

∥X(AB⊤ + Qt+1 − W )∥2
F

In practice, we observe that it suffices to just perform a single iteration with the initialization A0(B0)⊤ = 0.
Therefore, the proposed CLoQ method comprises two steps: a quantization step and a low-rank approximation
step under a linear transformation, which we detail in the rest of this section.

After solving the above problem and obtaining Q, A, B, we fix the quantized weights Q and update only the
low-rank components A, B during the subsequent fine-tuning stage, as per the LoRA approach.

3.1.1 Post-Training Quantization

With AB⊤ initialized to zero, the problem of finding Q simplifies to the standard layer-wise post-training
quantization (PTQ):

min
Q∈Q

∥X(Q − W )∥2
F, (3)

4



Under review as submission to TMLR

an optimization problem that has been extensively studied in recent literature Frantar et al. (2022b); Zhang
et al. (2023); Chee et al. (2023); Xiao et al. (2023); Zhang et al. (2024b). For this, we adopt the widely-
used OPTQ method Frantar et al. (2022a). To further enhance OPTQ’s performance, we incorporate a
preprocessing technique called weight magnitude reduction (MagR) Zhang et al. (2024a), which modifies W
by removing outliers prior to quantization. MagR preprocessing significantly improves OPTQ’s effectiveness
in the low-bit regime while introducing minimal additional time beyond the OPTQ process and incurring no
computational or memory overhead during inference time.

3.1.2 Generalized Low-rank Approximation

After obtaining Q in the quantization step, we denote by

∆W = W − Q

the residual of the quantized weights. To determine A and B, we solve the following low-rank approximation
problem under the linear transformation induced by X:

min
A∈Rm×r,B∈Rn×r

∥X(AB⊤ − ∆W )∥2
F. (4)

It is important to note that problem (4) is non-trivial due to the presence of the matrix X, and its optimal
solution is not given by directly computing the low-rank approximation (or SVD) of ∆W . However, we
demonstrate in the following result that the problem can be solved accurately by performing just two SVDs:
Theorem 3.1. Suppose the activation matrix X ∈ R(b·l)×m (b · l ≫ m) is of full-rank. Suppose the Gram
(or Hessian) matrix H = X⊤X ∈ Rm×m has the SVD H = UHΣHU⊤

H and denote by R = Σ
1
2
HU⊤

H the
non-symmetric root of H. Then any pair (A, B) satisfying

AB⊤ = R−1LRr(R∆W ). (5)

permits an optimal solution to problem (4). Here LRr(R∆W ) = arg minrank(Z)≤r ∥Z − R∆W ∥2
F denotes

the best rank-r approximation of R∆W .

Proof. Firstly, we observe that the objective in (4) has the following equivalent expression:

∥X(AB⊤ − ∆W )∥2
F

= Tr
(
(AB⊤ − ∆W )⊤X⊤X(AB⊤ − ∆W )

)
= Tr

(
(AB⊤ − ∆W )⊤H(AB⊤ − ∆W )

)
= Tr

(
(AB⊤ − ∆W )⊤R⊤R(AB⊤ − ∆W )

)
= ∥R(AB⊤ − ∆W )∥2

F

= ∥RAB⊤ − R∆W ∥2
F,

where in the third equality, we used the identity: H = R⊤R. Moreover, since X is full rank, H is invertible,
and so is R.

Based on these facts, we interpret problem (4) as finding the standard best rank-r approximation of R∆W ,
LRr(R∆W ), which can be obtained by performing the SVD of R∆W and extracting the top-r principal
components Eckart & Young (1936). Then, (A, B) is an optimal solution to

min
A∈Rm×r,B∈Rn×r

∥RAB⊤ − R∆W ∥2
F

if and only if
RAB⊤ = LRr(R∆W ).

Consequently, since R is invertible, any (A, B) fulfilling

AB⊤ = R−1LRr(R∆W ).

permits an optimal solution to problem (4).

5



Under review as submission to TMLR

To apply Theorem 3.1 to solve problem (4), we make the following observations:

• One SVD is required to compute R and another is needed to determine LRr(R∆W ). Given that
R ∈ Rm×m and R∆W ∈ Rm×n, while X ∈ R(b·l)×m, the computational complexity of SVDs required
for solving (4) is independent of b · l, which is significantly larger than m or n in practice. Here l
represents the context length, and b denotes the size of the calibration dataset. We note that CLoQ
requires fewer SVD computations than LoftQ Li et al. (2023a), which, by default, performs five
AltMin iterations, each involving one SVD.

• Indeed, (5) admits infinitely many optimal solutions. Suppose LRr(R∆W ) has the form U :rΣ:rV ⊤
:r.

In our experiments, we consistently take A = R−1U :rΣ:r and B = V :r, which empirically performs
well. However, it is clear that if (A, B) is an optimal solution, then for any invertible C ∈ Rr×r, the
pair

(
AC, B(C−1)⊤)

also satisfies (5) and thus provides an optimal solution to (4). For example,
(A, B) = (R−1U :r, V :rΣ:r) or (R−1U :rΣ

1
2:r, V :rΣ

1
2:r). In Section 5, our ablation study shows that

the combination (R−1U :rΣ:r, V :r) gives the best practical performance during the subsequent LoRA
fine-tuning process. Interestingly, we find that achieving good empirical performance typically requires
∥A∥F > ∥B∥F. A more comprehensive theoretical analysis of the impact of initialization like Hayou
et al. (2024) will be addressed in future work.

• When H is not invertible or poorly conditioned, we propose adding a small constant λ to the diagonal
elements. Specifically, we typically set λ = 0.01Tr(H)

m , following a strategy similar to that used in
the prior works Frantar et al. (2022b); Chee et al. (2023). This adjustment has consistently proven
effective in mitigating numerical issues and ensuring stability during computations.

• In theory, even if X is rank-deficient, the optimality condition RAB⊤ = LRr(R∆W ) in the proof
of Theorem 3.1 still holds. But in this case, since R is also rank-deficient, this optimality condition
permits infinitely many solution for AB⊤, and we may simply take AB⊤ = R†LRr(R∆W ), where
R† is a pseudo-inverse.

To summarize, our proposed CLoQ method is detailed in Algorithm 1.

Algorithm 1 CLoQ for initializing one linear layer
Input: Regularized Gram matrix of activations H = X⊤X + λI ∈ Rm×m, Pre-trained weight matrix
W ∈ Rm×n, Rank r ≪ min(m, n).
Output: Quantized weight matrix Q ∈ Rm×n, Low-rank components A ∈ Rm×r, B ∈ Rn×r.

1: Solve (3) to obtain the quantized weights Q.
2: Compute the residual of quantized weights ∆W = W − Q ∈ Rm×n

3: Perform SVD: H = UHΣHU⊤
H

4: Evaluate: R = Σ
1
2
HU⊤

H

5: Perform the SVD of R∆W to find its best rank-r approximation: LRr(R∆W ) = U :rΣ:rV ⊤
:r

6: Compute the low-rank components:
A = R−1U :rΣ:r

B = V :r

Return: Q, A, B

4 Experiment

In this section, we evaluate the effectiveness of CLoQ on language modeling, arithmetic reasoning, and
commonsense reasoning tasks. The fine-tuning through CLoQ consists of two key stages: the initialization step
and the fine-tuning step. In the initialization step, we quantize the full-precision weight W into low-precision
weight Q and find optimal low-rank matrices A and B that minimize the residual error. In the finetuning step,

6



Under review as submission to TMLR

the quantized weight matrix Q is fixed in low-precision, while A and B are trained through back-propagation.
The detailed hyperparameter settings for all our experiments are presented in the Appendix A.

Models and Datasets. We test CLoQ on Llama2-7b, Llama2-13b Touvron et al. (2023), Llama3-8b
Grattafiori et al. (2024) and Mistral-7b-v0.1 Jiang et al. (2023b) models. Following prior works Frantar
et al. (2022a), we randomly sample 128 instances, each with a context length of 2048 tokens, from the
WikiText-2 dataset Merity et al. (2016) to serve as the calibration set for quantization. Then, we fine-tune
and evaluate the models on WikiText-2 for language modeling. For single arithmetic reasoning tasks, we
fine-tune and evaluate on the GSM8K Cobbe et al. (2021). For multi arithmetic reasoning, we fine-tune the
models on Math10K Hu et al. (2023) and then evaluate the test sets of AQuA Ling et al. (2017), GSM8K,
MAWPS Koncel-Kedziorski et al. (2016) and SVAMP Patel et al. (2021). For commonsense reasoning tasks,
we fine-tune the models on Commonsense170K Hu et al. (2023) and evaluate on eight representative tasks:
BoolQ Clark et al. (2019), PIQA Bisk et al. (2020), SIQA Sap et al. (2019), HellaSwag Zellers et al. (2019),
WinoGrande Sakaguchi et al. (2021), ARC-e, ARC-c Clark et al. (2018) and OBQA Mihaylov et al. (2018).

Baselines. We compare with LoRA Hu et al. (2021), QLoRA Dettmers et al. (2023), GPTQ-LoRA GPT
(2023), LoftQ Li et al. (2023a) and ApiQ Liao et al. (2024). LoRA is often considered as the benchmark
for fine-tuning performance. QLoRA incorporates NF-quantization, with its low-rank initialization aligning
with the standard LoRA method. GPTQ-LoRA integrates OPTQ for the base weights and fine-tunes the
LoRA component while preserving its low-rank initialization as in the standard LoRA, with the quantized
weights kept frozen. In contrast, LoftQ and LQ-LoRA carefully initialize the quantized weight and low-rank
matrices by solving some optimization problems to minimize the approximation error. Furthermore, ApiQ uses
gradient-based block-wise optimization to specifically initialize the low-rank components during post-training
quantization.

4.1 Implementation details

Quantization. We quantize the weights of all linear layers in the base model using MagR preprocessing
Zhang et al. (2024a) followed by OPTQ Frantar et al. (2022a). The quantization scheme employs uniform
(a.k.a. INT) and asymmetric quantization, with a default group size of 64. After quantization, we compute
the LoRA components A and B, which are maintained in FP16 precision.

Fine-tuning. Following prior works Dettmers et al. (2023); Li et al. (2023a); Liao et al. (2024), we fine-tune
the models using the standard LoRA configuration, with modifications to the LoRA initialization and
learning rates. The quantized weights remain fixed, and only the LoRA adapter matrices are trainable during
fine-tuning. The rank of the LoRA adapters is consistently set to 64 across all methods. For optimization,
we use AdamW Loshchilov (2017). All experiments are conducted on NVIDIA A100 GPUs with 80GB of
memory.

4.2 Fine-tuning Results

Language modeling. We evaluate the models by reporting the perplexity of language generation on
WikiText-2. As shown in Table 1 and 2, CLoQ consistently outperforms existing methods across most bit
levels and model architectures. Notably, at INT2, CLoQ proves effective, achieving a perplexity reduction
of 0.95 over ApiQ-lw and 1.34 over LoftQ on Llama2-7B, and even surpasses ApiQ-bw by 0.1 perplexity.
This result highlights CLoQ’s ability to maintain superior performance even under ultra-low bit quantization
constraints.

Arithmetic reasoning (single task). To evaluate the models on GSM8K, we extract numerical answers
from the generated solutions and determine accuracy by analyzing these extracted values. As shown in Table
1 and 2, CLoQ achieves better performance across different model types and quantization bit levels. At INT2,
CLoQ reaches an accuracy of 33.7% on Llama2-7B, which CLoQ achieves a 7.7% improvement in performance
compared with ApiQ-lw. Moreover, on the Llama3-8B model, CLoQ even outperforms ApiQ-bw by 1.0% at
INT2. More remarkably, CLoQ achieves comprehensive superiority over all existing methods at INT2 and
INT3 on Llama2-13B. On the Mistral-7B model, the accuracy of INT2 CLoQ is better than ApiQ-lw and is
comparable with ApiQ-bw.

7



Under review as submission to TMLR

Table 1: Finetuning results of WikiText and GSM8K on Llama2-7B and Llama2-13B.
Llama2-7B Llama2-13B

Method Bit Wiki (ppl↓) GSM8K (acc↑) Wiki (ppl↓) GSM8K (acc↑)
LoRA 16 5.08 36.9 5.12 45.3
QLoRA 4 5.70 35.1 5.22 39.9
LoftQ 4 5.24 35.0 5.16 45.0
ApiQ-lw 4 5.28 36.4 4.78 50.4
ApiQ-bw 4 5.27 39.8 4.78 51.2
CLoQ 4 5.25 40.6 4.78 49.3
QLoRA 3 5.73 32.1 5.22 40.7
LoftQ 3 5.63 32.9 5.13 44.4
ApiQ-lw 3 5.53 36.0 4.98 45.4
ApiQ-bw 3 5.49 39.3 4.96 47.6
CLoQ 3 5.45 39.9 4.92 48.1
QLoRA 2 N.A. N.A. N.A. N.A.
LoftQ 2 7.85 20.9 7.69 25.4
ApiQ-lw 2 7.46 26.0 6.29 36.3
ApiQ-bw 2 6.61 33.5 5.79 41.2
CLoQ 2 6.51 33.7 5.73 41.7

Table 2: Finetuning results of WikiText and GSM8K on Llama3-8B and Mistral-7B.
Llama3-8B Mistral-7B

Method Bit Wiki (ppl↓) GSM8K (acc↑) Wiki (ppl↓) GSM8K (acc↑)
LoRA 16 6.34 47.8 5.17 52.8
LoftQ 2 14.09 31.6 1849.33 1.7
ApiQ-lw 2 N.A. N.A. 7.18 41.3
ApiQ-bw 2 9.89 44.4 6.69 45.0
CLoQ 2 9.49 45.4 6.68 45.0

Arithmetic reasoning. To evaluate CLoQ’s effectiveness across multiple arithmetic reasoning tasks, we
fine-tuned models on the Math10K dataset and assessed their performance on four separate math reasoning
benchmarks, demonstrating their adaptability to diverse mathematical challenges. As shown in Table 3 and
4, CLoQ consistently outperforms other methods across various model architectures and quantization levels,
achieving superior accuracy both on average and on individual datasets. Notably, at INT2 quantization, CLoQ
delivers substantial gains, surpassing ApiQ-bw by 1.9% on LLaMA2-7B and by 2.1% on both LLaMA3-8B
and LLaMA2-13B. Even at INT4, CLoQ surpasses both LoRA and QLoRA on Llama2-7B. Moreover, for
complex reasoning tasks such as GSM8K and SVAMP, CLoQ achieves 4.1% and 1.7% higher accuracy than
ApiQ-bw at INT2 on Llama3-8B, highlighting its robustness in challenging problem settings. These results
underscore CLoQ’s remarkable potential in handling intricate reasoning tasks with enhanced accuracy, even
under ultra-low-bit quantization.

Table 3: Accuracy on four arithmetic reasoning tasks. The LoRA rank r is 64 for all methods.
Llama2-7B Llama2-13B

Method Bit GSM8K SVAMP MAWPS AQuA Avg. ↑ GSM8K SVAMP MAWPS AQuA Avg. ↑

LoRA 16 43.6 59.4 85.0 27.0 53.7 55.3 67.7 87.4 24.4 58.7

QLoRA 4 42.7 58.7 87.3 26.4 53.7 54.8 69.4 87.0 26.8 59.5
GPTQ-LoRA 4 43.0 58.4 86.1 24.3 52.9 53.2 67.5 85.3 25.6 57.9
LoftQ 4 41.7 56.0 86.3 25.3 52.3 54.9 66.5 87.7 23.9 58.3
ApiQ-bw 4 43.2 59.0 85.7 26.0 53.5 55.3 67.4 87.8 25.6 59.0
CLoQ 4 43.6 60.3 87.0 27.6 54.6 55.4 66.9 88.7 27.2 59.5

QLoRA 3 1.4 1.4 0.7 3.4 1.7 0.8 2.5 0.3 6.2 2.4
GPTQ-LoRA 3 38.9 55.7 84.9 23.2 50.7 50.6 65.2 88.0 22.6 56.6
LoftQ 3 39.9 56.3 86.3 26.4 52.2 53.9 66.1 87.0 23.6 57.7
ApiQ-bw 3 41.4 55.9 87.0 25.2 52.4 51.5 67.4 88.5 25.6 58.3
CLoQ 3 42.2 58.9 89.1 24.0 53.6 52.5 66.1 89.1 28.0 58.9

QLoRA 2 0.9 1.5 0.8 5.1 2.1 0.5 0.7 0.1 0.9 0.6
GPTQ-LoRA 2 21.7 39.0 76.6 22.1 39.9 31.9 49.6 82.5 23.6 46.9
LoftQ 2 29.5 45.8 83.6 23.2 45.6 37.0 55.9 87.7 21.7 50.6
ApiQ-bw 2 31.2 51.0 82.9 23.9 47.3 43.1 59.2 85.1 23.4 52.7
CLoQ 2 34.7 52.0 86.1 24.1 49.2 44.6 57.6 88.7 28.4 54.8

8



Under review as submission to TMLR

Table 4: Accuracy on four arithmetic reasoning tasks. The LoRA rank r is 64 for all methods.
Llama3-8B

Method Bit GSM8K SVAMP MAWPS AQuA Avg. ↑

LoRA 16 68.8 76.1 90.3 31.5 66.7

LoftQ 2 35.6 52.1 87.0 25.2 50.0
ApiQ-bw 2 47.0 67.2 88.2 27.2 57.4
CLoQ 2 51.1 68.9 87.8 30.3 59.5

Commonsense reasoning. We further evaluate the effectiveness of CLoQ on commonsense reasoning tasks
by fine-tuning the models on the Commonsense170K dataset and testing their performance across eight
reasoning benchmarks, as presented in Table 5. Consistent with its performance on arithmetic reasoning tasks,
CLoQ outperforms other methods across different model sizes and quantization levels, achieving notable
improvements both on average and within each dataset.

At INT2, CLoQ delivers a performance boost over ApiQ-bw, with an average accuracy improvement exceeding
0.7%, even approaching the performance levels typically observed with INT4 QLoRA. For instance, INT2
CLoQ exhibits only a minimal average accuracy drop of 0.04% compared to INT4 QLoRA. Additionally, at
INT4, CLoQ attains impressive accuracy, reducing the gap to FP16 LoRA to just 0.4%. These results indicate
that CLoQ significantly enhances LoRA’s learning capacity, enabling it to better adapt to a diverse range of
tasks.

Table 5: Accuracy on eight commonsense reasoning tasks. The LoRA rank r = 64 for all methods.
Model Method Bit BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. ↑

LoRA 16 73.6 86.5 81.8 95.2 86.9 89.4 76.7 86.7 84.6

QLoRA 4 73.9 84.4 79.7 93.3 84.6 86.1 73.0 85.1 82.5
GPTQ-LoRA 4 73.4 83.6 79.3 93.3 84.5 86.5 72.8 83.3 82.1
LoftQ 4 73.7 86.0 81.1 94.6 86.3 88.1 75.5 86.2 83.9
ApiQ-bw 4 73.5 87.0 82.0 95.2 86.9 89.5 77.0 86.2 84.7
CLoQ 4 74.2 86.3 81.6 95.1 85.9 88.7 75.7 86.4 84.2

Llama2-7B GPTQ-LoRA 3 71.8 82.7 79.3 92.1 82.8 84.2 70.6 83.4 80.8
LoftQ 3 74.0 85.6 81.0 94.3 85.6 88.1 75.4 85.5 83.7
ApiQ-bw 3 73.3 85.6 81.8 94.6 86.9 87.9 73.7 86.4 83.8
CLoQ 3 73.5 86.1 81.2 94.8 85.4 88.6 75.1 85.0 83.7

GPTQ-LoRA 2 62.2 49.5 33.3 25.1 49.4 25.0 22.6 27.6 36.8
LoftQ 2 62.4 70.5 73.4 78.8 71.0 66.5 50.8 62.3 67.0
ApiQ-bw 2 68.4 80.7 79.6 91.4 82.4 82.7 68.3 80.5 79.3
CLoQ 2 70.2 82.2 78.9 91.7 82.2 83.6 70.7 81.4 80.1

LoRA 16 76.3 88.5 83.4 96.5 89.6 92.8 81.7 89.6 87.3

QLoRA 4 74.9 86.6 81.5 94.9 86.9 89.1 77.1 87.2 84.8
GPTQ-LoRA 4 74.5 86.1 81.8 94.7 86.8 89.0 77.1 84.5 84.3
LoftQ 4 76.0 87.9 82.8 95.8 88.9 91.2 80.8 88.8 86.5
ApiQ-bw 4 76.2 88.5 83.5 96.6 90.0 92.1 81.2 89.9 87.3
CLoQ 4 75.7 88.4 82.9 96.3 89.4 91.1 81.9 90.0 87.0

Llama2-13B GPTQ-LoRA 3 73.5 85.2 81.1 94.1 85.7 87.9 75.5 85.3 83.5
LoftQ 3 75.2 87.8 82.8 96.3 89.5 91.1 81.4 88.0 86.5
ApiQ-bw 3 76.0 88.0 82.3 95.8 89.1 91.1 81.1 89.5 86.6
CLoQ 3 75.3 88.1 82.8 95.9 90.1 91.2 80.7 90.6 86.8

GPTQ-LoRA 2 62.2 50.1 34.0 25.1 49.6 25.0 22.7 27.6 37.1
LoftQ 2 65.9 76.4 78.0 84.4 76.1 75.1 60.1 72.7 73.6
ApiQ-bw 2 73.1 85.2 82.3 94.4 86.2 88.2 74.9 85.9 83.8
CLoQ 2 73.9 85.5 81.6 94.8 87.3 89.5 77.4 84.8 84.4

4.3 Ablation study

LoRA initialization with different (A, B) combinations. Furthermore, we investigate the performance
of various combinations of (A, B) in Algorithm 1, as shown in Table 6. We tried three different combinations
of (A, B), including (R−1U :r, V :rΣ:r), (R−1U :rΣ

1
2:r, V :rΣ

1
2:r), and the default choice (R−1U :rΣ:r, V :r).

Table 6 shows that the default combination of initialized adapters gives the best performance in the subsequent
fine-tuning phase.

9



Under review as submission to TMLR

Table 6: Fine-tuning results of different combinations of (A, B) on WikiText-2 and GSM8K. The LoRA rank
is r = 64.

Llama2-7B
Method Bit Wiki (ppl↓) GSM8K (acc↑)
LoRA 16 5.08 36.9
(R−1U :r, V :rΣ:r) 2 880.6 1.6

(R−1U :rΣ
1
2:r, V :rΣ

1
2:r) 2 6.68 12.9

(R−1U :rΣ:r, V :r) 2 6.51 33.7

Different calibration data size. Additionally, we explore the sensitivity of CLoQ to the size of the
calibration dataset. As shown in Table 7, CLoQ exhibits strong robustness to the calibration size. Across both
4-bit and 2-bit quantization settings, the overall performance remains consistently stable as the calibration
size varies from 32 to 256. A calibration dataset of 128 samples, commonly used as the default in PTQ, yields
slightly better results. These findings indicate that CLoQ does not heavily depend on the specific choice of
calibration set size, which enhances its practicality and ease of deployment in real-world scenarios.

Table 7: Accuracy of different calibration dataset sizes for Llama2-7B.
Arithmetic reasoning

Calibration Size Bit Wiki. ↓ GSM8K ↑ GSM8K SVAMP MAWPS AQuA Avg. ↑

32 4 5.34 40.2 43.4 58.7 87.4 28.0 54.4
64 4 5.33 40.9 44.7 57.6 87.0 25.2 53.6
128 (default) 4 5.25 40.6 43.6 60.3 87.0 27.6 54.6
256 4 5.33 40.1 42.6 59.6 87.0 26.0 53.8

32 2 6.62 32.5 35.5 50.5 86.6 24.0 49.1
64 2 6.56 33.5 35.5 54.0 84.5 25.6 49.9
128 2 6.51 33.7 34.7 52.0 86.1 24.1 49.2
256 2 6.49 33.2 33.5 47.2 87.4 27.6 48.9

Initialization Cost and Latency/Memory Benefits. We compare the duration and GPU memory usage
of Initialization between CLoQ and other baseline methods. As shown in Table 8, CLoQ achieves efficient and
scalable initialization, offering notable reductions in both runtime and memory consumption. For instance,
CLoQ requires only 0.7 hours and 9GB of memory on LLaMA2-7B, outperforming ApiQ-lw (4.1h) and
ApiQ-bw (1.3h) by large margins. On the larger LLaMA2-13B, CLoQ remains competitive, requiring just 1.5
hours and 13GB of memory, compared to 6.5 hours (ApiQ-lw) and 27GB (LoftQ). These results demonstrates
CLoQ’s strong practicality for large-scale model under limited hardware budgets.

Table 8: The duration and peak GPU memory used for Llama2.
Size Method Duration Peak GPU memory

Llama2-7B
LoftQ 0.6h 14GB
ApiQ-lw 4.1h 6GB
ApiQ-bw 1.3h 12GB
CLoQ 0.7h 9GB

Llama2-13B
LoftQ 1.3h 27GB
ApiQ-lw 6.5h 9GB
ApiQ-bw 2.4h 17GB
CLoQ 1.5h 13GB

5 Related Work

When quantizing pre-trained models, QLoRA Dettmers et al. (2023) primarily emphasizes the quantization
process, often overlooking the critical importance of subsequent LoRA fine-tuning. It adopts the fixup
initialization strategy used in LoRA, attaching zero-initialized low-rank adapters to the quantized pre-trained
model. However, the discrepancies introduced by quantization, especially in extremely low-bit regimes,
can significantly impact the initialization of LoRA fine-tuning, ultimately affecting the overall fine-tuning

10



Under review as submission to TMLR

performance. LoftQ Li et al. (2023a) jointly optimizes the quantized weights Q and the low-rank adapter
matrices A and B by solving the following optimization problem:

min
Q,A,B

∥Q + AB⊤ − W ∥2
F. (6)

This approach ensures that Q, A, and B are initialized to minimize the reconstruction error between the
quantized and pre-trained weights. By aligning the quantized model’s initial state more closely with its
pre-trained counterpart, LoftQ enhances fine-tuning performance without requiring calibration data.

LQ-LoRA Guo et al. (2024b) assigns importance weights to each parameter by evaluating its sensitivity to
output variations, thereby guiding the decomposition process toward critical regions. Specifically, the Fisher
matrix is used to weight the reconstruction objective during decomposition. To solve the resulting weighted
SVD problem, LQ-LoRA assumes row and column homogeneity in the Fisher matrix, allowing the use of
standard SVD techniques at the cost of theoretical precision. However, this approach has limitations. It relies
on approximations rather than solving the weighted SVD problem exactly, which may lead to suboptimal
results. Furthermore, computing the Fisher matrix requires back-propagation through the pre-trained model,
introducing additional computational overhead. Similar to our work, ApiQ Liao et al. (2024) also employs
an activation-aware initialization strategy utilizing calibration data. However, it relies on two activation
matrices—one obtained from the pre-trained model and the other from the quantized model, whereas
CLoQ uses only a single pre-trained activation matrix. ApiQ optimizes the discrepancy using standard
back-propagation, whereas CLoQ adopts a fully gradient-free approach. By avoiding the computational
overhead of back-propagation, CLoQ enables faster adaptation while maintaining high performance across
various tasks.

6 Concluding Remarks

In this work, we introduced CLoQ, an efficient and scalable method for fine-tuning quantized LLMs. By
leveraging a small calibration dataset, CLoQ optimally initializes LoRA adapters through a novel layer-wise,
data-driven approach, significantly improving the fine-tuning process without the need for back-propagation.
The use of a closed-form solution for low-rank approximation, computed via two SVDs, ensures that CLoQ
is both computationally efficient and highly effective, particularly at ultra-low bit-widths. Our extensive
experiments on multiple benchmark datasets demonstrate that CLoQ consistently outperforms existing
LoRA-based methods for quantized models, such as QLoRA, in tasks requiring fine-grained precision. The
results underscore the potential of CLoQ to enhance the performance of quantized models across a variety of
downstream applications, including those that demand high accuracy, like arithmetic reasoning tasks. The
simplicity and efficiency of CLoQ make it a promising approach for fine-tuning large-scale quantized LLMs
in resource-constrained environments. Future work could further investigate the theoretical implications of
different decompositions of the adapter matrices in CLoQ, and how these variations influence the performance
of subsequent fine-tuning.

References
Gptqlora: Efficient finetuning of quantized llms with gptq. GitHub repository, 2023. URL https://github.

com/qwopqwop200/gptqlora. Available at https://github.com/qwopqwop200/gptqlora.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Sathiya Keerthi, and Rahul Mazumder. Quantease:
Optimization-based quantization for language models–an efficient and intuitive algorithm. arXiv preprint
arXiv:2309.01885, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
7432–7439, 2020.

11

https://github.com/qwopqwop200/gptqlora
https://github.com/qwopqwop200/gptqlora
https://github.com/qwopqwop200/gptqlora


Under review as submission to TMLR

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of large
language models with guarantees. In Advances in Neural Information Processing Systems, 2023.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychometrika, 1
(3):211–218, 1936.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization for generative
pre-trained transformers. In The Eleventh International Conference on Learning Representations, 2022b.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu,
YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024a.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix decom-
position for efficient language model finetuning. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=xw29VvOMmU.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics. arXiv
preprint arXiv:2406.08447, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933, 2023.

12

https://openreview.net/forum?id=xw29VvOMmU


Under review as submission to TMLR

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. Journal of Machine
Learning Research, 18(187):1–30, 2018.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023a.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, L’elio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023b. URL https://api.semanticscholar.org/
CorpusID:263830494.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. Mawps: A
math word problem repository. In Proceedings of the 2016 conference of the north american chapter of the
association for computational linguistics: human language technologies, pp. 1152–1157, 2016.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq:
Lora-fine-tuning-aware quantization for large language models. arXiv preprint arXiv:2310.08659, 2023a.

Zhijian Li, Biao Yang, Penghang Yin, Yingyong Qi, and Jack Xin. Feature affinity assisted knowledge
distillation and quantization of deep neural networks on label-free data. IEEE Access, 2023b.

Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of 2-bit quantized
large language model. arXiv preprint arXiv:2402.05147, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146, 2017.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint arXiv:2402.09353,
2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math word
problems? arXiv preprint arXiv:2103.07191, 2021.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. In European conference on computer vision, pp. 525–542.
Springer, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models.
arXiv preprint arXiv:2308.13137, 2023.

13

https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494


Under review as submission to TMLR

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Haoyu Wang, Tianci Liu, Ruirui Li, Monica Cheng, Tuo Zhao, and Jing Gao. Roselora: Row and column-wise
sparse low-rank adaptation of pre-trained language model for knowledge editing and fine-tuning. arXiv
preprint arXiv:2406.10777, 2024a.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers. Advances in neural information processing systems, 31,
2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation. arXiv
preprint arXiv:2407.05000, 2024b.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters properly
optimized? arXiv preprint arXiv:2407.18242, 2024c.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring post-training
quantization in llms from comprehensive study to low rank compensation. arXiv preprint arXiv:2303.08302,
2023.

Penghang Yin, Shuai Zhang, Yingyong Qi, and Jack Xin. Quantization and training of low bit-width
convolutional neural networks for object detection. arXiv preprint arXiv:1612.06052, 2016.

Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin. Binaryrelax: A
relaxation approach for training deep neural networks with quantized weights. SIAM Journal on Imaging
Sciences, 11(4):2205–2223, 2018.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understanding
straight-through estimator in training activation quantized neural nets. In International Conference on
Learning Representations, 2019a.

Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin. Blended coarse
gradient descent for full quantization of deep neural networks. Research in the Mathematical Sciences, 6:
1–23, 2019b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Aozhong Zhang, Naigang Wang, Yanxia Deng, Xin Li, Zi Yang, and Penghang Yin. Magr: Weight magnitude
reduction for enhancing post-training quantization. In Advances in neural information processing systems,
2024a.

Aozhong Zhang, Zi Yang, Naigang Wang, Yingyong Qi, Jack Xin, Xin Li, and Penghang Yin. Comq: A
backpropagation-free algorithm for post-training quantization. arXiv preprint arXiv:2403.07134, 2024b.

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with provable
guarantees. SIAM Journal on Mathematics of Data Science, 5(2):373–399, 2023.

14



Under review as submission to TMLR

Appendix

A Experimental Details

A.1 Language modeling

To study the capability of CLoQ, we fine-tune quantized models on the WikiText-2 training set and measure
perplexity on the validation set. The hyper-parameters used for fine-tuning are provided in Table 9 and Table
10. We evaluate the models on the validation set at each epoch and report the lowest achieved perplexity.

A.2 Arithmetic reasoning

Single task (GSM8K)

To assess CLoQ’s arithmetic reasoning capability, we fine-tune quantized models using the GSM8K training
set and evaluate their accuracy on the test set. The hyperparameters used for fine-tuning are detailed in
Table 9 and Table 10. Model performance is evaluated at each epoch on the test set, and we report the
highest recorded accuracy.

Multiple task

Following the framework proposed by Hu et al. (2023), we adopt a more integrated approach by training a
single model across multiple tasks. Specifically, we fine-tune Llama2-7B and Llama2-13B on Math10K, a
dataset that aggregates training samples from GSM8K, MAWPS, MAWPS-single, and AQuA. After finetuning,
the models are tested on the evaluation sets of AQuA, GSM8K, MAWPS, and SVAMP. The hyper-parameters
used for fine-tuning are detailed in Table 9 and Table 10. Moreover, instead of conducting evaluations at
every epoch, we assess model performance only after the final epoch.

A.3 Commonsense reasoning

To evaluate the commonsense reasoning capabilities of CLoQ, we consider eight key benchmark tasks: BoolQ,
PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA. We adopt the framework proposed by
Hu et al. (2023) and fine-tune a single model across all these tasks instead of training separate models. We
fine-tune Llama2-7B and Llama2-13B on the merged training set and measure accuracy on the corresponding
test sets. The hyper-parameters used for fine-tuning are detailed in Table 9 and Table 10. For evaluation, we
forgo per-epoch assessments and instead report the final model’s performance after the last epoch.

Table 9: Hyper-parameter for the finetuning of Llama2.
Hyper-parameter WikiText-2 GSM8K Arithmetic reasoning Commonsense reasoning

Optimizer AdamW AdamW
Weight decay 0.1 1.0
LR scheduler cosine linear
Warmup ratio 3% 10%
Epochs 3 6 3
Batch size 64 32 16
Max sequence length 1024 512 512

15



Under review as submission to TMLR

Table 10: Best learning rate for Llama2-7B and Llama2-13B on the WikiText-2, GSM8K, and multiple
Arithmetic Reasoning tasks.

Llama2-7B Llama2-13B
Group size Task 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits

64
WikiText-2 7e-4 7e-4 6e-4 2e-4 4e-4 4e-4

GSM8K 3e-4 3e-4 3e-4 4e-4 4e-4 3e-4
Arithmetic reasoning 5e-4 9e-4 4e-4 2e-4 4e-4 5e-4

Commonsense reasoning 8e-5 1e-4 4e-5 5e-5 7e-5 5e-5

128
WikiText-2 - 7e-4 5e-4 - 2e-4 5e-4

GSM8K - 7e-4 5e-4 - 5e-4 4e-4
Arithmetic reasoning - 7e-4 6e-4 - 3e-4 5e-4

per-channel
WikiText-2 7e-4 4e-4 4e-4 2e-4 2e-4 5e-4

GSM8K 4e-4 4e-4 4e-4 4e-4 5e-4 5e-4
Arithmetic reasoning 6e-4 8e-4 3e-4 2e-4 4e-4 5e-4

16


	Introduction
	Background
	Method
	Calibrated Quantization and Low-Rank Initialization
	Post-Training Quantization
	Generalized Low-rank Approximation


	Experiment
	Implementation details
	Fine-tuning Results
	Ablation study

	Related Work
	Concluding Remarks
	Experimental Details
	Language modeling
	Arithmetic reasoning
	Commonsense reasoning


