
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORE-EXECUTE CHAIN: TOWARDS AN EFFICIENT
STRUCTURED REASONING PARADIGM

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) and its variants have markedly advanced the reason-
ing abilities of Large Language Models (LLMs), yet their monolithic and auto-
regressive architecture inherently conflates high-level strategic planning with low-
level step-by-step execution, leading to computational inefficiency, limited explo-
ration of reasoning paths, and reduced interpretability. To overcome these issues,
we propose the Explore-Execute Chain (E2C), a structured reasoning frame-
work that decouples reasoning into two distinct phases: an exploratory phase
that stochastically generates succinct high-level plans, followed by an execu-
tion phase that deterministically carries out the chosen plan. Our approach in-
corporates a two-stage training methodology, which combines Supervised Fine-
Tuning (SFT)—augmented by a novel data generation algorithm enforcing strict
plan adherence—with a subsequent Reinforcement Learning (RL) stage that cap-
italizes on the informativeness of exploration and reinforces the determinism of
execution.This decomposition enables an efficient test-time scaling strategy: on
AIME’2024, E2C Test Time Scaling reaches 58.1% accuracy using <10% of
the decoding tokens required by comparable methods (e.g., Forest-of-Thought),
sharply cutting self-consistency overhead. For cross-domain adaptation, our
Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens
used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT
on medical benchmarks, delivering state-of-the-art performance, strong general-
ization, and greater interpretability by separating planning from execution.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning,
largely propelled by techniques such as Chain-of-Thought (CoT) prompting (Wei et al., 2022). This
paradigm has inspired a suite of advanced methods, including sampling multiple reasoning paths
for consensus via Self-Consistency (Wang et al., 2022), and exploring the solution space with more
complex structures like Tree-of-Thoughts (ToT) (Yao et al., 2023), Graph-of-Thoughts (GoT) (Besta
et al., 2023), and Forest-of-Thought (FoT) (Bi et al., 2025). Other approaches focus on iterative
refinement through self-correction (Shinn et al., 2023) or problem decomposition (Zhou et al., 2023;
Yao et al., 2022).

Despite their success, these methods are predominantly founded on a monolithic, auto-regressive
generation process that conflates two fundamentally different cognitive functions: high-level strate-
gic planning and low-level, step-by-step execution. This entanglement leads to critical inefficien-
cies. First, the model expends equivalent computational effort on both creative planning and routine
calculations, a challenge addressed by works on adaptive computation (Xu et al., 2025b) and rea-
soning compression (Li et al., 2025). Second, the greedy generation process restricts the diversity
of initial strategies, where a suboptimal early choice can derail the entire reasoning path. This is a
key problem that sophisticated test-time scaling methods (Liao et al., 2025; Xu et al., 2025a) and
structured exploration frameworks (Zheng et al., 2025a) aim to mitigate.

In this work, we argue that explicitly decoupling these two functions is crucial for advancing rea-
soning in large language models. We introduce the Explore–Execute Chain (E2C), a framework
that decomposes standard CoT into two distinct phases. The first phase is a highly informative ex-
ploration stage, in which the model generates a concise, high-level plan. This stage provides a
quick preview of the complete reasoning process—analogous to hierarchical planning (Gui et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Our proposed Explore-Execute Chain (E2C) method decomposes reasoning chains into
a short, high-level exploratory plan followed by a long, detailed execution (left). After optimizing
these special reasoning chains using RL, it is possible to synthesize a large number of plans, use the
model to pick the best plan, and then execute this plan (middle). This unlocks dramatically improved
overall token efficiency on the challenging AIME’2024 benchmark (right).

2025)—without incurring the cost of full-chain generation. The second phase is a highly deter-
ministic execution stage, which takes the plan as guidance and meticulously performs the detailed
calculations. This stage emphasizes precision and faithful adherence to the chosen strategy, a re-
quirement that necessitates specialized training (Zheng et al., 2025b).

This decomposition enables a highly efficient test-time scaling strategy (Fig. 1). Rather than gen-
erating multiple costly, full reasoning chains (Wang et al., 2022), E2C samples a larger set of in-
expensive exploration plans while executing fewer execution steps. The most promising explo-
ration plans are selected via semantic clustering or an LLM, leveraging the high informativeness
of the exploration phase for effective filtering. The chosen plan is then executed with high deter-
minism, ensuring reliable and precise reasoning. This approach improves the performance–cost
trade-off (Geiping et al., 2025; Liao et al., 2025) and enhances interpretability. We implement this
framework using a two-stage (SFT+RL) training pipeline, guided by recent advances in reasoning
alignment (Gan et al., 2025; Rafailov et al., 2023).

Our main contributions are summarized as follows:

• We propose the Explore–Execute Chain (E2C), which decouples LLMs’ reasoning into a highly
informative Exploration stage for planning and a highly deterministic Execution stage for carry-
ing out the plan, thereby improving efficiency and interpretability.

• We introduce a robust two-stage training methodology (SFT+RL) together with a specialized
data construction algorithm that ensures the model faithfully adheres to its plans, effectively
instilling E2C paradigm and achieving superior performance.

• We demonstrate the efficiency of this framework with two key results: an efficient test-time scal-
ing strategy that achieves 58.1% accuracy on AIME’2024 using less than 10% of the decoding
tokens required by comparable methods (e.g., Forest-of-Thought); and a data-efficient, robust
domain-adaptation method—Exploration-Focused SFT (EF-SFT)-that, with only 3.5% of the
tokens used by standard SFT, improves medical benchmark performance by up to 14.5% over
standard SFT.

2 RELATED WORK
In this work, we argue that explicitly decoupling these two functions is crucial for advancing rea-
soning in large language models. We introduce the Explore–Execute Chain (E2C), a framework
that decomposes standard CoT into two distinct phases. The first phase is a highly informative ex-
ploration stage, in which the model generates a concise, high-level plan. This stage provides a
quick preview of the complete reasoning process—analogous to hierarchical planning (Gui et al.,
2025)—without incurring the cost of full-chain generation. The second phase is a highly deter-
ministic execution stage, which takes the plan as guidance and meticulously performs the detailed

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

calculations. This stage emphasizes precision and faithful adherence to the chosen strategy, a re-
quirement that necessitates specialized training (Zheng et al., 2025b).

From Chain-of-Thought to Structured Reasoning: Chain-of-Thought (CoT) prompting (Wei
et al., 2022) significantly improves LLM reasoning, but its linear nature has motivated more ro-
bust structured paradigms that explore diverse reasoning paths (Chen et al., 2025). These include
parallel sampling methods such as Self-Consistency (Wang et al., 2022; Wan et al., 2025), and more
complex search structures including trees (ToT) (Yao et al., 2023), graphs (GoT) (Besta et al., 2023;
Yao et al., 2024), and forests (FoT) (Bi et al., 2025). Further advances involve RL-trained parallel
thinking (Zheng et al., 2025b; Pan et al., 2025; Yang et al., 2025b) and hierarchical decomposition
via hypertrees (Gui et al., 2025). While these paradigms expand the search space—often integrating
algorithms like MCTS (Zhang et al., 2024; Xie et al., 2024)—they often conflate high-level planning
with low-level execution. E2C addresses this limitation through explicit decoupling.

Planning and Decomposition in LLM Reasoning: The core idea of separating planning from ex-
ecution in E2C aligns with a growing body of work on task decomposition. Methods range from
breaking problems into subtasks (Zhou et al., 2023; Press et al., 2022) to interleaving reasoning
with tool use (Yao et al., 2022; Schick et al., 2023; Patil et al., 2023). Hu et al. (2025) leveraged
learned belief states to improve planning. Wang et al. (2024a)introduce PlanSearch to enhance per-
formance in code generation tasks. While many approaches rely on LLMs as planners for external
solvers (Hao et al., 2023; Liu et al., 2023) or within multi-agent systems (Yuan et al., 2024), E2C in-
herently supports explore–execute reasoning, yielding greater stability during inference. Moreover,
by exploiting this decomposition property in training, E2C achieves superior performance.

Test-Time Scaling and Reasoning Efficiency: Test-time scaling (TTS) aims to improve perfor-
mance by increasing inference-time compute (Snell et al., 2024; Wu et al., 2025), but methods like
Self-Consistency (Wang et al., 2022) are costly because they generate multiple full-length solutions.
This has spurred research on reasoning efficiency, including CoT compression via step entropy (Li
et al., 2025) or truncation (Liao et al., 2025), and adaptive termination guided by semantic entropy to
avoid redundant computation (Xu et al., 2025b). Other efficiency-driven directions include entropy-
guided RL exploration (Zheng et al., 2025a) and reasoning in a continuous latent space (Geiping
et al., 2025; Xu et al., 2025a; Hao et al., 2024). Training these capabilities via Reinforcement
Learning from Verifiable Rewards (RLVR) has also become a key area (Guo et al., 2025; Yue et al.,
2025; Yu et al., 2025; Shao et al., 2025). E2C contributes a novel TTS strategy: it samples multi-
ple inexpensive plans and executes only the most promising one, thereby achieving ensembling-like
gains at a fraction of the traditional cost.

3 METHODOLOGY
We introduce the Explore-Execute Chain (E2C) framework, which decomposes reasoning tasks
into two phases: Exploration and Execution. This division aims to improve reasoning efficiency,
scalability, and interpretability by separating brainstorming steps from detailed calculations. As
shown in Fig. 2, we first introduce a two-stage training procedure to achieve a paradigm shift and
performance boost for E2C model, then we present efficient fine-tuning for specific domains and
effective test-time scaling.

3.1 FORMAL DEFINITION OF E2C
The E2C formalizes reasoning by splitting the coupled reasoning process into two conditional dis-
tributions:

p(e | c)︸ ︷︷ ︸
Coupled Reasoning Process

→ p′(π, e | c)︸ ︷︷ ︸
Explore-Execute Chain

= p′(π | c)︸ ︷︷ ︸
Highly Informative

· p′(e | π, c)︸ ︷︷ ︸
Highly Deterministic

(1)

The framework is defined by two core properties:

1. (Informative Property). p′(π | c) should be highly informative, containing the critical infor-
mation necessary to solve the problem.

2. (Deterministic Property). p′(e | π, c) should be highly deterministic, meaning it must fully
leverage the informative π.

Naturally, we semantically design π to represent high-level strategies, while e entails detailed cal-
culations that follow π.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of E2C method. The approach begins with E2C-SFT to achieve a paradigm
shift, followed by a two-stage E2C-RL process that leverages the decomposition advantage of the
new paradigm to boost performance. The resulting E2C-LLM can be efficiently adapted to new do-
mains via EF-SFT. The exploration stage’s high informativeness enables effective test-time scaling,
implementable through semantic clustering or LLM selection.

3.2 2-STAGE TRAINING PROCEDURE: SFT AND RL

We introduce a two-stage training procedure to achieve the proposed Prop. 1 and Prop. 2. Stage
1 is Supervised Fine-Tuning (SFT), in which we construct a synthetic dataset and perform SFT to
achieve a paradigm shift in reasoning and satisfy the informative Prop. 1. We do not rely solely on
prompting to accomplish this paradigm transition because prompting is unstable and leads to a more
significant performance drop compared to SFT training. Detailed results are presented in Tab. 1.
Stage 2 employs Reinforcement Learning (RL), which incorporates a λ-coefficient on the advantage
to appropriately leverage Prop. 1, thereby accelerating convergence and enhancing the determinism
of execution to satisfy Prop. 2.

3.2.1 STAGE 1: SYNTHETIC DATASET CONSTRUCTION AND E2C-SFT

To support structured reasoning, we construct a dedicated SFT dataset through synthetic generation.
A naive method is to first sample an execution trace from the base model and then summarize it
into an exploration step. However, this approach is flawed: the execution is generated from p(e | c)
rather than the desired p′(e | π, c), effectively hacking the causal structure. As a result, the model
learns to ignore the exploration and directly mimic the base model’s execution distribution, violating
the intended information bottleneck.

Our method, described in Algorithm. 2, explicitly conditions the execution on the exploration. For
each question, we first generate a full solution, distill it into an exploration step, and then prompt
the model to produce a new execution which strictly follows the exploration. This enforces a causal
dependency from exploration to execution, which is crucial for Prop. 2. The solution can also come
from the ground truth. To enable a fair comparison and minimize dataset selection constraints while
avoiding the introduction of extra variables, we specifically use samples from the Base LLM in our
comparison experiments

3.2.2 STAGE 2: E2C REINFORCEMENT LEARNING (E2C-RL)

To emphasize informative reasoning, we extend hierarchical weighting (Wang et al., 2025) by as-
signing a higher coefficient λ to exploration tokens, which accelerates convergence (Prop. 1), while

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the entropy-reduction effect of reinforcement learning supports determinism (Prop. 2). The training
objective is defined as

Lclip =
1

G

∑
i,t

min
(
ri,t λi,t Âi,t, clip(ri,t, 1− ε, 1 + ε)λi,t Âi,t

)
. (2)

JGRPO(θ) = E[Lclip]− β DKL

[
πθ ∥πref

]
. (3)

where i indexes the rollout in the batch, and t indexes the token within that rollout, Âi,t = (ri,t −
r̄i)/σi and ri,t = ranswer + rformat. The reward ranswer measures answer correctness, while rformat
consists of a length reward (rlength) designed to prevent overly long and repetitive answers and an
instruction reward (rinstr), quantifies the alignment between exploration and execution, ensuring that
exploration trajectories approximate optimal execution strategies.The detailed description for rformat
can be found in Appendix A.2.1.

We adopt a two-stage training procedure. In the first stage, a higher temperature τ1 and larger rollout
number k1 are used for one epoch, encouraging broad exploration of the action space and fostering
self-correction to mitigate the overly rigid adherence to the exploration plan that results. In the
second stage, we reduce the temperature to τ2 and the rollout number to k2, again for one epoch,
and assign the advantage coefficient λi,t = λexp > 1 for the exploration tokens in the GRPO update.
This modification explicitly prioritizes high-level reasoning in the policy gradient, thereby achieving
faster and more stable convergence.

The behavior of the trained agent can be formalized by analyzing the modified GRPO objective in
Eq. (3). We highlight the following quantified properties:

1. Update emphasis: exploration vs. execution. Let Texp and Texe be the token index
sets for exploration and execution, defined by the tokens before and after the special delimiter
</EXPLORATION> within an output Oi = (oi,1, . . . , oi,|Oi|). The per-token policy gradient is

gi,t ≈ λi,t Âi,t∇θ log πθ(oi,t | q, oi,<t). (4)

If λi,t = λexp > 1 for t ∈ Texp and λi,t = λexe = 1 for t ∈ Texe, then

E
[
∥gi,t∥2

∣∣ t ∈ Texp
]

E[∥gi,t∥2 | t ∈ Texe]
≳ λ2

exp, (5)

so exploration tokens receive significantly larger expected updates, strengthening the planning
phase. The entropy dynamics are provided in Appendix A.5, which demonstrates that λexp indeed
leads to a substantial difference.

2. Deterministic execution. Let o⋆i,t = argmaxo πθ(o | q, oi,<t) and define the confidence margin

∆i,t := πθ(o
⋆
i,t | q, oi,<t)− max

o ̸=o⋆i,t

πθ(o | q, oi,<t). (6)

Stage-2 RL (with lower temperature and fewer rollouts) increases

Et∈Texe [∆i,t] ↗, Et∈Texe [H(πθ(· | q, oi,<t))] ↘, (7)

where H(πθ(· | q, oi,<t)) := −
∑

o πθ(o | q, oi,<t) log πθ(o | q, oi,<t) is the entropy of the token
distribution at step t. This indicates that the execution stage becomes increasingly deterministic, with
high-confidence token choices and low-variance outputs, yielding faithful and stable execution.

3. Plan sensitivity. Let Âi,t = Âplan
i,t for t ∈ Texp be the advantage attributed to exploration tokens.

Then the expected update sign satisfies

E[sgn(gi,t) | t ∈ Texp] ∝ sgn
(
E[Âplan

i,t]
)
, (8)

so high-quality plans are amplified while poor plans are suppressed.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 E2C Test Time Scaling

1: Sample K exploration segments: {e1, e2, . . . , eK}
2: Encode explorations to get embeddings: V ← {Enc(e1),Enc(e2), . . . ,Enc(eK)}
3: Aggregate explorations via either:
4: • Clustering: E∗ ← Cluster-Centroids(V)
5: • LLM fusion: E∗ ← LLM-Aggregate({e1, . . . , eK})
6: for each aggregated exploration e∗i ∈ E∗ do
7: Generate execution: ai ← Execute(e∗i)
8: Assign weight wi based on the aggregation method
9: end for

10: Aggregate answers: afinal ←
∑

wi · δ(ai)
11: return afinal

3.3 EFFICIENT ADAPTATION AND INFERENCE WITH E2C

The modularity of our E2C framework enables efficient strategies for both domain adaptation at
training time and scaled aggregation at test time.

Exploration-Focused SFT (EF-SFT). For domain adaptation, we introduce EF-SFT. This method
leverages the transferable nature of the execution component by exclusively fine-tuning on the ex-
ploration segments from domain-specific examples. These segments are mixed with the base E2C
dataset at a controlled ratio α, allowing the model to efficiently learn new reasoning strategies while
maintaining its core capabilities. This targeted approach significantly reduces the data and compu-
tational requirements for adaptation. A detailed algorithm can be found in the Appendix 3.

Think Twice Before Acting: E2C Test Time Scaling. At inference time, due to the high infor-
mativeness and short length of the explorations, we can exploit this characteristic to sample a large
number of plans. Afterward, using semantic clustering methods or LLMs, we select a smaller subset
for execution. Specifically, we introduce two possible implementations for E2C Test time scaling:

(1) Clustering-Weighted Voting. This approach identifies representative reasoning strategies by
clustering the sampled M explorations into N clusters. Semantic similarity is measured by the cosine
distance between their sentence embeddings, which are obtained from a pre-trained encoder. Only
the centroid exploration from each distinct cluster proceeds to the execution phase. The final answers
are aggregated using a majority vote, where the weight of each answer is proportional to its cluster
size, significantly reducing redundant computations. (2) LLM-Based Aggregation. Alternatively, a
powerful external LLM can be employed to synthesize the sampled explorations into a single, refined
reasoning plan. This method consolidates key insights from multiple paths into a comprehensive
exploration, which then guides a single, high-quality execution.

4 EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup of the mathematical reasoning experiment, the
medical reasoning experiment, and the test-time scaling experiments. Each experiment was carried
out on a single node with 8 H800 GPUs.

4.1 TRAINING PROTOCOLS

We adapt our training codebase from verl (Sheng et al., 2024) and perform SFT and RL training.
Our training procedures were as follows. The initial E2C-SFT model was trained for one epoch
on a 50k-sample synthetic dataset constructed from Openr1-math (deepseek, 2025) using our causal
data generation algorithm (Algorithm. 2). This model was then further trained using our two-stage
E2C-RL algorithm on the DAPO-17K (Yu et al., 2025) dataset. For comparison, a baseline model
was trained with the standard GRPO algorithm for five epochs on the same DAPO-17K data. In our
domain adaptation experiments on the ReasonMed dataset, we compared a standard SFT baseline
(trained on the full dataset) against our proposed EF-SFT method, which was trained on a targeted
50k-sample subset focused only on exploration plans, mixed with 10% regularization data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENTS

Mathematical Reasoning Experiment We evaluated our E2C framework on a comprehensive suite
of challenging mathematical reasoning benchmarks, including AIME’24, AIME’25, MATH500, the
algebra subset of MATH (Hendrycks et al., 2024), Minerva, AMC23 and Olympiad bench (He et al.,
2024) . Our proposed E2C-(SFT+RL) models were benchmarked against strong GRPO baselines
and various ablations, with performance measured by Pass@1 accuracy averaged over 8 samples.
The results demonstrate the effectiveness of our approach; for instance, on the AIME’24 bench-
mark, the Qwen3-4B model trained with our method achieved an accuracy of 37.5%, a significant
improvement of 8.7 percentage points over the GRPO baseline.

Medical Reasoning Experiment To assess cross-domain generalization and data-efficient
adaptation, we tested our framework on eight medical reasoning benchmarks, including
MedQA (Jin et al., 2021), MedMCQA (Pal et al., 2022), and six MMLU (Hendrycks et al., 2020)
subsets. We first evaluated the zero-shot transfer performance of our math-trained RL models. More
critically, we compared our EF-SFT adaptation strategy against a standard SFT baseline. The results
highlight the efficiency of E2C structure: EF-SFT improved the average accuracy of the Qwen3-8B
model by 4.0 percentage points over standard SFT, while using only 10M tokens for training—less
than 4% of the 286M tokens required by the baseline.

Test-Time Scaling Experiment A core advantage of E2C framework is its ability to facilitate highly
efficient test-time scaling. We validate this superior performance-cost trade-off on the challeng-
ing AIME’2024 benchmark by comparing our methods against strong baselines, including Self-
Consistency (SC) (Wang et al., 2022), Tree-of-Thoughts (ToT) (Yao et al., 2023), and the more
advanced Forest-of-Thought (FoT) (Bi et al., 2025).

We evaluate two primary variants of our E2C framework, which first sample K inexpensive explo-
ration plans before committing to execution:

• E2C-Select (Self LM-Judge): Uses the model itself as a judge to select the most promising plan
among the K samples for a single execution.

• E2C-Select (Semantic Cluster): A lighter-weight alternative that embeds the K plans, groups
them using semantic clustering to identify representative reasoning strategies, and executes only
the centroid plan from each cluster. Final answers are aggregated via a weighted majority vote
based on cluster size.

To validate our design choices, we include two ablations: E2C-SC (Self-Consistency), which exe-
cutes all K sampled plans and aggregates the final answers via majority voting to serve as a high-
cost performance upper bound, and E2C-RP (executes one randomly selected plan). All methods
are evaluated on the Qwen3-8B+E2C model across four increasing computational budget levels (K
or N = 4, 8, 16, 32).

4.3 RESULTS

We demonstrate our framework’s reasoning capabilities in mathematical experiments, where our
training process fully realizes its structural benefits. In medical reasoning, we show that the frame-
work has stronger zero-shot generalization and validate our efficient EF-SFT method. Finally, our
test-time analysis confirms that the E²C framework maintains top performance while significantly
reducing computational costs.

Mathematical Reasoning Benchmark Results We conduct a sanity check comparing our E2C
models (Qwen3-8B/4B+E2C-(SFT+RL)) against GRPO baselines, as shown in Tab. 1. Our ap-
proach outperforms the baselines by 1.5% (8B) and 1.9% (4B), validating the effectiveness of the
decomposition strategy. Notably, while paradigm shifts typically risk performance degradation, our
method successfully maintains and enhances model capability through careful training design. The
full E2C framework ultimately surpasses the GRPO baseline by leveraging the decomposed struc-
ture, establishing a solid foundation for efficient test-time scaling.

Ablation studies in Tab. 1 reveal that E2C-RL provides significant gains over E2C-SFT+GRPO,
with improvements of 3.8% (8B) and 3.2% (4B)on average accuracy, demonstrating that E2C-RL
effectively exploits the decomposition advantage. Furthermore, E2C-SFT slightly outperforms the
prompt-based baseline (Prompt-8B), confirming that structured training is essential for realizing the
benefits of E2C paradigm.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of Qwen3 models (non-thinking mode) on mathematical reason-
ing benchmarks. All results are reported as Pass@1 accuracy, with an 8-sample average.

Model AIME’24 AIME’25 MATH500 Algebra Minerva AMC23 Olympiad Avg Acc Avg Length
Qwen3 8B Series

Qwen3-8B+GRPO (Baseline) 36.9 34.4 88.2 88.2 33.1 79.3 60.0 60.0 1429.46
Qwen3-8B+E2C-SFT+GRPO 37.5 32.5 83.5 86.6 30.8 76.3 56.8 57.7 1309.62
Qwen3-8B+E2C-(SFT+RL) 40.6 33.8 87.7 90.9 35.8 80.3 61.3 61.5 1476.41

Qwen3 4B Series
Qwen3-4B+GRPO (Baseline) 28.8 30.6 84.6 84.4 33.5 75.8 57.8 56.5 1263.15
Qwen3-4B+E2C-SFT+GRPO 28.8 26.9 85.9 83.3 33.2 75.7 55.3 55.2 1324.18
Qwen3-4B+E2C-(SFT+RL) 37.5 30.0 86.1 84.8 34.0 78.3 58.4 58.4 1456.34

Ablation Studies
Qwen3-8B+Prompt (Zero-shot) 21.9 18.8 76.3 80.5 30.9 50.7 45.8 46.6 1142.38
Qwen3-8B+E2C-SFT 23.1 21.9 75.8 80.5 31.5 51.5 43.2 46.8 1162.89

Table 2: Performance Comparison of Models with Different Training Processes: Our inference
paradigm demonstrates superior generalization, while EF-SFT shows improved efficiency and ro-
bustness. The six columns from Anatomy (AN), Clinical Knowledge (CK), College Biology (CB),
College Medicine (CM), Medical Genetics (MG), and Professional Medicine (PM) are validation
subsets of the MMLU benchmark.

Model MedQA MedMCQA AN CK CB CM MG PM #Med-Tokens Avg
External Baselines

HuatuoGPT-o1-7B 68.4 57.5 71.9 78.5 88.2 67.6 80.0 77.6 - 73.7
Baichuan-M1-14B 76.5 65.2 77.3 83.6 87.9 80.7 89.1 88.8 - 81.1
ReasonMed-7B 66.9 65.1 75.6 79.3 79.2 73.4 85.0 80.9 - 75.7

Our Method and Ablations
Qwen3-8B 71.4 59.5 68.0 81.6 87.5 78.0 85.0 83.8 - 76.8
Qwen3-8B + GRPO 74.0 60.6 75.0 80.9 91.3 81.8 90.4 86.2 - 79.1
Qwen3-8B+E2C-(SFT+RL) 74.5 63.1 77.0 82.2 92.0 83.0 92.8 86.0 - 81.1

SFT Models (using medical data)
Qwen3-8B + standard SFT 58.2 52.3 68.8 80.8 89.0 73.7 83.3 79.0 286M 73.1
Qwen3-8B + E2C-SFT + EF-SFT 65.8 58.2 72.3 83.8 89.2 79.7 87.6 86.2 10M 77.1
Llama3.1-8B + ReasonMed SFT 42.0 36.8 45.9 55.4 61.8 43.2 38.1 56.9 286M 47.5
Llama3.1-8B + E2C-SFT + EF-SFT 60.3 53.2 61.8 69.8 75.9 64.9 82.0 72.5 10M 67.5

Medical Reasoning Benchmark Results Tab. 2 presents the medical reasoning performance
across three experimental settings. First, we establish competitive baselines by comparing against
leading domain-specific 7B-8B models (HuatuoGPT-o1-7B (Wang et al., 2024b), ReasonMed-
7B (Sun et al., 2025)) and an open-source 14B medical LLM (Baichuan-M1-14B (Bingning Wang
et al., 2025)), with Qwen3-8B (Yang et al., 2025a) serving as our base model reference.

For domain adaptation, we evaluate our EF-SFT approach (Sec. 3.3) against standard SFT on both
Llama3.1-8B (Dubey et al., 2024) and Qwen3-8B architectures. As shown in Tab. 2, EF-SFT
achieves significant improvements of 3.9% (Qwen3-8B) and 14.5% (Llama3.1-8B) over standard
SFT, while using only 3.5% of the training tokens. The zero-shot transfer results further demonstrate
that our mathematically-trained RL models attain performance comparable to specialized medical
LLMs, validating the strong cross-domain generalization capability of our method.

Test-Time Scaling Performance and Efficiency Analysis Tab. 3 demonstrates that E2C framework
offers a superior performance-cost trade-off. Our primary method, E2C-Select (Self LM-Judge),
achieves a state-of-the-art 58.1% accuracy at the highest budget (K=32), surpassing baselines like
Self-Consistency (54.2%). More strikingly, it reaches this performance using only 12.1k tokens—a
fraction of the cost of SC (81.6k) and FoT (128.8k) Our E2C-Select (Semantic Cluster) variant
provides an alternative trade-off. By executing the centroid of each of the main plan clusters (3 on
average),it results in competitive accuracy. While its token cost is higher due to multiple executions,
it remains significantly more efficient than baselines like ToT or the E2C-SC (Self-Consistency)
ablation. The high cost of E2C-SC ablation validates our selective execution strategy, while the poor
performance of E2C-RP (Random Plan) underscores the necessity of an intelligent (non-random)
plan selection mechanism. In summary, by efficiently scaling the inexpensive exploration phase, our
framework provides a spectrum of strategies that unlock significant performance gains at a fraction
of the computational cost of traditional methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Test-Time Scaling Performance on AIME’2024 Benchmark with Qwen3-8B. We compare
Pass@1 accuracy against the average number of generated tokens per question, demonstrating the
superior performance-cost trade-off of E2C framework.

Budget Level 1 Budget Level 2 Budget Level 3 Budget Level 4
Method Acc. (%) Tokens (k) Acc. (%) Tokens (k) Acc. (%) Tokens (k) Acc. (%) Tokens (k)

Standard Methods
Greedy CoT (N = 1) 40.6 2.6 —————— (Same as Budget Level 1) ———————
Self-Consistency 43.9 (N=4) 10.2 47.5 (N=8) 20.4 51.1 (N=16) 40.8 54.2 (N=32) 81.6

Advanced Search Methods
Tree-of-Thoughts (ToT) 46.1 (N=4) 14.5 50.2 (N=8) 29.0 53.8 (N=16) 58.0 56.3 (N=32) 116.0
Forest-of-Thought (FoT) 48.5 (N=4) 16.1 52.5 (N=8) 32.2 55.8 (N=16) 64.4 58.0 (N=32) 128.8

Our Methods
E2C-Select (Self LM-Judge) 49.5 (K=4) 6.1 53.2 (K=8) 7.3 56.4 (K=16) 9.7 58.1 (K=32) 12.1
E2C-Select (Semantic Cluster) 47.8 (K=4) 11.3 51.5 (K=8) 14.8 54.2 (K=16) 21.8 55.9 (K=32) 35.8

Ablations
E2C-SC (Self-Consistency) 50.1 (K=4) 22.6 54.0 (K=8) 45.2 56.9 (K=16) 90.4 58.9 (K=32) 180.8
E2C-RP (Random Plan) 43.2 (K=4) 6.1 44.5 (K=8) 7.3 45.1 (K=16) 9.7 45.8 (K=32) 12.1

Table 4: An ablation analysis shows the validity of our
data construction methodology by quantifying plan adher-
ence (top), identifies the optimal training iteration count for
medical domain SFT (middle), and shows the impact of data
mixing (bottom).

Part A: Ablation on SFT Data Construction Strategy

SFT Data Strategy Plan-Guided Plan-Free
Flawed (Reverse-Causal Summary) 0.499 0.864
Proposed (Causal Generation) 0.998 1.000

Part B: Ablation on Exploration-Focused SFT Training Steps

Training Steps GSM8K Anatomy CK MedQA MATH
SFT + 100 iter 83.0 70.4 80.6 66.4 70.5
SFT + 300 iter 83.3 72.3 83.8 66.1 71.2
SFT + 2000 iter 84.0 69.8 78.4 63.5 71.1

Part C: Ablation on Regularization Data

GSM8K Anatomy CK MedQA MATH
Medical Reg. (α=10%) 82.1 74.4 79.5 66.8 69.5
Math Reg. (α=10%) 83.3 72.3 83.8 66.1 71.2
Medical Reg. (α=100%) 80.1 70.0 81.5 67.0 65.8
No Reg. (α = 0%) 82.1 68.2 77.8 63.5 70.8

Ablations and Analysis Our abla-
tion studies validate our key de-
sign choices. As shown in Part A
of Tab. 4, our causal data genera-
tion strategy (Algorithm 1) is essen-
tial, achieving near-perfect plan ad-
herence (0.998) that is critical for
E2C paradigm. Part B demonstrates
the framework’s efficiency in domain
adaptation; performance on medi-
cal benchmarks peaks after a brief
training period (300 iterations,nearly
5k samples) and declines thereafter,
highlighting the data-efficient nature
of fine-tuning only the exploration
phase. Part C shows that incor-
porating a small proportion of reg-
ularization data (α = 10%) is su-
perior to both using no regulariza-
tion (α = 0%) and training on the
full exploration-execution sequence
(α = 100%), highlighting the effi-
ciency and robustness derived from
the exploration-focused approach. Additionally, it suggests that using regularization data from the
base E2C-SFT dataset (i.e., using Math as Regularization) is more effective than using domain-
specific medical data for regularization, indicating that there is no need to generate regularization
data for the specific target domain.

5 LIMITATIONS AND FUTURE WORK

The E2C framework, while demonstrating advanced reasoning capabilities, currently faces limita-
tions in supporting long-chain reasoning models such as gpt-o1 (OpenAI, 2024) and deepseek-r1
(Guo et al., 2025) due to architectural differences. To address this, we plan to develop multi-round
exploration and execution mechanisms that enable iterative refinement and more effective decom-
position of complex, long-horizon tasks.

At the same time, the decoupled nature of E2C offers unique advantages for human-AI collaboration.
The exploration phase provides users with immediate visibility into the model’s reasoning process,
facilitating rapid feedback and collaborative ideation. The execution phase serves as a transparent
and reliable module that translates high-level plans into actionable results, significantly enhancing
the interpretability, controllability, and usability of the system. We believe these characteristics es-
tablish a foundation for more adaptive and user-centered AI assistants, with strong potential to sup-
port human-in-the-loop applications requiring complex reasoning and interactive decision-making.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

Through the proposed Explore-Execute Chain (E2C), we introduce a novel reasoning framework that
decouples exploration from execution, enhancing both efficiency and interpretability. Our two-stage
SFT+RL training approach, supported by a dedicated data construction method and token-specific
reward scaling, enables faithful plan adherence and robust paradigm transition. The framework ef-
fectively concentrates information in exploration, allowing domain adaptation using only 3.5% of
training tokens and achieving a superior performance-cost trade-off on complex reasoning bench-
marks compared to strong baselines. This also opens up new avenues for users to interact with
reasoning models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work studies a reasoning framework, the Explore–Execute Chain (E2C), which separates
lightweight exploratory sketches from a final execution step to improve efficiency, transparency, and
controllability of LLM reasoning. Our experiments fine-tune and evaluate general-purpose LLMs
on publicly available benchmarks (e.g., mathematics and domain reasoning datasets). We do not
collect new human data, do not involve human or animal subjects, and do not process personally
identifiable or sensitive information. Any third-party datasets used in this paper are publicly released
for research purposes by their respective providers; we follow their licenses and usage terms.E2C
paradigm increases interpretability by exposing intermediate “exploration” traces, which can facili-
tate auditing and discourage over-reliance on hidden chain-of-thought. This study complies with the
conference’s Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All code used in this paper
will be publicly released to facilitate independent verification and further research. We describe our
experimental setup in Sec. 4.1. Detailed hyperparameters for training E2C-SFT, E2C-RL, GRPO,
and EF-SFT are provided in Appendix A.2.1. Detialed setup for TTS experiment can be found in
Appendix A.4. We also include the prompt templates for data generation, the zero-shot prompt
model, and E2C-Select (Self LM-Judge) in Appendix A.6.

REFERENCES

Anja Achtziger and Peter M Gollwitzer. Rubicon model of action phases. 2007. 15

Maciej Besta, Nils Blach, Ales Kubicek, Kyrylo Robert, Kamil Konopka, Hubert Niewiadomski,
Wojciech Gajda, David Grolimund, Tim Nisa, and Torsten Hoefler. Graph of thoughts: Solving
elaborate problems with large language models. arXiv preprint arXiv:2308.09687, 2023. 1, 3

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning, 2025. 1, 3, 7, 18

Huozhi Zhou Liang Song Mingyu Xu Wei Cheng Xiangrong Zeng Yupeng Zhang Yuqi Huo Zecheng
Wang Zhengyun Zhao Bingning Wang, Haizhou Zhao et al. Baichuan-m1: Pushing the medical
capability of large language models. arXiv preprint arXiv:2502.12671, 2025. 8

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning in large language models, 2025. 3

deepseek. Open r1: A fully open reproduction of deepseek-r1. https://github.com/
huggingface/open-r1, January 2025. 6

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, and et al. The llama 3 herd of
models, 2024. 8

Zeyu Gan, Hao Yi, and Yong Liu. CoT-Space: A theoretical framework for internal slow-thinking
via reinforcement learning, 2025. 2

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach, 2025. 2, 3

Runquan Gui, Zhihai Wang, Jie Wang, Defu Lian, Chi Ma, Huiling Zhen, Mingxuan Yuan, Jianye
Hao, Enhong Chen, and Feng Wu. Hypertree planning: Enhancing llm reasoning via hierarchical
thinking, 2025. 1, 2, 3

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, and et al. DeepSeek-R1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025. 3, 9

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023. 3

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. 3

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024. 7

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020. 7

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv. org/abs/2103.03874, 2, 2024. 7

Edward S. Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
Jayaraman, Alex Lamb, and John Langford. The belief state transformer. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ThRMTCgpvo. 3

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021. 7

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 16

Zeju Li, Jianyuan Zhong, Ziyang Zheng, Xiangyu Wen, Zhijian Xu, Yingying Cheng, Fan Zhang,
and Qiang Xu. Compressing chain-of-thought in llms via step entropy, 2025. 1, 3

Baohao Liao, Hanze Dong, Yuhui Xu, Doyen Sahoo, Christof Monz, Junnan Li, and Caiming Xiong.
Fractured chain-of-thought reasoning, 2025. 1, 2, 3

Boi-Faltings Liu, Zhang-Wei Liu, Ruibo Jiang, Yisong Lyu, Yizhou Du, F. Wu, and Yu-Feng Liu.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023. 3

OpenAI. Openai o1 system card. https://openai.com/index/
openai-o1-system-card/, December 2024. Updated: December 5, 2024. Accessed:
2025-09-24. 9

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
health, inference, and learning, pp. 248–260. PMLR, 2022. 7

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
and Alane Suhr. Learning adaptive parallel reasoning with language models, 2025. 3

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023. 3

Ofir Press, Or Yoran, Timo Schick, Idan Schmid, Ayal Fisch, Yoav Goldberg, and Kanishka
Misra. Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022. 3

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023. 2

12

https://openreview.net/forum?id=ThRMTCgpvo
https://openreview.net/forum?id=ThRMTCgpvo
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Tsvigun, Gautier Cances,
and Najma Smaili. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023. 3

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. 3

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework, 2024. 6

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal rein-
forcement learning. arXiv preprint arXiv:2303.11366, 2023. 1

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. 3

Yu Sun, Xingyu Qian, Weiwen Xu, Hao Zhang, Chenghao Xiao, Long Li, Yu Rong, Wenbing
Huang, Qifeng Bai, and Tingyang Xu. Reasonmed: A 370k multi-agent generated dataset for
advancing medical reasoning. arXiv preprint arXiv:2506.09513, 2025. 8

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leverag-
ing reasoning paths for efficient LLM sampling. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 3613–3635, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.184. URL
https://aclanthology.org/2025.naacl-long.184/. 3

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024a. 3

Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhu Chen. Emergent hierar-
chical reasoning in llms through reinforcement learning. arXiv preprint arXiv:2509.03646, 2025.
4

Junying Wang, Zhaonan Li, Renfeng Pu, Saijiang Shi, Yitong Meng, Zhaokun Wang, Yixin Liu,
Jianing Zhou, Wenjia Zhang, Jialiang Chen, Yefeng Zheng, and Hong-Yin Mey. HuatuoGPT, a
general-purpose chinese medical large language model, 2024b. 8

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022. 1, 2, 3, 7

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022. 1, 3

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=VNckp7JEHn. 3

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024. 3

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot++: Test-time scaling with soft chain-
of-thought reasoning, 2025a. 1, 3

Zenan Xu, Zexuan Qiu, Guanhua Huang, Kun Li, Siheng Li, Chenchen Zhang, Kejiao Li, Qi Yi,
Yuhao Jiang, Bo Zhou, Fengzong Lian, and Zhanhui Kang. Adaptive termination for multi-round
parallel reasoning: An universal semantic entropy-guided framework, 2025b. 1, 3

13

https://aclanthology.org/2025.naacl-long.184/
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and et al. Qwen3 technical report, 2025a. 8

Xinyu Yang, Yuwei An, Hongyi Liu, Tianqi Chen, and Beidi Chen. Multiverse: Your language
models secretly decide how to parallelize and merge generation, 2025b. 3

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Ekin Durmus, Cibu L parochial, Linyuan Han, Yisi
Gu, Karthik Annot, K. Josifoski, et al. React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629, 2022. 1, 3

Shunyu Yao, Dian Astuti, Bo Peng, Danfei Chen, Yuansi Wong, Jean-Francois Simon, C. Voss,
E. Schwartz, and A. Rea. Tree of thoughts: Deliberate problem solving with large language
models. arXiv preprint arXiv:2305.10601, 2023. 1, 3, 7, 18

Yao Yao, Zuchao Li, and Hai Zhao. GoT: Effective graph-of-thought reasoning in language mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 2901–2921, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.183. URL
https://aclanthology.org/2024.findings-naacl.183/. 3

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, and et al. DAPO: An open-source llm reinforcement learning
system at scale, 2025. 3, 6

Siyuan Yuan, Kairui Song, Jia-Hao Chen, Xiao-Hui Tan, Dian-Hui Li, and Dong-Sheng Yang. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms, 2024. 3

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, Tian Tian Fan, Zhengyin Du, and et al. VAPO: Efficient and reliable reinforcement learning
for advanced reasoning tasks, 2025. 3

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024. 3

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhou-
futu Wen, Chenghua Lin, Wenhao Huang, Qian Liu, Ge Zhang, and Zejun Ma. First return,
entropy-eliciting explore, 2025a. 1, 3

Tong Zheng, Hongming Zhang, Wenhao Yu, Xiaoyang Wang, Xinyu Yang, Runpeng Dai, Rui Liu,
Huiwen Bao, Chengsong Huang, Heng Huang, and Dong Yu. Parallel-r1: Towards parallel think-
ing via reinforcement learning, 2025b. 2, 3

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
complex reasoning in large language models. In International Conference on Learning Represen-
tations, 2023. 1, 3

USE OF LARGE LANGUAGE MODELS

We utilized a large language model to enhance the language and clarity of our manuscript. Specif-
ically, we employed Gemini 2.5 flash with the following prompt to refine the initial draft: I am
writing an academic paper in English. Please polish the following draft so that it adheres to the
conventions of academic writing.

A APPENDIX

A.1 COGNITIVE MODEL ANALYSIS

In this section, we analyze cognitive models to derive high-level design insights for our method.

14

https://aclanthology.org/2024.findings-naacl.183/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1.1 RUBICON MODEL OF ACTION PHASES

The Rubicon Model of Action Phases (Achtziger & Gollwitzer, 2007), proposed by Heckhausen
and Gollwitzer, provides a framework for how individuals prepare for and pursue goals. It divides
goal pursuit into four stages: goal setting, planning, action, and evaluation.

1. Goal Setting: Individuals identify and adopt a goal, motivated by a need or desire.
2. Planning: After a goal is adopted, individuals generate strategies to achieve it and assess

their potential effectiveness.
3. Action: Once a strategy is selected, the individual commits to it and executes it. Crossing

the “Rubicon” marks this commitment and the transition to action.
4. Evaluation: Outcomes are assessed to inform adjustments to subsequent plans or actions.

A key contribution of the Rubicon Model is the sharp distinction between planning and execution.
After commitment (crossing the Rubicon), attention is devoted to execution rather than continued
exploration or second-guessing. This separation mitigates cognitive overload that could arise from
ongoing re-evaluation during task execution.

A.1.2 CONNECTING E2C WITH RUBICON MODEL

We formally express E2C as
p(e | c)︸ ︷︷ ︸

Coupled Reasoning Process

→ p′(π, e | c)︸ ︷︷ ︸
Explore-Execute Chain

= p′(π | c)︸ ︷︷ ︸
Highly Informative

· p′(e | π, c)︸ ︷︷ ︸
Highly Deterministic

(9)

p′(π | c) as the Planning Phase: In the Rubicon framework, planning entails generating candidate
strategies. Analogously, in E2C, p′(π | c) produces multiple candidate plans π from context c.
These plans are highly informative, capturing the critical information needed to solve the task. This
exploration corresponds to the goal-setting and planning stages, where alternatives are considered
before selection.

p′(e | π, c) as the Execution Phase: Once plans are available, E2C transitions to execution. The
distribution p′(e | π, c) reflects a highly deterministic process that follows the selected plan π under
context c. This mirrors the action phase of the Rubicon Model: the agent executes the committed
plan without revisiting discarded alternatives.

Thus, the separation between p′(π | c) and p′(e | π, c) in E2C parallels the explore–then–execute
dynamics of the Rubicon Model: first enumerate options, then execute deterministically.

A.1.3 COGNITIVE AND COMPUTATIONAL EFFICIENCY

Separating exploration from execution confers efficiency benefits in both cognition and computa-
tion. Cognitively, once commitment occurs, resources are focused on carrying out the chosen plan
without distraction from alternatives. Computationally, E2C avoids the overhead of re-evaluating
multiple plans during execution. The deterministic execution phase concentrates compute on fol-
lowing the selected plan, yielding faster and more reliable performance than continually interleaving
exploration with action.

A.1.4 INTERPRETABILITY AND TRANSPARENCY

The exploration–execution split also improves interpretability. In the Rubicon Model, one can
explain an action by the plan selected during the planning stage. Likewise, E2C makes the rea-
soning path explicit: multiple candidate plans are generated (exploration), and one is chosen and
followed (execution). This transparency further supports scalability: the exploration component
can be adapted to new tasks and domains, while the execution component remains stable, enabling
flexible and extensible reasoning across settings.

A.2 THE DETAILS OF THE EXPERIMENTS

In this section, we introduce the details of our main experiments in the main paper for reproducibility
purposes, including the detailed hyperparameter settings and the reward designs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.1 HYPERPARAMETER SETTINGS

E2C-SFT and EF-SFT Training For both E2C-SFT and EF-SFT training, the hyperparameters
are summarized in Tab. 5:

Hyperparameter Value
Learning Rate 1.0× 10−5

Optimizer Adam(Kingma, 2014) (β1 = 0.9, β2 = 0.95)
Weight Decay 0.01

Learning Rate Scheduler Cosine with 10% warmup ratio
Batch Size 160

Micro-batch Size per GPU 20
Gradient Clipping 1.0

Total Epochs 1

Table 5: Hyperparameters for E2C-SFT and EF-SFT Training

E2C-RL and GRPO Training The hyperparameters for E2C-RL and GRPO training are summa-
rized in Tab. 6, where the experiments include E2C Stage 1 (E2C-stg1), E2C Stage 2 (E2C-stg2),
and GRPO:

Hyperparameter E2C-stage1 E2C-stage2 GRPO
Batch Size 256 256 128

Overlong Buffer Length 4096 4096 4096
Maximum Response Length 8192 8192 8192

Learning Rate 1.0× 10−6 1.0× 10−6 1.0× 10−6

Mini-batch Size for GRPO Updates 32 32 32
KL Loss Coefficient β 0.001 0 0

Rollout Number k 32 8 8
Temperature 1.3 1.0 1.0

Training Epochs 1 1 5
Clip ratio (ε) 0.2 0.2 0.2

Table 6: Hyperparameters for E2C-RL and GRPO Training

A.2.2 REWARD DETAILS FOR RL TRAINING

Format Reward Calculation for E2C Training For the E2C training, the format reward consists
of two components: the length reward and the instruction reward. These rewards are computed as
follows:

Length Reward: This reward measures how well the output length matches the expected length. It
is computed as:

rl = −clip
(
0, 1,

L− Lvalid

Lbuffer

)
where: L is the length of the generated output; Lvalid is the length of the valid portion of the
response; Lbuffer is the overlong buffer length.

Instruction Reward: The instruction reward is specific to the E2C model and is added to the reward
function when it comes to E2C model. This reward measures the alignment between the instructions
generated during the exploration phase and the execution phase. It is computed by extracting the
step titles from both the exploration and execution phases using regular expressions. Denote these
sets of instructions as S1 (exploration) and S2 (execution). The instruction reward is defined as:

rinstr = 0.1 ∗ (|S1 ∩ S2|
max(|S1|, |S2|)

− 1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where: S1 is the set of instructions generated during the exploration phase; S2 is the set of in-
structions generated during the execution phase; |S1 ∩ S2| is the intersection of the sets S1 and S2;
max(|S1|, |S2|) is the maximum size of the two sets.

The instruction reward incentivizes the model to generate instructions that align well between the
exploration and execution phases, encouraging consistency. This reward is crucial for E2C models
to ensure that the reasoning process is coherent between the exploration and execution stages.

Format Reward Calculation for GRPO Training For GRPO training, the format reward is sim-
pler and consists solely of the length reward, which is computed using the same formula as in E2C:

rl = −clip
(
0, 1,

lengthoutput − validlength

bufferlength

)
In GRPO, no instruction reward is applied, and the focus is entirely on the length of the response,
ensuring that the output adheres to the expected length constraints.

A.3 DETAILS OF THE ALGORITHM

Algorithm of E2C-SFT Data Generation Algorithm 2 is a formal and detailed description for
E2C-SFT Data Generation.

Algorithm 2 E2C-SFT Data Generation

1: Dsynth ← ∅
2: for each question q do
3: solution← Modelbase(q)
4: exploration← Summarize(solution)
5: prompt← “Given question: q. Follow exploration: exploration. Execute step-by-step:”
6: execution← Modelbase(prompt)
7: Dsynth ← Dsynth ∪ {(q, (exploration,execution))}
8: end for
9: return Dsynth

Algorithm of Exploration-Focused SFT (EF-SFT) Data Generation Algorithm 3 is a formal
and detailed description for EF-SFT Data Generation.

Algorithm 3 EF-SFT Data Generation

Require: Base E2C dataset Dbase
Require: Domain-specific dataset Ddomain
Require: Mixing ratio α ∈ [0, 1],Target Dataset size ntarget
Ensure: EF-SFT training dataset DEF-SFT

1: Dexplore ← ∅
2: for each example (q, a) ∈ Ddomain do
3: Extract exploration segment: e← ExtractExploration(a)
4: Dexplore ← Dexplore ∪ {(q, e)}
5: end for
6: nbase ← α× ntarget ▷ α% from base dataset
7: nexplore ← (1− α)× ntarget ▷ (1− α)% from exploration data
8: Dsub

base ← Subsample(Dbase, nbase)
9: Dsub

explore ← Subsample(Dexplore, nexplore)

10: DEF-SFT ← Dsub
base ∪ Dsub

explore
11: return DEF-SFT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 TEST-TIME SCALING EXPERIMENTAL DETAILS

This section provides a detailed description of the experimental setup for the test-time scaling com-
parison presented in Table 3, ensuring reproducibility.

Objective and General Setup The primary goal was to evaluate the performance-cost trade-off
of our E2C framework against established baselines on the AIME’2024 benchmark. All methods
were evaluated using the same checkpoint: the Qwen3-8B+E2C-(SFT+RL) model. This ensures a
fair comparison of the inference strategies themselves, rather than the underlying models. For all
generative steps that require diversity (e.g., sampling paths or plans), a temperature of 0.9 was used.
Performance is reported as Pass@1 accuracy, and cost is measured by the average total number of
tokens generated per question.

Baseline Methods

• Greedy CoT: A single reasoning chain was generated for each question using greedy decoding
(N=1). This serves as the most basic baseline.

• Self-Consistency (SC): For each budget level N ∈ {4, 8, 16, 32}, we generated N full, indepen-
dent CoT reasoning chains. The final answer was determined by a majority vote among the N
outputs.

• Tree-of-Thoughts (ToT) & Forest-of-Thought (FoT): We implemented these advanced search
methods following the standard procedures described in their respective papers (Yao et al., 2023;
Bi et al., 2025). The number of reasoning paths explored was set to match the budget levels N
∈ {4, 8, 16, 32} to ensure a comparable computational scale.

E2C Methods and Ablations All E2C variants begin by sampling K ∈ {4, 8, 16, 32} exploration
plans from the same model. The subsequent steps differ as follows:

• E2C-Select (Self LM-Judge): The K sampled plans and the original question were formatted
into a prompt for the model to act as a judge and select the single most promising plan. A single
execution was then generated conditioned on this selected plan.

• E2C-Select (Semantic Cluster): This method involves a multi-step, voting-based process: (1)
Each of the K plans was embedded into a vector using the standard all-mpnet-base-v2
sentence-transformer model. (2) We applied K-Means clustering to group these embeddings
into M=3 distinct clusters. (3) The plan closest to the centroid of each of the M clusters was
selected for execution, resulting in M executions. (4) The final answer was determined by a
weighted majority vote over the M outcomes, where each vote’s weight was proportional to the
size of its corresponding cluster.

• E2C-SC (Self-Consistency): This ablation executed all K sampled plans independently. The
final answer was determined by a standard majority vote over the K resulting outcomes. This
serves as a high-cost upper bound for the E2C paradigm.

• E2C-RP (Random Plan): As a simple ablation, one plan was randomly selected from the K
samples and then executed to produce a single answer.

A.5 ENTROPY VISUALIZATION OF DIFFERENT RL SETTINGS AND ANALYSIS

In this part, we visualize the entropy dynamics and the accuracy on the AIME’24 benchmark during
RL training. The results demonstrate that applying our token-weighting coefficient λi,t to explo-
ration tokens facilitates a rapid drop in entropy and a better performance improvement, as shown in
Fig. 3. This is achieved by effectively amplifying high-quality plans while suppressing poor ones.

A.6 PROMPT DETAILS

E2C-SFT Dataset Construction prompt

EXPLORATION PHASE PROMPT The following prompt is used to extract the high-level explo-
ration plan from the reasoning process:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: A comparison of training dynamics on the AIME’24 benchmark. The application of our
token-weighting coefficient λi,t (b) facilitates faster entropy reduction and superior performance
improvement compared to the baseline without it (a).

Role: You are an expert problem-solver.
Task: Distill a complex reasoning process into a clear, actionable plan.

Input:
• Problem: <question>
• Reasoning Process: <content>

Output Requirements:
1. Format: Present the summary as a numbered list (e.g., 1., 2., 3.).
2. Content: For each step, describe only the essential action to be taken (e.g.,

“Calculate X,” “Verify Y”). Be concise and prescriptive.
3. Focus: Omit explanations, justifications, or intermediate conclusions.

Goal: Create a high-level plan that is easy to follow and execute.

EXECUTION PHASE PROMPT The following prompt is used to generate the detailed execution
steps based on the exploration plan:

Role: You are a meticulous problem solver.
Task: Solve the given question by strictly following the provided guideline,
showing all detailed reasoning.

Input:
• Question: <question>
• Guideline: <content>

Output Requirements:
1. Follow the guideline exactly, numbering each step accordingly (e.g., 1., 2.,

...).
2. Do not include any content outside the solution steps.
3. Begin from Step 1, expanding each step with necessary calculations and log-

ical reasoning.
4. Conclude by placing the final answer within a ‘\boxed{}‘ environment.

Important: Ensure every mathematical or logical operation is explicitly shown.

EF-SFT dataset Construction prompt The following prompt is used to extract the exploration
part for EF-SFT dataset in medical domain.

Role: You are a professional doctor.
Task: Summarize the diagnostic reasoning process into a concise, actionable

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

guideline.

Input:
• Question: <question>
• Reasoning Process: <content>

Output Requirements:
1. Structure: Present the summary as a numbered list (1., 2., ...), starting di-

rectly with the first step.
2. Conciseness: Use no more than 5 steps. Each step must be under 15 words

and state only the critical objective (e.g., “Assess cardiac function”).
3. Focus: Highlight the most critical diagnostic step. Omit all explanations,

justifications, or unrelated content.
Goal: Create a concise and accurate diagnostic plan focused on key actions.

LLM-Combination Prompt To enable the model to select the most promising exploration plan,
we use the following prompt. The model is instructed to act as an impartial judge, evaluating the
provided plans based on their clarity, correctness, and likelihood of leading to a successful solution.

Role: You are an expert mathematical reasoner and an impartial judge. Your task
is to evaluate several proposed plans for solving a given math problem and identify
the single best one.
Input:

• Problem: <problem>
• Candidate Plans: A numbered list of K exploration plans. Plan
1: <exploration1 > Plan2 :< exploration2 > ...P lanK :<
explorationK >

Instructions:
1. Carefully analyze the problem and each of the K candidate plans.
2. Assess the plans based on their logical soundness, potential for success, and

efficiency.
3. Select the single best plan that is most likely to lead to a correct and complete

solution.
Output Format: Output only the full text of the single best plan you have se-
lected. Do not add any extra commentary, explanation, or formatting.

Adherence Judge Prompt The following prompt is used to evaluate whether an execution strictly
adheres to the provided exploration plan.

Role: You are a rigorous evaluator. Your task is to judge if the execution strictly
follows the exploration plan.
Input:

• Question: question
• Exploration (PLAN): exploration
• Execution: execution

Evaluation Criteria: Provide a final score of 0, 0.5, or 1.0 based on the following:
• 1.0 (Strictly Adheres): The execution follows the exploration’s logic and

key steps exactly. All critical reasoning or calculations in the exploration are
present and correctly implemented in the execution.

• 0.5 (Partially Adheres): The execution addresses the main goal but deviates
in specifics: it may skip non-critical steps, change the order of minor steps,
or contain minor logical gaps while reaching a correct conclusion.

• 0.0 (Does Not Adhere): The execution ignores major exploration steps, fol-
lows a different approach, contains significant logical errors, or fails to im-
plement the exploration’s core intent.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Output Format: First, provide a concise rationale comparing the exploration and
execution. Then, output the score strictly as:
[RATIONALE]: <your analysis>
[SCORE]: <0.0, 0.5, or 1.0>

A.7 E2C REASONING EXAMPLES

Example 1(Math, from AMC23): Meeting Problem

INPUT QUESTION Cities A and B are 45 miles apart. Alicia lives in A and Beth lives in B. Alicia
bikes towards B at 18 miles per hour. Leaving at the same time, Beth bikes toward A at 12 miles
per hour. How many miles from City A will they be when they meet? Provide the final answer in
the boxed.

EXPLORATION PHASE 1. Identify the speeds and initial distance between the two cities. 2. De-
termine the combined speed at which the distance between Alicia and Beth is closing. 3. Calculate
the time it takes for them to meet by dividing the initial distance by their combined speed. 4. Use
the time to calculate the distance Alicia travels from City A.

EXECUTION PHASE

1. Identify the speeds and initial distance between the two cities. Distance between City
A and City B: 45 miles. Alicia’s speed: 18 miles per hour (towards B). Beth’s speed: 12
miles per hour (towards A)

2. Determine the combined speed at which the distance between Alicia and Beth is clos-
ing. Since they are moving towards each other, their speeds add up:

Combined speed = 18 + 12 = 30 miles per hour

3. Calculate the time it takes for them to meet by dividing the initial distance by their
combined speed. The time until they meet is:

Time =
Distance

Combined speed
=

45

30
= 1.5 hours

4. Use the time to calculate the distance Alicia travels from City A. Alicia’s distance from
City A when they meet is:

Distance = Speed× Time = 18× 1.5 = 27 miles

FINAL ANSWER

27

Example 2 (Math, from AIME’24): Table Tennis Tournament Problem

INPUT QUESTION In a table tennis tournament every participant played every other participant
exactly once. Although there were twice as many right-handed players as left-handed players, the
number of games won by left-handed players was 40% more than the number of games won by
right-handed players. (There were no ties and no ambidextrous players.) What is the total number
of games played? Provide the final answer in the boxed.

EXPLORATION PHASE 1. Define variables for the number of left-handed and right-handed play-
ers. 2. Express the total number of games played in terms of the total number of players. 3. Deter-
mine the total number of games won by left-handed and right-handed players. 4. Set up an equation
based on the given relationship between wins. 5. Solve the equation to find the total number of
players. 6. Calculate the total number of games played.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

EXECUTION PHASE

1. Define variables for the number of left-handed and right-handed players. Let L be
the number of left-handed players, and R be the number of right-handed players. Given:
R = 2L

2. Express the total number of games played in terms of the total number of players.
Total players: L+R = 3L Total games:

(
3L
2

)
= 3L(3L−1)

2

3. Determine the total number of games won by left-handed and right-handed players.
Let WL be wins by left-handed players, WR be wins by right-handed players. Total wins:
WL +WR = 3L(3L−1)

2 Given: WL = 1.4WR

4. Set up an equation based on the given relationship between wins. Substitute WL =

1.4WR into total wins: 1.4WR +WR = 3L(3L−1)
2 2.4WR = 3L(3L−1)

2

5. Solve the equation to find the total number of players. Try L = 3: WR = 3×3×(9−1)
4.8 =

72
4.8 = 15WL = 1.4× 15 = 21 Total wins: 15 + 21 = 36

6. Calculate the total number of games played using the total number of players. Total
games: 3×3×(9−1)

2 = 72
2 = 36

FINAL ANSWER

36

Example 3 (MedicalFrom MMLU-Anatomy): Urinary System Question

INPUT QUESTION Which of the following best describes the structure that collects urine in the
body? A. Bladder B. Kidney C. Ureter D. Urethra Please reasoning step-by-step. Provide the final
answer in the boxed.

EXPLORATION PHASE 1. Identify the function of each organ listed in the options. 2. Determine
which organ is responsible for storing urine. 3. Eliminate options that do not fit the function of
collecting urine. 4. Select the organ that best matches the description of collecting urine.

EXECUTION PHASE

1. Identify the function of each organ listed in the options:
• A. Bladder: Hollow, muscular organ that stores urine until excretion
• B. Kidney: Filters blood and produces urine, but does not store urine
• C. Ureter: Transports urine from kidneys to bladder, does not store urine
• D. Urethra: Carries urine from bladder to outside body, does not store urine

2. Determine which organ is responsible for storing urine: The bladder is the primary
organ responsible for urine storage. It expands as it fills with urine and contracts during
urination.

3. Eliminate options that do not fit the function of collecting urine:
• Kidney (B): Produces urine but does not store it
• Ureter (C): Transports urine but does not store it
• Urethra (D): Excretes urine but does not store it
• Bladder (A): Only organ designed for urine collection and storage

4. Select the organ that best matches the description of collecting urine: The bladder is
the structure that collects and stores urine in the body.

FINAL ANSWER

A

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example 4 (Test-Time Scaling, from AIME’24): Table Tennis Tournament Problem This
example demonstrates the application of our two primary test-time scaling methods using the same
input question from Example 2.

INPUT QUESTION In a table tennis tournament every participant played every other participant
exactly once. Although there were twice as many right-handed players as left-handed players, the
number of games won by left-handed players was 40% more than the number of games won by
right-handed players. (There were no ties and no ambidextrous players.) What is the total number
of games played? Provide the final answer in the boxed.

STEP 1: SAMPLE K EXPLORATION PLANS (K=4) First, the E2C model is prompted to generate
K=4 diverse, high-level exploration plans for the problem.

• Plan 1 1. Let L be the number of left-handed players, the total games are C(3L, 2). 2. Let W L
be wins by lefties and W R be wins by righties. 3. Solve this system for L, then find the total
games.

• Plan 2 1. The total number of players must be a multiple of 3, let’s call it 3L. The total games
played is C(3L, 2). 2. Let’s test small integer values for L (L=1, 2, 3...) and check if the
resulting total games can be split into wins for left- and right-handed players satisfying the 40%
more condition.

• Plan 3 1. Assume the number of wins is proportional to the number of players. Let right-handed
players have W R wins. 2. Left-handed players have half the number of players, so they should
have W L wins. 3. Set up W L = 1.4 * W R and solve based on the total number of games.

• Plan 4 1. Let the number of wins by right-handed players be W R. Then the wins by left-handed
players is 1.4 * W R. 2. The total number of games is 2.4 * W R. The total number of games is
also given by C(3L, 2). 3. Set C(3L, 2) = 2.4 * W R and find an integer solution for L.

METHOD A: E2C-SELECT (SELF LM-JUDGE) The four plans above, along with the original
question, are fed into the model with the Self LM-Judge prompt. The model evaluates the plans and
selects the most robust and direct strategy.

1. Selection: The Self LM-Judge identifies Plan 1 as the most comprehensive and logically
sound approach, as it correctly sets up the system of equations from first principles.

2. Execution: A single execution is performed, conditioned only on Plan 1. This execution
proceeds exactly as detailed in Example 2, arriving at the correct answer.

Final Answer (Self LM-Judge): 36

METHOD B: E2C-SELECT (SEMANTIC CLUSTER) This algorithmic method clusters the plans
before execution.

1. Embedding and Clustering: The four plans are embedded into vectors. A clustering
algorithm (e.g., K-Means) is applied and identifies M=3 distinct strategic groups:

• Cluster A Plan 1 and Plan 4 are grouped together as they both use a correct algebraic
formulation. (Cluster Size = 2)

• Cluster B Plan 2 is identified as a distinct trial-and-error strategy. (Cluster Size = 1)
• Cluster C Plan 3 is isolated as it is based on an incorrect assumption. (Cluster Size =

1)

2. Centroid Execution: The plan closest to the centroid of each cluster is selected and exe-
cuted.

• Execution of A (from Plan 1): Results in the correct answer, 36.
• Execution of B (from Plan 2): Also results in the correct answer, 36.
• Execution of C (from Plan 3): The flawed logic leads to an incorrect answer, e.g.,

45.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3. Weighted Majority Vote: The final answer is determined by a weighted vote of the exe-
cution outcomes.

• Vote for answer ”36”: Received from Cluster A (weight=2) and Cluster B (weight=1).
Total weight = 2 + 1 = 3.

• Vote for answer ”45”: Received from Cluster C (weight=1). Total weight = 1.
The answer ”36” has the highest weight.

Final Answer (Semantic Cluster): 36

A.8 PURE PROMPT-BASED E2C

We product an experiment with pure prompt-based E2C on Qwen3-8B. For each problem we first
sample K independent exploration traces by prompting the model K times with a short exploration
prompt; each exploration is a concise (2–4 short sentence) reasoning sketch that does not contain
the final answer. We then combine the K explorations into a single execution prompt (providing the
problem and the numbered explorations) and ask the model to produce one final Execution: section
that computes the final answer. Performance is reported as pass@5 for different values of K.The
results are much worse than the E2C model with E2C-(SFT+RL), which demonstates that a prompt
engeneering is not enough.

Exploration prompt The following prompt was used to generate each individual exploration (one
exploration per model call).

Role: You are a careful math problem solver.
Input:

• Problem: <problem>
Instructions:

• Produce exactly one short reasoning sketch (an exploration) that helps ap-
proach the problem.

• The exploration must be concise (about 2–4 short sentences).
• Do not produce the final answer in this call.
• Stop immediately after the single exploration text and do not append any

extra commentary, labels, or formatting.
Output format: A single short exploration paragraph (2–4 short sentences) and
nothing else.

Execution prompt The following prompt was used to synthesize the K independently sampled
explorations into a final execution.

Role: You are a careful math problem solver.
Input:

• Problem: <problem>
• Explorations:

Exploration 1: <exploration 1>
Exploration 2: <exploration 2>
...
Exploration {K}: <exploration K>

Table 7: Pass@5 accuracy (%) for different numbers of sampled explorations K.

Dataset K = 2 K = 3 K = 4 K = 5

MATH500 84.4 83.2 84.0 84.0
AIME24 26.7 33.0 36.7 26.7
AIME25 23.3 30.0 30.0 26.7

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Instructions:
• Learn from the provided {K} numbered explorations and combine their use-

ful reasoning to compute the final answer.
• Produce a single Execution: section that carries out the computation and

presents the final answer.
• Stop immediately after the final answer. Do not append extra commentary,

explanations, or any additional text beyond the required Execution section
and the answer.

25

	Introduction
	Related Work
	Methodology
	Formal Definition of E2C
	2-Stage Training Procedure: SFT and RL
	Stage 1: Synthetic dataset construction and E2C-SFT
	Stage 2: E2C Reinforcement Learning (E2C-RL)

	Efficient Adaptation and Inference with E2C

	Experiments and Results
	Training Protocols
	Experiments
	Results

	Limitations and Future Work
	Conclusion
	Appendix
	Cognitive Model Analysis
	Rubicon Model of Action Phases
	Connecting E2C with Rubicon Model
	Cognitive and Computational Efficiency
	Interpretability and Transparency

	The Details of The Experiments
	Hyperparameter Settings
	Reward Details for RL training

	Details of the Algorithm
	Test-Time Scaling Experimental Details
	Entropy Visualization of Different RL Settings and Analysis
	Prompt Details
	E2C Reasoning Examples
	Pure Prompt-based E2C

