
Model-Agnostic Graph Dataset Compression with the Tree Mover’s Distance

Mika Sarkin Jain 1 Stefanie Jegelka 2 Ishani Karmarkar 1 Luana Ruiz 3 Ellen Vitercik 1

Abstract
Graph neural networks have demonstrated remark-
able success across a variety of domains. How-
ever, the acquisition and management of large-
scale graph datasets poses several challenges. Ac-
quiring graph-level labels can be prohibitively
costly, especially for applications in the bio-
sciences and combinatorial optimization. Storage
and privacy constraints can pose additional chal-
lenges. In this work, we propose an approach for
data subset selection for graph datasets, which
downsamples graphs and nodes based on the Tree
Mover’s Distance. We provide new efficient meth-
ods for computing the TMD in our setting; em-
pirical results showing our approach outperforms
other node and graph sampling methods; and the-
oretical results bounding the decrease in accuracy
caused by training on the downsampled graphs.
Surprisingly, we find that with our method, we can
subsample down to 1% of the number of graphs
and 10% of the number of nodes on some datasets,
with minimal degradation in model accuracy.

1. Introduction
Graph neural networks (GNNs) are a popular architec-
ture for learning over graph-structured data. Despite their
widespread popularity and demonstrated success (Bongini
et al., 2022; Zhou et al., 2020; Peng et al., 2021; Fan et al.,
2019; Peng et al., 2021; Zhang & Chen, 2018), training
GNNs remains challenging because the datasets can be mas-
sive, both in terms of the size (number of nodes) of each
graph, as well as the number of graphs in the dataset.

Large-scale datasets can pose many challenges to training
GNNs. For instance, training may be computationally in-
tractable (Hashemi et al., 2024; Yan et al., 2020; Zeng et al.,
2021). First of all, obtaining supervision signals can be

1Stanford University, Stanford, CA United States
2Massachusetts Institute of Technology, Cambridge, MA United
States 3Johns Hopkins University, Baltimore, MA United States.
Correspondence to: Ishani Karmarkar <ishanik@stanford.edu>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

Figure 1. Node subsampling. Given node budget k, we want to
find a subgraph of k nodes with minimum TMD from the original.

expensive on large graphs or on datasets consisting of large
graphs. This is the case, for example, when GNNs are used
to model molecular properties for computational drug dis-
covery (Igarashi et al., 2024; Shen et al., 2020; Jiang et al.,
2021). Likewise, storing and loading massive graphs into
memory can be slow and/or expensive (Huang et al., 2024;
Hamilton et al., 2017; Da San Martino et al., 2012) or may
raise privacy concerns (Wu et al., 2022). GNNs have also
been employed to circumvent expensive simulation, e.g.,
in molecular dynamics (Gasteiger et al., 2021; Park et al.,
2021; Li et al., 2022), where the cost of labeling larger in-
stances grows quickly with graph size. Similarly, GNNs
have been applied for disease prediction (Sun et al., 2020;
Zheng et al., 2022), in which case labeling a single graph
may require expensive clinical or diagnostic procedures.
Additionally, there is growing interest in using GNNs to
solve challenging or costly optimization problems, in which
case the runtime to collect training labels grows with the
graph size (e.g., Bengio et al., 2021; Cappart et al., 2023;
Vesselinova et al., 2020).

A natural approach to tackle these multifaceted challenges
is subsampling. In node or graph subsampling, we aim to re-
duce the number of nodes or graphs, respectively, in a graph
dataset while preserving performance of a downstream GNN
trained on the dataset. Existing work on node and graph sub-
sampling focuses primarily on node-level tasks (e.g., node
classification), and often makes strong assumptions about
the GNN model architecture—and can even assume access
to the final model or the ability to approximate the training
trajectories on the original, unsampled dataset.

In this paper, we propose and theoretically motivate new
approaches for (1) subsampling nodes from each training
graph and (2) subsampling entire graphs in the training set
for graph-level learning tasks (e.g., graph classification and

1

Figure 2. Graph subsampling. Given a graph budget k, the goal
is to find a sample of k graphs that minimizes the total distance
(TMD) from every original graph to its closest sample.

regression). We must ensure that training a GNN on the
subsampled data has minimal accuracy reduction compared
to training on the original training set. Moreover, in prac-
tice, we often do not know a priori (i.e., before collecting,
compressing, and labeling our graph dataset) the architec-
ture or hyperparameters of the GNN. Consequently, it is
crucial that the original and subsampled datasets maintain
model-agnostic similarity, i.e., they produce similar model
behavior regardless of the downstream model.

For many GNNs, specific structural similarities—tied to the
GNN’s computations—are essential to successfully transfer
a GNN out of distribution (Yehudai et al., 2021; Chuang
& Jegelka, 2022; Ruiz et al., 2021; Levie et al., 2021; Le
& Jegelka, 2023). A GNN uses message-passing to com-
pute predictions about graphs. Initially, each node has an
embedding, which it updates by aggregating its neighbors’
embeddings and processing the result through a neural net-
work. This process repeats over L iterations—or layers—
and the nodes’ final embeddings are used to compute the
GNN’s predictions. The L-hop neighbors involved in a
node’s final embedding can be visualized via the node’s
computation tree, illustrated in Figure 3. Computation trees
play a critical role in the transfer and stability of GNNs
(Yehudai et al., 2021; Chuang & Jegelka, 2022; Georgiev
et al., 2022). Two nodes with similar computation trees will
likely have similar embeddings. To capture this intuition,
Chuang & Jegelka (2022) introduced a graph distance—the
Tree Mover’s Distance (TMD)—as an optimal transport dis-
tance between sets of computation trees, and demonstrated
its correlation with the performance and stability of GNNs
under data perturbations, including generalization bounds.

Based on the strong theoretical foundations provided by
TMD, our primary goal is to ensure that the TMD between
the original and subsampled graphs is small. However,
achieving this goal requires computing the TMD between
many graphs while subsampling, which poses a significant
challenge. TMD is a combinatorially complex function: the
dynamic programming algorithm developed in prior work
for computing the TMD between graphs with n nodes has a
runtime of O(Ln4) (Chuang & Jegelka, 2022). Given our
objective to reduce the size of large graphs, this runtime is
prohibitively large and presents a computational challenge

that we overcome in our methodological contributions.

Contributions. In this work, we make the following con-
tributions: We present an approach for node subsampling
that, given a budget k and a training graph, returns a sub-
graph on k nodes with low TMD from the original graph
(Figure 1). Moreover, we present an approach for graph
subsampling that, given a training set of graphs, returns k
graphs such that the total TMD between each original graph
and its closest sampled graph is small (Figure 2).

We show that if h is a GNN with minimal loss on the training
set subsampled using our methods, then h also has minimal
loss on the original training set. When subsampling nodes in
each training graph, we bound the resulting increase in loss
by the average TMD between the original and subsampled
graphs. When subsampling entire graphs, we bound the
increase in loss by the average TMD between each training
graph and the nearest graph in the subsampled set.

Given a set of candidate subgraphs, we develop a faster algo-
rithm for selecting a subgraph with minimum TMD from a
given graph. It computes the depth-L TMD between a graph
G = (V,E) and any of its subgraphs in just O(L|E|) time.
This algorithm leverages structural properties of the TMD
that we uncover, which may be of independent interest.

Our experiments demonstrate our methods outperform or
perform competitively with other standard approaches on
real-world graph learning benchmarks. For graph sampling,
our method consistently outperforms the baselines on four
benchmark datasets, achieving over 90% of the test accuracy
of the full training set for three of the datasets using 1% of
the graphs. For node subsampling, it is consistently optimal
or near-optimal across all datasets, unlike other competitive
baselines, whose performance varies significantly with the
fraction of deleted data.

2. Related work
Graph reduction, graph sparsification, and graph condensa-
tion approaches aim to to reduce the size of a graph while
minimizing the impact on test loss. Existing approaches fo-
cus on node subsampling (e.g., Hashemi et al., 2024; Tanaka
et al., 2020, and references therein), primarily for node clas-
sification and graph signal processing. These approaches
involve subsampling nodes, and do not extend to graph sub-
sampling, a critical focus of this work, and a setting which
remains largely unstudied in the graph reduction literature.
Two existing approaches to model-agnostic graph reduction
for graph classification are Herding (Welling, 2009) and
k-Centers (Farahani & Hekmatfar, 2009), which subsample
k nodes by clustering the nodes’ features into k clusters
and selecting the centers. A key advantage of our approach
is that, unlike these approaches, we leverage for the node
features and the graph structure.

2

Gradient-matching approaches (Jin et al., 2022; Zhang et al.,
2024; Fang et al., 2024) have been used for graph dataset
subsampling and ensure that the loss’s gradients remain sim-
ilar when trained on the small and large graphs. While these
are powerful methods that can aid in developing reduced
graph datasets that are smaller and more interpretable, they
are fundamentally incomparable in our setting because (1)
they assume knowledge of a downstream GNN architecture
and therefore are not model-agnostic; and (2) they require
training on the complete, unreduced graphs to generate the
gradient trajectories. This obviates several of the advan-
tages of graph reduction with respect to graph labeling and
storage costs–and these are the primary motivations for our
model agnostic setting.

Georgiev et al. (2022) study a normalized variant of TMD
to select training datasets for neural algorithmic reasoning
tasks. However, this is not agnostic to the downstream
model/task and is not directly applicable to subsampling.

3. Notation and background
Notation. An undirected, unweighted graph G =
(V,E, f) has a node set V , edges E, and node features
f ∈ Rp×|V |, where fv is the feature vector of v ∈ V . We
use NG(v) to denote the neighborhood of v ∈ V and G

to denote a set of graphs. An r-rooted tree is denoted by
T = (V,E, f, r). We use 1,0, I to denote the all ones and
zeros vectors and identity matrix, respectively. For norms,
∥·∥ denotes any norm over Rp and ∥·∥1 is the ℓ1 norm.

Message-passing neural networks (GNNs). We analyze
message-passing graph neural networks (GNNs), which
operate on graphs G = (V,E, f). For simplicity, we de-
fine Graph Isomorphism Networks (GINs) (Xu et al., 2019)
here; however, the results of Chuang & Jegelka (2022) and,
therefore, our results also apply to other GNNs. A GIN
is defined by L (learnable) functions ϕ(ℓ) : Rd → Rd,
such as (shallow) feed-forward neural networks, and a fixed
weight η > 0. Each node begins with an initial embedding
z
(0)
v = fv and updates its embedding using the following

message-passing routine:

Message passing layers: for ℓ ∈ [L− 1],

z(ℓ)v = ϕ(ℓ)
(
z(ℓ−1)
v + η

∑
u∈N(v)

z(ℓ−1)
u

)
,

Graph readout: h(G) = ϕ(L)
(∑

v∈V
z(L−1)
u

)
.

Other GNN architectures may, for instance, replace the
summations with an average (as in the case of Graph Convo-
lutional Neural Networks (GCNs) (Kipf & Welling, 2016))
or other aggregation functions (Hamilton, 2020).

Tree Mover’s Distance (TMD). The TMD was intro-
duced by Chuang & Jegelka (2022) and has found applica-

Figure 3. A graph and the depth-2 computation tree T of node r.
The set Tr(T) consists of the two boxed subtrees.

tions for graph learning under distribution shifts (Yu et al.,
2023; Georgiev et al., 2022) and adversarially robust graph
learning (Schuchardt et al., 2024). TMD is a pseudometric
on graphs based on the optimal transport distance. Like a
message passing GNN, it views a graph as a set of compu-
tation trees. A node’s computation tree is constructed by
adding the node’s neighbors to the tree level by level, as in
Figures 1 and 3.

Definition 3.1 (Computation tree). Given G = (V,E, f)
and a node v ∈ V , let T 1

v (G) = (v, ∅, {fv}, v) be a sin-
gleton v-rooted tree that consists of only the node v, no
edges, and the node feature vector fv. Inductively, we de-
fine TL

v (G) to be the depth-L computation tree of node v.
That is, TL

v (G) is a tree rooted at v obtained as follows. For
each leaf ℓ of TL−1

v (G) and each neighbor u ∈ NG(ℓ), we
add a new node ℓu to TL

v (G) and add an edge from ℓ to ℓu.
The multiset of depth-L computation trees defined by G is
denoted by TL

G := {TL
v (G)}v∈V .

We can compare graphs by comparing their computation
trees. TMD does this via a hierarchical optimal transport.

Definition 3.2 (OT distance). Let X = {xi}qi=1 and
Y = {yi}qi=1 be two multisets of q elements each. Given
a distance metric d : X × Y → R, let C ∈ Rq×q be a
matrix where Ci,j = d(xi, yj) is the transportation cost
between xi and yj . Moreover, let the set of all trans-
portation plans between X and Y be Γ(X,Y) := {γ ∈
Rq×q

+ | γ1 = γ⊤1 = 1} . The transportation cost of
γ ∈ Γ is ⟨γ,C⟩ :=

∑
i,j γi,jCi,j . The (unnormalized)

Wasserstein distance OTd is defined as OTd(X,Y) :=
qminγ∈Γ(X,Y)⟨C, γ⟩. We say γ⋆ is an optimal transport
(OT) plan if γ⋆ ∈ argminγ∈Γ(X,Y)⟨C, γ⟩.

We need a metric between trees to compute the OT distance
between sets of computation trees. TMD compares two
trees Tv, Tu by comparing their roots fv, fu and recursively
comparing their subtrees.

Definition 3.3 (Tree multisets). Given an r-rooted tree
T = (V,E, f, r), let ℓ = depth(T). We use Tr(T) to
denote the multiset of depth (ℓ − 1) computation trees
of all neighbors u ∈ NT (r), illustrated in Figure 3. (In
other words, if Tu is the subtree of T rooted at u, then

3

Tr(T) := ∪u∈NT (r)T
(ℓ−1)
u (Tu), where the union denotes a

multiset union).

TMD compares Tu(T) and Tv(T
′) via an OT distance. How-

ever, the number of subtrees could differ in Tu(T) and
Tv(T

′). Chuang & Jegelka (2022) therefore augment the
smaller set with blank trees. A blank tree T0 consists of
a single node with node features 0 ∈ Rd and no edges.
Given two tree multisets Tv(T

′) and Tu(T), the function
ρ(Tv(T

′),Tu(T)) returns two multisets of the same size,
where the smaller is padded with blank trees (see Ap-
pendix A.3 for more details). We are now ready to define a
distance metric between trees.

Definition 3.4 (Tree distance). Let Ta = (Va, Ea, fa, ra)
and Tb = (Vb, Eb, fb, rb) be two trees with ℓ :=
max(depth(Ta), depth(Tb)). Moreover, let w : Z≥0 → R
be a depth-dependent weighting function. The tree distance
(TD) between Ta and Tb is defined as

TDw(Ta, Tb) := ∥fra
a − frb

b ∥

+

{
w(ℓ) · OTTDw

(ρ(Tra(Ta),Trb(Tb))), if ℓ > 1

0, otherwise.

Here, OTTDw
is the OT distance with metric TDw. We

define the TMD, which calculates the cost of the optimal
transport plan between two graphs’ computation trees.

Definition 3.5 (Tree mover’s distance (TMD) (Chuang &
Jegelka, 2022)). Given graphs G and G′, weight function
w : Z≥0 → R, and a depth parameter L > 0, we define
TMDL

w(G,G′) := OTTDw
(ρ(TL

G ,TL
G′)). The tree norm is

∥G∥TNL
w
:= TMDL

w(G, ∅) where we overload ∅ to denote
the empty graph.

The tree distance (Definition 3.4) and TMD (Definition 3.5)
is defined recursively, so is intractable to compute naively.
However, as noted by Chuang & Jegelka (2022), it can be
computed in polynomial time using dynamic programming.

4. Node subsampling
In this section, we present an approach to subsampling the
nodes of a graph dataset while preserving the performance
of a downstream GNN trained on the subsampled dataset.
Full proofs for all results in this section can be found in
Appendix C. To this end, suppose we are given a graph
dataset X = {G1, ..., Gn} where Gi = (Vi, Ei) together
with a node budget k. Given a subset of k nodes Si ⊆
Vi, we use Gi[Si] to denote the subgraph of Gi induced
by Si. Our goal is to select these subsets so that a GNN
obtains similar readouts on the original training dataset X
and on the induced subgraphs X ′ = {G1[S1], ..., Gn[Sn]}.
Although quantifying the stability of the GNN readouts with
respect to node deletion directly is analytically intractable,

it is possible to bound the Lipschitz constant of a message-
passing GNN’s readouts in terms of the TMD.1

Theorem 4.1 (Informal, Theorem 8 in (Chuang &
Jegelka, 2022), restated). There exists a weight function
w such that given an (L − 1)-layer message-passing
GNN with readout function h : G 7→ Rd and ℓ-th
layer Lipschitz constants ϕℓ, for any two graphs Ga, Gb,
∥h(Ga)− h(Gb)∥ ≤

(∏L−1
ℓ=1 ϕℓ

)
· TMDL

w(Ga, Gb).

Theorem 4.1 implies that if the Lipschitz constants of the
GNN layers and the distances TMD(Gi[Si], Gi) are small,
then minimizing a Lipschitz loss over the subsampled train-
ing set X ′ yields a nearly optimal hypothesis over X .2 The
following corollary summarizes this observation.

Corollary 4.2. Let H be a hypothesis class of (L − 1)-
layer GNNs h : G → Rd with ℓ-th layer Lipschitz con-
stant upper-bounded by Φℓ. Let L : Rd → R be an
M -Lipschitz loss function. Let X = (G1, ..., Gn) and
(y1, ..., yn) be a set of (training) graphs and their labels.
For each i ∈ [n], let Gi = (Vi, Ei) and Si ⊂ Vi. Suppose
that M

(∏
ℓ∈[L−1] Φℓ

)
≤ c and TMDL

w(Gi, Gi[Si]) ≤ εi
for all i ∈ [n]. Finally, let ĥ ∈ H be a hypothesis with
minimum loss over the subsampled training set:

ĥ = argminh∈H

∑
i∈[n]

L(h(Gi[Si]); yi).

Then ĥ has nearly optimal loss over the original training
set as well:
1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi)

+ 2c/n ·
∑

i∈[n]
εi.

Corollary 4.2 illustrates that the loss incurred by training on
X ′ as opposed to X is bounded by an error proportional to
the average of the distances TMDL

w(Gi, Gi[Si]). Motivated
by this bound, our ideal goal would be to compute the
optimal solution to the following optimization problem:

min
S⊂V :|S|≤k

TMDL
w(G,G[S]). (1)

We face two key challenges in computing (approximately)
optimal solutions to Equation (1).

Challenge 1: exponentially large feasible set. The first
challenge is that the number of candidate subsets {S ⊂ V :
|S| ≤ k} grows exponentially with k. Therefore, we restrict
Equation (1) to an appropriately chosen feasible set S. We
discuss a natural heuristic for selecting S in Section 4.3.

1Theorem 8 as stated in (Chuang & Jegelka, 2022) is specific to
GINs, but Chuang & Jegelka (2022) generalize it to other GNNs.

2See, e.g., Section 5 of Chuang & Jegelka (2022) for an empir-
ical analysis of the tightness of these Lipschitz bounds.

4

Definition 4.3 (Relaxed node subsampling problem). Let
G = (V,E, f) be a graph, k be a node budget, and
S ⊂ {S ⊂ V : |S| ≤ k} be a set of candidate node
subsets. The relaxed node subsampling problem is defined
as: minS∈S TMDL

w(G,G[S]).

Challenge 2: computing TMDL
w(G,G[S]) is computa-

tionally expensive. Unfortunately, even this relaxed node
subsampling problem is computationally expensive, as the
TMD is expensive to compute even for a single candidate
S ∈ S. The original dynamic-programming algorithm
for computing TMDL

w(G,G[S]) requires O(L|V |4)-time in
general (Chuang & Jegelka, 2022) (regardless of |S|), bring-
ing the total runtime to O(|V |4 L |S|). Since we aim to
reduce the size of large graphs, this runtime is likely pro-
hibitive in practice. To address this challenge, we prove that,
surprisingly, Definition 4.3 is equivalent to a much simpler
optimization problem which can be solved efficiently.

Theorem 4.4. Let G = (V,E, f) be a graph, k be a node
budget, and S ⊂ {S ⊂ V : |S| ≤ k}. Then S⋆ is an
optimal solution to the relaxed node subsampling problem
if and only if S⋆ ∈ argmaxS∈S;|S|=k ∥G[S]∥TNL

w
.

We prove Theorem 4.4 in Section 4.1. Along the way, we
prove several structural properties of the TMD, which may
be of independent interest. Finally, since the algorithm
of Chuang & Jegelka (2022) would take O(L |S|4)-time to
compute the tree norm of G[S], we provide a new linear-
time dynamic programming algorithm for computing tree
norms—Algorithm 1—that better leverages the graph’s spar-
sity and runs in time only O(|E|L)-time.

Theorem 4.5. Given a graph G = (V,E, f), Algorithm 1
computes ∥G∥TNL

w
in O(|E|L)-time.

We discuss the algorithm and proof sketch in Section 4.2, but
first point out that this immediately implies a more tractable
algorithm for the relaxed node subsampling problem!

Remark 4.6. There is an algorithm to solves Definition 4.3
in O(k2 |S|) time by computing ∥G[S]∥TNL

w
for all S ⊂ S

and outputting S with largest tree norm.

4.1. Analysis of TMD between graphs and subgraphs
In this section, we sketch our proof of Theorem 4.4. The
proofs in this section are inductive in order to leverage the
recursive structure of the TMD (Definition 3.5) and tree
distance (Definition 3.4.) However, we emphasize that our
final algorithmic result Algorithm 1 is a pure dynamic pro-
gramming algorithm; i.e., the recursive formulation of TMD
is useful for the analysis but is circumvented via dynamic
programming in our proposed implementation.

Along the way towards proving Theorem 4.4, we prove
several properties of the TMD, which may be of independent

interest given the broad applications of TMD to out-of-
distribution generalization. Our analysis crucially relies on
the following technical lemma.

Lemma 4.1. Let w : Z≥0 → R be a weight function and
G = (V,E, f) a graph. Then, the identity transportation
plan I mapping Tv(G) to Tv(G[S]) for v ∈ S, and Tu(G)
to ∅ for u /∈ S is an optimal plan for the OT problem

TMDL
w(G,G[S]) = OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
. (2)

Consequently, we can decompose the right-hand-side of (2)
into three terms: a sum over the feature norms of deleted
nodes v ̸∈ S; the cost of transporting the deleted nodes’
computation trees (that is, {Tv(TL

v (G))}v ̸∈S) to the empty
set; and the cost of transporting the computation trees of
the remaining nodes v ∈ S (that is, {Tv(TL

v (G))}v∈S) to
their computation trees in G[S]. Formally,

OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
=
∑
v/∈S

∥fv∥

+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
, ∅
))

+ w(L− 1)
∑
v∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
,Tv

(
TL
v (G[S])

)))
.

Proof sketch. We prove this by induction on L. In the base
case (L = 1), the statement is equivalent to Definition 3.5.
This is because the definition of ρ and the tree distance
TD imply that OTTDw

(ρ(T1
G ,T1

G[S])) is equal to the sum of
features of the nodes that are in G but not in G[S]. That
is, OTTDw

(ρ(T1
G ,T1

G[S])) =
∑

v/∈S ∥fv∥ = ⟨C, I⟩. This
shows the lemma holds in the base case. We prove the
inductive step by leveraging recursive formulation of the
TD to reduce OT problems of depth L to OT problems of
depth L−1, and then applying the inductive hypothesis. ■

Lemma 4.1 implies the following chain rule for the TMD
induced by dropping a sequence of nodes from the graph.

Lemma 4.2. For T ⊂ S ⊂ V , TMDL
w(G,G[S \ T]) =

TMDL
w(G,G[S]) + TMDL

w(G[S], G[S \ T]).

Proof sketch. To prove the lemma, we apply Lemma 4.1
inductively over L to decompose TMDL

w(G,G[S \ T]) into
TMDL

w(G,G[S]) and TMDL
w(G[S], G[S \T]). To highlight

the intuition, we discuss the base case here and discuss
the inductive step in the full proof. If L = 1, then the
second and third terms in the expression of Lemma 4.1 are
always 0, because T1

G and T1
G[S] are multisets of depth 1, so

TG(T
L
v (G)) and TG[S](T

L
v (G[S])) are empty sets. Thus,

TMD1
w(G,G[S \ T]) =

∑
v/∈(S\T)

∥fv∥

=
∑

v/∈S
∥fv∥+

∑
v∈T

∥fv∥ ,

5

Algorithm 1: TreeNorm(G,L,w)
Input: Graph G = (V,E, f) with adjacency matrix

A, weights w : {1, ..., L− 1} → R+, L ≥ 1
1 Compute x ∈ R|V | to be the vector such that

xv = ∥fv∥ ;
2 Initialize z(0) = x;
3 for ℓ ∈ [L− 1] do
4 z(ℓ) ← Az(ℓ−1);

5 b← z(0) +
∑L−1

ℓ=1

(∏ℓ
t=1 w(L− t)

)
· z(ℓ);

return: ∥b∥1

(since T ⊂ S, {v ∈ V : v /∈ (S\T)} = {v ∈ V : v /∈ S}⊔
{v ∈ T}). Applying Lemma 4.1 to TMDL

w(G,G[S \ T])
and TMD1

w(G[S], G[S\T]) implies that the base case holds:

TMD1
w(G,G[S]) =

∑
v/∈S
∥fv∥ , and

TMD1
w(G[S], G[S \ T]) =

∑
v∈T
∥fv∥ .

The L > 1 case is similar but requires care to handle the
recursive OT terms. ■

We briefly point out why Lemma 4.2 is surprising. TMD is
a pseudo-metric on graphs; so, in general, we should expect
the following triangle inequality TMDL

w(G,G[S \ T]) ≤
TMDL

w(G,G[S]) + TMDL
w(G[S], G[S \ T]) to hold. How-

ever, Lemma 4.1 says that T ⊂ S ⊂ V is enough to ensure
that the inequality is in fact an equality. Intuitively, this
means that TMD is additive along any sequence of vertex-
induced subgraphs that reduces the full graph G to the empty
graph. We use this observation to prove Theorem 4.4.

Proof of Theorem 4.4. Let S ∈ S. By Lemma 4.2 with
T = V \ S, we have that ∥G∥TNL

w
= TMDL

w(G,G[S]) +

∥G[S]∥TNL
w
. Consequently, maxS∈S;|S|=k is equivalent to

maxS∈S;|S|=k ∥G∥TNL
w
−TMDL

w(G,G[S]), which is in turn
equivalent to minS∈S;|S|=k TMDL

w(G,G[S]). ■

4.2. Faster algorithm for computing tree norms
We next leverage Lemma 4.1 to obtain Algorithm 1, a
faster algorithm for computing ∥G∥TNL

w
for G = (V,E, f).

The original implementation would require O(L |V |4)
time (Chuang & Jegelka, 2022), whereas ours has run-
time O(L|E|). Algorithm 1 is based on the fact that by
Lemma 4.1, is that ∥G∥TNL

w
is essentially a weighted sum of

the number of vertices in all of its L-hop computation trees.
For each tree, nodes in level ℓ receive weight w(L− ℓ+1).
Algorithm 1 computes this weighted sum. Its runtime is
dominated by the cost of L matrix-vector multiplies with the
adjacency matrix, which requires O(|E|)-time. The proof
of correctness and runtime (Theorem 4.5) is in Appendix C.

4.3. Heuristic for selecting S

We now propose our heuristic for constructing the set of
candidate subsets S in our experiments. Most real-world
networks are scale-free and small-world, and hence can
be well-modeled by random graphs, e.g., preferential at-
tachment, configuration models, and inhomogeneous ran-
dom graphs (Bollobás & Riordan, 2004; Newman & Watts,
1999). These graphs converge locally to graph limits (Van
Der Hofstad, 2024). By a “transitive” argument, we can
view real-world networks as parts of sequences converging
to graph limits in the same sense. Alimohammadi et al.
(2023) showed that for such graphs, sampling nodes’ local
BFS trees (Definition 4.7) asymptotically preserves motifs
of the graph limit (see Appendix A).

Definition 4.7 (k-BFS subset). Given G = (V,E, f) and
v ∈ V , let ℓk be the deepest level such that the v-rooted
BFS tree of depth ℓk has at most k nodes (breaking ties in
a fixed but arbitrary way). The k-BFS subset of v, denoted
SBFS(v;k), is the set of nodes at distance at most ℓk from v.

We define the set of candidate subsets S = {SBFS(v;k)}v∈V

as the nodes’ k-BFS subsets. This definition of S is model-
agnostic as it is determined solely by the graph structure
and is independent of the downstream mode architecture or
hyperparameters. In sufficiently sparse graphs S is efficient
to compute; however, in denser graphs, there are several
previously studied approaches for subsampling the k-BFS
subsets for improved efficiency (see, e.g. (Alimohammadi
et al., 2023) and references therein) for an overview.

5. Graph subsampling
We now present an approach that uses TMD to subsam-
ple the number of graphs in a dataset while preserving the
performance of a downstream GNN trained on the sub-
sampled dataset. Omitted proofs are in Section C. Let
X = {G1, ..., Gn} be a graph dataset. Given a budget
k, the goal is to identify a subset I ⊂ [n] of size k such
that a GNN obtains similar readouts and loss on the original
training set X and on the subsampled set {Gi}i∈I. We must
ensure the selected set I is representative of the full dataset.
We propose selecting I to minimize the medoids objective.

Definition 5.1 (Medoids objective). Let X = {G1, ..., Gn}
be a graph dataset and I ⊂ [n] with |I| ≤ k. The medoids
objective value of I on X with respect to TMDL

w is defined

fTMDL
w
(I;X) = 1/|X| ·

∑
i∈[n]

min
j∈I

TMDL
w(Gi, Gj).

For j ∈ I, let τj be the number of graphs in X
closest to Gj (the j-th medoid’s cluster size): τj :=∣∣{i : TMDL

w(Gi, Gj) < TMDL
w(Gi, Gk), ∀k ̸= j ∈ I}

∣∣ ,
breaking ties arbitrarily.

The following lemma shows how we can bound the differ-

6

ence in a GNN’s loss on the subsampled dataset I ⊂ X and
the original dataset X in terms of this medoids objective.

Lemma 5.1. Let H be a hypothesis class of (L− 1)-layer
GNNs h : G→ Rd with ℓ-th layer Lipschitz constant upper-
bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss
function. Let y = (y1, ..., yn) be labels for X and I be a
subset of [n]. Then for any GNN h ∈ H and G ∈ G,

1

n

∣∣∑
i∈I

τiL(h(Gi); yi)−
∑
i∈[n]

L(h(Gi); yi)
∣∣ ≤

M ·
∏

ℓ∈[L−1]

Φℓ · fTMDL
w
(I;X).

Proof sketch. We use the Lipschitzness and Theorem 4.1 to
bound the average deviation in the loss on X and on I. ■

Lemma 5.1 implies that if M ·
∏

ℓ∈[L−1] Φℓ · fTMDL
w
(I;X)

is small and we minimize loss over the subsampled training
set, we obtain a hypothesis with nearly optimal loss over the
entire training set. We summarize this observation below.

Corollary 5.2. Suppose M
(∏

ℓ∈[L−1] Φℓ

)
≤ c and

fTMDL
w
(I;X) ≤ ε. Let ĥ ∈ H be the hypothesis minimizing

loss on the subsampled graphs
∑

i∈I τiL(h(Gi); yi). Then

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi) + 2cε.

Corollary 5.2 illustrates that the additional loss incurred
by training on the subsampled graphs as opposed to X is
bounded by an error proportional to fTMDL

w
(I;X). This

motivates us to formulate the graph subsampling problem as
the problem of computing I that minimizes fTMDL

w
(I;X).

Definition 5.3 (Graph subsampling problem). Let X =
{G1, ..., Gn} be a set of graphs and k a graph budget. In the
graph subsampling problem, we must select a k-subset I ⊂
X that minimizes the k-medoids objective fTMDL

w
(I;X).

k-medoids is NP-hard (Kazakovtsev & Rozhnov, 2020), but
there are efficient approximations, e.g., in Python (Buit-
inck et al., 2013). Consequently, the main computational
bottleneck is the computation of TMDs between pairs of
graphs G1, G2 ∈ X , which may be large if the graphs have
many nodes. However, these computations can be sped
up in practice, by combining graph subsampling with our
node subsampling approach (see Section 4 and Remark 4.6),
which is computationally efficient. See Appendix B for a
detailed discussion and experiments.

6. Experiments
We evaluate our sampling methods on four graph bench-
mark datasets from the TUDataset graph benchmark library

(Morris et al., 2020). All GNNs were trained for 50 epochs
with an 80%-train set and 20%-test split on CPUs. For
MUTAG, COX2, and BZX we used a 3-layer Graph Isomor-
phism Network (Xu et al., 2019). For IMDB-BINARY we
used a 3-layer Graph Convolutional Neural Network (GCN)
(Kipf & Welling, 2016). Hyper-parameter details are in
Appendix A.4. In all figures, the line plots and shadows
indicate the means and 95% confidence intervals across
256 random trials. Figure 4 compares our TMD-based
k-medoids graph subsampling procedure from Section 5
against alternative methods and training on the full dataset.

We are unaware of previous work that studies graph subsam-
pling, but we compare against two clustering approaches
based on Herding (Welling, 2009) and k-Centers (Farahani
& Hekmatfar, 2009). These approaches are typically used
for node subsampling and coreset selection in other domains
(see Section 2). We adapt them to graph subsampling by
defining distances between graphs using three popular graph
kernels: Weisfeiler Lehman kernel (WL) (Shervashidze
et al., 2011), the WL optimal assignment kernel (WL-OT)
(Kriege et al., 2016), graphlet sampling (GS) kernel (Borg-
wardt & Kriegel, 2005), and the shortest paths (SP) kernel.
Figure 4 shows that our method consistently outperforms
uniform random sampling, Herding (with respect to all ker-
nels), and k-Centers (with respect to all kernels) on all four
benchmarks. Our approach achieves over 90% of the test
accuracy of the full training set for MUTAG, COX2, and
BZR using just 1% of the graphs. When graph labeling is
very costly, this may be especially powerful.

Figure 5 compares our TMD-based node subsampling pro-
cedure from Section 4 against several alternative bench-
marks and against training on the full dataset. For node
subsampling, we only need to compute tree norms, so we
use Algorithm 1. We compare against model-agnostic node
selection policies Herding (Welling, 2009) and k-Centers
(Farahani & Hekmatfar, 2009), and approaches by Salha
et al. (2022) and Razin et al. (2023). While other approaches
exhibit significant variability across datasets and subsam-
pling levels, our approach consistently has the strongest or
near-strongest performance across all datasets, sometimes
requiring as little as 10% of the original number of nodes to
achieve similar test accuracy as training on the full graphs.

7. Discussion
We proposed new node and graph subsampling approaches
for compressing graph datasets while preserving perfor-
mance of downstream GNNs. Our methods leverage new
theoretical analysis of the TMD to ensure the subsam-
pled data maintains structural similarities with the original
dataset, and we bound the excess loss incurred by subsam-
pling. Our methods are enabled by an algorithm we de-
veloped for selecting subgraphs with minimal TMD from a

7

Figure 4. Graph subsampling. Accuracy vs. fraction of graphs in the training set, subsampled with our approach and alternative methods.

Figure 5. Node subsampling. Comparing accuracy vs. fraction of nodes in training graphs, subsampled with model-agnostic methods.

given graph, providing runtime speedup over prior work. Ex-
periments demonstrate that our method outperforms other

comparable model-agnostic methods for node and graph
subsampling.

8

References
Alimohammadi, Y., Ruiz, L., and Saberi, A. A local graph

limits perspective on sampling-based gnns. arXiv preprint
arXiv:2310.10953, 2023.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bollobás, B. and Riordan, O. Coupling scale-free and classi-
cal random graphs. Internet Mathematics, 1(2):215–225,
2004.

Bongini, P., Pancino, N., Scarselli, F., and Bianchini, M.
Biognn: how graph neural networks can solve biological
problems. In Artificial Intelligence and Machine Learning
for Healthcare, pp. 211–231. Springer, 2022.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels
on graphs. pp. 8–pp. IEEE, 2005.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pp. 108–122, 2013.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance: Bridg-
ing graph metrics and stability of graph neural networks.
In Conference on Neural Information Processing Systems
(NeurIPS), volume 35, pp. 2944–2957, 2022.

Da San Martino, G., Navarin, N., and Sperduti, A. A mem-
ory efficient graph kernel. In International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 2012.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and
Yin, D. Graph neural networks for social recommenda-
tion. In Proceedings of the International World Wide Web
Conference (WWW), pp. 417–426, 2019.

Fang, J., Li, X., Sui, Y., Gao, Y., Zhang, G., Wang, K.,
Wang, X., and He, X. Exgc: Bridging efficiency and
explainability in graph condensation. In Proceedings of
the International World Wide Web Conference (WWW),
2024.

Farahani, R. Z. and Hekmatfar, M. Facility location: con-
cepts, models, algorithms and case studies. Springer
Science & Business Media, 2009.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Uni-
versal directional graph neural networks for molecules.
In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Georgiev, D., Lio, P., Bachurski, J., Chen, J., Shi, T., and
Giusti, L. Beyond Erdos-Renyi: Generalization in al-
gorithmic reasoning on graphs. In Learning on Graphs
(LoG), 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. 30, 2017.

Hamilton, W. L. Graph representation learning. Morgan &
Claypool Publishers, 2020.

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduc-
tion: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024.

He, Y., Zhang, X., Huang, J., Rozemberczki, B., Cucuringu,
M., and Reinert, G. Pytorch geometric signed directed:
A software package on graph neural networks for signed
and directed graphs. In Learning on Graphs Conference,
pp. 12–1. PMLR, 2024.

Huang, K., Jiang, H., Wang, M., Xiao, G., Wipf, D., Song,
X., Gan, Q., Huang, Z., Zhai, J., and Zhang, Z. Freshgnn:
Reducing memory access via stable historical embed-
dings for graph neural network training. 17(6):1473–
1486, 2024.

Igarashi, Y., Kojima, R., Matsumoto, S., Iwata, H., Okuno,
Y., and Yamada, H. Developing a gnn-based ai model to
predict mitochondrial toxicity using the bagging method.
49(3):117–126, 2024.

Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang,
Z., Shen, C., Cao, D., Wu, J., and Hou, T. Could graph
neural networks learn better molecular representation for
drug discovery? a comparison study of descriptor-based
and graph-based models. 13:1–23, 2021.

Jin, W., Tang, X., Jiang, H., Li, Z., Zhang, D., Tang, J.,
and Yin, B. Condensing graphs via one-step gradient
matching. In International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 720–730, 2022.

KAWANO, K., KOIDE, S., SHIOKAWA, H., and AMA-
GASA, T. Multi-dimensional fused gromov wasserstein
discrepancy for edge-attributed graphs. pp. 683–693,
2024.

Kazakovtsev, L. A. and Rozhnov, I. Application of al-

9

gorithms with variable greedy heuristics for k-medoids
problems. Informatica, 44(1), 2020.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. 2016.

Kriege, N. M., Giscard, P.-L., and Wilson, R. On valid
optimal assignment kernels and applications to graph
classification. 29, 2016.

Le, T. and Jegelka, S. Limits, approximation and size trans-
ferability for gnns on sparse graphs via graphops. In
Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Levie, R., Huang, W., Bucci, L., Bronstein, M. M., and Ku-
tyniok, G. Transferability of spectral graph convolutional
neural networks. Journal of Machine Learning Research,
2021.

Li, Z., Meidani, K., Yadav, P., and Farimani, A. B. Graph
neural networks accelerated molecular dynamics. J.
Chem. Phys., 156, 2022.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Newman, M. E. and Watts, D. J. Scaling and percolation in
the small-world network model. Physical review E, 60
(6):7332, 1999.

Park, C. W., Kornbluth, M., Vandermause, J., Wolverton,
C., Kozinsky, B., and Mailoa, J. P. Accurate and scalable
graph neural network force field and molecular dynam-
ics with direct force architecture. npj Computational
Materials, 7(73), 2021.

Peng, Y., Choi, B., and Xu, J. Graph learning for combi-
natorial optimization: a survey of state-of-the-art. pp.
119–141, 2021.

Razin, N., Verbin, T., and Cohen, N. On the ability of graph
neural networks to model interactions between vertices.
In Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Ruiz, L., Gama, F., and Ribeiro, A. Graph neural networks:
Architectures, stability, and transferability. Proceedings
of the IEEE, 109(5):660–682, 2021.

Salha, G., Hennequin, R., Tran, V. A., and Vazirgiannis, M.
A degeneracy framework for scalable graph autoencoders,
2022.

Schuchardt, J., Scholten, Y., and Günnemann, S. (Prov-
able) adversarial robustness for group equivariant tasks:
Graphs, point clouds, molecules, and more. 2024.

Shen, X., Liu, Y., Wu, Y., and Xie, L. Molgnn: Self-
supervised motif learning graph neural network for drug
discovery. In Machine Learning for Molecules Workshop
at NeurIPS, pp. 4, 2020.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. 12(9), 2011.

Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C.,
Skianis, K., and Vazirgiannis, M. Grakel: A graph kernel
library in python. Journal of Machine Learning Research,
21(54):1–5, 2020.

Sun, Z., Yin, H., Chen, H., Chen, T., Cui, L., and Yang,
F. Disease prediction via graph neural networks. 25(3):
818–826, 2020.

Tanaka, Y., Eldar, Y. C., Ortega, A., and Cheung, G. Sam-
pling signals on graphs: From theory to applications.
IEEE Signal Processing Magazine, 37(6):14–30, 2020.

Van Der Hofstad, R. Random graphs and complex networks.
Cambridge University Press, 2024.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Bo-
man, M. Learning combinatorial optimization on graphs:
A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

Welling, M. Herding dynamical weights to learn. In Pro-
ceedings of the 26th annual international conference on
machine learning, pp. 1121–1128, 2009.

Wu, B., Li, J., Yu, J., Bian, Y., Zhang, H., Chen, C., Hou, C.,
Fu, G., Chen, L., Xu, T., et al. A survey of trustworthy
graph learning: Reliability, explainability, and privacy
protection. arXiv preprint arXiv:2205.10014, 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In Proceedings of the
International Conference on Learning Representations
(ICLR), 2019.

Yan, B., Wang, C., Guo, G., and Lou, Y. Tinygnn: Learning
efficient graph neural networks. In International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pp. 1848–1856, 2020.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning (ICML), 2021.

Yu, J., Liang, J., and He, R. Mind the label shift of
augmentation-based graph ood generalization. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 11620–11630, 2023.

10

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Accurate, efficient and scalable training
of graph neural networks. Journal of Parallel and Dis-
tributed Computing, 147:166–183, 2021.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. 31, 2018.

Zhang, T., Zhang, Y., Wang, K., Wang, K., Yang, B., Zhang,
K., Shao, W., Liu, P., Zhou, J. T., and You, Y. Two
trades is not baffled: Condense graph via crafting rational
gradient matching. arXiv preprint arXiv:2402.04924,
2024.

Zheng, S., Zhu, Z., Liu, Z., Guo, Z., Liu, Y., Yang, Y.,
and Zhao, Y. Multi-modal graph learning for disease
prediction. 41(9):2207–2216, 2022.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. 1, 2020.

11

A. Additional background
A.1. Random graph limits
As we discussed in Section 4.3, most real networks are scale-free and small-world, and hence well-modeled by random
graph models, such as preferential attachment, configuration models and inhomogenous random graphs. As shown by (Van
Der Hofstad, 2024), such random graph models produce graphs that can be shown to converge locally to a limit (G, o),
where G is a graph to which we assign a root node o. By a “transitive” argument, it makes sense to see real networks as
parts of sequences converging to graph limits in a similar sense.

To be precise, let G∗ be the set of all possible rooted graphs. A limit graph is defined as a measure over the space G∗ with
respect to the local metric

dloc((G1, o1), (G2, o2)) =
1

1 + infk{k : Bk(G1, o1) ̸≃ Bk(G2, o2)}

where Bk(G, v) is the k-hop neighborhood of node v, and ≃ is the graph isomorphism. A sequence of graphs converging to
this limit is defined as follows.

Definition A.1 (Local convergence (Alimohammadi et al., 2023)). Let Gn = (Vn, En) denote a finite connected graph. Let
(Gn, on) be the rooted graph obtained by letting on ∈ Vn be chosen uniformly at random. We say that (Gn, on) converges
locally to the connected rooted graph (G, o), which is a (possibly random) element of G∗ having law µ, when, for every
bounded and continuous function h : G∗ → R,

E[h(Gn, on)]→ Eµ(G, o)

where the expectation on the right-hand-side is with respect to (G, o) having law µ, while the expectation on the left-hand-side
is with respect to the random vertex on.

A.2. Other graph kernels
TMD is one recently proposed pseudometric on graphs, or graph kernel (Chuang & Jegelka, 2022). It is appealing in
our setting because it characterizes the robustness of GNNs (see Theorem 4.1.) Other popular graph kernels include the
Weisfeiler Lehman (WL) kernel (Shervashidze et al., 2011), Weisfeiler Lehman Optimal Transport (WL-OT) (Kriege et al.,
2016), Shortest Paths kernel ((Borgwardt & Kriegel, 2005)), and FGW (KAWANO et al., 2024). To our knowledge, these
kernels do not have comparable robustness guarantees to TMD.

A.3. Additional details about the TMD
We use Tn

0 to denote n disjoint copies of T0. Given two tree multisets Tu(T), Tv(T ′), we define ρ to be the following
augmentation function, which returns two multi-sets of the same size:

ρ : (Tv(T
′),Tu(T)) 7→

(
Tv(T

′) ∪ T0
max(|Tu(T)|−|Tv(T ′)|,0),Tu(T) ∪ T0

max(|Tv(T)|−|Tu(T ′)|,0)
)
.

A.4. Additional details about experiments
All experiments were run on a 16-core machine with 64 GB of RAM. The GNNs were implemented using Pytorch Geometric
(He et al., 2024). The TMD weight function was set according to Pascal’s triangle rule (Chuang & Jegelka, 2022, Theorem
8) and our implementation of TMD was based on (Chuang & Jegelka, 2022).3 We used the Graph Kernel Library (Siglidis
et al., 2020) for the kernel distances in our experiments.

For MUTAG, COX2, and BZX we used a GIN model with the following hyperparameters:

• Number of layers: 3

• Learning rate: 0.01

• Batch size: 128

• Number of hidden channels per layer: 32

3One consideration with is the runtime required to compute the k-medoids. However, reduced labeling cost, reduced data storage, and
privacy are often more significant priorities.

12

• Aggregation function: global add pool

• Weight regularization: N/A

• Optimizer: Adam

• Loss: BCE with logits

• Dropout: N/A

For IMDB we used a GCN model with the following hyperparameters:

• Number of layers: 3

• Learning rate: 0.01

• Batch size: 32

• Number of hidden channels per layer: 32

• Aggregation function: global add pool

• Weight regularization: N/A

• Optimizer: Adam

• Loss: BCE with logits

• Dropout: N/A

We refrained from using batch normalization in both models. Models were implemented using PytorchGeometric (Fey &
Lenssen, 2019).

B. Runtime speedups for graph subsampling
In this section, we show that the pairwise TMD computations required for our graph subsampling approach can be computed
more efficiently using the following two-stage approach. Recall that k-medoids algorithms require querying distances (in
our case, TMD) between two graphs G1, G2. However, if G1 and G2 have many nodes, computing TMDL

w(G1, G2) using
the dynamic programming algorithm of (Chuang & Jegelka, 2022) may be computationally expensive. Fortunately, we can
leverage our efficient methods for node subsampling to efficiently compute approximations of TMDL

w(G1, G2) as follows.

1. First, we use our node subsampling approach to create new graphs G′
1 and G′

2 such that TMDL
w(G1, G

′
1) and

TMDL
w(G2, G

′
2) are minimized while ensuring that G′

1 and G′
2 have fewer nodes than G1 and G2, respectively.

2. Second, we run a k-medoids clustering algorithm using approximate pairwise distances TMDL
w(G

′
1, G

′
2) in place of

TMDL
w(G1, G2). Triangle inequality ensures that∣∣TMDL

w(G
′
1, G

′
2)− TMDL

w(G1, G2)
∣∣ ≤ TMDL

w(G1, G
′
1) + TMDL

w(G2, G
′
2).

So, whenever TMDL
w(G1, G

′
1) and TMDL

w(G2, G
′
2) are not too large (which is the goal of our node-subsampling

procedure), we know that TMDL
w(G

′
1, G

′
2) is a good approximation for TMDL

w(G1, G2).

To illustrate that this method can work well in practice, we conducted an experiment showing the accuracy of our k-medoids
graph subsampling approach when using approximate TMD computations on the MUTAG dataset, as described above. For
each pair of graphs G1, G2 in the MUTAG dataset, we computed p-approximate TMDs TMDL

w(G
p
1, G

p
2) and ran our graph

subsampling approach using TMDL
w(G

p
1, G

p
2) where Gp denotes the graph G after using our node subsampling approach to

delete a p-fraction of nodes in the graph. We then use TMDL
w(G

p
1, G

p
2) as a proxy for TMDL

w(G1, G2) in our k-medoids
clustering step. Our results indicate that we can afford to delete a large portion (up to 70 percent) of the nodes prior to
computing pairwise TMDs with only a small effect on accuracy– and computing TMDL

w(G
p
1, G

p
2) is, on average, eight-fold

faster than computing TMDL
w(G1, G2) when p ≥ .5. See Figure 6 for an illustration of these results.

C. Omitted Proofs
Throughout this section, we use degG(v) to denote the degree of v ∈ V .

13

Figure 6. Graph subsampling with approximate TMDs. The figure shows accuracy vs number of graphs in the training dataset when
sub-sampling graphs using our TMD-based graph subsampling approach with p-approximate TMDs.

C.1. Omitted proofs from Section 4

Corollary 4.2. Let H be a hypothesis class of (L − 1)-layer GNNs h : G → Rd with ℓ-th layer Lipschitz constant
upper-bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss function. Let X = (G1, ..., Gn) and (y1, ..., yn) be a set of
(training) graphs and their labels. For each i ∈ [n], let Gi = (Vi, Ei) and Si ⊂ Vi. Suppose that M

(∏
ℓ∈[L−1] Φℓ

)
≤ c

and TMDL
w(Gi, Gi[Si]) ≤ εi for all i ∈ [n]. Finally, let ĥ ∈ H be a hypothesis with minimum loss over the subsampled

training set:
ĥ = argminh∈H

∑
i∈[n]

L(h(Gi[Si]); yi).

Then ĥ has nearly optimal loss over the original training set as well:

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi)

+ 2c/n ·
∑

i∈[n]
εi.

Proof. Consider any h ∈ H. By Theorem 4.1, we have that for each i ∈ [n],

∥h(Gi; yi)− h(Gi[Si]; yi)∥ ≤

 ∏
ℓ∈[L−1]

Φℓ

TMDL
w(Gi, Gi[Si]). (3)

Consequently, using the fact that L is M -Lipschitz and (3),

|L (h(Gi); yi)−L (h(Gi[Si]))| ≤M ∥h(Gi; yi)− h(Gi[Si]; yi)∥

≤M

 ∏
ℓ∈[L−1]

Φℓ

TMDL
w(Gi, Gi[Si])

= cTMDL
w(Gi, Gi[Si]) ≤ cεi.

Consequently, by the triangle inequality,∣∣∣∣∣∣ 1n
∑
i∈[n]

L (h(Gi); yi)−
1

n

∑
i∈[n]

L (h(Gi[Si]))

∣∣∣∣∣∣ ≤ 1

n

∑
i∈[n]

|L (h(Gi); yi)−L (h(Gi[Si]; yi))|

≤ c

n

∑
i∈[n]

εi.

14

So, we know that for any h ∈ H

1

n

∑
i∈[n]

L(h(Gi; yi) ≤
1

n

∑
i∈[n]

L(h(Gi[Si]; yi) +
c

n

∑
i∈[n]

εi. (4)

Let h⋆ be the hypothesis that minimizes average loss across the original dataset X:

h⋆ = argmin
h∈H

1

n

∑
i∈[n]

L(h(Gi); yi).

By definition of ĥ, this means that

1

n

∑
i∈[n]

L(ĥ(Gi[Si]; yi) ≤
1

n

∑
i∈[n]

L(h⋆(Gi[Si]); yi) +
c

n

∑
i∈[n]

εi.

Applying (4) again to h⋆, we have that

1

n

∑
i∈[n]

L(ĥ(Gi[Si]; yi) ≤
1

n

∑
i∈[n]

L(h⋆(Gi); yi) +
c

n

∑
i∈[n]

εi.

■

Lemma 4.1. Let w : Z≥0 → R be a weight function and G = (V,E, f) a graph. Then, the identity transportation plan I
mapping Tv(G) to Tv(G[S]) for v ∈ S, and Tu(G) to ∅ for u /∈ S is an optimal plan for the OT problem

TMDL
w(G,G[S]) = OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
. (2)

Consequently, we can decompose the right-hand-side of (2) into three terms: a sum over the feature norms of deleted nodes
v ̸∈ S; the cost of transporting the deleted nodes’ computation trees (that is, {Tv(TL

v (G))}v ̸∈S) to the empty set; and the
cost of transporting the computation trees of the remaining nodes v ∈ S (that is, {Tv(TL

v (G))}v∈S) to their computation
trees in G[S]. Formally,

OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
=
∑
v/∈S

∥fv∥

+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
, ∅
))

+ w(L− 1)
∑
v∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
,Tv

(
TL
v (G[S])

)))
.

Proof. Let Ḡ[S] be the graph obtained by augmenting G[S] with node features 0 for each v ∈ V \ S. That is, Ḡ[S] =
(V,E[S], f ′) where f ′v = fv if v ∈ S and 0 otherwise By the definition of the augmentation function ρ, we can instead
consider the following OT problem, which is equivalent to (2):

OTTDw

(
ρ(TL

G ,TL
Ḡ[S])

)
.

In the base case where L = 1, we see that any transportation plan between the nodes of Ḡ[S] and G must transport the
excess node feature mass

∑
v/∈S ∥fv∥ in G to some nodes in G[S]. The transportation plan I has cost exactly equal to∑

v∈V ∥fv − f ′v∥ =
∑

v/∈S ∥fv∥, so I must be an optimal transportation plan.

Now, if L > 1, consider the OT problem 2, and let C and Γ be the distance matrix and feasible transportation plans for this
OT problem. Let γ ∈ Γ be any feasible transportation plan.

By the definition of TD, for any i, j ∈ V , transporting γi,j mass from i to j incurs two costs:

(1) γi,j incurs the cost of transporting f i to f ′j .

15

(2) γi,j incurs the cost of taking all of the depth (L− 1) computation trees of all neighbors of i in TL
i (G), and transporting

them to the depth (L− 1) computation trees of all neighbors of j in TL
j (G[S]) (after appropriately augmenting with

isolated nodes of feature 0 for each v /∈ S.

To quantify these two costs, let us define T̄j(T
L
j (G[S])) to be the multiset of computation trees obtained by augmenting

Tj(TjL(G[S])) with isolated nodes of feature vectors 0 for each j /∈ S. That is, let T̄j(TL
j (G[S])) be defined as the second

output of ρ when applied to
(
Tj(T

L
j (G)),Tj(T

L
j (G[S]))

)
:(

Tj(T
L
j (G)), T̄j(T

L
j (G[S]))

)
= ρ

(
Tj(T

L
j (G)),Tj(T

L
j (G[S]))

)
.

We can now quantify the cost of transportation plan γ (2) as follows. In the following equation, the first term corresponds to
item (1) above and the second term corresponds to item (2) discussed above.∑

i,j∈V

γi,jCi,j =
∑
i,j∈V

γi,j
∥∥f i − f ′j∥∥+ w(L− 1)

∑
i,j∈V

γi,jOTTDw(Ti(T
L
i (G)), T̄j(T

L
j (G[S]))).

Now, we can immediately lower bound the cost
∑

i,j γi,jCi,j of γ as follows:∑
i,j∈V

γi,jCi,j ≥ min
ν∈Γ

∑
i,j∈V

νi,j
∥∥f i − f ′j∥∥

+ w(L− 1)min
τ∈Γ

∑
i,j∈V

τi,jOTTDw
(Ti(T

L
i (G)), T̄j(T

L
j (G[S]))).

For the first term, it is easy to see that ν = I is an optimal solution, by the same argument as in the base case: any
transportation plan ν must incur the cost of transporting the excess mass {∥fv∥}v/∈S in the node features of G which is not
present in the node features of S.

For the second term, we can notice that OTTDw
(Ti(T

L
i (G)), T̄j(T

L
j (G[S]))) is also an TMD between graphs which contain

the corresponding multisets of depth L− 1 trees! So, by the inductive hypothesis, τ = I is an optimal solution for this OT
problem as well.

Consequently, substituting τ = ν = I , we can further simplify the lower bound to∑
i,j∈V

γi,jCi,j ≥
∑
i,j∈V

Ii,j
∥∥f i − f ′j∥∥+ w(L− 1)

∑
i,j∈V

Ii,jOTTDw(Ti(T
L
i (G)), T̄j(T

L
j (G[S])))

=
∑
i∈V

∥∥f i − f ′j∥∥+ w(L− 1)
∑
i∈V

OTTDw

(
Ti(T

L
i (G), T̄i(T

L
i (G[S]))

)
=
∑
v/∈S

∥fv∥+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)), ∅

))
+ w(L− 1)

∑
v∈S

OTTDw

(
Tv(T

L
v (G)), T̄v(T

L
v (G[S]))

)
=
∑
v/∈S

∥∥f i
∥∥+ w(L− 1)

∑
v/∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)), ∅

))
+ w(L− 1)

∑
v∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)),Tv(T

L
v (G[S]))

))
.

Finally, the inequality is tight, because γ = I ∈ Γ is clearly a feasible transportation plan. So, by induction, the lemma
holds. ■

Remark C.1. The terms OTTDw

(
ρ
(
Tv(T

L
v (G)),Tv(T

L
v (G[S]))

))
in the expression of Lemma 4.1 can themselves be

viewed as the TMD between two graphs Ḡ and Ḡ′, where Ḡ is the graph consisting of all elements in Tv(T
L
v (G)) as a

disjoint trees, and Ḡ′ is the graph consisting of all elements in Tv(T
L
v (G[S])) as disjoint trees. In this sense, Lemma 4.1

precisely characterizes the recursive structure of TMD between a graph and its subgraph. We leverage this fact in later
proofs.

16

Lemma 4.2. For T ⊂ S ⊂ V , TMDL
w(G,G[S \ T]) = TMDL

w(G,G[S]) + TMDL
w(G[S], G[S \ T]).

Proof. Let Z = {z ∈ V : z /∈ S}. Since T ⊂ V , T and Z are disjoint. So, Lemma 4.1 shows that

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
.

Now, each term in OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
inside the summation is, in fact a depth L − 1 TMD

between two graphs corresponding to the two disjoint forests of computation trees (as we discussed in Remark C.1). Thus,
by the inductive hypothesis, we can expand the last term as follows:∑

u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
=

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Consequently, we obtain:

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Next, we can add and subtract terms as follows.

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
− w(L− 1)

∑
u∈T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Now, OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[V \ S]))

))
is also a depth L− 1 TMD between two graphs corresponding to two

disjoint forests of computation trees (again, see Remark C.1). So, we can apply the inductive hypothesis to see that for each
t ∈ T ,

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
= OTTDw

(
ρ
(
Tt(T

L
t (G)),Tt(T

L
t (G[S]))

))
+ OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
.

17

Thus, summing over t ∈ T , we have∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
=
∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
−
∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)),Tt(T

L
t (G[S]))

))
.

By substituting this into the equation above, we obtain

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Rearranging in the form of Lemma 4.1, we obtain

TMDL
w(G,G[S \ T]) =

∑
u/∈S

∥fu∥+ w(L− 1)
∑
u/∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),0

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])),0

))
+ w(L− 1)

∑
t∈S\T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])),Tt(T

L
t (G[S \ T]))

))
= TMDL

w(G,G[S]) + TMDL
w(G[S], G[S \ T]).

■

Theorem 4.5. Given a graph G = (V,E, f), Algorithm 1 computes ∥G∥TNL
w

in O(|E|L)-time.

Proof. Consider Algorithm 1, TreeNorm. The runtime is immediate from the algorithm pseudocode, as matrix-vector
products can be computed in O(|E|). In this proof, let AG denote the adjacency matrix of a graph G and let xG be the
vector in RV such that xG(v) = ∥fv∥ .

To verify the correctness, we proceed by induction. We just need to show that for all L, ∥G∥TNL
w

= ∥xG∥1 +∥∥∥∑L−1
ℓ=1

(∏ℓ
t=1 w(L− t)

)
Aℓ

GxG

∥∥∥
1
, as this is the exact computation computed by the algorithm pseudocode. Note

that an equivalent expression is ∥G∥TNL
w
=
∥∥∥∑L−1

ℓ=0

(∏ℓ
t=1 w(L− t)

)
Aℓ

GxG

∥∥∥
1
, where the product over the emptyset is

defined as 1.

If L = 1, then ∥G∥TNL
w

is simply the sum of its feature values, so this is trivially true.

Consider the case of a depth-L tree-norm computation. Throughout this proof, all variables are positive, and consequently
we can move the ℓ1 norm in and out of sums freely (i.e., we have a triangle equality.)

By taking S = ∅ in Lemma 4.1, we see that ∥G∥TNL
w

is equal to the norm of its nodes plus w(L −
1)
∑

v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
. That is,

∥G∥TNL
w
= ∥xG∥1 + w(L− 1)

∑
v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
.

18

To interpret this expression, let G′
v be the graph which is a forest of all the trees in Tv(T

L
v (G))– for each u ∈ NG(v), we

G′
v will contain a depth-(L− 1) tree G′

v,u. Then, by inductive hypothesis.∥∥Tv(TL
v (G))

∥∥
TNL−1

w
=

∑
u∈NG(v)

∥∥(TL
v (G))

∥∥
TNL−1

w
= ∥G′

v∥TNL−1
w

=
∑

u∈NG(v)

∥∥G′
u,v

∥∥
TNL−1

w

=
∑

u∈NG(v)

∥∥∥∥∥
L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)
Aℓ

Gu,v
xGu,v

∥∥∥∥∥
1

=
∑

u∈NG(v)

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∥∥∥Aℓ
Gu,v

xGu,v

∥∥∥
1
.

Letting AG(v, u) be the (v, u)-th entry of AG, we can make the outer sum go over all vertices and add an extra adjacency
matrix factor on the inner sum as follows.

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
=

∑
u∈NG(v)

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∥∥∥Aℓ
Gu,v

xGu,v

∥∥∥
1

=

∥∥∥∥∥∑
u∈V

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)
AG(u, v)A

ℓ
Gu,v

xGu,v

∥∥∥∥∥
1

.

Now, by the way we constructed the trees Tv(TL
v (G)), u has the same (L− 1)-hop neighborhood in G as it does in Gu,v.

Consequently,

∥G∥TNL
w
= ∥xG∥1 + w(L− 1)

∑
v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w

= ∥xG∥1 + w(L− 1)

∥∥∥∥∥
L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∑
v∈V

∑
u∈V

AG(u, v)A
ℓ
Gu,v

xGu,v

∥∥∥∥∥
1

= ∥xG∥1 +

∥∥∥∥∥
L−2∑
ℓ=1

(
ℓ∏

t=1

w(L− t− 1)

)∑
v∈V

Aℓ+1
G xG

∥∥∥∥∥
1

= ∥xG∥1 +

∥∥∥∥∥
L−1∑
ℓ=1

(
ℓ∏

t=1

w(L− t)

)
Aℓ

GxG

∥∥∥∥∥
1

,

completing the induction and the proof of correctness.

■

C.2. Omitted proofs from Section 5

Lemma 5.1. Let H be a hypothesis class of (L − 1)-layer GNNs h : G → Rd with ℓ-th layer Lipschitz constant upper-
bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss function. Let y = (y1, ..., yn) be labels for X and I be a subset of
[n]. Then for any GNN h ∈ H and G ∈ G,

1

n

∣∣∑
i∈I

τiL(h(Gi); yi)−
∑
i∈[n]

L(h(Gi); yi)
∣∣ ≤

M ·
∏

ℓ∈[L−1]

Φℓ · fTMDL
w
(I;X).

Proof. Let κ : [n]→ I map i ∈ [n] to the index j ∈ I such that Gj is the closest graph in {Gi}i∈I to Gi. That is,

κ(i) = argmin
j∈I

TMDL
w(Gi, Gj),

19

with ties broken arbitrarily (but consistently with the mapping τ .) First, we can rearrange the sums as follows∣∣∣∣∣∣ 1n
∑
i∈I

τiL(h(Gi); yi)−
1

n

∑
i∈[n]

L(h(Gi); yi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n
∑
i∈[n]

L(h(Gκ(i)); yκ(i))−L(h(Gi); yi)

∣∣∣∣∣∣
≤ 1

n

∑
i∈[n]

∣∣L(h(Gκ(i); yκ(i)))−L(h(Gi); yi)
∣∣

≤ M

n

∑
i∈[n]

∥∥L(h(Gκ(i)); yκ(i))−L(h(Gi); yi)
∥∥ ,

where in the last inequality, we used that L is M -lipschitz. Now, by Theorem 4.1, we have

M

n

∑
i∈[n]

∥∥L(h(Gκ(i)); yκ(i))− h(Gi; yi)
∥∥ ≤ M

n

 ∏
ℓ∈[L−1]

Φℓ

∑
i∈[n]

TMDL
w(Gκ(i), Gi)

= M

 ∏
ℓ∈[L−1]

Φℓ

 fTMDL
w
(S;X).

■

Corollary 5.2. Suppose M
(∏

ℓ∈[L−1] Φℓ

)
≤ c and fTMDL

w
(I;X) ≤ ε. Let ĥ ∈ H be the hypothesis minimizing loss on

the subsampled graphs
∑

i∈I τiL(h(Gi); yi). Then

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi) + 2cε.

Proof. From Lemma 5.1, we know that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈S

τiL(ĥ(Gi); yi) + cε.

Let h∗ be the hypothesis that minimizes average loss over the original dataset X:

h∗ = argmin
h∈H

1

n

∑
i∈[n]

L(h(Gi); yi).

By definition of ĥ, this means that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈S

τiL(h∗(Gi); yi) + cε.

Applying Lemma 5.1 again, we have that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈[n]

L (h∗(Gi); yi) + 2cε.

■

20

