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ABSTRACT

Model quantization is to discretize weights and activations of a deep neural network
(DNN). Unlike previous methods that manually defined the quantization hyperpa-
rameters such as precision (bitwidth), dynamic range (minimum and maximum
discrete values) and stepsize (interval between discrete values), this work pro-
poses a novel differentiable approach, named Differentiable Dynamic Quantization
(DDQ), to automatically learn all of them. It possesses several appealing benefits.
(1) Unlike previous works that applied the rounding operation to discretize values,
DDQ provides a unified perspective by formulating discretization as a matrix-
vector product, where different values of the matrix and vector represent different
quantization methods such as mixed precision and soft quantization, and their
values can be learned differentiably making different hidden layers in a DNN used
different quantization methods. (2) DDQ is hardware-friendly and can be easily im-
plemented using a low-precision matrix-vector multiplication, making it naturally
capable in wide spectrum of hardwares. (3) The matrix variable in DDQ is care-
fully reparameterized to reduce the number of parameters from O(22b) to O(log 2b),
where b is the bit width. Extensive experiments show that DDQ outperforms prior
arts on various advanced networks and benchmarks. For instance, compared to
the full-precision models, MobileNetv2 trained with DDQ achieves comparable
top1 accuracy on ImageNet (71.7% vs 71.9%), while ResNet18 trained with DDQ
increases accuracy by 0.5%. These results relatively improve recent state-of-the-art
quantization methods by 70% and 140% compared to the full-precision models.

1 INTRODUCTION

Deep Neural Networks (DNNs) have made significant progress in many applications. However,
the large memory and computations impede the mass deployment of DNNs such as on portable
devices. Model quantization (Courbariaux et al., 2015; 2016; Zhu et al., 2017) that discretizes the
weights and activations of a DNN to reduce its resource consumption becomes an important topic,
but it is challenging because of two aspects. Firstly, different DNN architectures allocate different
memory and computational complexity in different layers, making quantization suboptimal when
the quantization parameters such as bitwidth, dynamic range and stepsize are freezed in each layer.
Secondly, gradient-based training of quantized DNNs is difficult (Bengio et al., 2013), because the
gradient of previous quantization function may vanish, i.e. backpropagation through a quantized
DNN may return zero gradients.

Previous quantization approaches typically used the round operation. They can be summarized below.
Let x and xq be values before and after quantization, we have xq = sign(x) · d · F(b|x|/d+ 0.5e),
where | · | denotes the absolute value, sign(·) returns the sign of x, d is the stepsize (i.e. the
interval between two adjacent discrete values after quantization), and b·e denotes the round function1.
Moreover, F(·) is a function that maps a rounded value to a desired quantization level (i.e. a desired
discrete value). For instance, the above equation would represent a uniform quantizer2 when F is
an identity mapping, or it would represent a power-of-two (nonuniform) quantizer (Miyashita et al.,
2016; Zhou et al., 2017; Liss et al., 2018; Zhang et al., 2018a) when F is a function of power of two.

1A function returns the closest discrete value given a continuous value.
2A uniform quantizer has uniform quantization levels, which means the stepsizes between any two adjacent

discrete values are the same.
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Figure 1: Compare methods in 4-bit low-precision quantization. (a) compares quantization levels between the
uniform and nonuniform (power-of-two) (Miyashita et al., 2016; Zhou et al., 2017; Liss et al., 2018; Zhang et al.,
2018a) quantizers, where x- and y-axis represent values before and after quantization respectively (the float
values are scaled between 0 and 1 for illustration). We highlight the dense region with higher “resolution” by
arrows. We see that there is no dense region in uniform quantization because the intervals between levels are the
same, while a single dense region in power-of-two quantization. (b), (c) and (d) show the weight distributions
of different layers of a MobileNetv2 (Sandler et al., 2018) trained on ImageNet (Russakovsky et al., 2015),
and the corresponding quantization levels learned by the proposed DDQ. We see that the weight distributions
are Gaussian-like in (b), heavy-tailed in (c), and two-peak bell-shaped in (d). DDQ enables learning arbitrary
quantization levels with different number of dense regions to model these distributions.

Although quantization using the round function is straightforward, we often see that the quantized val-
ues in a low-precision DNN after rounding have quantization error in each layer, i.e. large ‖x− xq‖2,
which significantly decreases the model’s accuracy compared to its full-precision counterpart even
after retraining network weights. To improve the accuracy of the quantized network, recent quantizers
were proposed to reduce ||x − xq||2. For example, TensorRT (Migacz, 2017), FAQ (McKinstry
et al., 2018), PACT (Choi, 2018) and TQT (Jain et al., 2019) introduced and optimized an additional
parameter that represents the dynamic range to calibrate the quantization levels, in order to better fit
the distributions of the full-precision network (i.e. reduce the shift between xq and x). Besides, prior
arts (Miyashita et al., 2016; Zhou et al., 2017; Liss et al., 2018; Zhang et al., 2018a) also adopted
non-uniform quantization levels to discretize values into a set of discrete numbers with different
stepsizes, which could better capture the original distributions.

6 a better quantizer, most of the above approach are focused on reducing the shift of values after
and before quantization, by learning or carefully designing several distribution parameters of the
quantizer.

Despite the above quantizers reduce certain shift between values before and after quantization, they
are achieved by using constraints (or assumptions) that are not sufficient to quantize recent DNNs,
limiting their generalization performance. For example, one main assumption is that the network
weights follow bell-shaped distributions. However, we find that this is not always plausible in
many common architectures such as ResNet (He et al., 2016), Inception (Szegedy et al., 2015),
MobileNet (Sandler et al., 2018; Howard et al., 2017) and ShuffleNet (Zhang et al., 2018b; Ma et al.,
2018). For instance, Fig.1(b-d) plot different weight distributions of a MobileNetv2 (Sandler et al.,
2018) trained on ImageNet, which is a representative lightweight architecture deploying on embedded
devices. We find that these distributions have irregular forms in different feature channels, especially
when depthwise or group convolution (Xie et al., 2017; Huang et al., 2018; Zhang et al., 2017) are used
to improve computational efficiency. Although this problem has been identified in (Krishnamoorthi,
2018; Jain et al., 2019; Goncharenko et al., 2019), showing that per-channel/per-tensor scaling or
bias correction could compensate some of the problems, however none of them could bridge the
gap and maintain accuracy of the low-precision (e.g. 4-bit) DNNs compared to their full-precision
counterparts. A full summary and comparisons with previous work are provided in Appendix A.3.
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To address the above issue, this work proposes Differentiable Dynamic Quantization (DDQ), which
automatically learns all the quantization parameters including arbitrary bitwidths, quantization levels,
and dynamic ranges for different layers in a DNN in a differentiable manner. DDQ has appealing
benefits that prior arts may not have and makes the below contributions. (1) Instead of using round
function, DDQ presents a novel perspective by formulating quantization as matrix-vector product in
a unified framework, where different values of the matrix and vector represent different quantization
approaches, such as mixed-precision and soft quantization3. The quantization parameters in DDQ are
fully trainable in different layers of a DNN and updated together with the network weights, making
it generalizable to different network architectures and datasets. (2) DDQ is hardware-friendly and
can be easily implemented using a low-precision matrix-vector multiplication (GEMM), making it
capable in wide spectrum of hardwares. Moreover, a matrix reparameterization method is devised
to reduce the matrix variable in DDQ from O(22b) to O(log 2b), where b is the number of bits. (3)
Extensive experiments show that DDQ outperforms prior arts on various advanced networks such
as ResNet and MobileNet, as well as benchmarks such as ImageNet and CIFAR10. For instance,
compared to the full-precision models, MobileNetv2 trained with 4-bit DDQ achieves comparable
top1 accuracy on ImageNet (71.7% versus 71.9%), while ResNet18 trained with DDQ improves
accuracy by 0.5%. These results relatively improve the recent state-of-the-art quantizers by 70% and
140% compared to the full-precision counterparts.

2 OUR APPROACH

2.1 PRELIMINARY AND NOTATIONS

In network quantization, each continuous value x ∈ R is discretized to xq , which is an element from
a set of discrete values. This set is denoted as a vector q = [q1, q2, · · · , qn]T (termed quantization
levels). We have xq ∈ q and n = 2b where b is the bitwidth. Existing methods often represent q
using uniform or powers-of-two distribution introduced below.

Uniform Quantization. The quantization levels qu of a symmetric b-bit uniform quantizer (Uhlich
et al., 2020) is

qu(θ) =

[
−1, · · · , −2

2b−1 − 1
,
−1

2b−1 − 1
,−0,+0,

1

2b−1 − 1
,

2

2b−1 − 1
, · · · , 1

]T
× c+ x̄, (1)

where θ = {b, c}T denotes a set of quantization parameters, b is the bitwidth, c is the clipping
threshold, which represents a symmetric dynamic range4, and x̄ is a constant scalar (a bias) used
to shift qu5. For example, qu(θ) is shown in the upper plot of Fig.1(a) when c = 0.5 and x̄ = 0.5.
Although uniform quantization could be simple and effective, it assumes the weight distribution is
uniform that is implausible in many recent DNNs.

Powers-of-Two Quantization. The quantization levels qp of a symmetric b-bit powers-of-two
quantizer (Miyashita et al., 2016; Liss et al., 2018) is

qp(θ) =
[
−2−1, · · · ,−2−2

b−1+1,−0,+0, 2−2
b−1+1, · · · , 2−1

]T
× c+ x̄. (2)

As shown in the bottom plot of Fig.1(a) when c = 1 and x̄ = 0.5, qp(θ) has a single dense region
that may capture a single-peak bell-shaped weight distribution.

In Eqn.(1-2), both uniform and power-of-two quantizers would fix q and optimize θ, which contains
the clipping threshold c and the stepsize denoted as d = 1/(2b − 1) (Uhlich et al., 2020). Although
they learn the dynamic range and stepsize, they have an obvious drawback, that is, the predefined
quantization levels cannot fit varied distributions of weights or activations during training.

2.2 DYNAMIC DIFFERENTIABLE QUANTIZATION (DDQ)

Formulation. Instead of freezing the quantization levels, DDQ learns all quantization hyperparame-
ters. Let Q(x;θ) be a function with a set of parameters θ and xq = Q(x;θ) turns a continuous value

3Each continuous value could be discretized to different discrete numbers (i.e. quantization levels) in order
to ease optimization (Louizos et al., 2018).

4In Eqn.(1), the dynamic range is [−c, c].
5Note that ‘0’ appears twice in order to assure that qu is of size 2b.
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x into an element of q denoted as xq ∈ q, where q is initialized as a uniform quantizer and can be
implemented in low-precision values according to hardware’s requirement. DDQ is formulated by
low-precision matrix-vector product,

xq = Q(x;θ) = qT
U

ZU
xo, where xio =

{
1 if i = argminj | 1

ZU
(UTq)j − x|

0 otherwise
, (3)

where xio ∈ xo, xo ∈ {0, 1}n×1 denotes a binary vector that has only one entry of ‘1’ while others
are ‘0’, in order to select one quantization level from q for the continuous value x. Eqn.(3) has
parameters θ = {q,U}, which are trainable by stochastic gradient descent (SGD), making DDQ
automatically capture weight distributions of the full-precision models as shown in Fig.1(b-d). Here
U ∈ {0, 1}n×n is a binary block-diagonal matrix and ZU is a constant normalizing factor used to
average the discrete values in q in order to learn bitwidth. Intuitively, different values of xo, U and q
make DDQ represent different quantization approaches as discussed below. To ease understanding,
Fig.2(a) compares the computational graph of DDQ with the rounding-based methods. We see that
DDQ learns the entire quantization levels instead of just the stepsize d as prior arts did.

Discussions of Representation Capacity. DDQ represents a wide range of quantization methods.
For example, when q = qu (Eqn.(1)), ZU = 1, and U = I where I is an identity matrix, Eqn.(3)
represents an ordinary uniform quantizer. When q = qp (Eqn.(2)), ZU = 1, and U = I , Eqn.(3)
becomes a power-of-two quantizer. When q is learned, it represents arbitrary quantization levels with
different dense regions.

Moreover, DDQ enables mixed precision training when U is block-diagonal. For example, as shown
in Fig.2(b), when q has length of 8 entries (i.e. 3-bit), ZU = 1

2 , and U = Diag (12×2, · · · ,12×2),
where Diag(·) returns a matrix with the desired diagonal blocks and its off-diagonal blocks are
zeros and 12×2 denotes a 2-by-2 matrix of ones, U enables Eqn.(3) to represent a 2-bit quantizer by
averaging neighboring discrete values in q. For another example, when U = Diag (14×4,14×4) and
ZU = 1

4 , Eqn.(3) turns into a 1-bit quantizer. Besides, when xo is a soft one-hot vector with multiple
non-zero entries, Eqn.(3) represents soft quantization that one continuous value can be mapped to
multiple discrete values.

Efficient Inference on Hardware. DDQ is a unified quantizer that supports adaptive q as well as
predefined ones e.g. uniform and power-of-two. It is friendly to hardware with limited resources. As
shown in Eqn.(3), DDQ reduces to a uniform quantizer when q is uniform. In this case, DDQ can be
efficiently computed by a rounding function as the step size is determined by U after training (i.e.
don’t have U and matrix-vector product when deploying in hardware like other uniform quantizers).
In addition, DDQ with adaptive q can be implemented using low-precision general matrix multiply
(GEMM). For example, let y be a neuron’s activation, y = Q(w;θ)xq = qT U

ZU
woxq, where xq is

a discretized feature value, w is a continuous weight parameter to be quantized, and U and wo are
binary matrix and one-hot vector of w respectively. To accelerate, we can calculate the major part
U
ZU
woxq using low-precision GEMM first and then multiplying a short 1-d vector q, which is shared

for all convolutional weight parameters and can be float32, float16 or INT8 given specific hardware
requirement. The latency in hardware is compared in Appendix A.4.2.

2.3 MATRIX REPARAMETERIZATION OF U

In Eqn.(3), U is a learnable matrix variable, which is challenging to optimize in two aspects. First,
to make DDQ a valid quantizer, U should have binary block-diagonal structure, which is difficult
to learn by using SGD. Second, the size of U (number of parameters) increases when the bitwidth
increases i.e. 22b. Therefore, rather than directly optimizeU in the backward propagation using SGD,
we explicitly constructU by composing a sequence of small matrices in the forward propagation (Luo
et al., 2019).

A Kronecker Composition for Quantization. The matrix U can be reparameterized to reduce
number of parameters from 22b to log 2b to ease optimization. Let {U1,U2, · · · ,Ub} denote a set
of b small matrices of size 2-by-2, U can be constructed by U = U1 ⊗ U2 ⊗ · · · ⊗ Ub, where ⊗
denotes Kronecker product and eachUi (i = 1...b) is either a 2-by-2 identity matrix (denoted as I) or
an all-one matrix (denoted as 12×2), makingU block-diagonal after composition. For instance, when
b = 3, U1 = U2 = I andU3 = 12×2, we haveU = Diag (12×2, · · · ,12×2) and Eqn.(3) represents
a 2-bit quantizer as shown in Fig.2(b).
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Figure 2: Illustrations of DDQ. (a) compares computations of DDQ with the round operator. Unlike rounding
methods that only learn the stepsize d, DDQ treats q as trainable variable, learning arbitrary quantization
levels. (b) illustrates that DDQ enables mixed-precision training by using different binary block-diagonal
matrix U . The circles in light and dark indicate ‘0’ and ‘1’ respectively. For example, when q is of length
8 entries (i.e. 3-bit) and U = Diag (12×2, · · · ,12×2), where Diag(·) returns a matrix with the desired
diagonal blocks while the off-diagonal blocks are zeros and 12×2 denotes a 2-by-2 matrix of ones, we have
q̂ = UTq that enables DDQ to represent a 2-bit quantizer by averaging neighboring discrete values in q. Another
example is a 1-bit quantizer when U = Diag (14×4,14×4). (c) shows relationship between gating variables
g = {gi}bi=1 and U . For example, when the entries of g = [1, 0, 0] are arranged in an descending order and let
s =

∑b
i=1 gi = 1+ 0+ 0 = 1, U has 2s = 21 = 2 number of all-one diagonal blocks. In such case, DDQ is a

s = 1 bit quantizer.

To pursue a more parameter-saving composition, we further parameterize each Ui by using a single
trainable variable. As shown in Fig.2(c), we have Ui = giI + (1− gi)12×2, where gi = H(ĝi) and
H(·) is a Heaviside step function6, i.e. gi = 1 when ĝi ≥ 0; otherwise gi = 0. Here {gi}bi=1 is a set
of gating variables with binary values. Intuitively, each Ui switches between a 2-by-2 identity matrix
and a 2-by-2 all-one matrix.

In other words, U can be constructed by applying a series of Kronecker products involving only
12×2 and I . Instead of updating the entire matrix U , it can be learned by only a few variables
{ĝi}bi=1, significantly reducing the number of parameters from 2b × 2b = 22b to b. In summary, the
parameter size to learnU is merely the number of bits. With Kronecker composition, the quantization
parameters of DDQ is θ = {q, {ĝi}bi=1}, which could be different for different layers or kernels
(i.e. layer-wise or channel-wise quantization) and the parameter size is negligible compared to the
network weights, making different layers or kernels have different quantization levels and bithwidth.

Discussions of Relationship between U and g. Let g denote a vector of gates [g1, · · · , gb]T. In
general, different values of g represent different block-diagonal structures of U in two aspects.
(1) Permutation. As shown in Fig.2(c), {gi}bi=1 should be permuted in an descending order by
using a permutation matrix. Otherwise, U is not block-diagonal when g is not ordered, making
DDQ an invalid quantizer. For example, g = [0, 1, 0] is not ordered compared to g = [1, 0, 0].
(2) Sum of Gates. Let s =

∑b
i=1 gi be the sum of gates and 0 ≤ s ≤ b. We see that U is a

block-diagonal matrix with 2s diagonal blocks, implying that UTq has 2s different discrete values
and represents a s-bit quantizer. For instance, as shown in Fig.2(b,c) when b = 3, g = [1, 0, 0]T and
U = Diag (14×4,14×4), we have a s = 1 + 0 + 0 = 1 bit quantizer. DDQ enables to regularize
the value of s in each layer given memory constraint, such that optimal bitwidth can be assigned to
different layers of a DNN.

3 TRAINING WITH DDQ

DDQ is used to train a DNN with mixed precision to satisfy memory constraints, which reduce the
memory to store the network weights and activations, making a DNN appealing for deployment in
embedded devices.

6The Heaviside step function returns ‘0’ for negative arguments and ‘1’ for positive arguments.
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3.1 DNN WITH MEMORY CONSTRAINT

Consider a DNN with L layers trained using DDQ, the forward propagation of each layer can be
written as

yl = F
(
Q(W l;θl) ∗Q(yl−1) +Q(bl;θl)

)
, l = 1, 2, · · · , L (4)

where ∗ denotes convolution, yl and yl−1 are the output and input of the l-th layer respectively, F
is a non-linear activation function such as ReLU, and Q is the quantization function of DDQ. Let
W l ∈ RCl

out×C
l
in×K

l×Kl

and bl denote the convolutional kernel and bias vector (network weights),
where Cout, Cin, and K are the output and input channel size, and the kernel size respectively.
Remind that in DDQ, {gli}bi=1 is a set of gates at the l-th layer and the bitwidth can be computed by
sl =

∑b
i=1 g

l
i. For example, the total memory footprint (denoted as ζ) can be computed by

ζ(s1, · · · , sL) =

L∑
l=1

CloutC
l
in(Kl)22s

l

, (5)

which represents the memory to store all network weights at the l-th layer when the bitwidth is sl.

If the desired memory is ζ(b1, · · · , bL), we could use a weighted product to approximate the Pareto
optimal solutions to train a b-bit DNN. The loss function is

min
W l,θl

L({W l}Ll=1, {θl}Ll=1) ·
(
ζ(b1, · · · , bL)

ζ(s1, · · · , sL)

)α
s.t. ζ(s1, · · · , sL) ≤ ζ(b1, · · · , bL), (6)

where the loss L(·) is reweighted by the ratio between the desired memory and the practical memory
similar to (Tan et al., 2019; Deb, 2014). α is a hyper-parameter. We have α = 0 when the memory
constraint is satisfied. Otherwise, α < 0 is used to penalize the memory consumption of the network.

3.2 UPDATING QUANTIZATION PARAMETERS

All parameters of DDQ can be optimized by using SGD. This section derives their update rules. We
omit the superscript ‘l’ for simplicity.

Gradients w.r.t. q. To update q, we reparameterize q by a trainable vector q̃, such that q =
R(q̃)(xmax−xmin)/(2b− 1) +xmin, in order to make each quantization level lies in [xmin, xmax],
where xmax and xmin are the maximum and minimum continuous values of a layer, and R() denotes
a uniform quantization function transforming q̃ to given bq bits (bq < b). Let x and xq be two vectors
stacking values before and after quantization respectively (i.e. x and xq), the gradient of the loss
function with respect to each entry qk of q is given by

∂L
∂qk

=

N∑
i=1

∂L
∂xiq

∂xiq
∂qk

=
1

ZU

∑
i∈Sk

∂L
∂xiq

, (7)

where xiq = Q(xi;θ) is the output of DDQ quantizer and Sk represents a set of indexes of the
values discretized to the corresponding quantization level qk. In Eqn.(7), we see that the gradient
with respect to the quantization level qk is the summation of the gradients ∂L

∂xi
q

. In other words, the
quantization level in denser regions would have larger gradients. The gradient w.r.t. gate variables
{gi}bi=1 are discussed in Appendix A.1.

Gradient Correction for xq . In order to reduce the quantization error ‖xq − x‖22, a gradient
correction term is proposed to regularize the gradient with respect to the quantized values,

∂L
∂x
← ∂L

∂xq
,

∂L
∂xq

← ∂L
∂xq

+ λ(xq − x), (8)

where the first equation holds by applying STE. In Eqn.(8), we first assign the gradient of xq to that
of x and then add a correction term λ(xq − x). In this way, the corrected gradient can be back-
propagated to the quantization parameters q and {gi}bi=1 in Eqn.(7) and (14), while not affecting
the gradient of x. Intuitively, this gradient correction term is effective and can be deemed as the `2
penalty on ‖x− xq‖22. Please note that this is not equivalent to simply impose a `2 regularization
directly on the loss function, which would have no effect when STE is presented.
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MobileNetV2 ResNet18

Training Epochs Model Size Bitwidth (W/A) Top-1 Accuracy Model Size Bitwidth (W/A) Top-1 Accuracy
Full Precision 120 13.2 MB 32 71.9 44.6 MB 32 70.5
DDQ (ours) 30 1.8 MB 4 / 8 (mixed) 71.8 5.8 MB 4 / 8 (mixed) 71.0
DDQ (ours) 90 1.8 MB 4 / 8 (mixed) 71.9 5.8 MB 4 / 8 (mixed) 71.2
Deep Compression (Han et al., 2016) - 1.8 MB 4 / 32 71.2 - - -
HMQ (Habi et al., 2020) 50 1.7 MB 4 / 32 (mixed) 71.4 - - -
HAQ (Wang et al., 2019) 100 1.8 MB 4 / 32 (mixed) 71.5 - - -
WPRN (Mishra et al., 2017) 100 - - - 5.8 MB 4 / 8 66.4
BCGD (Baskin et al., 2018) 80 - - - 5.8 MB 4 / 8 68.9
LQ-Net (Zhang et al., 2018a) 120 - - - 5.8 MB 4 / 32 70.0
DDQ (ours) 90 1.8 MB 4 / 4 (mixed) 71.8 5.8 MB 4 / 4 (mixed) 71.1
DDQ (ours) 30 1.8 MB 4 / 4 (mixed) 71.5 5.8 MB 4 / 4 (mixed) 70.9
DDQ (ours) 90 1.8 MB 4 / 4 (fixed) 71.3 5.8 MB 4 / 4 (fixed) 70.9
DDQ (ours) 30 1.8 MB 4 / 4 (fixed) 70.7 5.8 MB 4 / 4 (fixed) 70.6
HMQ (Habi et al., 2020) 50 1.7 MB 4 / 4 (mixed) 70.9 - - -
APOT (Li et al., 2020) 30 1.8 MB 4 / 4 69.7* - - -
APOT (Li et al., 2020) 100 1.8 MB 4 / 4 71.0* 5.8 MB 4 / 4 70.7
LSQ (Esser et al., 2020) 90 1.8 MB 4 / 4 70.6* 5.8 MB 4 / 4 71.1
PROFIT (Park & Yoo, 2020) 140 1.8 MB 4 / 4 71.5 - - -
SAT (Jin et al., 2019) 150 1.8 MB 4 / 4 71.1 - - -
PACT (Choi, 2018) 110 1.8 MB 4 / 4 61.4 5.6 MB 4 / 4 69.2
DSQ (Gong et al., 2019) 90 1.8 MB 4 / 4 64.8 5.8 MB 4 / 4 69.6
TQT (Jain et al., 2019) 50 1.8 MB 4 / 4 67.8 5.8 MB 4 / 4 69.5
Uhlich et al. (Uhlich et al., 2020) 50 1.6 MB 4 / 4 (mixed) 69.7 5.4 MB 4 / 4 70.1
QIL (Jung et al., 2019) 90 - - 5.8 MB 4 / 4 70.1
LQ-Net (Zhang et al., 2018a) 120 - - 5.8 MB 4 / 4 69.3
NICE (Baskin et al., 2018) 120 - - 5.8 MB 4 / 4 69.8
BCGD (Baskin et al., 2018) 80 - - 5.8 MB 4 / 4 67.4
Dorefa-Net (Zhou et al., 2016) 110 - - 5.8 MB 4 / 4 68.1

Table 1: Comparisons between DDQ and state-of-the-art quantizers on ImageNet. “W/A” means bitwidth
of weight and activation respectively. Mixed precision approaches are annotated as “mixed”. "-" denotes the
absence of data in previous papers. We see that DDQ outperforms prior arts with much less training epochs.
* denotes our re-implemented results using public codes.

Implementation Details. Training DDQ can be simply implemented in existing platforms such as
PyTorch and Tensorflow. The forward propagation only involves differentiable functions except
the Heaviside step function. In practice, STE can be utilized to compute its gradients, i.e. ∂xq

∂x =

1q̂min≤x≤q̂max and ∂gk
∂ĝk

= 1|ĝk|≤1, where q̂min and q̂max are minimum and maximum value in
q̂ = UTq. Our Appendix A.2 provides detailed procedure. The codes will be released.

4 EXPERIMENTS

We extensively compare DDQ with existing state-of-the-art methods and conduct multiple ablation
studies on ImageNet (Russakovsky et al., 2015). The results on CIFAR dataset (Krizhevsky et al.,
2009) are in Appendix A.4.3. The reported validation accuracy are simulated on Qualcomm AIMET
with INT8 (bq = 8), if no other states.

Comparisons with Existing Methods. Table 1 compares DDQ with existing methods in terms of
model size, bitwidth, and top1 accuracy on ImageNet using MobileNetv2 and ResNet18, which are
two representative networks for portable devices. We see that DDQ outperforms recent state-of-
the-art approaches by significant margins in different settings. For example, MobileNetV2+DDQ
yields 71.7% accuracy when quantizing weights and activations using 4 and 8 bit respectively, while
achieving 71.5% when training with 4/4 bit. These results only drop 0.2% and 0.4% compared to the
32-bit full-precision model, outperforming all other quantizers, which may decrease performance
a lot (2.4%∼10.5%). For ResNet18, DDQ outperforms all methods even the full-precision model
(i.e. 71.0% vs 70.5%). More importantly, DDQ is trained for 30 epochs, reducing the training time
compared to most of the reported approaches that trained much longer (i.e. 90 or 120 epochs). Note
that PROFIT (Park & Yoo, 2020) achieves 71.5% on MobileNetv2 using a progressive training
scheme (reducing bitwidth gradually from 8-bit to 5, 4-bit, 15 epochs each stage and 140 epochs in
total.) This is quite similar to mixed-precision learning process of DDQ, in which bitwidth of each
weight is initialized to maximum bits and learn to assign proper precision to each layer by decreasing
the layerwise bitwidth. More details can see in Fig.5 in Appendix A.4.

Fig.3 shows the converged bitwidth for each layer of MobileNetv2 and ResNet18 trained with DDQ.
We have two interesting findings. (1) Both networks tend to apply more bitwidth in lower layers,
which have fewer parameters and thus being less regularized by the memory constraint. This allows
to learn better feature representation, alleviating the performance drop. (2) As shown in the right hand
side of Fig.3, we observe that depthwise convolution has larger bitwidth than the regular convolution.
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Figure 3: Learned quantization policy of each layer for ResNet18 and MobileNetV2 trained by DDQ on
ImageNet. DDQ learns to allocate more bits to lower layers and depthwise layers of the networks.

UQ PoT DDQ (fixed) DDQ (mixed)
Maximum bitwidth 4 4 4 6 8
Target bitwidth 4 4 4 4 4
Weight memory footprint 1× 1× 1× 0.98× 1.03×
Top-1 Accuracy (MobileNetV2) 65.2 68.6 70.7 71.2 71.5
Weight memory footprint 1× 1× 1× 1.01× 0.96×
Top-1 Accuracy (ResNet18) 70.0 67.8 70.6 70.8 70.9

Table 2: Comparisons between PACT(Choi et al., 2018)+UQ, PACT(Choi et al., 2018)+PoT and DDQ on
ImageNet. "DDQ (fixed)" and "DDQ (mixed)" indicate DDQ trained with fixed / mixed bitwidth. We see that
DDQ+mixed surpasses all counterparts.

As found in (Jain et al., 2019), the depthwise convolution with irregular weight distributions is the
main reason that makes quantizing MobileNet difficult. With mixed-precision training, DDQ allocates
more bitwidth to depthwise convolution to alleviate this difficulty.

Ablation Study I: mixed versus fixed precision. Table 2 compares DDQ trained using mixed
precision to different fixed-precision quantization setups, including DDQ with fixed precision,
uniform (UQ) and power-of-two (PoT) quantization by PACT (Choi et al., 2018) with gradient
calibration (Jain et al., 2019; Esser et al., 2020; Jin et al., 2019). When the target bitwidth is 4, we see
that DDQ trained with mixed precision significantly reduces accuracy drop of MobileNetv2 from
6.7% (e.g. PACT+UQ) to 0.4%.

Ablation Study II: adaptive resolution. We evaluate the proposed adaptive resolution by training
DDQ with homogeneous bitwidth (i.e. fixed U ) and only updating q. Table 3 shows performance of
DNNs quantized with various quantization levels. We see that UQ and PoT incur a higher loss than
DDQ, especially for MobileNetV2. We ascribe this drop to the irregular weight distribution as shown
in Fig 1. Specially, when applying 2-bit quantization, DDQ still recovers certain accuracy compared
to the full-precision model, while UQ and PoT may not converge. To our knowledge, DDQ is the
first method to successfully quantize 2-bit MobileNet without using full precision in the activations.

Ablation Study III: gradient correction. We demonstrate how gradient correction improves DDQ.
Fig 4(a) plots the training dynamics of layerwise quantization error i.e. ‖Wq −W‖22. We see that
“DDQ+gradient correction” achieves low quantization error at each layer (average error is 0.35),
indicating that the quantized values well approximate their continuous values. Fig. 4(b) visualizes the

Full Precision UQ PoT DDQ(fix) DDQ(fix) + GradCorrect
Bitwidth (W/A ) 32 / 32 4 / 8 4 / 8 4 / 8 4 / 8
Top-1 Accuracy (MobileNetV2) 71.9 67.1 69.2 71.2 71.6
Top-1 Accuracy (ResNet18) 70.5 70.6 70.8 70.8 70.9
Bitwidth (W/A) 32 / 32 4 / 4 4 / 4 4 / 4 4 / 4
Top-1 Accuracy (MobileNetV2) 71.9 65.2 68.4 70.4 70.7
Top-1 Accuracy (ResNet18) 70.5 70.0 68.8 70.6 70.8
Bitwidth (W/A) 32 / 32 2 / 4 2 / 4 2 / 4 2 / 4
Top-1 Accuracy (MobileNetV2) 71.9 - - 60.1 63.7
Top-1 Accuracy (ResNet18) 70.5 66.5 63.8 67.4 68.5
Bitwidth (W/A) 32 / 32 2 / 2 2 / 2 2 / 2 2 / 2
Top-1 Accuracy (MobileNetV2) 71.9 - - 51.1 55.4
Top-1 Accuracy (ResNet18) 70.5 62.8 62.4 65.7 66.6

Table 3: Ablation studies of adaptive resolution and gradient correction. “UQ” and “PoT” denote uniform and
power-of-two quantization respectively. “DDQ(fix)+GradCorrect” refers to DDQ with gradient correction but
fixed bitwidth. “-” denotes training diverged. “4/8” denotes training with 4-bit weights and 8-bit activations.
Here we find that DDQ with gradient correction shows stable performances gains against DDQ (w/o gradient
correction) and UQ/PoT baselines.
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trained quantization levels. DDQ trained with gradient correction would capture the distribution to
the original weights, thus reducing the quantization error. See Appendix A.4 for more details.

5 CONCLUSION

This paper introduced a differentiable dynamic quantization (DDQ), a versatile and powerful algo-
rithm for training low-bit neural network, by automatically learning arbitrary quantization policies
such as quantization levels and bitwidth. DDQ represents a wide range of quantizers. DDQ did
well in the challenging MobileNet by significantly reducing quantization errors compared to prior
work. We also show DDQ can learn to assign bitwidth for each layer of a DNN under desired
memory constraints. Unlike recent methods that may use reinforcement learning(Wang et al., 2019;
Yazdanbakhsh et al., 2018), DDQ doesn’t require multiple epochs of retraining, but still yield better
performance compared to existing approaches.
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A APPENDIX

A.1 GRADIENT DERIVATION

We derive the gradient with respect to quantization parameters θ = {q, {ĝi}bi=1} in detail.

Gradient w.r.t. q. Let x,xq be two vectors stacking values before and after quantization (x and xq)
respectively, the gradient of the loss function with respect to each entry qk is given by

∂L
∂qk

=

N∑
i=1

∂L
∂xiq

∂xiq
∂qk

(9)

where xiq = Q(xi;θ). From the definition of Q(xi;θ) in Eqn.(3), we obtain

∂xiq
∂qk

=

{
1
ZU

if k = argminj | 1
ZU

(UTq)j − xi|
0 otherwise

(10)

Hence, we have
∂L
∂qk

=
1

ZU

∑
i∈Sk

∂L
∂xiq

, (11)

where Sk = {m |m ∈ [N ] and (xmo )k = 1} represents a set of indexes of the values discretized to
the quantization level qk.

Remark. ForA ∈ Rm1×n1 ,B ∈ Rm2×n2 , then

B ⊗A = Tm1,m2
(A⊗B)Tn1,n2

(12)

where Tm,n =
∑m
i=1(ei

T ⊗ In ⊗ ei) =
∑n
j=1(ej ⊗ Im ⊗ ejT) is the perfect shuffle permutation

matrix. ei denotes the i-th canonical vector that is the vector with 1 in the i-th coordinate and 0
elsewhere. ⊗ is the Kronecker product. In is a n-by-n identity matrix.

Gradients w.r.t. gk. The gradients back-propagated through the Heaviside step function gk = H(ĝk)
can be approximated by the Straight-Through Estimator (STE) (Bengio et al., 2013; Yin et al., 2019a).
Denote Ũk = ⊗Kt=k+1Ut ⊗

k−1
t=1 Ut, U can be reformulated by Remark A.1 as follows

U =
1

ZU

(
T k−1
2b−1,2

)
Uk ⊗ Ũk

(
T k−1
2b−1,2

)
T. (13)

Note that ZU is also a function of gk and ZU =
∏b
i=1(2− gi), the derivative of U w.r.t. gk can be

derived as follows:

∂U

∂gk
=

1

ZU
T k−1
2b−1,2

[[
0 −1
−1 0

]
⊗ Ũk

](
T k−1
2b−1,2

)
T

− 1

ZU (2− gk)
T k−1
2b−1,2

[[
1 1− gk

1− gk 1

]
⊗ Ũk

](
T k−1
2b−1,2

)
T

=
1

ZU (2− gk)
T k−1
2b−1,2

[[
1 −1
−1 1

]
⊗ Ũk

](
T k−1
2b−1,2

)
T.

(14)

where T k−1
2b−1,2

is a perfect shuffle permutation matrix (Davio, 1981). From Eqn.(14), we obtain
∂U
∂gk
|gk=1 = 2b+1 ∂U

∂gk
|gk=0, implying that DDQ assigns smaller gradients to those inhibited gate

(gk = 0). In other words, once gk decreases to 0, it is unlikely to return to 1, making DDQ appealing
to achieve mixed-precision training. With Eqn.(9) and (14), the quantization parameters of DDQ and
the weights of the network can be jointly optimized by using SGD.

A.2 TRAINING ALGORITHM

More details about training algorithm of DDQ can refer to Algorithm. 1.
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Algorithm 1 Training procedure of DDQ
Input: the full precision kernelW and bias kernel b, quantization parameter θ = {q, {ĝi}bi=1}, the

target bitwidth of bm, input activation yin.
Output: the output activation yout

1: Apply DDQ to the kernelW , bias b, input activation yin by Eqn.(3)
2: Compute the output activation yout by Eqn.(4)
3: Compute the loss L by Eqn.(6) and gradients ∂L

∂yout

4: Compute the gradient of ordinary kernel weights and bias ∂L
∂W , ∂L

∂m

5: Applying gradient correction in Eqn.(9) to compute the gradient of parameters, ∂L
∂q , ∂L

∂ĝi
by

Eqn.(7) and Eqn.(8)
6: UpdateW ,m, ĝi and q.

Method Differentiablity Mixed Precision Quantization Level Step Size Quantizer Calibration Gradient Calibration
X-Nor-Net (Rastegari et al., 2016) X UQ
DoReFa-Net (Zhou et al., 2016) X UQ+Tanh
WPRN (Mishra et al., 2017) X UQ+Tanh
PACT (Choi, 2018) X UQ+Tanh X X
FAQ (McKinstry et al., 2018) X UQ X
NICE (Baskin et al., 2018) X UQ X
LSQ (Esser et al., 2020) X UQ X X X
BCGD (Yin et al., 2019b) X UQ X
TQT (Jain et al., 2019) X UQ X X X
HAQ (Wang et al., 2019) X UQ X X
Releq (Yazdanbakhsh et al., 2018) X UQ
Uhlich et al. (Uhlich et al., 2020) X X UQ/Non-UQ X X X
INQ (Zhou et al., 2017) Non-UQ
PoT (Miyashita et al., 2016) X Non-UQ
HWGQ (Cai et al., 2017) X Non-UQ X X X
QIL (Jung et al., 2019) X Learned X X
LQ-Net (Zhang et al., 2018a) X Learned X
DDQ (ours) X X Learned X X X

Table 4: Overall summary of state-of-art quantiztaion methods. "Differentiablity" column shows
whether this method can be implemented with one-stage and gradient-based methods. "UQ" and
"Non-UQ" indicate uniform / non-uniform quantization respectively. "Step Size" column denotes
the ability to adjust quantization step size. "Quantizer Calibration" means if the method calibrates
the quantizer with centre points and thresholds. "Gradient Calibration" shows if the quantization
gradients for parameters in quantizer are corrected.

A.3 SUMMARY OF EXISTING QUANTIZATION APPROACH

Table 4 gives an overall summary of existing quantization methods. For uniform quantization methods,
to reduce quantization error, (Zhou et al., 2016; Mishra et al., 2017; Choi, 2018) use tanh function to
project quantization levels, but they restrict quantization levels in specific patterns. Besides, other
methods such as (Choi, 2018; McKinstry et al., 2018; Jain et al., 2019), calibrate quantizer with
estimated or learned centre points and thresholds, also yielding better performance. (Miyashita et al.,
2016; Zhou et al., 2017; Cai et al., 2017) show that non-uniform quantization levels can outperform
uniform counterparts in specific situations, and they can perform better if we learn them from data, as
discussed in (Zhang et al., 2018a; Jung et al., 2019). More recently, Mixed precision quantization
techniques are introduced by (Wang et al., 2019; Yazdanbakhsh et al., 2018) and (Uhlich et al.,
2020), further improving quantization methods by assigning different bitwidth to each layer using
Reinforcement-Learning or Gradient-based methods. As shown in Table 4, the proposed DDQ can
integrate main properties of above methods, learning to select optimal quantization policy according
to corresponding data and model architectures.

A.4 EXPERIMENTAL DETAILS

A.4.1 EVALUATION ON IMAGENET

The ImageNet dataset consists of 1.2M training and 50K validation images. For ResNet and Mo-
bileNet, we adopt standard data preprocessing in the original paper (He et al., 2016; Sandler et al.,
2018). All DNN+DDQs are trained for 30 epochs with cosine learning rate scheme(Loshchilov &
Hutter, 2016) like (Esser et al., 2020). We choose PACT (Choi, 2018) with gradient calibration (Jain
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(a) Training dynamics of quantization error. (b) Learned quantization level for channels.

Figure 4: Training dynamics of quantization error in MobileNetV2. (a) compares the quantization errors of
PACT+UQ, PACT+PoT, and DDQ with/without gradient correction. DDQ with gradient correction shows stable
convergence and lower quantization errors than counterparts. (b) compares the converged quantization levels of
DDQ for each channel with/without gradient correction, and dense regions are marked by arrows. Here we can
also see that quantization levels learned by DDQ with gradient correction could fit original data distribution
better.
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Figure 5: Evolution of bitwidth of each layer when training ResNet18. We can see that DDQ can learn to assign
bitwidth to each layer under given memory footprint constraints.

et al., 2019; Esser et al., 2020; Jin et al., 2019; Li et al., 2020) pipeline as baselines. All hyper-
parameters follow prior arts such as PACT(Choi, 2018) for fair comparisons, e.g. l2-regularization
coefficient λ = 1e − 2. Network weights are quantized using uniform quantization (UQ), power-
of-two quantization (PoT) and DDQ respectively, and all activations are uniformly quantized for
fair comparison. For PACT, parameterized clipping values are initialized to 6.0 for activations and
3.0 for weights. We adopt per-tensor quantization for activations and per-channel quantiztaion for
weights as recommended in (Rastegari et al., 2016; Krishnamoorthi, 2018; Goncharenko et al., 2019)
to handle the widely-varying range between channels. Note that weights of all layers are quantized
with UQ/PoT/DDQ directly except those of first and last layer, for which we employ 8-bit uniform
quantization to observe standard practice of all state-of-the-art works. In addition, training DDQ
will cause extra computation, but is still efficient and comparable to training UQ and PoT. Specially,
training DDQ-MobileNetV2 cost 29.3 min averagely for each epoch on 8 Nvidia GTX 1080Ti, less
than 5% longer than PoT (28.4 min) and UQ (27.9 min).

Mixed Precision Quantization. Mixed-precision quantization is new in the literature and proven
to be superior to their fixed bitwidth counterparts (Wang et al., 2019; Uhlich et al., 2020; Cai &
Vasconcelos, 2020; Habi et al., 2020). DDQ is naturally used to perform mix-precision training
by a binary block-diagonal matrix U . In DDQ, each layer is quantized between 2-bit and a given
maximum precision, which may be 4-bit / 6-bit / 8-bit. Items of gate {ĝi}bi=1 are initialized all
positively to 1e− 8, which means U is identity matrix and precision of layers are initialized to their
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Figure 6: Training dynamics of fixed precision DDQ w/ (or w/o) gradient correction.

Methods bitwidth(w/a) Mixed-precision Latency(ms) Top-1(%)
FP 32/32 7.8 71.9
UQ 4/8 3.9 67.1
DDQ (fixed)1 4/8 4.5 71.6
DDQ (mixed UQ)2 4/8 X 4.1 70.8
DDQ3 4/8 X 5.1 71.7

Table 5: Comparison of Quantized MobileNetv2 runing on mobile DSPs. 1 Fixed precision DDQ. 2 Mixed
precision DDQ with uniform quantizer constraints. 3 Original DDQ. “w/a” means the bitwidth for network
weights and activations respectively.

maximum values. We set target bitwidth as 4, constraining models to 4-bit memory footprint, and
then jointly train {ĝi}bi=1 with other parameters of corresponding model and quantizers. For memory
constraints, α is set to −0.02 empirically. We use learning rates 1e− 8 towards {ĝi}bi=1, ensuring
sufficient training when precision decreasing. Fig. 5 depicts the evolution of bitwidth for each layer
when quantizing a 4-bit ResNet18 using DDQ with maximum bitwidth 8. As demonstrated, DDQ
could learn to assign bitwidth to each layer, in a data-driven manner.

Gradient Correction. For fixed-precision DDQ, we have an interesting observation that the proposed
gradient correction could stabilize training. For instance, Fig. 6 illustrates training dynamics for
2/4-bit DDQ-quantized MobileNetV2. With gradient correction, the quantized model not only yields
better performance (both training and validation), but also converges with less jitters in validation
accuracy.

A.4.2 EVALUATION ON MOBILE DEVICES

In Table 5. we further evaluate DDQ on mobile platform to trade off of accuracy and latency. We
deploy the trained DDQ model on Qualcomm Snapdragon 865 processor, evaluating model latency
using SNPE engine (Qualcomm, 2019). With implementation stated in section 2.2, DDQ achieves
over 3% accuracy gains compared to UQ baseline. Moreover, in contrast to FP model, DDQ runs
with about 40% less latency with just a small accuracy drop (<0.3%). Note that all tests here are
running under INT8 simulation due to the support of the platform. We believe the acceleration ratio
can be larger in the future when deploying DDQ on more compatible hardwares.
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Methods Accuracy

2-bit 3-bit 4-bit

ResNet20
(FP : 92.4)

DoReFa-Ne (Zhou et al., 2016) 88.2 89.9 90.5
PACT (Choi, 2018) 89.7 91.1 91.7
LQ-Net (Zhang et al., 2018a) 90.2 91.6 -
SAWB (Choi et al., 2018) 90.5 - -
TQT (Jain et al., 2019) 91.2 - -
Uhlich et al. (Uhlich et al., 2020) 91.4 - -
DDQ (mixed) 91.6 92.2 92.7

Table 6: Comparison of Cifar-10 Top1-accuracy towards existing quantization methods. All the reported results
use 32-bit activation by following prior work.

A.4.3 EVALUATION ON CIFAR-10

Additionally, we quantize ResNet20 on Cifar-10 with mixed precision. For weight quantization, we
adopt 2-/3-/4-bit target bitwidth and initialize DDQ with maximum bitwidth 8. Tabel 6 compares
our results with other weight-only quantization methods. For Cifar-10, all layers of the model are
quantized using DDQ. The quantized models are trained for 200 epochs with learning rate 0.01, batch
size 1024 and cosine scheduler.
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