
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Model-Agnostic Graph Dataset Compression with the Tree Mover’s Distance

Anonymous Authors1

Abstract
Graph neural networks have demonstrated remark-
able success across a variety of domains. How-
ever, the acquisition and management of large-
scale graph datasets poses several challenges. Ac-
quiring graph-level labels can be prohibitively
costly, especially for applications in the bio-
sciences and combinatorial optimization. Storage
and privacy constraints can pose additional chal-
lenges. In this work, we propose an approach for
data subset selection for graph datasets, which
downsamples graphs and nodes based on the Tree
Mover’s Distance. We provide new efficient meth-
ods for computing the TMD in our setting; em-
pirical results showing our approach outperforms
other node and graph sampling methods; and the-
oretical results bounding the decrease in accuracy
caused by training on the downsampled graphs.
Surprisingly, we find that with our method, we can
subsample down to 1% of the number of graphs
and 10% of the number of nodes on some datasets,
with minimal degradation in model accuracy.

1. Introduction
Graph neural networks (GNNs) are a popular architec-
ture for learning over graph-structured data. Despite their
widespread popularity and demonstrated success (Bongini
et al., 2022; Zhou et al., 2020; Peng et al., 2021; Fan et al.,
2019; Peng et al., 2021; Zhang & Chen, 2018), training
GNNs remains challenging because the datasets can be mas-
sive, both in terms of the size (number of nodes) of each
graph, as well as the number of graphs in the dataset.

Large-scale datasets can pose many challenges to training
GNNs. For instance, training may be computationally in-
tractable (Hashemi et al., 2024; Yan et al., 2020; Zeng et al.,
2021). Likewise, storing and loading massive graphs into
memory can be slow and/or expensive (Huang et al., 2024;

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Submitted to the Workshop on Advancing Neural Network
Training at International Conference on Machine Learning
(WANT@ICML 2024). Do not distribute.

Figure 1. Node subsampling. Given node budget k, we want to
find a subgraph of k nodes with minimum TMD from the original.

Hamilton et al., 2017; Da San Martino et al., 2012) or may
raise privacy concerns (Wu et al., 2022). In addition, in
many applications, labeling many graphs or labeling graphs
with many nodes can be expensive. This is the case, for
example, when GNNs are used to model molecular proper-
ties for computational drug discovery (Igarashi et al., 2024;
Shen et al., 2020; Jiang et al., 2021). GNNs have also
been employed to circumvent expensive simulation, e.g.,
in molecular dynamics (Gasteiger et al., 2021; Park et al.,
2021; Li et al., 2022), where the cost of labeling larger in-
stances grows quickly with graph size. Similarly, GNNs
have been applied for disease prediction (Sun et al., 2020;
Zheng et al., 2022), in which case labeling a single graph
may require expensive clinical or diagnostic procedures.
Additionally, there is growing interest in using GNNs to
solve challenging or costly optimization problems, in which
case the runtime to collect training labels grows with the
graph size (e.g., Bengio et al., 2021; Cappart et al., 2023;
Vesselinova et al., 2020).

Subsampling is a natural approach to tackle these multi-
faceted challenges. In node and graph subsampling, we
aim to reduce the number of nodes or graphs, respectively,
in a graph dataset while preserving the performance of a
downstream GNN trained on the dataset. Existing work
on node and graph subsampling focuses primarily on node-
level tasks (e.g., node classification), and often makes strong
assumptions about the GNN model architecture—and can
even assume access to the final model or the ability to ap-
proximate the training trajectories on the original, unsam-
pled dataset.

In this paper, we propose and theoretically motivate new
approaches for (1) subsampling nodes from each training
graph and (2) subsampling entire graphs in the training
set for graph-level learning tasks (e.g., graph classification

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Figure 2. Graph subsampling. Given a graph budget k, the goal
is to find a sample of k graphs that minimizes the total distance
(TMD) from every original graph to its closest sample.

and regression). We must ensure that training a GNN on
the subsampled data does not significantly reduce accuracy
compared to the original training set. Moreover, in prac-
tice, we often do not know a priori (i.e., before collecting,
compressing, and labeling our graph dataset) the architec-
ture or hyperparameters of the GNN. Consequently, it is
crucial that the original and subsampled datasets maintain
model-agnostic similarity, i.e., they produce similar model
behavior regardless of the downstream model.

For many GNNs, specific structural similarities—tied to the
GNN’s computations—are essential to successfully transfer
a GNN out of distribution (Yehudai et al., 2021; Chuang
& Jegelka, 2022; Ruiz et al., 2021; Levie et al., 2021; Le
& Jegelka, 2023). A GNN uses message-passing to com-
pute predictions about graphs. Initially, each node has an
embedding, which it updates by aggregating its neighbors’
embeddings and processing the result through a neural net-
work. This process repeats over L iterations—or layers—
and the nodes’ final embeddings are used to compute the
GNN’s predictions. The L-hop neighbors involved in a
node’s final embedding can be visualized via the node’s
computation tree, illustrated in Figure 3. Computation trees
play a critical role in the transfer and stability of GNNs
(Yehudai et al., 2021; Chuang & Jegelka, 2022; Georgiev
et al., 2022). Two nodes with similar computation trees will
likely have similar embeddings. To capture this intuition,
Chuang & Jegelka (2022) introduced a graph distance—the
Tree Mover’s Distance (TMD)—as an optimal transport dis-
tance between sets of computation trees, and demonstrated
its correlation with the performance and stability of GNNs
under data perturbations, including generalization bounds.

Based on the strong theoretical foundations provided by
TMD, our primary goal is to ensure that the TMD between
the original and subsampled graphs is small. However,
achieving this goal requires computing the TMD between
many graphs while subsampling, which poses a significant
challenge. TMD is a combinatorially complex function: the
dynamic programming algorithm developed in prior work
for computing the TMD between graphs with n nodes has a
runtime of O(Ln4) (Chuang & Jegelka, 2022). Given our
objective to reduce the size of large graphs, this runtime is
prohibitively large and presents a computational challenge

that we overcome in our methodological contributions.

Contributions. In this work, we make the following con-
tributions: We present an approach for node subsampling
that, given a budget k and a training graph, returns a sub-
graph on k nodes with low TMD from the original graph
(Figure 1). Moreover, we present an approach for graph
subsampling that, given a training set of graphs, returns k
graphs such that the total TMD between each original graph
and its closest sampled graph is small (Figure 2).

We show that if h is a GNN with minimal loss on the training
set subsampled using our methods, then h also has minimal
loss on the original training set. When subsampling nodes in
each training graph, we bound the resulting increase in loss
by the average TMD between the original and subsampled
graphs. When subsampling entire graphs, we bound the
increase in loss by the average TMD between each training
graph and the nearest graph in the subsampled set.

Given a set of candidate subgraphs, we develop a faster algo-
rithm for selecting a subgraph with minimum TMD from a
given graph. It computes the depth-L TMD between a graph
G = (V,E) and any of its subgraphs in just O(L|E|) time.
This algorithm leverages structural properties of the TMD
that we uncover, which may be of independent interest.

Our experiments demonstrate our methods outperform or
perform competitively with other standard approaches on
real-world graph learning benchmarks. For graph sampling,
our method consistently outperforms the baselines on four
benchmark datasets, achieving over 90% of the test accuracy
of the full training set for three of the datasets using 1% of
the graphs. For node subsampling, it is consistently optimal
or near-optimal across all datasets, unlike other competitive
baselines, whose performance varies significantly with the
fraction of deleted data.

2. Related work
Graph reduction, graph sparsification, and graph condensa-
tion approaches aim to to reduce the size of a graph while
minimizing the impact on test loss. Existing approaches fo-
cus on node subsampling (e.g., Hashemi et al., 2024; Tanaka
et al., 2020, and references therein), primarily for node clas-
sification and graph signal processing. These approaches
involve subsampling nodes, and do not extend to graph sub-
sampling, a critical focus of this work, and a setting which
remains largely unstudied in the graph reduction literature.
Two existing approaches to model-agnostic graph reduction
for graph classification are Herding (Welling, 2009) and
k-Centers (Farahani & Hekmatfar, 2009), which subsample
k nodes by clustering the nodes’ features into k clusters
and selecting the centers. A key advantage of our approach
is that, unlike these approaches, we leverage for the node
features and the graph structure.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Gradient-matching approaches (Jin et al., 2022; Zhang et al.,
2024; Fang et al., 2024) have been used for graph dataset
subsampling and ensure that the loss’s gradients remain sim-
ilar when trained on the small and large graphs. While these
are powerful methods that can aid in developing reduced
graph datasets that are smaller and more interpretable, they
are fundamentally incomparable in our setting because (1)
they assume knowledge of a downstream GNN architecture
and therefore are not model-agnostic; and (2) they require
training on the complete, unreduced graphs to generate the
gradient trajectories. This obviates several of the advan-
tages of graph reduction with regard to labeling, training,
and storage costs.

Georgiev et al. (2022) uses a normalized variant of TMD
to select training datasets for neural algorithmic reasoning
tasks. However, this is not agnostic to the downstream
model and task and is not directly applicable to graph or
node subsampling.

3. Notation and background
Notation. An undirected, unweighted graph G =
(V,E, f) has a node set V , edges E, and node features
f ∈ Rp×|V |, where fv is the feature vector of v ∈ V . We
use NG(v) to denote the neighborhood of v ∈ V and G

to denote a set of graphs. An r-rooted tree is denoted by
T = (V,E, f, r). We use 1,0, I to denote the all ones and
zeros vectors and identity matrix, respectively. For norms,
∥·∥ denotes any norm over Rp and ∥·∥1 is the ℓ1 norm.

Message-passing neural networks (GNNs). We analyze
message-passing graph neural networks (GNNs), which
operate on graphs G = (V,E, f). For simplicity, we de-
fine Graph Isomorphism Networks (GINs) (Xu et al., 2019)
here; however, the results of Chuang & Jegelka (2022) and,
therefore, our results also apply to other GNNs. A GIN
is defined by L (learnable) functions ϕ(ℓ) : Rd → Rd,
such as (shallow) feed-forward neural networks, and a fixed
weight η > 0. Each node begins with an initial embedding
z
(0)
v = fv and updates its embedding using the following

message-passing routine:

Message passing layers: for ℓ ∈ [L− 1],

z(ℓ)v = ϕ(ℓ)

(
z(ℓ−1)
v + η

∑
u∈N(v)

z(ℓ−1)
u

)
,

Graph readout: h(G) = ϕ(L)
(∑

v∈V
z(L−1)
u

)
.

Other GNN architectures may, for instance, replace the
summations with an average (as in the case of Graph Convo-
lutional Neural Networks (GCNs) (Kipf & Welling, 2016))
or other aggregation functions (Hamilton, 2020).

Tree Mover’s Distance (TMD). The TMD was intro-
duced by Chuang & Jegelka (2022) and has found applica-

Figure 3. A graph and the depth-2 computation tree T of node r.
The set Tr(T) consists of the two boxed subtrees.

tions for graph learning under distribution shifts (Yu et al.,
2023; Georgiev et al., 2022) and adversarially robust graph
learning (Schuchardt et al., 2024). TMD is a pseudometric
on graphs based on the optimal transport distance. Like a
message passing GNN, it views a graph as a set of compu-
tation trees. A node’s computation tree is constructed by
adding the node’s neighbors to the tree level by level, as in
Figures 1 and 3.

Definition 3.1 (Computation tree). Given G = (V,E, f)
and a node v ∈ V , let T 1

v (G) = (v, ∅, {fv}, v) be a sin-
gleton v-rooted tree that consists of only the node v, no
edges, and the node feature vector fv. Inductively, we de-
fine TL

v (G) to be the depth-L computation tree of node v.
That is, TL

v (G) is a tree rooted at v obtained as follows. For
each leaf ℓ of TL−1

v (G) and each neighbor u ∈ NG(ℓ), we
add a new node ℓu to TL

v (G) and add an edge from ℓ to ℓu.
The multiset of depth-L computation trees defined by G is
denoted by TL

G := {TL
v (G)}v∈V .

We can compare graphs by comparing their computation
trees. TMD does this via optimal transport.

Definition 3.2 (OT distance). Let X = {xi}qi=1 and
Y = {yi}qi=1 be two multisets of q elements each. Given
a distance metric d : X × Y → R, let C ∈ Rq×q be a
matrix where Ci,j = d(xi, yj) is the transportation cost
between xi and yj . Moreover, let the set of all trans-
portation plans between X and Y be Γ(X,Y) := {γ ∈
Rq×q

+ | γ1 = γ⊤1 = 1} . The transportation cost of
γ ∈ Γ is ⟨γ,C⟩ :=

∑
i,j γi,jCi,j . The (unnormalized)

Wasserstein distance OTd is defined as OTd(X,Y) :=
qminγ∈Γ(X,Y)⟨C, γ⟩. We say γ⋆ is an optimal transport
(OT) plan if γ⋆ ∈ argminγ∈Γ(X,Y)⟨C, γ⟩.

We need a metric between trees to compute the OT distance
between sets of computation trees. TMD compares two
trees Tv, Tu by comparing their roots fv, fu and recursively
comparing their subtrees.

Definition 3.3 (Tree multisets). Given an r-rooted tree
T = (V,E, f, r), let ℓ = depth(T). We use Tr(T) to
denote the multiset of depth (ℓ − 1) computation trees
of all neighbors u ∈ NT (r), illustrated in Figure 3. (In
other words, if Tu is the subtree of T rooted at u, then

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Tr(T) := ∪u∈NT (r)T
(ℓ−1)
u (Tu), where the union denotes a

multiset union).

TMD compares Tu(T) and Tv(T
′) via an OT distance. How-

ever, the number of subtrees could differ in Tu(T) and
Tv(T

′). Chuang & Jegelka (2022) therefore augment the
smaller set with blank trees. A blank tree T0 consists of
a single node with node features 0 ∈ Rd and no edges.
Given two tree multisets Tv(T

′) and Tu(T), the function
ρ(Tv(T

′),Tu(T)) returns two multisets of the same size,
where the smaller is padded with blank trees (see Ap-
pendix A.3 for more details).

We are now ready to define a distance metric between trees.

Definition 3.4 (Tree distance). Let Ta = (Va, Ea, fa, ra)
and Tb = (Vb, Eb, fb, rb) be two trees with ℓ :=
max(depth(Ta), depth(Tb)). Moreover, let w : Z≥0 → R
be a depth-dependent weighting function. The tree distance
(TD) between Ta and Tb is defined as

TDw(Ta, Tb) := ∥fra
a − frb

b ∥

+

{
w(ℓ) · OTTDw

(ρ(Tra(Ta),Trb(Tb))), if ℓ > 1

0, otherwise.

Here, OTTDw
is the OT distance with metric TDw. We now

define the tree mover’s distance (TMD), which calculates
the cost of the optimal transport plan between two graphs’
computation trees.

Definition 3.5 (Tree mover’s distance (TMD) (Chuang &
Jegelka, 2022)). Given graphs G and G′, weight function
w : Z≥0 → R, and a depth parameter L > 0, we define
TMDL

w(G,G′) := OTTDw(ρ(T
L
G ,TL

G′)). The tree norm is
∥G∥TNL

w
:= TMDL

w(G, ∅) where we overload ∅ to denote
the empty graph.

4. Node subsampling
In this section, we present an approach to subsampling the
nodes of a graph dataset while preserving the performance
of a downstream GNN trained on the subsampled dataset.
Full proofs for all results in this section can be found in
Appendix B. To this end, suppose we are given a graph
dataset X = {G1, ..., Gn} where Gi = (Vi, Ei) together
with a node budget k. Given a subset of k nodes Si ⊆
Vi, we use Gi[Si] to denote the subgraph of Gi induced
by Si. Our goal is to select these subsets so that a GNN
obtains similar readouts on the original training dataset X
and on the induced subgraphs X ′ = {G1[S1], ..., Gn[Sn]}.
Although quantifying the stability of the GNN readouts with
respect to node deletion directly is analytically intractable,
it is possible to bound the Lipschitz constant of a message-

passing GNN’s readouts in terms of the TMD.1

Theorem 4.1 (Informal, Theorem 8 in (Chuang &
Jegelka, 2022), restated). There exists a weight function
w such that given an (L − 1)-layer message-passing
GNN with readout function h : G 7→ Rd and ℓ-th
layer Lipschitz constants ϕℓ, for any two graphs Ga, Gb,
∥h(Ga)− h(Gb)∥ ≤

(∏L−1
ℓ=1 ϕℓ

)
· TMDL

w(Ga, Gb).

Theorem 4.1 implies that if the Lipschitz constants of the
GNN layers and the distances TMD(Gi[Si], Gi) are small,
then minimizing a Lipschitz loss over the subsampled train-
ing set X ′ yields a nearly optimal hypothesis over X . The
following corollary summarizes this observation.

Corollary 4.2. Let H be a hypothesis class of (L − 1)-
layer GNNs h : G → Rd with ℓ-th layer Lipschitz con-
stant upper-bounded by Φℓ. Let L : Rd → R be an
M -Lipschitz loss function. Let X = (G1, ..., Gn) and
(y1, ..., yn) be a set of (training) graphs and their labels.
For each i ∈ [n], let Gi = (Vi, Ei) and Si ⊂ Vi. Suppose
that M

(∏
ℓ∈[L−1] Φℓ

)
≤ c and TMDL

w(Gi, Gi[Si]) ≤ εi
for all i ∈ [n]. Finally, let ĥ ∈ H be a hypothesis with
minimum loss over the subsampled training set:

ĥ = argminh∈H

∑
i∈[n]

L(h(Gi[Si]); yi).

Then ĥ has nearly optimal loss over the original training
set as well:

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi)

+
2c

n

∑
i∈[n]

εi.

Corollary 4.2 illustrates that the loss incurred by training on
X ′ as opposed to X is bounded by an error proportional to
the average of the distances TMDL

w(Gi, Gi[Si]). Motivated
by this bound, our ideal goal would be to compute the
optimal solution to the following optimization problem:

min
S⊂V :|S|≤k

TMDL
w(G,G[S]). (1)

We face two key challenges in computing (approximately)
optimal solutions to Equation (1).

Challenge 1: exponentially large feasible set. The first
challenge is that the number of candidate subsets {S ⊂ V :
|S| ≤ k} grows exponentially with k. Therefore, we restrict
Equation (1) to an appropriately chosen feasible set S. We
discuss a natural heuristic for selecting S in Section 4.3.

1While Theorem 8 as stated in (Chuang & Jegelka, 2022) is
specific to GINs, Chuang & Jegelka (2022) generalize it to other
GNNs.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Definition 4.3 (Relaxed node subsampling problem). Let
G = (V,E, f) be a graph, k be a node budget, and
S ⊂ {S ⊂ V : |S| ≤ k} be a set of candidate node
subsets. The relaxed node subsampling problem is defined
as: minS∈S TMDL

w(G,G[S]).

Challenge 2: computing TMDL
w(G,G[S]) is computa-

tionally expensive. Unfortunately, even this relaxed node
subsampling problem is computationally expensive, as the
TMD is expensive to compute even for a single candidate
S ∈ S. The original dynamic-programming algorithm
for computing TMDL

w(G,G[S]) requires O(L|V |4)-time in
general (Chuang & Jegelka, 2022) (regardless of |S|), bring-
ing the total runtime to O(|V |4 L |S|). Since we aim to
reduce the size of large graphs, this runtime is likely pro-
hibitive in practice. To address this challenge, we prove that,
surprisingly, Definition 4.3 is equivalent to a much simpler
optimization problem which can be solved efficiently.

Theorem 4.4. Let G = (V,E, f) be a graph, k be a node
budget, and S ⊂ {S ⊂ V : |S| ≤ k}. Then S⋆ is an
optimal solution to the relaxed node subsampling problem
if and only if

S⋆ ∈ argmax
S∈S;|S|=k

∥G[S]∥TNL
w
. (2)

We prove Theorem 4.4 in Section 4.1. Along the way, we
prove several structural properties of the TMD, which may
be of independent interest. Finally, since the algorithm
of Chuang & Jegelka (2022) would take O(L |S|4)-time to
compute the tree norm of G[S], we provide a new linear-
time algorithm for computing tree norms—Algorithm 1—
that better leverages the graph’s sparsity.

Theorem 4.5. Given a graph G = (V,E, f), Algorithm 1
computes ∥G∥TNL

w
in O(|E|L) time.

We discuss the algorithm and proof sketch in Section 4.2;
however, we first point out that this implies a more tractable
algorithm for the relaxed node subsampling problem.

Remark 4.6. There is an algorithm that solves the relaxed
node subsampling problem in O(k2 |S|) time. It computes
∥G[S]∥TNL

w
for each S ⊂ S and outputs the set S with the

largest tree norm.

4.1. Analysis of TMD between graphs and subgraphs
In this section, we sketch our proof of Theorem 4.4. Along
the way, we prove several properties of the TMD, which
may be of independent interest given the broad applications
of TMD to out-of-distribution generalization. Our analysis
crucially relies on the following technical lemma.

Lemma 4.1. Let w : Z≥0 → R be a weight function and
G = (V,E, f) be a graph. Then, the identity transportation

plan I that maps Tv(G) to Tv(G[S]) for v ∈ S, and Tu(G)
to ∅ for u /∈ S is an optimal transport plan for the OT
problem

TMDL
w(G,G[S]) = OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
. (3)

Consequently, we can decompose the right-hand-side of (3)
into three terms: a sum over the feature norms of deleted
nodes v ̸∈ S; the cost of transporting the deleted nodes’
computation trees (that is, {Tv(TL

v (G))}v ̸∈S) to the empty
set; and the cost of transporting the computation trees of
the remaining nodes v ∈ S (that is, {Tv(TL

v (G))}v∈S) to
their computation trees in G[S]. Formally,

OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
=
∑
v/∈S

∥fv∥

+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
, ∅
))

+ w(L− 1)
∑
v∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
,Tv

(
TL
v (G[S])

)))
.

Proof sketch. We prove the statement by induction on L.
In the base case (L = 1), the statement is equivalent to
Definition 3.5. This is because by the definition of ρ and
the tree distance TD, OTTDw

(ρ(T1
G ,T1

G[S])) is equal to the
sum of features of the nodes that are in G but not in G[S].
That is, OTTDw

(ρ(T1
G ,T1

G[S])) =
∑

v/∈S ∥fv∥ = ⟨C, I⟩.
This shows that the lemma holds in the base case. We prove
the inductive step by using the recursive formulation of
the TD to reduce OT problems of depth L to OT problems
of depth L − 1, which allows us to apply the inductive
hypothesis. ■

Using Lemma 4.1, we can precisely characterize the TMD
induced by dropping a sequence of nodes from the graph.
First, we prove the following chain rule.

Lemma 4.2. For T ⊂ S ⊂ V , TMDL
w(G,G[S \ T]) =

TMDL
w(G,G[S]) + TMDL

w(G[S], G[S \ T]).

Proof sketch. To prove this lemma, we apply the ex-
pression in Lemma 4.1 inductively over L to decom-
pose TMDL

w(G,G[S \ T]) into TMDL
w(G,G[S]) and

TMDL
w(G[S], G[S \ T]). To highlight the intuition, we dis-

cuss the base case here and discuss the inductive step in
the full proof. If L = 1, then the second and third terms in
the expression of Lemma 4.1 are always 0, because T1

G

and T1
G[S] are multisets of depth 1, so TG(T

L
v (G)) and

TG[S](T
L
v (G[S])) are empty sets. Thus,

TMD1
w(G,G[S \ T]) =

∑
v/∈(S\T)

∥fv∥

=
∑

v/∈S
∥fv∥+

∑
v∈T

∥fv∥ ,

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Algorithm 1: TreeNorm(G,L,w)
Input: Graph G = (V,E, f) with adjacency matrix

A, weights w : {1, ..., L− 1} → R+, L ≥ 1
1 Compute x ∈ R|V | to be the vector such that

xv = ∥fv∥ ;
2 Initialize z(0) = x;
3 for ℓ ∈ [L− 1] do
4 z(ℓ) ← Az(ℓ−1);

5 b← z(0) +
∑L−1

ℓ=1

(∏ℓ
t=1 w(L− t)

)
· z(ℓ);

return: ∥b∥1

(since T ⊂ S, {v ∈ V : v /∈ (S \ T)} = {v ∈ V :
v /∈ S} ⊔ {v ∈ T}). Similarly applying Lemma 4.1 to
TMDL

w(G,G[S \ T]) and TMD1
w(G[S], G[S \ T]) implies

that the base case holds:

TMD1
w(G,G[S]) =

∑
v/∈S
∥fv∥ , and

TMD1
w(G[S], G[S \ T]) =

∑
v∈T
∥fv∥ .

The intuition is similar for L > 1 but requires care to handle
the recursive OT terms. ■

Finally, we can prove Theorem 4.4.

Proof of Theorem 4.4. Let S ∈ S. Applying Lemma 4.2
with T = V \ S, we have that ∥G∥TNL

w
=

TMDL
w(G,G[S]) + ∥G[S]∥TNL

w
. Consequently,

max
S∈S;|S|=k

∥G[S]∥TNL
w

≡ max
S∈S;|S|=k

∥G∥TNL
w
− TMDL

w(G,G[S])

≡ min
S∈S;|S|=k

TMDL
w(G,G[S]). ■

4.2. Faster algorithm for computing tree norms
We next leverage Lemma 4.1 to obtain Algorithm 1, a
faster algorithm for computing ∥G∥TNL

w
for G = (V,E, f).

The original implementation would require O(L |V |4)
time (Chuang & Jegelka, 2022), whereas ours has run-
time O(L|E|). Algorithm 1 is based on the fact that by
Lemma 4.1, is that ∥G∥TNL

w
is essentially a weighted sum of

the number of vertices in all of its L-hop computation trees.
For each tree, nodes in level ℓ receive weight w(L− ℓ+1).
Algorithm 1 computes this weighted sum. Its runtime is
dominated by the cost of L matrix-vector multiplies with the
adjacency matrix, which requires O(|E|)-time. The proof
of correctness and runtime (Theorem 4.5) is in Appendix B.

4.3. Heuristic for selecting S

We now present our heuristic for constructing the set of
candidate subsets S in our experiments. Most real-world

networks are scale-free and small-world, and hence can be
well-modeled by random graphs, such as preferential attach-
ment, configuration models, and inhomogeneous random
graphs (Bollobás & Riordan, 2004; Newman & Watts, 1999).
These graphs converge locally to graph limits (Van Der Hof-
stad, 2024, Vol. 2, Ch. 2). By a “transitive” argument, we
can view real-world networks as parts of sequences converg-
ing to graph limits in the same sense. Alimohammadi et al.
(2023) showed that for such graphs, sampling nodes’ local
breadth-first search (BFS) trees asymptotically preserves
critical motifs of the graph limit (see Appendix A). Thus,
we define the set of candidate subsets S as a set of BFS
trees rooted at the graph’s nodes.

Definition 4.7 (k-BFS subset). Given G = (V,E, f) and
v ∈ V , let ℓk be the deepest level such that the v-rooted
BFS tree of depth ℓk has at most k nodes (breaking ties in
a fixed but arbitrary way). The k-BFS subset of v, denoted
SBFS(v;k), is the set of nodes at distance at most ℓk from v.

We define the set of candidate subsets S = {SBFS(v;k)}v∈V

as the nodes’ k-BFS subsets.

5. Graph subsampling
We now present an approach that uses TMD to subsam-
ple the number of graphs in a dataset while preserving the
performance of a downstream GNN trained on the sub-
sampled dataset. Omitted proofs are in Section B. Let
X = {G1, ..., Gn} be a graph dataset. Given a budget
k, the goal is to identify a subset I ⊂ [n] of size k such
that a GNN obtains similar readouts and loss on the original
training set X and on the subsampled set {Gi}i∈I. We must
ensure that the selected set I is representative of the full
dataset. To this end, we select I by optimizing the medoids
objective, which captures how well each graph Gi ∈ X is
represented by I.

Definition 5.1 (Medoids objective). Let X = {G1, ..., Gn}
be a graph dataset and I ⊂ [n] with |I| ≤ k. The medoids
objective value of I on X with respect to TMDL

w is defined

fTMDL
w
(I;X) =

1

|X|
∑

i∈[n]
min
j∈I

TMDL
w(Gi, Gj).

For each j ∈ I, let τj be the number of graphs in
X closest to Gj (i.e., the medoid’s cluster size): τj :=∣∣{i ∈ [n] : TMDL

w(Gi, Gj) < TMDL
w(Gi, Gk), ∀k ̸= j ∈ I}

∣∣ ,
breaking ties arbitrarily.

The following lemma shows how we can bound the differ-
ence in a GNN’s loss on the subsampled dataset I ⊂ X and
the original dataset X in terms of this medoids objective.

Lemma 5.1. Let H be a hypothesis class of (L− 1)-layer
GNNs h : G→ Rd with ℓ-th layer Lipschitz constant upper-
bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

function. Let y = (y1, ..., yn) be labels for X and I be a
subset of [n]. Then for any GNN h ∈ H and G ∈ G,

1

n

∣∣∑
i∈I

τiL(h(Gi); yi)−
∑
i∈[n]

L(h(Gi); yi)
∣∣ ≤ (4)

M

 ∏
ℓ∈[L−1]

Φℓ

 fTMDL
w
(I;X). (5)

Proof sketch. We use the Lipschitz constant M of L and
Theorem 4.1 to bound the average deviation in the loss on
X and the (weighted) loss on I. ■

Lemma 5.1 implies that if the right-hand-side of Equa-
tion (5) is small and we minimize loss over the subsampled
training set (the left-most term in Equation (5)), we will
obtain a hypothesis with nearly optimal loss over the entire
training set. We summarize this observation as follows.

Corollary 5.2. Suppose that M
(∏

ℓ∈[L−1] Φℓ

)
≤ c and

fTMDL
w
(I;X) ≤ ε. Let ĥ ∈ H be the hypothesis that mini-

mizes loss on the subsampled graphs
∑

i∈I τiL(h(Gi); yi).
Then

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi) + 2cε.

Corollary 5.2 illustrates that the additional loss incurred
by training on the subsampled graphs as opposed to X is
bounded by an error proportional to fTMDL

w
(I;X). This

motivates us to formulate the graph subsampling problem as
the problem of computing I that minimizes fTMDL

w
(I;X).

Definition 5.3 (Graph subsampling problem). Let X =
{G1, ..., Gn} be a set of graphs and k be a graph budget.
In the graph graph subsampling problem, we must select a
subset I ⊂ X of k graphs that minimizes the k-medoids
objective value of fTMDL

w
(I;X).

The k-medoids clustering problem is NP-hard (Kazakovtsev
& Rozhnov, 2020), but there are efficient approximation
algorithms. We use Python’s k-medoids implementation in
the sklearn package (Buitinck et al., 2013).

6. Experiments
We evaluate our sampling methods on four graph bench-
mark datasets from the TUDataset graph benchmark library
(Morris et al., 2020). All GNNs were trained for 50 epochs
with an 80%-train set and 20%-test split on CPUs. For
MUTAG, COX2, and BZX we used a 3-layer Graph Isomor-
phism Network (Xu et al., 2019). For IMDB-BINARY we
used a 3-layer Graph Convolutional Neural Network (GCN)
(Kipf & Welling, 2016). Hyper-parameter details are in

Appendix A.4. In all figures, the line plots and shadows
indicate the means and 95% confidence intervals across
256 random trials. Figure 4 compares our TMD-based
k-medoids graph subsampling procedure from Section 5
against several alternative benchmarks and against training
on the full dataset.

We are unaware of any previous work that studies graph
subsampling, but we nonetheless compare against two clus-
tering approaches based on Herding (Welling, 2009) and
k-Centers (Farahani & Hekmatfar, 2009). These approaches
are typically used for node subsampling and coreset selec-
tion in other domains (see Section 2). We adapt them to
graph subsampling by defining distances between graphs
using three popular graph kernels: Weisfeiler Lehman ker-
nel (WL) (Shervashidze et al., 2011), the WL optimal as-
signment kernel (WL-OT) (Kriege et al., 2016), graphlet
sampling (GS) kernel (Borgwardt & Kriegel, 2005), and
the shortest paths (SP) kernel. Figure 4 shows that our
method consistently outperforms uniform random sampling,
Herding (with respect to all kernels), and k-Centers (with
respect to all kernels) on all four benchmarks. Our approach
achieves over 90% of the test accuracy of the full training set
for MUTAG, COX2, and BZR using just 1% of the graphs.
Where labeling is costly, this could be a powerful approach.

Node subsampling. Figure 5 compares our TMD-based
node subsampling procedure from Section 4 against sev-
eral alternative benchmarks and against training on the full
dataset. For node subsampling, we only need to compute
tree norms, so we use Algorithm 1. We compare against
model-agnostic node selection policies Herding (Welling,
2009) and k-Centers (Farahani & Hekmatfar, 2009), and
approaches by Salha et al. (2022) and Razin et al. (2023).
While other approaches exhibit significant variability across
datasets and subsampling levels, our approach consistently
has the strongest or near-strongest performance across all
datasets, sometimes requiring as little as 10% of the original
number of nodes to achieve similar test accuracy.

7. Discussion
We proposed new approaches for compressing graph
datasets that preserve the performance of a downstream
GNN. Our methods apply to both node subsampling and
graph subsampling. By leveraging the TMD, our methods
ensure that the subsampled data maintains structural similar-
ities with the original dataset, and we could bound the loss
incurred by subsampling. Our methods are enabled by an
algorithm we developed for selecting subgraphs with mini-
mal TMD from a given graph, providing significant runtime
speed-up compared to prior work. Our experiments demon-
strated that our method outperforms comparable methods.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Figure 4. Graph subsampling. Accuracy vs. fraction of graphs in the training set, subsampled with our approach and alternative methods.

Figure 5. Node subsampling. Accuracy vs. fraction of nodes in the training set, subsampled with our approach and existing model-agnostic
methods.

References
Alimohammadi, Y., Ruiz, L., and Saberi, A. A local graph

limits perspective on sampling-based gnns. arXiv preprint

arXiv:2310.10953, 2023.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bollobás, B. and Riordan, O. Coupling scale-free and classi-
cal random graphs. Internet Mathematics, 1(2):215–225,
2004.

Bongini, P., Pancino, N., Scarselli, F., and Bianchini, M.
Biognn: how graph neural networks can solve biological
problems. In Artificial Intelligence and Machine Learning
for Healthcare, pp. 211–231. Springer, 2022.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels
on graphs. pp. 8–pp. IEEE, 2005.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pp. 108–122, 2013.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance: Bridg-
ing graph metrics and stability of graph neural networks.
In Conference on Neural Information Processing Systems
(NeurIPS), volume 35, pp. 2944–2957, 2022.

Da San Martino, G., Navarin, N., and Sperduti, A. A mem-
ory efficient graph kernel. In International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 2012.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and
Yin, D. Graph neural networks for social recommenda-
tion. In Proceedings of the International World Wide Web
Conference (WWW), pp. 417–426, 2019.

Fang, J., Li, X., Sui, Y., Gao, Y., Zhang, G., Wang, K.,
Wang, X., and He, X. Exgc: Bridging efficiency and
explainability in graph condensation. In Proceedings of
the International World Wide Web Conference (WWW),
2024.

Farahani, R. Z. and Hekmatfar, M. Facility location: con-
cepts, models, algorithms and case studies. Springer
Science & Business Media, 2009.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Uni-
versal directional graph neural networks for molecules.

In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Georgiev, D., Lio, P., Bachurski, J., Chen, J., Shi, T., and
Giusti, L. Beyond Erdos-Renyi: Generalization in al-
gorithmic reasoning on graphs. In Learning on Graphs
(LoG), 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. 30, 2017.

Hamilton, W. L. Graph representation learning. Morgan &
Claypool Publishers, 2020.

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduc-
tion: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024.

He, Y., Zhang, X., Huang, J., Rozemberczki, B., Cucuringu,
M., and Reinert, G. Pytorch geometric signed directed:
A software package on graph neural networks for signed
and directed graphs. In Learning on Graphs Conference,
pp. 12–1. PMLR, 2024.

Huang, K., Jiang, H., Wang, M., Xiao, G., Wipf, D., Song,
X., Gan, Q., Huang, Z., Zhai, J., and Zhang, Z. Freshgnn:
Reducing memory access via stable historical embed-
dings for graph neural network training. 17(6):1473–
1486, 2024.

Igarashi, Y., Kojima, R., Matsumoto, S., Iwata, H., Okuno,
Y., and Yamada, H. Developing a gnn-based ai model to
predict mitochondrial toxicity using the bagging method.
49(3):117–126, 2024.

Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang,
Z., Shen, C., Cao, D., Wu, J., and Hou, T. Could graph
neural networks learn better molecular representation for
drug discovery? a comparison study of descriptor-based
and graph-based models. 13:1–23, 2021.

Jin, W., Tang, X., Jiang, H., Li, Z., Zhang, D., Tang, J.,
and Yin, B. Condensing graphs via one-step gradient
matching. In International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 720–730, 2022.

KAWANO, K., KOIDE, S., SHIOKAWA, H., and AMA-
GASA, T. Multi-dimensional fused gromov wasserstein
discrepancy for edge-attributed graphs. pp. 683–693,
2024.

Kazakovtsev, L. A. and Rozhnov, I. Application of al-
gorithms with variable greedy heuristics for k-medoids
problems. Informatica, 44(1), 2020.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. 2016.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Kriege, N. M., Giscard, P.-L., and Wilson, R. On valid
optimal assignment kernels and applications to graph
classification. 29, 2016.

Le, T. and Jegelka, S. Limits, approximation and size trans-
ferability for gnns on sparse graphs via graphops. In
Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Levie, R., Huang, W., Bucci, L., Bronstein, M. M., and Ku-
tyniok, G. Transferability of spectral graph convolutional
neural networks. Journal of Machine Learning Research,
2021.

Li, Z., Meidani, K., Yadav, P., and Farimani, A. B. Graph
neural networks accelerated molecular dynamics. J.
Chem. Phys., 156, 2022.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Newman, M. E. and Watts, D. J. Scaling and percolation in
the small-world network model. Physical review E, 60
(6):7332, 1999.

Park, C. W., Kornbluth, M., Vandermause, J., Wolverton,
C., Kozinsky, B., and Mailoa, J. P. Accurate and scalable
graph neural network force field and molecular dynam-
ics with direct force architecture. npj Computational
Materials, 7(73), 2021.

Peng, Y., Choi, B., and Xu, J. Graph learning for combi-
natorial optimization: a survey of state-of-the-art. pp.
119–141, 2021.

Razin, N., Verbin, T., and Cohen, N. On the ability of graph
neural networks to model interactions between vertices.
In Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Ruiz, L., Gama, F., and Ribeiro, A. Graph neural networks:
Architectures, stability, and transferability. Proceedings
of the IEEE, 109(5):660–682, 2021.

Salha, G., Hennequin, R., Tran, V. A., and Vazirgiannis, M.
A degeneracy framework for scalable graph autoencoders,
2022.

Schuchardt, J., Scholten, Y., and Günnemann, S. (Prov-
able) adversarial robustness for group equivariant tasks:
Graphs, point clouds, molecules, and more. 2024.

Shen, X., Liu, Y., Wu, Y., and Xie, L. Molgnn: Self-
supervised motif learning graph neural network for drug
discovery. In Machine Learning for Molecules Workshop
at NeurIPS, pp. 4, 2020.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. 12(9), 2011.

Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C.,
Skianis, K., and Vazirgiannis, M. Grakel: A graph kernel
library in python. Journal of Machine Learning Research,
21(54):1–5, 2020.

Sun, Z., Yin, H., Chen, H., Chen, T., Cui, L., and Yang,
F. Disease prediction via graph neural networks. 25(3):
818–826, 2020.

Tanaka, Y., Eldar, Y. C., Ortega, A., and Cheung, G. Sam-
pling signals on graphs: From theory to applications.
IEEE Signal Processing Magazine, 37(6):14–30, 2020.

Van Der Hofstad, R. Random graphs and complex networks.
Cambridge University Press, 2024.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Bo-
man, M. Learning combinatorial optimization on graphs:
A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

Welling, M. Herding dynamical weights to learn. In Pro-
ceedings of the 26th annual international conference on
machine learning, pp. 1121–1128, 2009.

Wu, B., Li, J., Yu, J., Bian, Y., Zhang, H., Chen, C., Hou, C.,
Fu, G., Chen, L., Xu, T., et al. A survey of trustworthy
graph learning: Reliability, explainability, and privacy
protection. arXiv preprint arXiv:2205.10014, 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In Proceedings of the
International Conference on Learning Representations
(ICLR), 2019.

Yan, B., Wang, C., Guo, G., and Lou, Y. Tinygnn: Learning
efficient graph neural networks. In International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pp. 1848–1856, 2020.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning (ICML), 2021.

Yu, J., Liang, J., and He, R. Mind the label shift of
augmentation-based graph ood generalization. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 11620–11630, 2023.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Accurate, efficient and scalable training
of graph neural networks. Journal of Parallel and Dis-
tributed Computing, 147:166–183, 2021.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. 31, 2018.

Zhang, T., Zhang, Y., Wang, K., Wang, K., Yang, B., Zhang,
K., Shao, W., Liu, P., Zhou, J. T., and You, Y. Two
trades is not baffled: Condense graph via crafting rational
gradient matching. arXiv preprint arXiv:2402.04924,
2024.

Zheng, S., Zhu, Z., Liu, Z., Guo, Z., Liu, Y., Yang, Y.,
and Zhao, Y. Multi-modal graph learning for disease
prediction. 41(9):2207–2216, 2022.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. 1, 2020.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A. Additional background
A.1. Random graph limits
As we discussed in Section 4.3, most real networks are scale-free and small-world, and hence well-modeled by random
graph models, such as preferential attachment, configuration models and inhomogenous random graphs. As shown by (Van
Der Hofstad, 2024), such random graph models produce graphs that can be shown to converge locally to a limit (G, o),
where G is a graph to which we assign a root node o. By a “transitive” argument, it makes sense to see real networks as
parts of sequences converging to graph limits in a similar sense.

To be precise, let G∗ be the set of all possible rooted graphs. A limit graph is defined as a measure over the space G∗ with
respect to the local metric

dloc((G1, o1), (G2, o2)) =
1

1 + infk{k : Bk(G1, o1) ̸≃ Bk(G2, o2)}

where Bk(G, v) is the k-hop neighborhood of node v, and ≃ is the graph isomorphism. A sequence of graphs converging to
this limit is defined as follows.

Definition A.1 (Local convergence (Alimohammadi et al., 2023)). Let Gn = (Vn, En) denote a finite connected graph. Let
(Gn, on) be the rooted graph obtained by letting on ∈ Vn be chosen uniformly at random. We say that (Gn, on) converges
locally to the connected rooted graph (G, o), which is a (possibly random) element of G∗ having law µ, when, for every
bounded and continuous function h : G∗ → R,

E[h(Gn, on)]→ Eµ(G, o)

where the expectation on the right-hand-side is with respect to (G, o) having law µ, while the expectation on the left-hand-side
is with respect to the random vertex on.

A.2. Other graph kernels
TMD is one recently proposed pseudometric on graphs, or graph kernel (Chuang & Jegelka, 2022). It is appealing in
our setting because it characterizes the robustness of GNNs (see Theorem 4.1.) Other popular graph kernels include the
Weisfeiler Lehman (WL) kernel (Shervashidze et al., 2011), Weisfeiler Lehman Optimal Transport (WL-OT) (Kriege et al.,
2016), Shortest Paths kernel ((Borgwardt & Kriegel, 2005)), and FGW (KAWANO et al., 2024). To our knowledge, these
kernels do not have comparable robustness guarantees to TMD.

A.3. Additional details about the TMD
We use Tn

0 to denote n disjoint copies of T0. Given two tree multisets Tu(T), Tv(T ′), we define ρ to be the following
augmentation function, which returns two multi-sets of the same size:

ρ : (Tv(T
′),Tu(T)) 7→

(
Tv(T

′) ∪ T0
max(|Tu(T)|−|Tv(T ′)|,0),Tu(T) ∪ T0

max(|Tv(T)|−|Tu(T ′)|,0)
)
.

A.4. Additional details about experiments
All experiments were run on a 16-core machine with 64 GB of RAM. The GNNs were implemented using Pytorch Geometric
(He et al., 2024). The TMD weight function was set according to Pascal’s triangle rule (Chuang & Jegelka, 2022, Theorem
8) and our implementation of TMD was based on (Chuang & Jegelka, 2022).2 We used the Graph Kernel Library (Siglidis
et al., 2020) for the kernel distances in our experiments. We will be making the code for all of our experiments publicly
available.

For MUTAG, COX2, and BZX we used a GIN model with the following hyperparameters:

• Number of layers: 3

• Learning rate: 0.01

• Batch size: 128
2One consideration with is the runtime required to compute the k-medoids. However, reduced labeling cost, reduced data storage, and

privacy are often more significant priorities.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

• Number of hidden channels per layer: 32

• Aggregation function: global add pool

• Weight regularization: N/A

• Optimizer: Adam

• Loss: BCE with logits

• Dropout: N/A

For IMDB we used a GCN model with the following hyperparameters:

• Number of layers: 3

• Learning rate: 0.01

• Batch size: 32

• Number of hidden channels per layer: 32

• Aggregation function: global add pool

• Weight regularization: N/A

• Optimizer: Adam

• Loss: BCE with logits

• Dropout: N/A

We refrained from using batch normalization in both models. Models were implemented using PytorchGeometric (Fey &
Lenssen, 2019).

B. Appendix
Throughout this section, we use degG(v) to denote the degree of v ∈ V .

B.1. Omitted proofs from Section 4

Corollary 4.2. Let H be a hypothesis class of (L − 1)-layer GNNs h : G → Rd with ℓ-th layer Lipschitz constant
upper-bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss function. Let X = (G1, ..., Gn) and (y1, ..., yn) be a set of
(training) graphs and their labels. For each i ∈ [n], let Gi = (Vi, Ei) and Si ⊂ Vi. Suppose that M

(∏
ℓ∈[L−1] Φℓ

)
≤ c

and TMDL
w(Gi, Gi[Si]) ≤ εi for all i ∈ [n]. Finally, let ĥ ∈ H be a hypothesis with minimum loss over the subsampled

training set:

ĥ = argminh∈H

∑
i∈[n]

L(h(Gi[Si]); yi).

Then ĥ has nearly optimal loss over the original training set as well:

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi)

+
2c

n

∑
i∈[n]

εi.

Proof. Consider any h ∈ H. By Theorem 4.1, we have that for each i ∈ [n],

∥h(Gi; yi)− h(Gi[Si]; yi)∥ ≤

 ∏
ℓ∈[L−1]

Φℓ

TMDL
w(Gi, Gi[Si]). (6)

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Consequently, using the fact that L is M -Lipschitz and (6),

|L (h(Gi); yi)−L (h(Gi[Si]))| ≤M ∥h(Gi; yi)− h(Gi[Si]; yi)∥

≤M

 ∏
ℓ∈[L−1]

Φℓ

TMDL
w(Gi, Gi[Si])

= cTMDL
w(Gi, Gi[Si]) ≤ cεi.

Consequently, by the triangle inequality,∣∣∣∣∣∣ 1n
∑
i∈[n]

L (h(Gi); yi)−
1

n

∑
i∈[n]

L (h(Gi[Si]))

∣∣∣∣∣∣ ≤ 1

n

∑
i∈[n]

|L (h(Gi); yi)−L (h(Gi[Si]; yi))|

≤ c

n

∑
i∈[n]

εi.

So, we know that for any h ∈ H

1

n

∑
i∈[n]

L(h(Gi; yi) ≤
1

n

∑
i∈[n]

L(h(Gi[Si]; yi) +
c

n

∑
i∈[n]

εi. (7)

Let h⋆ be the hypothesis that minimizes average loss across the original dataset X:

h⋆ = argmin
h∈H

1

n

∑
i∈[n]

L(h(Gi); yi).

By definition of ĥ, this means that

1

n

∑
i∈[n]

L(ĥ(Gi[Si]; yi) ≤
1

n

∑
i∈[n]

L(h⋆(Gi[Si]); yi) +
c

n

∑
i∈[n]

εi.

Applying (7) again to h⋆, we have that

1

n

∑
i∈[n]

L(ĥ(Gi[Si]; yi) ≤
1

n

∑
i∈[n]

L(h⋆(Gi); yi) +
c

n

∑
i∈[n]

εi.

■

Lemma 4.1. Let w : Z≥0 → R be a weight function and G = (V,E, f) be a graph. Then, the identity transportation plan
I that maps Tv(G) to Tv(G[S]) for v ∈ S, and Tu(G) to ∅ for u /∈ S is an optimal transport plan for the OT problem

TMDL
w(G,G[S]) = OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
. (3)

Consequently, we can decompose the right-hand-side of (3) into three terms: a sum over the feature norms of deleted nodes
v ̸∈ S; the cost of transporting the deleted nodes’ computation trees (that is, {Tv(TL

v (G))}v ̸∈S) to the empty set; and the
cost of transporting the computation trees of the remaining nodes v ∈ S (that is, {Tv(TL

v (G))}v∈S) to their computation
trees in G[S]. Formally,

OTTDw

(
ρ
(
TL
G ,TL

G[S]

))
=
∑
v/∈S

∥fv∥

+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
, ∅
))

+ w(L− 1)
∑
v∈S

OTTDw

(
ρ
(
Tv
(
TL
v (G)

)
,Tv

(
TL
v (G[S])

)))
.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Proof. Let Ḡ[S] be the graph obtained by augmenting G[S] with node features 0 for each v ∈ V \ S. That is, Ḡ[S] =
(V,E[S], f ′) where f ′v = fv if v ∈ S and 0 otherwise By the definition of the augmentation function ρ, we can instead
consider the following OT problem, which is equivalent to (3):

OTTDw

(
ρ(TL

G ,TL
Ḡ[S])

)
.

In the base case where L = 1, we see that any transportation plan between the nodes of Ḡ[S] and G must transport the
excess node feature mass

∑
v/∈S ∥fv∥ in G to some nodes in G[S]. The transportation plan I has cost exactly equal to∑

v∈V ∥fv − f ′v∥ =
∑

v/∈S ∥fv∥, so I must be an optimal transportation plan.

Now, if L > 1, consider the OT problem 3, and let C and Γ be the distance matrix and feasible transportation plans for this
OT problem. Let γ ∈ Γ be any feasible transportation plan.

By the definition of TD, for any i, j ∈ V , transporting γi,j mass from i to j incurs two costs:

(1) γi,j incurs the cost of transporting f i to f ′j .

(2) γi,j incurs the cost of taking all of the depth (L− 1) computation trees of all neighbors of i in TL
i (G), and transporting

them to the depth (L− 1) computation trees of all neighbors of j in TL
j (G[S]) (after appropriately augmenting with

isolated nodes of feature 0 for each v /∈ S.

To quantify these two costs, let us define T̄j(T
L
j (G[S])) to be the multiset of computation trees obtained by augmenting

Tj(TjL(G[S])) with isolated nodes of feature vectors 0 for each j /∈ S. That is, let T̄j(TL
j (G[S])) be defined as the second

output of ρ when applied to
(
Tj(T

L
j (G)),Tj(T

L
j (G[S]))

)
:

(
Tj(T

L
j (G)), T̄j(T

L
j (G[S]))

)
= ρ

(
Tj(T

L
j (G)),Tj(T

L
j (G[S]))

)
.

We can now quantify the cost of transportation plan γ (3) as follows. In the following equation, the first term corresponds to
item (1) above and the second term corresponds to item (2) discussed above.

∑
i,j∈V

γi,jCi,j =
∑
i,j∈V

γi,j
∥∥f i − f ′j∥∥+ w(L− 1)

∑
i,j∈V

γi,jOTTDw(Ti(T
L
i (G)), T̄j(T

L
j (G[S]))).

Now, we can immediately lower bound the cost
∑

i,j γi,jCi,j of γ as follows:

∑
i,j∈V

γi,jCi,j ≥ min
ν∈Γ

∑
i,j∈V

νi,j
∥∥f i − f ′j∥∥

+ w(L− 1)min
τ∈Γ

∑
i,j∈V

τi,jOTTDw
(Ti(T

L
i (G)), T̄j(T

L
j (G[S]))).

For the first term, it is easy to see that ν = I is an optimal solution, by the same argument as in the base case: any
transportation plan ν must incur the cost of transporting the excess mass {∥fv∥}v/∈S in the node features of G which is not
present in the node features of S.

For the second term, we can notice that OTTDw
(Ti(T

L
i (G)), T̄j(T

L
j (G[S]))) is also an TMD between graphs which contain

the corresponding multisets of depth L− 1 trees! So, by the inductive hypothesis, τ = I is an optimal solution for this OT
problem as well.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Consequently, substituting τ = ν = I , we can further simplify the lower bound to∑
i,j∈V

γi,jCi,j ≥
∑
i,j∈V

Ii,j
∥∥f i − f ′j∥∥+ w(L− 1)

∑
i,j∈V

Ii,jOTTDw(Ti(T
L
i (G)), T̄j(T

L
j (G[S])))

=
∑
i∈V

∥∥f i − f ′j∥∥+ w(L− 1)
∑
i∈V

OTTDw

(
Ti(T

L
i (G), T̄i(T

L
i (G[S]))

)
=
∑
v/∈S

∥fv∥+ w(L− 1)
∑
v/∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)), ∅

))
+ w(L− 1)

∑
v∈S

OTTDw

(
Tv(T

L
v (G)), T̄v(T

L
v (G[S]))

)
=
∑
v/∈S

∥∥f i
∥∥+ w(L− 1)

∑
v/∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)), ∅

))
+ w(L− 1)

∑
v∈S

OTTDw

(
ρ
(
Tv(T

L
v (G)),Tv(T

L
v (G[S]))

))
.

Finally, the inequality is tight, because γ = I ∈ Γ is clearly a feasible transportation plan. So, by induction, the lemma
holds. ■

Remark B.1. The terms OTTDw

(
ρ
(
Tv(T

L
v (G)),Tv(T

L
v (G[S]))

))
in the expression of Lemma 4.1 can themselves be

viewed as the TMD between two graphs Ḡ and Ḡ′, where Ḡ is the graph consisting of all elements in Tv(T
L
v (G)) as a

disjoint trees, and Ḡ′ is the graph consisting of all elements in Tv(T
L
v (G[S])) as disjoint trees. In this sense, Lemma 4.1

precisely characterizes the recursive structure of TMD between a graph and its subgraph. We leverage this fact in later
proofs.

Lemma 4.2. For T ⊂ S ⊂ V , TMDL
w(G,G[S \ T]) = TMDL

w(G,G[S]) + TMDL
w(G[S], G[S \ T]).

Proof. Let Z = {z ∈ V : z /∈ S}. Since T ⊂ V , T and Z are disjoint. So, Lemma 4.1 shows that

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
.

Now, each term in OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
inside the summation is, in fact a depth L − 1 TMD

between two graphs corresponding to the two disjoint forests of computation trees (as we discussed in Remark B.1). Thus,
by the inductive hypothesis, we can expand the last term as follows:∑

u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S \ T]))

))
=

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Consequently, we obtain:

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Next, we can add and subtract terms as follows.

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
− w(L− 1)

∑
u∈T

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Now, OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[V \ S]))

))
is also a depth L− 1 TMD between two graphs corresponding to two

disjoint forests of computation trees (again, see Remark B.1). So, we can apply the inductive hypothesis to see that for each
t ∈ T ,

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
= OTTDw

(
ρ
(
Tt(T

L
t (G)),Tt(T

L
t (G[S]))

))
+ OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
.

Thus, summing over t ∈ T , we have∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
=
∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)), ∅

))
−
∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G)),Tt(T

L
t (G[S]))

))
.

By substituting this into the equation above, we obtain

TMDL
w(G,G[S \ T]) =

∑
z∈Z

∥fz∥+ w(L− 1)
∑
z∈Z

OTTDw

(
ρ
(
Tz(T

L
z (G)), ∅

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])), ∅

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+ w(L− 1)

∑
u∈S\T

OTTDw

(
ρ
(
Tu(T

L
u (G[S])),Tu(T

L
u (G[S \ T]))

))
.

Rearranging in the form of Lemma 4.1, we obtain

TMDL
w(G,G[S \ T]) =

∑
u/∈S

∥fu∥+ w(L− 1)
∑
u/∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),0

))
+ w(L− 1)

∑
u∈S

OTTDw

(
ρ
(
Tu(T

L
u (G)),Tu(T

L
u (G[S]))

))
+
∑
t∈T

∥∥f t
∥∥+ w(L− 1)

∑
t∈T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])),0

))
+ w(L− 1)

∑
t∈S\T

OTTDw

(
ρ
(
Tt(T

L
t (G[S])),Tt(T

L
t (G[S \ T]))

))
= TMDL

w(G,G[S]) + TMDL
w(G[S], G[S \ T]).

■

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Theorem 4.5. Given a graph G = (V,E, f), Algorithm 1 computes ∥G∥TNL
w

in O(|E|L) time.

Proof. Consider Algorithm 1, TreeNorm. The runtime is immediate from the algorithm pseudocode, as matrix-vector
products can be computed in O(|E|). In this proof, let AG denote the adjacency matrix of a graph G and let xG be the
vector in RV such that xG(v) = ∥fv∥ .

To verify the correctness, we proceed by induction. We just need to show that for all L, ∥G∥TNL
w

= ∥xG∥1 +∥∥∥∑L−1
ℓ=1

(∏ℓ
t=1 w(L− t)

)
Aℓ

GxG

∥∥∥
1
, as this is the exact computation computed by the algorithm pseudocode. Note

that an equivalent expression is ∥G∥TNL
w
=
∥∥∥∑L−1

ℓ=0

(∏ℓ
t=1 w(L− t)

)
Aℓ

GxG

∥∥∥
1
, where the product over the emptyset is

defined as 1.

If L = 1, then ∥G∥TNL
w

is simply the sum of its feature values, so this is trivially true.

Consider the case of a depth-L tree-norm computation. Throughout this proof, all variables are positive, and consequently
we can move the ℓ1 norm in and out of sums freely (i.e., we have a triangle equality.)

By taking S = ∅ in Lemma 4.1, we see that ∥G∥TNL
w

is equal to the norm of its nodes plus w(L −
1)
∑

v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
. That is,

∥G∥TNL
w
= ∥xG∥1 + w(L− 1)

∑
v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
.

To interpret this expression, let G′
v be the graph which is a forest of all the trees in Tv(T

L
v (G))– for each u ∈ NG(v), we

G′
v will contain a depth-(L− 1) tree G′

v,u. Then, by inductive hypothesis,∥∥Tv(TL
v (G))

∥∥
TNL−1

w
=

∑
u∈NG(v)

∥∥(TL
v (G))

∥∥
TNL−1

w
= ∥G′

v∥TNL−1
w

=
∑

u∈NG(v)

∥∥G′
u,v

∥∥
TNL−1

w

=
∑

u∈NG(v)

∥∥∥∥∥
L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)
Aℓ

Gu,v
xGu,v

∥∥∥∥∥
1

=
∑

u∈NG(v)

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∥∥∥Aℓ
Gu,v

xGu,v

∥∥∥
1
,

Letting AG(v, u) be the (v, u)-th entry of AG,

∥∥Tv(TL
v (G))

∥∥
TNL−1

w
=

∑
u∈NG(v)

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∥∥∥Aℓ
Gu,v

xGu,v

∥∥∥
1

=

∥∥∥∥∥∑
u∈V

L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)
AG(u, v)A

ℓ
Gu,v

xGu,v

∥∥∥∥∥
1

.

Now, by the way we constructed the trees Tv(TL
v (G)), u has the same (L− 1)-hop neighborhood in G as it does in Gu,v.

Consequently,

∥G∥TNL
w
= ∥xG∥1 + w(L− 1)

∑
v∈V

∥∥Tv(TL
v (G))

∥∥
TNL−1

w

= ∥xG∥1 + w(L− 1)

∥∥∥∥∥
L−2∑
ℓ=0

(
ℓ∏

t=1

w(L− t− 1)

)∑
v∈V

∑
u∈V

AG(u, v)A
ℓ
Gu,v

xGu,v

∥∥∥∥∥
1

= ∥xG∥1 +

∥∥∥∥∥
L−2∑
ℓ=1

(
ℓ∏

t=1

w(L− t− 1)

)∑
v∈V

Aℓ+1
G xG

∥∥∥∥∥
1

= ∥xG∥1 +

∥∥∥∥∥
L−1∑
ℓ=1

(
ℓ∏

t=1

w(L− t)

)
Aℓ

GxG

∥∥∥∥∥
1

,

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

completing the induction and the proof of correctness.

■

B.2. Omitted proofs from Section 5

Lemma 5.1. Let H be a hypothesis class of (L − 1)-layer GNNs h : G → Rd with ℓ-th layer Lipschitz constant upper-
bounded by Φℓ. Let L : Rd → R be an M -Lipschitz loss function. Let y = (y1, ..., yn) be labels for X and I be a subset of
[n]. Then for any GNN h ∈ H and G ∈ G,

1

n

∣∣∑
i∈I

τiL(h(Gi); yi)−
∑
i∈[n]

L(h(Gi); yi)
∣∣ ≤ (4)

M

 ∏
ℓ∈[L−1]

Φℓ

 fTMDL
w
(I;X). (5)

Proof. Let κ : [n]→ I map i ∈ [n] to the index j ∈ I such that Gj is the closest graph in {Gi}i∈I to Gi. That is,

κ(i) = argmin
j∈I

TMDL
w(Gi, Gj),

with ties broken arbitrarily (but consistently with the mapping τ .) First, we can rearrange the sums as follows∣∣∣∣∣∣ 1n
∑
i∈I

τiL(h(Gi); yi)−
1

n

∑
i∈[n]

L(h(Gi); yi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n
∑
i∈[n]

L(h(Gκ(i)); yκ(i))−L(h(Gi); yi)

∣∣∣∣∣∣
≤ 1

n

∑
i∈[n]

∣∣L(h(Gκ(i); yκ(i)))−L(h(Gi); yi)
∣∣

≤ M

n

∑
i∈[n]

∥∥L(h(Gκ(i)); yκ(i))−L(h(Gi); yi)
∥∥ ,

where in the last inequality, we used that L is M -lipschitz. Now, by Theorem 4.1, we have

M

n

∑
i∈[n]

∥∥L(h(Gκ(i)); yκ(i))− h(Gi; yi)
∥∥ ≤ M

n

 ∏
ℓ∈[L−1]

Φℓ

∑
i∈[n]

TMDL
w(Gκ(i), Gi)

= M

 ∏
ℓ∈[L−1]

Φℓ

 fTMDL
w
(S;X).

■

Corollary 5.2. Suppose that M
(∏

ℓ∈[L−1] Φℓ

)
≤ c and fTMDL

w
(I;X) ≤ ε. Let ĥ ∈ H be the hypothesis that minimizes

loss on the subsampled graphs
∑

i∈I τiL(h(Gi); yi). Then

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ min

h∈H

1

n

∑
i∈[n]

L(h(Gi); yi) + 2cε.

Proof. From Lemma 5.1, we know that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈S

τiL(ĥ(Gi); yi) + cε.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Let h∗ be the hypothesis that minimizes average loss over the original dataset X:

h∗ = argmin
h∈H

1

n

∑
i∈[n]

L(h(Gi); yi).

By definition of ĥ, this means that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈S

τiL(h∗(Gi); yi) + cε.

Applying Lemma 5.1 again, we have that

1

n

∑
i∈[n]

L
(
ĥ(Gi); yi

)
≤ 1

n

∑
i∈[n]

L (h∗(Gi); yi) + 2cε.

■

20

