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Abstract

Radar-based indoor 3D human pose estimation typically relied on fine-grained
3D keypoint labels, which are costly to obtain especially in complex indoor set-
tings involving clutter, occlusions, or multiple people. In this paper, we pro-
pose RAPTR (RAdar Pose esTimation using tRansformer) under weak supervi-
sion, using only 3D BBox and 2D keypoint labels which are considerably eas-
ier and more scalable to collect. Our RAPTR is characterized by a two-stage
pose decoder architecture with a pseudo-3D deformable attention to enhance
(pose/joint) queries with multi-view radar features: a pose decoder estimates
initial 3D poses with a 3D template loss designed to utilize the 3D BBox la-
bels and mitigate depth ambiguities; and a joint decoder refines the initial poses
with 2D keypoint labels and a 3D gravity loss. Evaluated on two indoor radar
datasets, RAPTR outperforms existing methods, reducing joint position error by
34.3% on HIBER and 76.9% on MMVR. Our implementation is available at
https://github.com/merlresearch/radar-pose-transformer.

1 Introduction

Accurate human perception is essential for indoor applications, including elderly monitoring, smart
building management, and robotic navigation. Although vision sensors offer high spatial resolution,
they raise privacy concerns and perform poorly under low light, occlusions, and hazardous conditions
(fire or smoke). In contrast, radar provides penetration capability, robustness to adverse conditions,
and low deployment cost, ideal for privacy-preserving indoor sensing [44, 18, 23, 30, 26].

By processing 4D radar tensors, RF-Pose 3D [48] demonstrated through-the-wall 3D pose estimation
with a convolutional neural network (CNN), while HRRadarPose [11] employed an hourglass neural
network HRNet [34]. mRI [1] is a multi-modal 3D human pose estimation dataset that integrates
mmWave radar, RGB-D cameras, and inertial sensors to facilitate research in human pose estima-
tion and action detection. QRFPose [33] is a novel approach that adopts a DETR [3]-style query
mechanism for end-to-end 3D regression using multi-view radar perceptions. Existing pipelines often
rely on expensive fine-grained 3D keypoint labels [35], typically collected using non-portable 3D
motion capture systems such as VICON, or using LiDAR, which can still suffer from occlusions and
incomplete observations.

Collecting cheaper, lower-cost labels, such as fine-grained 2D keypoints in the image plane and/or
coarse-grained 3D bounding boxes (BBoxes), is considerably easier and more scalable particularly in
complex indoor settings (e.g., cluttered, occlusion, multi-person), compared with acquiring dense
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Figure 1: RAPTR takes multi-view radar heatmaps as inputs and performs a novel Pseudo-3D
deformable attention between (pose and joint) queries and multi-view radar features in a two-stage
decoder to estimate 3D human poses in a 3D coordinate system. Rather than relying on expensive,
environment-specific fine-grained 3D keypoint labels, RAPTR makes use of cheaper, more scalable
labels such as coarse-grained 3D BBoxes and fine-grained 2D keypoints to train the model.

3D keypoints labels. Examples include RF-Pose [47], HuPR [15], and, more recently, MMVR [24]
datasets. To the best of our knowledge, the use of 2D keypoints and 3D BBoxes, as a substitute
for costly 3D keypoints, for radar-based 3D human pose estimation has not been systematically
investigated in the literature before.

To address this gap, we propose RAPTR (RAdar Pose esTimation using tRansformer) in Fig. 1, a
radar-based pipeline designed to take multi-view radar heatmaps as inputs and estimate 3D human
poses under weak supervision using only 3D BBox and 2D keypoint labels. RAPTR builds on the
two-stage (pose and joint) decoder architecture of the state-of-the-art RGB-based 2D pose estimation
PETR framework [28] and introduces a structural loss function that is designed to utilize weak
supervision labels to mitigate the depth ambiguity. RAPTR also lifts the 2D deformable attention
in PETR to a pseudo-3D deformable attention, wherein reference points (dots in Fig. 1) and offsets
(arrows in Fig. 1) are proposed in the 3D radar coordinate system and projected onto multiple radar
views (dots on the radar heatmaps in Fig. 1) to eliminate redundant per-view offset estimation and
offer better scalability as the number of radar views increases. Our model outperforms a list of
radar-based 3D pose baselines over two indoor radar datasets: HIBER [35] and MMVR [24]. The
main contributions of this work are:

• To the best of our knowledge, RAPTR is the first radar-based 3D human pose estimation
framework to explicitly utilize low-cost weak supervision in the form of 3D BBoxes and 2D
keypoints, rather than relying on fine-grained 3D keypoint labels.

• We introduce a structured loss function that tightly couples the two-stage decoder architecture
to enable 3D pose estimation under weak supervision. Specifically, we design a 3D Template
Loss, which utilizes the 3D BBox labels at the pose decoder, and a combined 3D Gravity and
2D Keypoint Loss at the pose decoder, allowing RAPTR to effectively learn geometrically
consistent 3D poses from weak supervision.

• We further introduce a pseudo-3D deformable attention mechanism to bridge the 3D spatial
domain and 2D radar views, enabling scalable view association while preserving pose
estimation performance.

2 Related Work

Human Pose Estimation with RGB Image: Human pose estimation from images involves localiz-
ing body joints for multiple subjects and associating them for each subject. Existing architectures fall
into two main paradigms: top-down and bottom-up. The top-down methods first detect each person
using detectors such as Faster R-CNN [25] or Mask R-CNN [10], then applying a single-person pose
estimator to each cropped region. These approaches achieve state-of-the-art accuracy with models
like Stacked-Hourglass [22], HRNet [31], and DarkPose [46]. In contrast, bottom-up methods such
as OpenPose [2], HigherHRNet [6], and SAHR [19] bypass the detection step by predicting all joint
candidates across the entire image and grouping them into individuals. PETR [28] introduces an
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end-to-end pose estimation framework using a query-based, two-stage transformer decoder architec-
ture. Beyond 2D, recent methods addresses 3D pose from RGB or RGB-D inputs, either by directly
regressing 3D joints [20] or by lifting 2D predictions into the 3D space through geometric reasoning
or weak supervision [4, 5, 21, 32].

Human Pose Estimation with radar or radio frequency signals: Recent studies have shown
that information extracted from commercial radars is sufficiently informative to perform fine-grained
human pose estimation, both for 2D and 3D. Despite the coarse-grained nature of the radar point
clouds (PCs), deep neural pipelines have achieved a multitude of performance gains [29, 27, 38, 1,
41, 36, 12, 14, 39, 42, 8, 7, 43]. On the other hand, methods using raw radar measurements and radar
heatmaps have been widely explored [47, 49, 15, 35, 11, 24, 33, 45, 37]. RF-Pose [47] pioneered
multi-view 3D CNNs for through-wall 2D estimation. HuPR [15] refines such heatmaps via a graph
convolutional network (GCN). HRRadarPose [11] adopts an HRNet-style [34] single-stage head
for 3D output. QRFPose [33], based on a DETR-style Transformer [3] for end-to-end query-based
3D pose estimation, is the closest baseline to ours. It differs by applying per-view 2D deformable
attention and using a single decoder for all keypoints, followed by grouping. In contrast, our method
employs pseudo-3D deformable attention and a two-stage decoder.
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Figure 2: Multi-view radar heatmaps.

Multi-View Radar Heatmaps: As shown in Fig. 2, two
synchronized radar arrays (horizontal and vertical) collect re-
flected pulses that form a 3D data cube per array (ADC sam-
ples → pulses → elements). A 3D FFT converts each cube
into a range–Doppler–angle spectrum, whose angle dimen-
sion is azimuth for the horizontal array and elevation for the
vertical array. After Doppler-axis integration to boost SNR
(signal-to-noise ratio), we obtain two polar 2D heatmaps
(range-azimuth and range-elevation). These are mapped
to the Cartesian space: Yhor(t) ↑ RW↑D for horizontal-
depth and Yver(t) ↑ RH↑D for vertical-depth at frame t.
The temporal context is captured by stacking T consecutive
frames, giving Yhor ↑ RT↑W↑D and Yver ↑ RT↑H↑D.

Problem Formulation: The 3D pose estimation task takes T consecutive radar frames, Yhor and
Yver, as input and estimates poses P̂world in the 3D world coordinate system,

P̂world = Tr2w(P̂radar) = Tr2w(f(Yhor,Yver)), (1)

where f represents the 3D pose estimation pipeline in the 3D radar coordinate system, and Tr2w is a
known radar-to-world coordinate transformation that converts the estimated 3D poses into the 3D
world coordinate system. Rather than relying on costly, non-scalable fine-grained 3D keypoint labels
Pworld, we consider cheaper, more scalable labels such as coarse-grained 3D BBoxes Bworld and
fine-grained 2D keypoints Pimage for supervision, as shown in Fig. 1.

4 RAPTR: Radar-based 3D Pose Estimation using Transformer

We present the RAPTR architecture in Fig. 3, following a left-to-right order, and highlight radar-
specific modifications. Refer to Appendix A for detailed architecture and computational complexity.

4.1 Architecture

Backbone: Given Yhor ↑ RT↑W↑D and Yver ↑ RT↑H↑D, a shared backbone network (e.g.,
ResNet [9]) generates separate multi-scale horizontal-view and vertical-view radar feature maps:
Zhor = {Zhor,i}

S

i=1 = backbone (Yhor) and Zver = {Zver,i}
S

i=1 = backbone (Yver), where the
i-th scale feature maps Zhor,i ↑ RWi↑Di↑d and Zver,i ↑ RHi↑Di↑d have a spatial dimension of
Wi →Di or Hi →Di and a feature dimension of d, and S is the number of scales.
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Figure 3: The RAPTR architecture consists of: 1) Cross-view Encoder that extracts multi-scale
radar features; 2) Pseudo-3D Pose Decoder that enhances pose queries via a pseudo-3D deformable
attention and predicts initial 3D poses; and 3) Pseudo-3D Joint Decoder that further refines joint
queries and outputs final 3D poses. In terms of loss function, RAPTR leverages 3D BBox and 2D
keypoint labels through coarse-grained 3D loss (gravity and template) and 2D keypoint loss.

Cross-View Encoder is a Transformer encoder with Lenc layers that fuses the horizontal- and vertical-
view radar features. Each layer runs a shared cross-attention twice: first with Zhor as key/value
and Zver as query, then vice versa. This bidirectional exchange embeds complementary cues, while
residual connections keep view-specific details, producing refined features F(i)

enc, i = 1, · · · , Lenc,

F(i)
a

= F(i↓1)
a

+ CrossAttn(F(i↓1)
a

,F(i↓1)
b

), (a, b) ↑ {(hor, ver), (ver, hor)}, (2)

where F(0)
hor

= Zhor, F(0)
ver = Zver, and CrossAttn(·, ·) denotes the deformable cross-attention [50]

following [28] with fixed positional embeddings added beforehand for efficiency. After Lenc iterations,
the encoded features Fhor and Fver are obtained at the output of the cross-view encoder.

Pseudo-3D Pose Decoder associates N pose queries Qpose ↑ RN↑d (embedding dimension d)
with encoded radar features (Fhor,Fver), where each query corresponds to a reference pose refined
through pseudo-3D deformable attention over Lpose layers. We define the l-th decoder layer as a
function D

(l)
pose that updates both the pose queries and reference poses in the 3D radar space:

(Q(l)
pose

, P̃(l)
radar

) = D
(l)
pose

(Q(l↓1)
pose

,Fhor,Fver, P̃
(l↓1)
radar

), (3)

where P̃(0)
radar

is initialized by passing Qpose through an MLP. Reference poses are iteratively refined
by applying predicted coordinate offsets !P̃(l)

radar
in the normalized scale:

P̃(l)
radar

↑ RN↑3K
= ω(ω

↓1
(P̃(l↓1)

radar
) +!P̃(l↓1)

radar
), l = 1, . . . , Lpose, (4)

where ω and ω
↓1 denote the Sigmoid function and its inverse. The predicted offsets !P̃(l)

radar
=

Hpose(Q
(l)
pose) are obtained by passing pose queries at each layer to a shared regression head Hpose.

We convert the initial pose estimates P̃radar = P̃
(Lpose)
radar

from the radar coordinate system to the world
coordinate system via P̃world = Tr2w(P̃radar), along with the corresponding confidence scores c̃. We
defer the pseudo-3D deformable attention to Section 4.2.

Pseudo-3D Joint Decoder associates K joint queries Qjoint ↑ RK↑d with encoded radar features
(Fhor,Fver), where each query corresponds to a single joint refined by pseudo-3D deformable
attention over Ljoint layers. Here, K joint queries correspond to the same subject. We define the l-th
decoder layer as a function D

(l)
joint

that updates both the joint queries and corresponding joints:

(Q(l)
joint

, p̃(l)
i,radar

) = D
(l)
joint

(Q(l↓1)
joint

,Fhor,Fver, p̃
(l↓1)
i,radar

), (5)

where p̃(l)
i,radar

↑ RK↑3
, i = 1, · · · , N is one specific pose in the N poses, and p̃(0)

i,radar
is i-th pose

prediction from the pose decoder. Joints in the reference pose are iteratively refined by applying
predicted coordinate offsets !p̃(l)

i,radar
:

p̃(l)
i,radar

↑ RK↑3
= ω(ω

↓1
(p̃(l↓1)

i,radar
) +!p̃(l↓1)

i,radar
), l = 1, · · · , Ljoint, (6)
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where the predicted offsets are given as !p̃(l)
i,radar

= Hjoint(Q
(l)
joint

) with a shared regression head.

We collect refined reference poses from the joint decoder as P̂radar = {p̃
(Ljoint)

i,radar
}
N

i=1 and convert
them into the 3D world coordinate system as P̂world = Tr2w(P̂radar).

4.2 Pseudo-3D Deformable Attention
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Figure 4: The pseudo-3D deformable attention operates
on a 3D reference point and 3D sampling offsets that are
projected to different radar views for pseudo-3D attention
between multi-view radar features and the query.

Our two-stage decoder incorporates a
pseudo-3D deformable attention mod-
ule, where “pseudo” highlights that ref-
erence points and sampling offsets are
defined in 3D space, while feature sam-
pling occurs on the 2D radar views, as
illustrated in Fig. 4.

Consider a 3D reference point (x, y, z)
in the 3D radar space with a correspond-
ing query q ↑ Rd (from either pose
queries in the pose decoder or joint
queries in the joint decoder). We first
feed q into a linear projection layer to
predict a set of 3D sampling offsets
{!xi,!yi,!zi}

Noffset

i=1 . Given the 3D
reference point and sampling offsets,
we can locate the 3D sampling coor-
dinates and project them onto the two
radar views, extracting deformable multi-view radar features:

f (i)
hor

= Fhor(x+!xi, z +!zi), f (i)
ver

= Fver(y +!yi, z +!zi) i = 1, · · · , Noffset. (7)

We group deformable multi-view radar features as Fattn = {f (1)
hor

, f (1)ver, · · · , f
(Noffset)
hor

, f (Noffset)
ver }.

Meanwhile, multi-view attention weights Aattn ↑ RNoffset↑2 (where 2 corresponds to the two radar
views) are proposed by linearly projecting the query and applying a softmax normalization. These
weights capture the relative importance of radar features across the two views in a unified manner.

Given the deformable multi-view radar features Fattn and the multi-view attention weights Aattn,
deformable multi-view attention features can be calculated as

F̄attn =

Noffset∑

i=1

(Ai,0WF(2i↓1)
attn +Ai,1WF(2i)

attn), (8)

where Ai,0 and Ai,1 are the attention weights in Aattn for the i-th deformable radar feature in the hori-
zontal and, respectively, vertical radar views, and W ↑ RC↑C is a learnable weight matrix. We denote
the overall pseudo-3D deformable attention as F̄attn = DeformableAttn(Fver,Fhor, (x, y, z),q).

Appendix B provides implementation details of DeformableAttn(·, ·, ·, ·) and a computational com-
plexity comparison with the decoupled 2D deformable attention used in QRFPose [33], demonstrating
better scalability of the proposed pseudo-3D attention as the number of radar views increases. Ap-
pendix C describes an optional view mask module (top right of Fig. 4) that adds flexibility in selecting
multi-view radar features per query. For example, an all-zero mask can be applied to exclude features
from a specific radar view.

4.3 Structural Loss Function

As illustrated in Fig. 3, RAPTR utilizes weak supervision labels: coarse-grained BBox labels Bworld

in the 3D world coordinate system and fine-grained 2D keypoint labels Pimage in the image plane.
The loss function is calculated between these labels {Bworld,Pimage} and the initial and refined 3D
pose estimates {P̃world, P̂world} with details included in Appendix D.

3D Template (T3D) Loss at Pose Decoder utilizes coarse-grained 3D BBox labels Bworld. For each
Bworld, we construct a 3D keypoint template by computing the centroid of the corresponding 3D
BBox, which serves as the 3D gravity center label gworld ↑ R1↑3.
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Then, given a keypoint template defined at the coordinate origin Kworld ↑ RK↑3, the corresponding
template pose Tworld is computed as Tworld = Kworld + 1↔gworld. As illustrated in the lower right
of Fig. 3, the T3D loss Ltemplate is defined as the Euclidean distance between the template poses
Tworld and the initial 3D pose estimates P̃world at the pose decoder.

Combined 3D Gravity (G3D) Loss and 2D Keypoint (K2D) Loss at Joint Decoder utilizes both
the coarse-grained 3D BBox labels Bworld and the fine-grained 2D keypoint labels Pimage in the
image plane, as illustrated in the upper right of Fig. 3

For the G3D loss, the refined 3D pose estimate P̂world is collapsed into its centroid as ĝworld ↑ R1↑3

by averaging the keypoint coordinates along each spatial axis. The resulting G3D loss Lgravity is
then defined as the Euclidean distance between the predicted and ground-truth 3D gravity centers,
ĝworld and gworld.

For the K2D loss, the refined 3D pose estimate P̂radar in the radar coordinate system are first
transformed into the 3D camera coordinate system via a calibrated coordinate transformation:
P̂camera = RP̂radar+1↔t where R and t denote the calibrated 3D rotation matrix and the translation
vector, respectively. The resulting 3D camera-space pose estimates are then projected onto the 2D im-
age plane via a known 3D-to-2D projection: P̂image = proj

image
(P̂camera). Finally, the fine-grained

2D loss combines the image-plane Euclidean error Lkpt2D and the object keypoint similarity (OKS)
loss LOKS [28] between Pimage and P̂image.

Structural Loss Function: Following the set-based loss in [3], we employ bipartite matching to
associate predictions {ĝworld, P̃world, P̂world} with their ground-truth labels {gworld,Tworld,Pworld}.
Based on these associations, we define the structural loss function as

L =
1

N ↗

N
→∑

i=1

(ε1Ltemplate + ε2Lgravity + ε3Lkpt2D + ε4LOKS) + ε5Lcls, (9)

where N ↗ is the number of matched pairs, εi is the corresponding weighting factor for each loss term,
and Lcls is the classification loss of the focal loss [17] with the confidence scores of the matched
estimates.

5 Evaluation

5.1 Settings

Datasets: We assess the performance of RAPTR and baseline models on the HIBER dataset3 [35]
and the MMVR dataset4 [24], both of which are publicly available multi-view mmWave radar datasets
designed for indoor human perception tasks. The HIBER dataset includes two-view radar heatmaps
from 10 different viewpoints, the corresponding 3D keypoint labels, and the 3D BBox labels. We
use data protocols “MULTI” and “WALK”, and use views 2 through 10 for training, validation,
and testing. The MMVR dataset includes two-view radar heatmaps in various indoor scenarios, the
corresponding 2D keypoint labels, and the 3D BBoxes. We use a data split “P1S1”, a single-person
case in an open space. A detailed description of the datasets is provided in Appendix E.

Parameter Settings for RAPTR: We use T = 4 consecutive frames as input to our RAPTR
network. For the point decoder, the number of pose queries N is 10. For the joint decoder, the
number of joint queries K depends on the dataset to be evaluated: K = 14 for HIBER and K = 17

for MMVR. The parameters relating to model training are summarized in Appendix F.

Baselines: We consider the following competitive radar/RF-based 3D pose estimation baselines:
Person-in-WiFi 3D [40], HRRadarPose [11], and QRFPose [33]. We evaluate Person-in-WiFi 3D
and HRRadarPose using their open-source implementations. As QRFPose has no public code, we
reimplement it from scratches and verify similar performance to the original report [33] using 3D
keypoint labels. For fair comparison, we adopt a loss function, similar to RAPTR, combining 2D
keypoint loss and 3D gravity loss. Baseline implementation details are provided in Appendix G.

3
https://github.com/Intelligent-Perception-Lab/HIBER

4
https://zenodo.org/records/12611978
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Table 1: 3D pose estimation performance on HIBER (MPJPE: cm).
Env Method Head Neck Shoulder Elbow Wrist Hip Knee Ankle Overall (h) (v) (d)

W
A

LK

Person-in-WiFi 3D 54.28 57.01 54.18 54.81 59.98 53.98 60.32 68.84 58.25 25.60 23.94 36.20
QRFPose 42.23 34.21 37.37 38.05 41.25 31.24 34.39 46.87 38.20 14.78 13.40 26.76

HRRadarPose 30.23 25.44 33.70 34.15 42.33 27.71 31.55 40.46 33.96 15.14 13.13 19.85
RAPTR (ours) 21.75 17.41 20.72 23.23 26.55 18.97 21.06 26.10 22.32 8.41 4.85 17.73

M
U

LT
I Person-in-WiFi 3D 88.48 85.14 89.44 84.33 84.29 88.69 81.70 81.53 85.25 34.06 28.57 58.93

QRFPose 49.49 44.48 45.54 46.77 49.06 40.99 41.87 51.57 46.11 18.20 14.13 34.39
HRRadarPose 30.24 24.24 30.14 35.17 44.34 28.76 31.38 35.31 33.19 16.77 10.75 21.84
RAPTR (ours) 18.39 13.13 16.44 20.12 24.62 15.01 17.76 23.22 18.99 7.80 4.38 14.54

Metrics: We employ Mean Per Joint Pose Error (MPJPE) with the unit of centimeters in the
world coordinate. In addition, we evaluate this MPJPE for each body joint and along each 3D axis,
horizontal (h), vertical (v), and depth (d), independently. For MMVR, since 3D keypoint labels are
not available, we construct a 3D bounding box (BBox) that encloses the estimated 3D keypoints and
then use the distance between the center points of this BBox and the 3D BBox labels, as well as
the absolute error in the lengths of the edges along each axis of the box, as metrics to approximate
the 3D pose estimation performance. Detailed evaluation metrics are described in Appendix H.

5.2 Main results

HIBER: Table 1 shows the performance of 3D pose estimation for HIBER, using 2D and coarse
3D labels for baselines and our RAPTR. The qualitative results are provided in Fig. 5a.

For WALK, RAPTR achieves a significantly lower overall MPJPE of 22.32 cm and outperforms all
other baselines in the metric. More specifically, RAPTR reduces the overall error by 61.7%, 41.6%,
and 34.3% compared to Person-in-WiFi 3D, QRFPose, and HRRadarPose, respectively. The per-joint
breakdown demonstrates that RAPTR maintains its performance on relatively challenging joints,
such as the wrist and ankle, where other baselines exhibit significant degradation. For example,
HRRadarPose reports a wrist error of 42.33 cm, whereas RAPTR reports an error of 26.55 cm.
Moreover, RAPTR maintains the error gap between the best- and worst-estimated joints within 10 cm,
showing a consistent level of accuracy throughout the body. In terms of directional components,
RAPTR shows much lower errors in the horizontal and vertical dimensions than baselines, indicating
that RAPTR estimates well-proportioned 3D poses across all axes.

For MULTI, the more challenging multi-person scenario, RAPTR continues to outperform with an
overall MPJPE of 18.99 cm and shows a substantial margin compared to the second-best HRRadar-
Pose at 33.19 cm. RAPTR reduces the overall error by 77.7%, 58.8%, and 42.7% compared to
Person-in-WiFi 3D, QRFPose, and HRRadarPose, respectively. Although the overall accuracy of
Person-in-WiFi 3D and QRFPose, noticeably degrades on the MULTI split compared to WALK,
likely due to the increased complexity of handling multiple objects, RAPTR maintains a nearly
consistent level of performance.

Referring to the qualitative results provided in Fig. 5a, RAPTR estimates structurally consistent 3D
poses that match the 3D labels in both position and orientation, while baselines often suffer from
misaligned limbs and implausible joint configurations. While baselines often fail to maintain human-
like pose structure in the MULTI setting despite performing well in WALK, RAPTR consistently
produces plausible estimates in both scenarios, indicating its robustness to multi-person scenes.

Table 2: Pose estimation performance on MMVR (P1S1).

Method Center distance (cm) Edge length error (cm)
(h) (v) (d)

Person-in-WiFi 3D 136.14 33.18 95.43 242.86
QRFPose 210.75 38.12 73.69 409.38

HRRadarPose 164.46 37.84 74.00 313.81

RAPTR (ours) 31.41 22.90 10.66 50.56

MMVR: Table 2 shows the performance comparison for baselines and RAPTR with MMVR,
and Fig. 5b provides qualitative results. Although we cannot directly evaluate the precise 3D pose
estimation performance for MMVR due to the absence of 3D pose labels, the results demonstrate
that RAPTR effectively preserves reasonable human pose and location accuracy in the 3D space.
Specifically, RAPTR shows improvements in center distance by 76.9%, 85.1%, and 80.9% compared
to Person-in-WiFi 3D, QRFPose, and HRRadarPose, respectively. As shown in Fig. 5b, other
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(a) Visualization of 3D pose estimation by RAPTR and baseline methods on the HIBER dataset.

2D Labels Person-in-WiFi 3DHRRadarPoseQRFPoseRAPTR (ours)

(b) Visualization of 3D pose estimation by RAPTR and baseline methods on the MMVR dataset.

Figure 5: Qualitative results. Blue lines indicate the keypoint labels, blue rectangles indicate the 3D
BBox labels, and red lines indicate the predictions.

baselines exhibit degraded performance due to structural collapse in 3D space, caused by overfitting
to 2D alignment when projected onto the image plane. We assume that RAPTR effectively avoids
this issue by not directly predicting the keypoints, but instead refining the final output through 2D
keypoint supervision applied to each joint of a template pose that is placed in the 3D space.

6 Ablation Study

In this section, we present ablation studies of our RAPTR on the HIBER dataset. Unless otherwise
stated, all reported evaluation results are reported as the mean ± standard deviation, computed over
three random seeds. Additional ablation results and visualizations are provided in Appendix I.

Visualization of Pose Refinement Process: Fig. 6 illustrates the refinement process of a 3D
prediction through the two-stage decoder architecture. The pose decoder first establishes coarse 3D
structures of the human body under the constraint of the 3D template loss (1st row). Subsequently, the
joint decoder fine-tunes the keypoints to better capture the subject orientation and limb configuration
(2nd row), while preserving the structure consistency provided by the pose decoder.

Effect of Loss Terms: Table 3 provides an ablation study on the effect of different combinations of
loss terms in the two-stage decoder. When only the K2D loss is applied at the joint decoder (row
1), the 3D pose estimation suffers from depth ambiguity due to the absence of any 3D constraint,
resulting in a substantial increase in MPJPE to 381.18 cm and 375.73 cm on the WALK and MULTI
splits, respectively. From rows 2 to 4 in Table 3, we remove or modify one loss term at a time from
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Figure 6: Pose Refinement Process: the pose prediction is first constrained by the 3D template at the
pose decoder, and subsequently refined at the joint decoder.

the proposed structural loss. Removing the T3D loss at the pose decoder (row 2), replacing the T3D
with the K2D+G3D loss at the pose decoder (row 3), or removing the G3D loss at the joint decoder
(row 4) leads to a noticeable degradation in 3D pose estimation.

Table 3: Effect of loss terms for RAPTR (MPJPE: cm).

Loss WALK MULTI NotesPose Dec. Joint Dec.

– K2D 381.18 ± 0.28 375.73 ± 6.31 2D keypoint loss only at joint decoder

– K2D+G3D 28.54 ± 4.57 57.90 ± 9.81 without 3D template loss at pose decoder
K2D+G3D K2D+G3D 27.49 ± 3.40 23.43 ± 3.44 with 2D keypoint + 3D gravity loss at both decoders

T3D K2D 25.96 ± 4.95 25.83 ± 3.87 without 3D gravity loss at joint decoder

T3D K2D+G3D 22.32 ± 0.06 18.99 ± 0.16 proposed structural loss

K2D = 2D Keypoint loss, T3D = 3D Template loss, G3D = 3D Gravity loss

Effect of Deformable Attention Mechanisms: Table 4 presents an ablation study on the effect of
the deformable attention mechanism for RAPTR. In this study, the pseudo-3D deformable attention
is replaced with the decoupled 2D deformable attention used in QRFPose [33], while keeping the
cross-view encoder, two-stage decoder architecture, and the proposed structural loss unchanged. The
results show that the pseudo-3D deformable attention yields marginal performance improvements,
approximately 4% and 2.5% on the WALK and MULTI splits, respectively.

Table 4: Effect of deformable attention mechanisms for RAPTR (MPJPE: cm).
Attn. WALK MULTI Notes
2D 23.25 ± 1.38 19.47 ± 0.95 RAPTR with decoupled 2D deformable attention
3D 22.32 ± 0.06 18.99 ± 0.16 RAPTR with pseudo-3D deformable attention

Comparison with a 2D-to-3D Pose Uplifting Model: We further compare RAPTR with a baseline
that first estimates 2D keypoints in the image plane and subsequently lifts them to 3D space using a pre-
trained 2D-to-3D pose uplifting model [21] trained on vision-based datasets such as Human3.6M [13].
To ensure a fair comparison, this baseline adopts the same network architecture as RAPTR, but both
the pose and joint decoders are supervised only by the 2D keypoint loss. Because the 3D poses
predicted by the uplifting model are defined in a pelvis-centered coordinate system, we additionally
estimate a translation offset to align the estimated poses with their correct position in the world
coordinate system. As shown in Table 5, the pose uplifting baseline performs significantly worse than
RAPTR, with MPJPEs of 43.43 cm and 41.76 cm on the WALK and MULTI splits, respectively.

Limitation: Given that the process of refining the template to the actual pose in the joint decoder is
supervised by the 2D keypoint labels, the accuracy of the 3D pose estimation is highly dependent on
the precision of the labels in the image plane. In this context, since the 2D keypoint label lacks the
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Table 5: Comparison with a 2D-to-3D pose uplifting model (MPJPE: cm).
Loss WALK MULTIPose Dec. Joint Dec.

Pose Lifting [21] K2D K2D 43.43 ± 2.66 41.76 ± 6.85
RAPTR (ours) T3D K2D+G3D 22.32 ± 0.06 18.99 ± 0.16

ability to discern whether the person is facing forward or backward to the camera, the estimated 3D
poses may have joints that are bent in the opposite direction in depth from the actual pose. In addition,
real-world conditions such as occlusion and human-to-human interference can further degrade the
pose estimation performance. These effects become more pronounced in crowded or interactive
environments.

7 Conclusion

We introduced RAPTR, a radar-based 3D human pose estimation system using reliable 2D keypoint
labels and 3D BBoxes as the coarse-grained 3D information. We designed the network architecture
and the loss function to integrate multi-view radar features and consistently represent human poses in
the 3D space, whose effectiveness was demonstrated through experimental results.

Broader Impacts: Indoor radar perception technologies, such as RAPTR, provide diverse indoor
applications. These technologies may improve the safety and energy efficiency of indoor systems
while preserving privacy. However, it is paramount that the perception results remain secure and
private to prevent misuse.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the major challenge and our
contributions on that in 3D human pose estimation achieved by the proposed architecture
using bullet points. Specifically, following each bullet point, Section 4 and Section 5 provide
detailed descriptions of the proposed architecture and its experimental results, demonstrating
the effectiveness of the proposed method. Therefore, the overall content is consistent.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included the discussion about the limitation in Section 6. Besides, we
analyzed the limitations by visualizing the failure cases in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the theoretical computational complexity of our proposed system
in Appendix A. Although we mainly demonstrate empirical results in this paper, we show
that our proposed method is broadly applicable by performing evaluations with two different
datasets.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the main parameters regarding the dataset, model architecture and
model training in Table 7 in Appendix F. In addition, we provide a detailed description of
the network architecture in Appendix A. This allows us to reproduce the main experimental
results in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release our source code online. In addition, the link to the datasets
we used in the evaluations are provided in Section 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We included the specifications of data and hyper parameters. Refer Table 7 in
Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the high computational cost, statistical results are not included. We
instead report more comprehensive experimental results by conducting experiments with
multiple datasets. Please refer to Section 5 and Appendix I.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer Table 7 in Appendix F including descriptions for computer resources we
used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully confirmed it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We disucuss the social impact of our proposal in Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The datasets we use in our evaluation are distributed through regular procedures.
Besides, we do not use any pre-trained models, and thus there is no such a risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The papers for HIBER and MMVR dataset are cited; see Section 5 that the
papers are cited in the proper context.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We plan to release the source code required to reproduce the evaluation results
in the main content.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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