
Invariant Low-Dimensional Subspaces in Gradient
Descent for Learning Deep Matrix Factorizations

Anonymous Author(s)
Affiliation
Address
email

Abstract

An extensively studied phenomenon of the past few years in training deep networks1

is the implicit bias of gradient descent towards parsimonious solutions. In this2

work, we further investigate this phenomenon by narrowing our focus to deep3

matrix factorization, where we reveal surprising low-dimensional structures in the4

learning dynamics when the target matrix is low-rank. Specifically, we show that5

the evolution of gradient descent starting from arbitrary orthogonal initialization6

only affects a minimal portion of singular vector spaces across all weight matrices.7

In other words, the learning process happens only within a small invariant subspace8

of each weight matrix, despite the fact that all parameters are updated throughout9

training. From this, we provide rigorous justification for low-rank training in a10

specific, yet practical setting. In particular, we demonstrate that we can construct11

compressed factorizations that are equivalent to full-width, deep factorizations12

throughout training for solving low-rank matrix completion problems efficiently.13

1 Introduction14

In recent years, deep learning has demonstrated remarkable success across a wide range of applications15

[1]. Many recent works attempt to explain the exceptional generalization capabilities of deep networks16

by studying the implicit bias of gradient-based methods, showing that deep networks trained with17

such algorithms tend to learn simple functions [2–6]. Similarly, it has been shown that gradient18

descent induces max-margin [6, 7] or low-rank solutions [8–12] in deep networks, to name a few.19

In another vein, recent work has explored the increasingly important problem of training deep20

networks more efficiently via low-rank training [13–17], where the number of trainable parameters is21

effectively reduced by replacing the original network weights with low-rank factorizations. While such22

methods have shown promising empirical results for reducing training time, theoretical justifications23

for these approaches remain deficient. The aforementioned works on implicit bias characterize24

low-rank structure in the limit of gradient descent – they do not address whether the trajectory of25

the original overparameterized network (along with its generalization/convergence properties) is26

achievable via low-rank factorization from initialization throughout training, which is what low-rank27

training necessitates.28

Contributions. In this work, we draw theoretical connections between the implicit bias of gradient29

descent in deep networks and the practice of low-rank training. Utilizing deep matrix factorizations30

as a testbed (commonly assumed for analyzing the complex optimization dynamics of deep networks31

[10, 18–20]) we demonstrate that for low-rank data, all weight matrices are only updated within32

a low-dimensional subspace that is invariant throughout training, which can be determined from33

their arbitrary orthogonal initialization. To our knowledge, this is the first work identifying such34

invariant structures in gradient descent dynamics from random initialization. From this, we show35

that we can construct a compressed, low-rank factorization that is nearly equivalent to the original36

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2023. Do not distribute.

Figure 1: Evolution of SVD of weight matrices. We visualize the SVD dynamics of the first layer
weight matrix of an L = 3 layer deep matrix factorization with d = 30, r = 3, σl = 1 throughout
GD without weight decay. Left: Magnitude of the i-th singular value σi(t) at iteration t. Middle:
Angle ∠(vi(t),vi(0)) between the i-th right singular vector at iteration t and initialization. Right:
Angle ∠(ui(t),ui(0)) between the i-th left singular vector at iteration t and initialization.

overparameterized network, thereby providing some rigorous foundations for low-rank training.37

Although deep matrix factorizations are mostly of theoretical interest, they are adopted for low-rank38

matrix sensing problems - therefore, we demonstrate that our theory can be applied (with slight39

modifications) towards accelerating practical low-rank deep matrix completion problems.40

2 Analysis41

Setup. We study the training dynamics of L-layer deep matrix factorizations f(Θ) given by42

f(Θ) := WLWL−1 · · ·W2W1

where Θ = (Wl)
L
l=1 are the parameters or weights with Wl ∈ Rdl×dl−1 for l ∈ [L]. For a given43

target matrix Φ ∈ Rd×d, we learn parameters Θ with d0 = d1 = · · · = dL = d by minimizing the44

square loss45

ℓ(Θ) =
1

2
∥f(Θ)−Φ∥2F (1)

via gradient descent (GD) from scaled orthogonal initialization, i.e., we initialize parameters Θ(0)46

such that all singular values of Wl(0) are equal to some σl > 0 for each l ∈ [L]. Then, we update all47

weights for t = 0, 1, 2, . . . as48

Wl(t+ 1) = (1− ηλ)Wl(t)− η∇Wl
ℓ(Θ(t)), l ∈ [L] (2)

where λ ≥ 0 is an optional weight decay parameter and η > 0 is the learning rate.49

Main Result. Under the setting described above, we show learning only occurs within an invariant50

low-dimensional subspace of the weight matrices, provided that the target matrix Φ is low-rank.51

Theorem 1. Suppose Φ ∈ Rd×d is at most rank r where m := d − 2r > 0. Then there exist52

orthogonal matrices (Ul)
L
l=1 ⊂ Rd×d and (Vl)

L
l=1 ⊂ Rd×d satisfying Vl+1 = Ul for l ∈ [L − 1],53

such that Wl(t) admits the decomposition54

Wl(t) = Ul

[
W̃l(t) 0
0 ρl(t)Im

]
V ⊤
l (3)

for all l ∈ [L] and t ≥ 0, where W̃l(t) ∈ R2r×2r with Wl(0) = σlI2r, and55

ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t− 1)) (4)

for all l ∈ [L] and t ≥ 1 with ρl(0) = σl.56

We defer the proof of Theorem 1 to Appendix A.1. In the following, we discuss several implications57

of our result and its relationship to previous work.58

• SVD dynamics of weight matrices. The decomposition (3) implies that Wl(t) has m identical59

singular values that follow the updates given in (4), whose corresponding singular vectors are60

stationary from initialization throughout GD – this is portrayed in Figure 1. By this, we can61

decompose the total space Rd into two invariant singular subspaces: a 2r-dimensional space within62

which learning takes place, and an m-dimensional space corresponding to repeated singular values.63

2

Figure 2: Network compression for deep matrix factorization. Comparison of trajectories for
optimizing the original problem (1) vs. the compressed problem (6) with L = 3, d = 1000,
r̂ = r = 5, and σl = 10−3. Left: Principal components of end-to-end GD trajectories. Right:
Training loss vs. wall-time comparison.

• Low-rank bias. From (4), we see that the GD trajectory either remains or tends towards a rank of64

at most 2r when we employ implicit or explicit regularization respectively. Indeed, if we use small65

initialization σl ≈ 0, then the fact that ρl is a decreasing sequence implies that Wl(t) can be no66

more than rank 2r throughout the entire trajectory; whereas if λ > 0, then ρl(t) → 0 as t → ∞,67

which forces Wl(t) towards a solution of rank at most 2r, regardless of initialization.68

• Comparison to prior arts. In contrast to existing work that demonstrates the tendency of GD to69

find low nuclear-norm solutions [9, 11], our result directly shows that GD tends to find low-rank70

solutions. Moreover, unlike previous work on implicit bias [11, 21–23], we carefully examine the71

effect of weight decay, which is commonly employed during the training of deep networks. We72

note that our analysis is distinct from that of [18, 19], where continuous time dynamics are studied73

with the special (separable) setting WL:1(0) = UV ⊤ with Φ = UΣV ⊤. In contrast, our result74

applies to discrete time GD and holds for initialization that is agnostic to the target matrix. We also75

note that our result is unrelated to balanced initialization (as in [24]), since the σl can be arbitrarily76

different from one another.77

Compressed Deep Matrix Factorization. We now show that, as a consequence of Theorem 1, we78

can run gradient descent on dramatically fewer parameters to achieve a near identical end-to-end79

trajectory to the original (full-width) factorization. More specifically, given an initialization Θ(0) of80

the original parameters and an upper bound on the rank r̂ ≥ r such that d− 2r̂ > 0, we define the81

compressed factorization82

f̂(Θ̂,UL,1,V1,1) := UL,1ŴLŴL−1 · · · Ŵ1V
⊤
1,1 (5)

where Θ̂ = (Ŵl)
L
l=1 are compressed weights with Ŵl ∈ R2r̂×2r̂ and UL,1, V1,1 ∈ Rd×2r̂ are the83

first 2r̂ columns of UL,V1 ∈ Rd×d respectively from Theorem 1 (depends on Θ(0) and Φ). Then,84

initializing Θ̂(0) such that Ŵl(0) = U⊤
l,1Wl(0)Vl,1 for all l ∈ [L] and running gradient descent on85

the loss86

ℓ̂(Θ̂) =
1

2
∥f̂(Θ̂,UL,1,V1,1)−Φ∥2F (6)

gives an almost equivalent network in the following sense.87

Proposition 1. For r̂ ≥ r such that m̂ := d− 2r̂ > 0, running gradient descent on the compressed88

weights Θ̂ as described above for the loss (6) satisfies89 ∥∥∥f(Θ(t))− f̂(Θ̂(t),UL,1,V1,1)
∥∥∥2
F
≤ m̂ ·

L∏
l=1

σ2
l

for all iterates t = 0, 1, 2,90

We defer the proof of Proposition 1 to Appendix A.2. When we start from small initialization (σl ≈ 0),91

Proposition 1 demonstrates that we only need to optimize 4L · r̂2 many parameters as opposed to the92

original L ·d2 number of parameters to achieve an almost identical end-to-end trajectory, see Figure 293

(left). Since it is often the case that r ≤ r̂ ≪ d, this results in an order of magnitude reduction in94

time to reach an optimal solution compared to the original network, see Figure 2 (right). In the next95

section, we demonstrate how this idea can be leveraged (with slight modification) to accelerate a96

more practical problem.97

3

Figure 3: Network compression for deep matrix completion. Comparison of trajectories for
optimizing the original problem (7) vs. the compressed problem (8) with γ discrepant updates
(γ = 0.01) and ablating γ (γ = 0) with L = 3, d = 1000, r = 5, σl = 10−3 and 20% of entries
observed. Left: Principal components of end-to-end trajectories of each factorization. Middle:
Recovery error vs. iteration comparison. Right: Recovery error vs wall-time comparison.

3 Application: Accelerating Deep Low-Rank Matrix Completion98

Problem Setup. We consider the low-rank matrix completion problem [25–27] with ground-truth99

Φ ∈ Rd×d with rank r ≪ d, where the goal is to recover Φ from only a few number of observations100

encoded by a mask Ω ∈ {0, 1}d×d. Adopting a deep matrix factorization approach [11], we minimize101

the objective102

ℓmc(Θ) =
1

2
∥Ω⊙ (f(Θ)−Φ)∥2F (7)

which simplifies to (1) when Ω = 1d1
⊤
d in the full observation case. In practice, the true rank r is103

not known – instead, we assume to have an upper bound r̂ of the same order as r, i.e., r ≤ r̂ ≪ d.104

Compressed Deep Matrix Completion. In the setting described above, it is advantageous to over-105

parameterize along both the depth and width of the factorization, particularly for accelerating GD106

convergence to well-generalizing solutions – see Appendix B for a more detailed discussion alongside107

evidence. Nonetheless, the advantages of over-parameterization are hindered by the fact that depth108

and width incur much higher per-iteration costs – for an L-layer factorization of (full)-width d, we109

require O(L · d3) multiplications to evaluate gradients, where d is often very large. However, using110

ideas from the previous section, we can effectively reduce the computation to O(r̂ 2 · (Lr̂ + d))111

multiplications via a compressed factorization that emulates the trajectory of a (full)-width d network,112

thereby enjoying accelerated GD convergence with heavily reduced per-iteration computational cost.113

In the full observation case (Ω = 1d1
⊤
d), we have already seen via Proposition 1 that the compressed114

factorization (5) with small initialization stays close to the trajectory of the full-width factorization.115

However, applying this directly to the projection Ω⊙Φ will result in the compressed factorization’s116

trajectory diverging from that of the original – see the orange trace in Figure 3. Intuitively, this117

is because the factors UL,1,V1,1 are initialized from incomplete measurement of Φ – instead, we118

optimize the modified objective119

ℓ̂mc(Θ̂,UL,1,V1,1) =
1

2
∥Ω⊙ (f̂(Θ̂,UL,1,V1,1)−Φ)∥2F (8)

where Θ̂ are updated with learning rate η while the UL,1,V1,1 factors are updated with a discrepant120

learning rate γη where γ > 0 is small. While this results in an additional 2dr̂ parameters to be121

tracked, the trajectory of this compressed factorization will ultimately align with that of the original122

while converging roughly 5× faster w.r.t. wall-time, as demonstrated in Figure 3. Moreover, the123

accelerated convergence induced by the full-width trajectory results in the compressed factorization124

being 3× faster than randomly initialized factorizations of similar width – see Appendix C for more125

details.126

4 Conclusion127

This paper offers novel insights into simple structures in gradient descent for learning deep matrix128

factorizations, by which we derive some rigorous justification for the practice of low-rank training.129

Through this work, we hope to ultimately inspire more principled approaches to designing efficient130

and effective deep models by exploiting low-dimensional aspects of their training dynamics.131

4

References132

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.133

[2] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The pitfalls of134

simplicity bias in neural networks. Advances in Neural Information Processing Systems, 33:9573–9585,135

2020.136

[3] Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because the137

parameter-function map is biased towards simple functions. In International Conference on Learning138

Representations, 2019.139

[4] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear140

convolutional networks. Advances in neural information processing systems, 31, 2018.141

[5] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv preprint142

arXiv:1810.02032, 2018.143

[6] Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum margin bias144

of quasi-homogeneous neural networks. arXiv preprint arXiv:2210.03820, 2022.145

[7] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit146

bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878,147

2018.148

[8] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The149

low-rank simplicity bias in deep networks. Transactions on Machine Learning Research, 2023.150

[9] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.151

Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems, 30,152

2017.153

[10] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient154

dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32, 2019.155

[11] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization.156

Advances in Neural Information Processing Systems, 32, 2019.157

[12] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent for158

matrix factorization: Greedy low-rank learning, 2020.159

[13] Samuel Horvath, Stefanos Laskaridis, Shashank Rajput, and Hongyi Wang. Maestro: Uncovering low-rank160

structures via trainable decomposition, 2023.161

[14] Jiawei Zhao, Yifei Zhang, Beidi Chen, Florian Schäfer, and Anima Anandkumar. Inrank: Incremental162

low-rank learning, 2023.163

[15] Hongyi Wang, Saurabh Agarwal, Pongsakorn U-chupala, Yoshiki Tanaka, Eric P. Xing, and Dimitris164

Papailiopoulos. Cuttlefish: Low-rank model training without all the tuning, 2023.165

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and166

Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,167

2021.168

[17] Albert Gural, Phillip Nadeau, Mehul Tikekar, and Boris Murmann. Low-rank training of deep neural169

networks for emerging memory technology, 2020.170

[18] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of171

learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.172

[19] Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic development173

in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.174

[20] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration175

by overparameterization. In International Conference on Machine Learning, pages 244–253. PMLR, 2018.176

[21] Hancheng Min, Salma Tarmoun, René Vidal, and Enrique Mallada. Convergence and implicit bias of177

gradient flow on overparametrized linear networks. arXiv preprint arXiv:2105.06351, 2022.178

[22] Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental179

learning drives generalization. arXiv preprint arXiv:1909.12051, 2019.180

[23] Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Conference181

on Learning Theory, pages 4224–4258. PMLR, 2021.182

[24] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent183

for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.184

[25] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Communica-185

tions of the ACM, 55(6):111–119, 2012.186

5

[26] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix completion.187

IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.188

[27] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery from incomplete189

observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622, 2016.190

[28] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite191

programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.192

[29] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating193

minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages194

665–674, 2013.195

[30] Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using burer-196

monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.197

[31] Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE198

Transactions on Information Theory, 62(11):6535–6579, 2016.199

[32] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. Advances in200

neural information processing systems, 29, 2016.201

[33] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low rank202

matrix recovery. Advances in Neural Information Processing Systems, 29, 2016.203

[34] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A unified204

geometric analysis. In International Conference on Machine Learning, pages 1233–1242. PMLR, 2017.205

[35] Qiuwei Li, Zhihui Zhu, and Gongguo Tang. The non-convex geometry of low-rank matrix optimization.206

Information and Inference: A Journal of the IMA, 8(1):51–96, 2019.207

[36] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization: An208

overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.209

[37] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix210

sensing and neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47.211

PMLR, 2018.212

[38] Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regularization: Gener-213

alization and convergence guarantees for overparameterized asymmetric matrix sensing. arXiv preprint214

arXiv:2303.14244, 2023.215

6

216

Appendix217

218

Notation. Given any L ∈ N, we use [L] to denote the index set {1, . . . , L}. We use In ∈ Rn to219

denote the identity matrix of size n, and 1n to denote a vector of length n with all entries equal220

to 1. We denote by ∥A∥2F the squared Frobenius norm of matrix A, i.e., the sum of squares of all221

entries of A. For convenience, whenever j > i we adopt the abbreviations Wj:i = Wj · · ·Wi and222

W⊤
j:i = W⊤

i · · ·W⊤
j , whereas both are identity if j < i.223

A Proofs in Section 2224

Substituting the analytic form of the gradient into (2), we have the update rule225

Wl(t+ 1) = (1− ηλ)Wl(t)− ηW⊤
L:l+1(t)E(t)W⊤

l−1:1(t), l ∈ [L] (9)

for t = 0, 1, 2, . . . , where E(t) = f(Θ(t))−Φ.226

We first establish the following Lemma 1 – the claim in Theorem 1 then follows in a relatively227

straightforward manner. We note that all statements quantified by i in this section implicity hold for228

all i ∈ [m] (as defined in Theorem 1) for the sake of notational brevity.229

A.1 Proof of Theorem 1230

Lemma 1. Under the setting of Theorem 1, there exist orthonormal sets {u(l)
i }mi=1 ⊂ Rd and231

{v(l)
i }mi=1 ⊂ Rd for l ∈ [L] satisfying v

(l+1)
i = u

(l)
i for all l ∈ [L− 1] such that the following hold232

for all t ≥ 0:233

A(t) : Wl(t)v
(l)
i = ρl(t)u

(l)
i ∀l ∈ [L],

B(t) : W⊤
l (t)u

(l)
i = ρl(t)v

(l)
i ∀l ∈ [L],

C(t) : Φ⊤WL:l+1(t)u
(l)
i = 0 ∀l ∈ [L],

D(t) : ΦW⊤
l−1:1(t)v

(l)
i = 0 ∀l ∈ [L],

where ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏

k ̸=l ρk(t− 1)2) for all t ≥ 1 with ρl(0) = σl > 0.234

Proof. Define Ψ := W⊤
L:2(0)Φ. Since the rank of Φ is at most r, we have that the rank of Ψ ∈ Rd×d235

is at most r, which implies that dimN (Ψ) = dimN
(
Ψ⊤) ≥ d− r. We define the subspace236

S := N (Ψ) ∩N
(
Ψ⊤W1(0)

)
⊂ Rd.

Since W1(0) ∈ Rd×d is nonsingular, we have237

dim(S) ≥ 2(d− r)− d = m.

Let {v(1)
i }mi=1 denote an orthonormal set contained in S and set u(1)

i := W1(0)v
(1)
i /σ1, where238

σ1 > 0 is the scale of W1(0) – since W1(0)/σ1 is orthogonal, {u(1)
i }mi=1 is also an orthonormal239

set. Then we trivially have W1(0)v
(1)
i = σ1u

(1)
i , which implies W⊤

1 (0)u
(1)
i = σ1v

(1)
i . It follows240

from v
(1)
i ∈ S that Ψv

(1)
i = 0 and Ψ⊤W1(0)v

(1)
i = 0, which is equivalent to W⊤

L:2(0)Φv
(1)
i = 0241

and Φ⊤WL:2(0)W1(0)v
(1)
i = σ1Φ

⊤WL:2(0)u
(1)
i = 0 respectively. Since W⊤

L:2(0) is full column242

rank, we further have that Φv
(1)
i = 0.243

Now let E(l) be the event that we have orthonormal sets {u(l)
i }mi=1 and {v(l)

i }mi=1 satisfying244

Wl(0)v
(l)
i = σlu

(l)
i , W⊤

l (0)u
(l)
i = σlv

(l)
i , Φ⊤WL:l+1(0)u

(l)
i = 0, and ΦW⊤

l−1:1(0)v
(l)
i = 0.245

From the above arguments, we have that E(1) holds – now suppose E(k) holds for some 1 ≤ k < L.246

7

Set v(k+1)
i := u

(k)
i and u

(k+1)
i := Wk+1(0)v

(k+1)
i /σk+1. This implies that Wk+1(0)v

(k+1)
i =247

σk+1u
(k+1)
i and W⊤

k+1(0)u
(k+1)
i = σk+1v

(k+1)
i . Moreover, we have248

Φ⊤WL:(k+1)+1(0)u
(k+1)
i = Φ⊤WL:k+1(0)W

⊤
k+1(0)u

(k+1)
i /σ2

k+1

= Φ⊤WL:k+1(0)v
(k+1)
i /σk+1

= Φ⊤WL:k+1(0)u
(k)
i /σk+1 = 0,

where the first two equalities follow from orthogonality and u
(k+1)
i = Wk+1(0)v

(k+1)
i /σk+1, and249

the last equality is due to v
(k+1)
i = u

(k)
i . Similarly, we have250

ΦW⊤
(k+1)−1:1(0)v

(k+1)
i = ΦW⊤

k−1:1(0)W
⊤
k (0)v

(k+1)
i

= ΦW⊤
k−1:1(0)W

⊤
k (0)u

(k)
i

= σkΦW⊤
k−1:1(0)v

(k)
i = 0,

where the second equality follows from v
(k+1)
i = u

(k)
i and the third equality is due to W⊤

k (0)u
(k)
i =251

σkv
(k)
i . Therefore E(k + 1) holds, so we have E(l) for all l ∈ [L]. As a result, we have shown the252

base cases A(0), B(0), C(0), and D(0).253

Now we proceed by induction on t ≥ 0. Suppose that A(t), B(t), C(t), and D(t) hold for some254

t ≥ 0. First, we show A(t+ 1) and B(t+ 1). We have255

Wl(t+ 1)v
(l)
i =

[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t)E(t)W⊤
l−1:1(t)

]
v
(l)
i

=
[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t) (WL:1(t)−Φ)W⊤
l−1:1(t)

]
v
(l)
i

= (1− ηλ)Wl(t)v
(l)
i − ηW⊤

L:l+1(t)WL:1(t)W
⊤
l−1:1(t)v

(l)
i

= (1− ηλ)Wl(t)v
(l)
i − η · (

∏
k ̸=l

ρ2k(t))Wl(t)v
(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))u
(l)
i = ρl(t+ 1)u

(l)
i

for all l ∈ [L], where the first equality follows from (9), the second equality follows from definition256

of E(t), the third equality follows from D(t), and the fourth equality follows from A(t) and B(t)257

applied repeatedly along with v
(l+1)
i = u

(l)
i for all l ∈ [L− 1], proving A(t+1). Similarly, we have258

W⊤
l (t+ 1)u

(l)
i =

[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)E
⊤(t)WL:l+1(t)

]
u
(l)
i

=
[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)
(
W⊤

L:1(t)−Φ⊤)WL:l+1(t)
]
u
(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − ηWl−1:1(t)W

⊤
L:1(t)WL:l+1(t)u

(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − η · (

∏
k ̸=l

ρ2k(t))W
⊤
l (t)u

(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))v
(l)
i = ρl(t+ 1)v

(l)
i

for all l ∈ [L], where the third equality follows from C(t), and the fourth equality follows from A(t)259

and B(t) applied repeatedly along with v
(l+1)
i = u

(l)
i for all l ∈ [L− 1], proving B(t+ 1). Now, we260

show C(t+ 1). For any k ∈ [L− 1], it follows from v
(k+1)
i = u

(k)
i and A(t+ 1) that261

Wk+1(t+ 1)u
(k)
i = Wk+1(t+ 1)v

(k+1)
i = ρk+1(t+ 1)u

(k+1)
i .

Repeatedly applying the above equality for k = l, l + 1, . . . , L− 1, we obtain262

Φ⊤WL:l+1(t)u
(l)
i =

[
L−1∏
k=l

ρk+1(t)

]
·Φ⊤u

(L)
i = 0

8

which follows from C(t), proving C(t+ 1). Finally, we show D(t+ 1). For any k ∈ {2, . . . , L}, it263

follows from v
(k)
i = u

(k−1)
i and B(t+ 1) that264

W⊤
k−1(t+ 1)v

(k)
i = W⊤

k−1(t+ 1)u
(k−1)
i = ρk−1(t+ 1)v

(k−1)
i .

Repeatedly applying the above equality for k = l, l − 1, . . . , 2, we obtain265

ΦW⊤
l−1:1(t)v

(l)
i =

[
l∏

k=2

ρk−1(t)

]
·Φv

(1)
i = 0

which follows from D(t). Thus we have proven D(t+ 1), concluding the proof.266

Proof of Theorem 1. By A(t) and B(t) of Lemma 1, there exists orthonormal matrices {Ul,2}Ll=1 ⊂267

Rd×m and {Vl,2}Ll=1 ⊂ Rd×m for l ∈ [L] satisfying Ul+1,2 = Vl,2 for all l ∈ [L− 1] as well as268

Wl(t)Vl,2 = ρl(t)Ul,2 and Wl(t)
⊤Ul,2 = ρl(t)Vl,2 (10)

for all l ∈ [L] and t ≥ 0, where ρl(t) satisfies (4) for t ≥ 1 with ρl(0) = σl. First, complete V1,2 to269

an orthonormal basis for Rd as V1 = [V1,1 V1,2]. Then for each l ∈ [L − 1], set Ul = [Ul,1 Ul,2]270

where Ul,1 = Wl(0)Vl,1/σl and Vl+1 = [Vl+1,1 Vl+1,2] where Vl+1,1 = Ul,1, and finally set271

UL = [UL,1 UL,2] where UL,1 = WL(0)VL,1/σL. We note that Vl+1 = Ul for each l ∈ [L − 1].272

Then we have273

U⊤
l,1Wl(t)Vl,2 = ρl(t)U

⊤
l,1Ul,2 = 0 (11)

for all l ∈ [L], where the first equality follows from (10). Similarly, we also have274

U⊤
l,2Wl(t)Vl,1 = ρ(t)V ⊤

l,2Vl,1 = 0 (12)

for all l ∈ [L], where the first equality also follows from (10). Therefore, combining (10), (11), and275

(12) yields276

U⊤
l Wl(t)Vl = [Ul,1 Ul,2]

⊤
Wl(t) [Vl+1,1 Vl+1,2] =

[
W̃l(t) 0
0 ρl(t)Im

]
for all l ∈ [L], where W̃l(0) = σlI2r by construction of Ul,1. This directly implies (3), completing277

the proof.278

A.2 Proof of Proposition 1279

Proof. First, it follows from Theorem 1 that for any 1 ≤ i ≤ j ≤ L we have280

Wj:i(t) = Uj,1W̃j:i(t)V
⊤
i,1 + (

j∏
k=i

ρk(t)) ·Uj,2V
⊤
i,2 (13)

for all t ≥ 0, where Ul,1,Vl,1 ∈ Rd×2r̂ and Ul,2,Vl,2 ∈ Rd×m̂ are the first 2r̂ and last m̂ columns281

of Ul,Vl ∈ Rd×d respectively.282

The key claim to be shown here is that Ŵl(t) = W̃l(t) for all l ∈ [L] and t ≥ 0. Afterwards, it283

follows straightforwardly from (13) that284 ∥∥∥f(Θ(t))− f̂(Θ̂(t),UL,1,V1,1)
∥∥∥2
F

=

∥∥∥∥∥UL,1W̃L:1(t)V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2 −UL,1ŴL:1(t)V

⊤
L,1

∥∥∥∥∥
2

F

=

∥∥∥∥∥UL,1(W̃L:1(t)− ŴL:1(t))V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

=

∥∥∥∥∥(
L∏

l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

≤ m̂ ·
L∏

l=1

σ2
l .

9

We proceed by induction. For t = 0, we have that285

Ŵl(0) = U⊤
l,1Wl(0)Vl,1 = W̃l(0)

for all l ∈ [L] by (13) and choice of initialization.286

Now suppose Ŵl(t) = W̃l(t) for all l ∈ [L]. Comparing287

Ŵl(t+ 1) = (1− ηλ)Ŵl(t)− η∇
Ŵl

ℓ̂(Θ̂(t))

with288

W̃l(t+ 1) = U⊤
l,1Wl(t+ 1)Vl,1

= U⊤
l,1 [(1− ηλ)Wl(t)− η∇Wl

ℓ(Θ(t))]Vl,1

= (1− ηλ)W̃l(t)− ηU⊤
l,1∇Wl

ℓ(Θ(t))Vl,1

it suffices to show that289

∇
Ŵl

ℓ̂(Θ̂(t)) = U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1, ∀l ∈ [L] (14)

to yield Ŵl(t+ 1) = W̃l(t+ 1) for all l ∈ [L]. Computing the right hand side of (14), we have290

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = U⊤
l,1W

⊤
L:l+1(t)(WL:1(t)−Φ)W⊤

l−1:1(t)Vl,1

= (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

where291

WL:l+1(t)Ul,1 =

(
UL,1W̃L:l+1(t)V

⊤
l+1,1 + (

L∏
k=l+1

ρk(t)) ·UL,2V
⊤
l+1,2

)
Ul,1 = UL,1W̃L:l+1(t)

by (13) and the fact that Ul = Vl+1, and similarly292

V ⊤
l,1Wl−1:1(t) = V ⊤

l,1

(
Ul−1,1W̃l−1:1(t)V

⊤
1,1 + (

l−1∏
k=1

ρk(t)) ·Ul−1,2V
⊤
1,2

)
= W̃l−1:1(t)V

⊤
1,1.

We also have that293

U⊤
L,1(WL:1(t)−Φ)V1,1 = U⊤

L,1

(
UL,1W̃L:1(t)V

⊤
1,1 + (

L∏
k=1

ρk(t)) ·UL,2V
⊤
1,2 −Φ

)
V1,1

= W̃L:1(t)−U⊤
L,1ΦV1,1

so putting together the previous four equalities yields294

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

= W̃⊤
L:l+1(t)U

⊤
L,1(WL:1(t)−Φ)V1,1W̃

⊤
l−1:1(t)

= W̃⊤
L:l+1(t)(W̃L:1(t)−U⊤

L,1ΦV1,1)W̃
⊤
l−1:1(t).

On the other hand, the left hand side of (14) gives295

∇
Ŵl

ℓ̂(Θ̂(t)) = ŴL:l+1(t)
⊤U⊤

L,1(UL,1ŴL:1(t)V
⊤
1,1 −Φ)V1,1Ŵl−1:1(t)

⊤

= ŴL:l+1(t)
⊤(ŴL:1(t)−U⊤

L,1ΦV1,1)Ŵl−1:1(t)
⊤

so (14) holds by the fact that Ŵl(t) = W̃l(t) for all l ∈ [L], completing the proof.296

B Benefits of Over-Parameterization in Deep Matrix Completion297

In the setup described in Section 3, we claim that depth and width are beneficial for accelerating298

GD convergence to well-generalizing solutions, and therefore constructing more computationally299

efficient factorizations that share the same trajectory is a fruitful endeavour. Below, we give a more300

detailed explanation of these ideas:301

10

Figure 4: Benefits of depth & width in overparameterized matrix completion with d = 100,
r = 5, σl = 10−3 and 30% of entries observed. Left: Recovery error. Right: Number of GD iterations
to converge to 10−10 error.

• Benefits of depth. When L = 2, (7) reduces to Burer-Monteiro factorization [28], whose global302

optimality and convergence under GD have been widely studied under various settings [9, 29–38].303

However, it has been demonstrated [11] that in the over-parameterized regime r̂ > r, deeper304

factorizations (starting from small random initialization) continue to generalize well beyond the305

exact parameterization r̂ = r unlike their shallow counterparts, see Figure 4 (left).306

• Benefits of width. On the other hand, increasing the width r̂ of the deep factorization beyond r307

results in accelerated convergence of GD in terms of iterations, see Figure 4 (right).308

C Compressed vs. Narrow Factorizations309

We compare the training efficiency of a 2r̂-compressed factorization (with trajectory equivalent to310

a wide factorization of width d ≫ r̂) versus a narrow factorization with width 2r̂ under different311

over-parameterized estimates r̂. As depicted in Figure 5 (left), the compressed factorization requires312

fewer iterations to reach convergence, and the number of iterations necessary is almost unaffected by313

r̂. Consequently, training compressed factorizations is considerably more time-efficient than314

training narrow ones of the same size, provided that r̂ is not significantly larger than r.315

Figure 5: Efficiency of compressed vs. narrow factorizations for different overestimated r̂ with
L = 3, d = 1000, r = 5, σl = 10−3 and 20% of entries observed. Left: Number of iterations to
converge to 10−10 error. Right: Time to converge.

The distinction between the compressed and narrow factorizations underscores the benefits of width,316

as previously demonstrated and discussed in Figure 4 (right), where increasing the width results in317

faster convergence. However, increasing the width alone also increases the number of parameters. By318

employing our compression methodology, we can achieve the best of both worlds.319

11

	Introduction
	Analysis
	Application: Accelerating Deep Low-Rank Matrix Completion
	Conclusion
	Proofs in sec:analysis
	Proof of thm:1
	Proof of prop:1

	Benefits of Over-Parameterization in Deep Matrix Completion
	Compressed vs. Narrow Factorizations

