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ABSTRACT

Predicting cellular responses to drug perturbations requires capturing complex
dependencies between transcriptomic and morphological changes that single-
modality approaches cannot adequately model. We introduce PertFlow, the first
unified framework that jointly predicts gene expression profiles and generates cel-
lular morphology images in response to drug treatments, conditioned on control
cellular states. Our method integrates control transcriptomic and imaging data
through multi-head cross-modal attention mechanisms, learning a shared latent
representation that incorporates drug compound features, background cellular pro-
files, and treatment specifications. From this unified representation, PertFlow
employs a regression head for RNA-seq prediction and rectified flow dynamics
for stable morphological image generation, with cross-modal consistency losses
ensuring coherent molecular and phenotypic predictions. PertFlow enables ac-
curate predictions from either complete multi-modal inputs or single-modality
data alone, demonstrating robust cross-modal learning. Our evaluation on paired
RNA-seq and Cell Painting fluorescent imaging datasets demonstrates that Pert-
Flow achieves stronger cross-modal consistency and accurate prediction of drug-
induced changes compared to diffusion baselines.

1 INTRODUCTION
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Figure 1: (LEFT) Cross-modal mapping from control RNA-seq and image to treatment RNA-seq
and image with drug conditioning through PertFlow. (RIGHT) Comparison of generated treatment
vs real treatment images with drug name and concentration. Yellow boxes indicate similar features.

Understanding how drugs alter cellular states is essential for drug discovery, mechanistic under-
standing, and personalized medicine. Traditional drug response models typically focus on either
transcriptomic data or imaging, missing the complex interdependencies between molecular and mor-
phological changes that occur simultaneously in cells. Recent advances in high-throughput profiling
now allow paired RNA sequencing and imaging, offering complementary insights: transcriptomics
captures molecular mechanisms and gene regulation, while morphology reflects structural and phe-
notypic changes. These modalities are linked as gene expression can drive morphological transfor-
mations, and structural changes can modulate gene activity yet most models treat them in isolation.
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Existing methods fall short as transcriptomics-based approaches cannot model morphological ef-
fects; image-based models lack molecular interpretability; and cross-modal predictors generate only
one modality from another, without joint modeling. Moreover, most studies prioritize genetic over
chemical perturbations and analyze rather than predict multi-modal responses. Joint generation of
multi-modal responses poses three main challenges: (1) aligning transcriptomic and morphological
data across fundamentally different representational spaces; (2) capturing complex drug condition-
ing involving compound, dose, cell type, and timepoint; and (3) simultaneously predicting discrete
gene expression and continuous image data with biological realism and cross-modal consistency.

We introduce PertFlow (Figure[I)), a novel unified generative framework for jointly predicting treat-
ment gene expression and synthesizing cellular morphology from control conditions, conditioned on
drug metadata. Our contributions are: (1) First method to jointly predict transcriptomic and generate
morphological responses to chemical perturbations. (2) A shared embedding space integrating con-
trol RNA-seq, control images, and drug metadata to model complex dependencies. (3) Multi-token
cross-attention to align molecular and morphological features across modalities. We set the bench-
mark for state-of-the-art performance on the GDPx3 dataset, improving cross-modal alignment and
prediction quality over single-modality and diffusion baselines. PertFlow could support downstream
applications in virtual drug screening, mechanism discovery, and integrated pharmacological mod-
eling by enabling joint prediction of RNA-seq and image responses to perturbations; a capability, to
our knowledge, the first and unique among current methods.

2 RELATED WORKS

Drug-Conditioned and Cross-Modal Modeling: Recent methods predict transcriptional responses
to chemical perturbations but remain largely transcriptomics-focused. PRnet Q1 et al.[ (2024) em-
ploys a perturbation-conditioned generative model to predict expression changes for novel com-
pounds at bulk and single-cell levels, while TranSiGen Tong et al.| (2024])) uses self-supervised learn-
ing to reconstruct drug-induced profiles from basal expression and compound structure, though lim-
ited to denoising and reconstruction. MolGene-E |Ohlan et al.| (2025) shifts toward inverse design
by using contrastive learning to harmonize bulk and single-cell data, but generates molecules from
expression rather than predicting responses. Other approaches emphasize repurposing and mech-
anism discovery without producing new profiles, leaving morphological drug effects unexplored.
In parallel, integration of transcriptomic and imaging modalities has emphasized prediction over
generation. BLEEP [Xie et al.[ (2023) applies bi-modal contrastive learning to predict spatial gene
expression from H&E images, while SCHAF (Comiter| (2024)) is among the few generative mod-
els, using GANSs to synthesize spatially resolved single-cell omics from histology. TransformerST
Zhao et al.| (2024) fuses histology with gene expression for super-resolution predictions, prioritiz-
ing data enhancement. Multi-modal perturbation frameworks such as Perturb-multi-modal Saunders
et al.|(2025) and CRISPR ST Binan et al.| (2025) integrate imaging and sequencing to study genetic
perturbations, but focus on measurement rather than synthesis and mainly on genetic rather than
chemical interventions. Fusion-based methods |Lu et al.| (2024) combine chemical, transcriptomic,
and other biological data for prediction and classification, yet cross-modal generative modeling of
cellular responses remains unaddressed.

Morphological Profiling and Generative Frameworks: Cellular imaging provides critical insights
into drug mechanisms, with Cell Painting Bray et al.|(2016) capturing multiplexed phenotypes un-
der perturbations and widely used in virtual screening. Advances in deep learning have enhanced
morphological profiling through convolutional models and computer vision Tang et al.|(2024), while
tools such as CellProfiler McQuin et al.| (2018)) automate analysis and Cellpose [Stringer et al.|(2021)
improves segmentation. However, generative modeling of cellular images conditioned on perturba-
tions remains limited. Progress in generative frameworks highlights potential for this gap: diffusion
models achieve state-of-the-art performance in image, protein, and molecule generation |Guo et al.
(2024), but suffer from high computational cost and slow sampling. Rectified Flow |Liu et al.| (2022)
offers a more efficient alternative by learning straight-line transport between distributions, reduc-
ing sampling steps without loss of quality. This efficiency stems from flow matching |Lipman et al.
(2022), which linearly interpolates between noise and data, making rectified flow especially suited
for large-scale drug screening. While most current methods are single-modal, advances such as Sta-
ble Diffusion 3 [Esser et al.|(2024) demonstrate the feasibility of multi-modal generative modeling,
opening opportunities for predictive simulation of cellular responses.
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3 METHODS
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Figure 2: (RIGHT) UMAP representation of control vs real treatment vs generated treatment gene
expression data. (LEFT) Distribution of cell lines and compounds in dataset

Problem Formulation. We formalize the drug conditioned multi modal generation problem as
learning a mapping from control cellular states to treatment responses across transcriptomic and
morphological modalities. Given control gene expression x"! € RY where G is the number of
genes, control cellular images x{, € RE*#*W with C channels and spatial dimensions H x W,
and drug conditioning information ¢ = {Ccompound, Ceell; Ceone; Ciime } including compound identity,
cell line, concentration, and timepoint, our objective is to generate treatment outcomes, where fy

: : : . lreat treat __ ctrl ctrl
represents our unified generative model parameterized by 6: x\r: s Ximg = fo(xer, Xime> c)

Dataset Description. Our study leverages the Ginkgo Data Platform (GDP) series Model & Bio-
logics| (2025), a multimodal dataset integrating transcriptomic profiles (GDPx1/GDPx2) and four-
channel fluorescence microscopy images (GDPx3) from drug-treated cell cultures. We implemented
cross-modal pairing by identifying overlapping compounds and experimental conditions, standard-
izing metadata (concentration units, cell line nomenclature, temporal alignment), and establishing
DMSO controls as baseline references. Transcriptomic preprocessing follows established protocols
like total count normalization to 10% reads per sample, loglp transformation, and highly variable
gene selection (n=8000) using scanpy, to focus on the most informative genomic features. Image
preprocessing addresses 16-bit microscopy data through proper intensity scaling (16-bit to [-1,1]
range), percentile-based contrast enhancement (1°¢-99t" percentile) applied per channel, and bilin-
ear interpolation to uniform spatial dimensions.

Drug compounds are represented through multi-modal molecular encodings combining structural
and physicochemical information. We extract Morgan and RDKit molecular fingerprints (1024 bits
each) from canonical SMILES strings, providing binary structural descriptors capturing substruc-
tural patterns and pharmacophoric features. Molecular descriptors include eighteen 2D properties
(molecular weight, logP, topological polar surface area, hydrogen bond donors/acceptors, rotatable
bonds, aromatic rings, and complexity measures) and five 3D properties when available from SDF
structures. For compounds lacking preprocessed molecular data, we implement on-demand SMILES
processing with RDKit to ensure comprehensive coverage. Missing molecular information is han-
dled through zero-padding with appropriate masking, while molecular descriptors are normalized
using dataset-wide statistics to ensure stable training dynamics across diverse chemical spaces. The
dataset allows stratified paired control-treatment comparisons, where drug-treated samples are sys-
tematically matched with vehicle DMSO controls from identical cell lines and experimental con-
ditions. This preserves the combinatorial structure of cell line-compound-dose-time relationships
across training and validation partitions, ensuring robust model generalization across the full exper-
imental parameter space.

Architecture. PertFlow uses a shared representation learning paradigm with 3 components: (1) in-
dividual modality encoders that process control RNA-seq and imaging data, (2) cross-modal atten-
tion mechanism that aligns features across modalities, (3) generation heads that produce treatment
RNA-seq via direct prediction and treatment images via rectified flow dynamics. Figure [3] shows
the architecture pipeline of PertFlow. (TOP) shows the entire pipeline of the architecture with input
RNA-seq and image going through their respective encoders. Output from the two encoders then
pass through the multi-token cross-modal attention, before entering the shared encoder along with
conditioning information which passes through the drug encoder. The transcriptome head uses MSE
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Figure 3: PertFlow architecture for drug conditioned control RNA-image to treatment RNA-image

loss to predict treatment RNA, and the image UNet [Huang et al.| (2020) with noise and time pa-
rameter input uses triplet contrastive loss and rectified flow dynamics to generate treatment cellular
image, from the shared embeddings, respectively. (BOTTOM) shows each encoder block and its
subcomponents with inputs entering from the top; along with output shapes of each component for
each modality.

Our RNA-seq encoder processes gene expression data through multi-layer self-attention
(2017) to capture gene-gene interactions: Egene = GeneEmbedding(xSt), where each gene
expression value is projected to a dgene-dimensional embedding space. We apply L layers of multi-

head self-attention (MHA): A() = MHA(E(-1 E(-D E(-1)
EY = LayerNorm(E(!~Y + FFN(LayerNorm(E(!~1 + A(1))))
The final RNA-seq features are obtained through attention-based pooling:

¢ L
hy, = Z OéiEz('L)a ;= C(jXp(WT tanh(WPOOIEg )))L
i=1 > j=1 exp(w? tanh(WpoolE; )

Control cellular images are processed through a ResNet-style convolutional He et al.| (2016) architec-

ture: hipe, = GlobalPool(ResNet(xiC;L,)). Drug conditioning information combines categorical and
continuous variables: hgne = Fusion([€compound; €cell, CONC(Ceone ), Time(Ciime)]), Where €compound
and e are learned embeddings for compound and cell line identities.

=

Knowledge graph integration enhances both molecular and genomic representations through struc-
tured biological knowledge from PrimeKG|Chandak et al.|(2023). For drug embeddings, compounds
are mapped to knowledge graph entities capturing molecular interactions, pathways, and pharmaco-
logical relationships. The heterogeneous graph neural network processes drug-protein, drug-drug,
and protein-protein interactions:

kg
hdl'ug

= KGDrugEncoder(Grg; Erel)
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where G, represents drug nodes and Ei captures multi-relational edges. Similarly, gene expres-
sions are enhanced with protein interaction networks and pathway information:

Ell%;\] A = KGGeneEncoder(G gene, Eppi)
The knowledge graph embeddings are integrated additively with learned representations:
hdrug = hdrug + Oédrughlsrgug and ERNA = ERNA + aRNAEll({%\]A
where agrug = 0.3 and arna = 0.3 are learned weighting factors.

To capture cross-modal RNA-Image dependencies, we use multi-token cross-attention. Each modal-
ity is projected to K token representations:

Tina = RNAProj(hyp,) Timg = ImageProj(hipm,)
Each modality goes through a self-attention block, then cross-attention is applied bidirectionally:

T;ﬁzss = MHA(Trnw Timg7 Timg) T = MHA(Timg7 Tmav Tma)

img

Enhanced features are obtained through residual connections and attention pooling:

h™ — AttentionPool (T, 4 T he™ = AttentionPool(Tipg + T5o)

rna img img

The cross-modal features are combined with drug conditioning to form a unified representation:

hgparea = SharedEncoder([he, henh hryg))

tna ’ -img’

This shared representation captures the complex dependencies between molecular states, morpho-
logical features, and drug effects necessary for coherent multi-modal generation.

Treatment gene expression is generated through direct prediction from the shared representation:

treat
na

xdt = TranscriptomeHead (hgpyred)

For image generation, we adapt rectified flow dynamics. Given noise zo ~ AN (0, I) and target image
Xima » rectified flow defines a linear interpolation path x; = (1 —t)zo + txi5g', t € [0,1]. The
velocity field is defined as v; = {5 — Zo, and our multi-modal-conditioned UNet learns to predict
this velocity vg(X¢,t, Bgharea) = vi. The UNet incorporates cross-attention layers that attend to

image conditioning derived from the shared representation ¢img = ImageUNet(hghared)-

Our training strategy combines task-specific losses with cross-modal consistency objectives. We use
a combination of MSE and auxiliary Pearson Correlation loss for transcriptome prediction:

Lina = 0.9 - MSE(x, Ki') + 0.1 - PC(xfe", %)

na ’ na Tna ?’ ma
For rectified flow training, we minimize the velocity prediction error for image generation:

Eimg = Et,zo,x}:fé‘ [HVG (Xta t7 hshared) - (ngelgl - ZO)||2]

We implement triplet contrastive consistency |Stoica et al.| (2025) to ensure well-aligned features
produce better predictions than misaligned ones:

Luiplet = E[max(0, margin — (Lyeg — Lpos))]

where Lo is the prediction error with aligned features and L., with misaligned features. The
complete training objective combines all losses:

ﬁtotal = wrna‘cma + wimgﬁimg + wtripletﬁtriplet
where the weights are set to Wy, = 0.5, Wimg = 0.5, Weipler = 0.05.

Treatment RNA-seq is generated through a single forward pass X' = f, (xul, xg;}g, ¢). For high-
quality image generation, we use an adaptive DOPRIS solver |Dormand & Prince{(1986)) that itera-

tively integrates the learned velocity field:

dx

E =Vy (Xt7 t, hshaxed)
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Starting from noise xg ~ A(0,I) at ¢ = 0, the solver adaptively adjusts step sizes based on error
estimation to reach the treatment image at ¢ = 1. The adaptive integration ensures both computa-
tional efficiency and generation quality. The DOPRI5 method uses a Sth-order Runge-Kutta scheme
with embedded 4th-order error estimation for automatic step size control. The step size h is adapted
based on the estimated local truncation error to maintain tolerance levels.

Training Parameters. We use 4 attention heads with embedding dimension 128, applying 1 layer of
self-attention followed by attention-based pooling. Multi-token representations use K = 16 tokens
with hidden dimension 256 and 8 attention heads. The rectified flow UNet uses 192 base channels
with channel multipliers (1, 2, 2, 2), attention at 16x16 resolution, and cross-attention conditioning
at layers 2, 3, 4, and 5. Models are trained with AdamW optimizer (5; = 0.9, f2 = 0.95), learning
rate 10~ with cosine annealing, and automatic mixed precision. Cross-modal consistency weights
are gradually increased during training to ensure stable convergence. RNA-seq generation requires
a single forward pass, while image generation uses 7-10 DOPRIS steps with relative tolerance 10~3
and absolute tolerance 10~ for high-quality synthesis. The models were trained with an effective
batch size of 32 taking 5 hours on 8 H100 NVIDIA GPUs with 80GB VRAM.

4 EXPERIMENTS

We emphasize, since our method is the first to introduce the problem of multi-modal RNA-Image
generation through drug conditioning, we have no previous method to compare to as baseline. To
create baselines we trained three diffusion models, along with ablations of knowledge graph module,
triplet contrastive objective, and Pearson correlation loss, with RNA only and Image only models.
We set the state-of-the-art performance for this problem on the GDPx3 dataset.

Table 1: PertFlow & PertRNA metrics (mean =+ std) Expert Human Evaluation

Model MSE | RMSE | MAE | Pearson r 1 Spearman r 1 10

PertRNA(-PC) 0.412 £0.525 0.598 £0.912 0.286 4 0.374 0.511 4 0.144  0.502 & 0.097
PertRNA(-KG) 0.360 £1.274 0.475 £ 0.366 0.11240.106 0.770 +0.098 0.791 &+ 0.063
PertRNA 0.311 +£0.956  0.472+£0.271 0.111 £0.025 0.779 £0.081 0.795 £ 0.026

PertFlow(-KG) 0.262 £0.394 0.470 £0.202 0.114 +£0.034 0.772 4+ 0.107 0.735 & 0.066
PertFlow 0.231 £ 0.708 0.462 + 0.107 0.110 £ 0.166 0.780 £ 0.264 0.792 = 0.041

Model SSIM 1 PSNR 1 LPIPS — FID |

PertDiff n 0.010 £0.003 06.62 4+ 0.73 1.087 +0.096 246.01
PertDiff .o 0.192 £ 0.075 10.71 £0.54 0.505 + 0.045 73.63
PertDiffy 0.194 £ 0.071 11.334+0.42 0.499 +0.040 55.92

PertImage(-triplet) 0.120 +0.102 08.22 £0.13 0.308 £0.178 106.72
PertImage(-KG) 0.182£0.099 11.05+0.58 0.498 +0.035 50.38

9
8
7
6
Table 2: PertFlow & Pertlmage metrics (mean = std) 5
4
3
2
1

Pertmage 0.187 £ 0.095 11.46 +0.61 0.509 + 0.043 46.88 Pathologist 1 Pathologist 2
PertFlow(-KG)  0.206 4 0.094 11.51 £0.70 0.505 & 0.043 31.59
PertFlow 0.205 + 0.097 11.66 + 0.68 0.511 & 0.038 24.06

Figure 4: Similarity rating

Drug effects on gene expression and cell morphology: We trained PertFlow (control RNA-seq and
image to treatment RNA-seq and image), PertRNA (control RNA-seq to treatment RNA-seq), Per-
tImage (control image to treatment image), and their respective ablations omitting the knowledge-
graph and contrastive rectified flow objective. PertFlow demonstrates strong performance in pre-
dicting treatment gene expression from control conditions in Table[T] Achieving Pearson correlation
(0.780 £ 0.264) and Spearman correlation (0.792 + 0.041) across drug perturbations, measuring
with all genes. MSE (0.231 £ 0.708) and MAE (0.110 + 0.166) indicate robust prediction accuracy
for transcriptomic responses. While the PertRNA baseline achieved correlation metrics (Pearson r
(0.779 £ 0.081), Spearman r (0.795 + 0.026)), PertFlow’s joint modeling approach maintains com-
petitive performance while simultaneously generating cellular morphological responses compared
to baselines and ablations.

PertFlow also outperformed the Pertimage baseline in the image generation task achieving higher
SSIM (0.205 £ 0.097), PSNR (11.66 + 0.68), LPIPS (0.511 % 0.038), and lower FID (24.06).
This demonstrates that incorporating cross-modal information and drug conditioning does not com-
promise transcriptomic prediction and cellular image generation quality, while enabling the unique
capability of joint multi-modal generation. The strong correlation values and lower FID indicates
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that PertFlow successfully captures the complex cellular relationships between drug perturbations
and gene expression changes.

We compare our PertFlow model with three PertDiff diffusion variants in Table 2] Diffusion serves
as the baseline against our contrastive rectified flow method. The standard DDPM formulation trains
the model to predict the injected noise ¢ ~ N (0, I) from the noisy input ;. This requires disen-
tangling signal from noise across noise levels, causing instabilities when signal-to-noise ratios are
low. The weak performance of PertDiffy (SSIM: 0.010, FID: 246.01) illustrates these challenges,
as the model fails to generate coherent cellular structures from pure noise predictions. The direct
xo parameterization predicts the clean target xy from noisy ;. While more stable, it forces the
model to implicitly learn the full denoising trajectory. PertDiff, achieves better but still limited
results (SSIM: 0.192, FID: 73.63), reflecting the lack of strong theoretical grounding. The veloc-
ity (v) parameterization improves training stability by predicting v = a;e — o4z, which balances
objectives across timesteps, reduces variance, and improves gradient flow. PertDiffy, shows marked
improvement (SSIM: 0.194, FID: 55.92), validating this formulation for biological image gener-
ation. Compared to baselines and ablations we observe that PertFlow successfully learns more
meaningful representations that generalize across different compounds, concentrations, cell lines,
and timepoints in the dataset.

Figure [4] shows similarity rating by expert pathologist evaluation (10-point scale of morphology,
detail, and plausibility), which confirmed PertFlow’s quality against real treatment samples: median
scores were 7.0 and 8.0. Step-wise comparison (Figure [5) highlights the difference in inference dy-
namics. Our rectified flow generates recognizable structures by NFE 10 showing nuclear boundaries
and cytoplasmic organization with near-final morphology. Diffusion requires more steps to reach
similar organization. Both methods preserve multi-channel fluorescence distributions, but rectified
flow avoids the oscillatory intermediates observed in diffusion, maintaining smoother trajectories.

Recovering drug-induced phenotype and morphology: Figure [ shows the comparison of gen-
erated treatment vs real treatment images with drug name and concentration. The yellow boxes
indicate similar cellular features due to drug perturbations in real and generated images. From
left to right the drugs have the following effect on the cellular morphology: (1) Cevipabulin is a
microtubule-destabilizing agent that binds to tubulin (2021), disrupting microtubule dy-
namics, which leads to mitotic arrest and apoptosis in cancer cells. It shows anti-proliferative effects
by inhibiting microtubule polymerization. (2) S-Camptothecin and its stereoisomers inhibit DNA
topoisomerase [Hansch & Vermal (2007), causing DNA damage during replication. This leads to
DNA double-strand breaks, S-phase cell cycle arrest, and apoptosis, especially in rapidly dividing
cells. (3) Podophyllotoxin binds to tubulin and inhibits microtubule assembly Desbene & Giorgi-|
(2002), resulting in mitotic arrest at metaphase and subsequent apoptosis. It also serves as
a precursor for etoposide, a topoisomerase II inhibitor. (4) Dabrafenib selectively inhibits mutant
BRAF kinase (commonly V600E mutation) [Planchard et al| (2022)), blocking MAPK/ERK signal-
ing pathway, leading to decreased tumor cell proliferation and inducing apoptosis in BRAF-mutated
cancer cells. Figure[6|shows more examples of generated treatment images. Note that the 5th exam-
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Figure 6: Examples of generated treatment vs real treatment images with drug name and concentr.

ple from the left with DMSO control drug has no effect on the cellular morphology and our model
correctly predicts that. Further examples are available in the appendix.
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Figure 7: UMAP of RNA and image embeddings before and after cross modal attention block

Figure 2] UMAPs Mclnnes et al| (2018) demonstrate PertFlow’s ability to generate biologically co-
herent treatment responses across both modalities. The left panel shows clear separation between
control and treatment clusters, indicating that drug perturbations induce distinct transcriptomic sig-
natures well-captured in the embedding space (overlap results from control data sampled with treat-
ment as negative control). The right panel shows generated treatment samples clustering closely
with real treatment samples, particularly in the upper region corresponding to strong drug responses,
indicating PertFlow successfully learns directional gene expression changes induced by drug pertur-
bations. The tight clustering of generated samples with real counterparts for high-response condi-
tions, demonstrates that cross-modal attention effectively leverages imaging information to improve
RNA-seq prediction accuracy, producing treatment profiles that are biologically realistic and consis-
tent with experimental observations.
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Figure [/|UMAPs illustrates the effect of cross-modal attention on feature alignment and organiza-
tion. The top panels show the transformation from separate feature spaces (left) to a joint aligned
space (middle), where RNA-seq features (blue) and image features (red) demonstrating success-
ful cross-modal correspondence learning. The middle and bottom panels reveal that cross-modal
attention dramatically improves feature organization within each modality. Before attention, both
RNA-seq features and image features exhibit scattered, unstructured distributions in their respective
embedding spaces. After cross-modal attention, both modalities show highly structured, clustered
organization, indicating that the attention mechanism aligns features across modalities and also en-
hances the internal structure and discriminative power of each individual feature space, resulting in
more meaningful and interpretable representations for both RNA-seq and imaging data.

UMAP of shared representation space (right) demonstrates the successful integration of RNA, imag-
ing, and drug modalities. Organization based on compounds suggest that the cross-modal attention
mechanism effectively combines information from both gene expression and imaging data with drug
conditioning into a unified latent space where samples with similar biological states cluster together
regardless of their original modality. This enables the model to leverage multi modal information
for improved downstream tasks such as treatment response prediction and generation.

5 DISCUSSION

PertFlow represents a foundational step toward unified modeling of multi-modal cellular drug re-
sponses, bridging the molecular (transcriptomic) and phenotypic (morphological) effects of chem-
ical perturbations. Unlike previous approaches that treat these modalities in isolation or only pre-
dict one from the other, PertFlow achieves simultaneous, drug-conditioned generation of both gene
expression profiles and cellular morphology. The integration of control transcriptomic and imag-
ing data into a shared embedding space, combined with rectified flow dynamics, enables biologi-
cally consistent synthesis of treatment outcomes. Despite this progress, several challenges remain.
First, generalization to unseen cell lines or novel compounds is limited by the scarcity of paired
multi-modal datasets with shared metadata. While PertFlow can still infer morphological changes
from control data alone, future work should explore integrating chemical structure representations
or compound-target interaction graphs to enhance out-of-distribution performance. Second, while
PertFlow enables modality translation, aligning embeddings across modalities may inadvertently
entangle task-relevant factors. Disentangling causal latent factors remains an open question for
cross-modal modeling. Third, the in vitro context of our experiments may not capture drug effects
requiring complex microenvironmental interactions, such as immune modulation. Extending Pert-
Flow to model cell-cell communication or tissue-level organization could enhance translational util-
ity. Overall, PertFlow sets the stage for future cross-modal generative modeling in drug discovery,
offering a unified framework for understanding how molecular mechanisms manifest as observable
phenotypes under pharmacological perturbation.

6 CONCLUSION

We introduced PertFlow, the first unified generative framework for jointly modeling transcriptomic
and morphological drug responses using cross-modal attention and rectified flow dynamics. By
aligning control RNA-seq and image features through a shared embedding space conditioned on
drug metadata, PertFlow enables simultaneous prediction of treatment gene expression and syn-
thesis of cellular morphology. Extensive evaluation on the GDPx3 dataset demonstrates strong
cross-modal consistency, biologically realistic image generation, and competitive transcriptomic
prediction performance, outperforming single-modality and diffusion baselines. UMAP analysis of
cross-modal attention and shared embeddings further strengthen our hypothesis. Our results high-
light PertFlow’s potential for virtual drug screening, mechanistic hypothesis generation, and multi-
modal perturbation analysis, paving the way for more integrative and interpretable approaches to
pharmacological modeling.
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A APPENDIX

A.1 ETHICS STATEMENT

We used large language models solely for manuscript proofreading and grammar checking, with no
involvement in code or content generation.

A.2 REPRODUCIBILITY STATEMENT

We will release the code and pretrained model weights upon acceptance.

A.3 IDENTIFYING GENES CHANGING MORPHOLOGIC PHENOTYPES:

We evaluated gene contributions to morphological recovery using gradient-based feature impor-
tance with respect to the flow-matching loss during inference. Through cross-modal embedding
co-registration, the model correctly identified gene modules linked to treatment-induced morphol-
ogy changes for example, apoptosis pathway genes activated in A549 cells under camptothecin
or etoposide, and reduced activation of cell-cycle modules under proliferation inhibitors compared
to negative controls. To map pathways affected by drug treatments, we extracted gene importance
scores from the model’s latent representations for each sample (Figure[8)). Scores capture the model’s
learned associations between gene expression and drug-induced transcriptional changes. For each
drug—cell line pair, we averaged scores across samples, selected the top 200 genes, and performed
gene set enrichment analysis with GSEApy using the MSigDB Hallmark 2020 collection (adjusted
p i 0.25). This pipeline systematically linked drug-specific transcriptional signatures to biological
processes, revealing both universal stress responses (e.g., EMT, TNF-alpha/NF-kB signaling) and
cell line—specific activations. Enrichment results were visualized with scanpy-style dotplots, where
dot size reflects gene overlap and color intensity indicates significance, enabling clear comparison
of pathway activation across compounds and cell types.

Gene set enrichment analysis revealed distinct cell line-specific responses to pharmaceutical com-
pounds, with notable differences in pathway activation between A549 lung cancer cells, human
aortic smooth muscle cells (HASMC), and human dermal fibroblasts. A549 cells consistently
showed limited pathway enrichment, with most drugs activating only TNF-alpha signaling via NF-
kB and occasionally inflammatory response pathways. In contrast, both HASMC and dermal fi-
broblasts demonstrated robust, multi-pathway responses to the same compounds, suggesting that
A549 cells may have inherent resistance mechanisms or altered sensitivity to drug-induced tran-
scriptional changes. Epithelial Mesenchymal Transition (EMT) emerged as the most consistently
enriched pathway across drug-cell line combinations, appearing as the top-ranked pathway in nearly
all HASMC and fibroblast treatments. This universal EMT activation suggests that pharmaceutical
stress triggers fundamental cellular reprogramming programs associated with cell plasticity and sur-
vival. TNF-a signaling via NF-xB represented the second most common response, activated across
all three cell lines, indicating that drug treatment consistently triggers inflammatory stress response
cascades regardless of the specific compound mechanism of action.

Beyond the universal stress signatures, each cell type exhibited specialized pathway responses re-
flecting their distinct biological functions. HASMC consistently activated vascular-specific path-
ways including angiogenesis, coagulation, and hypoxia response, which aligns with their role in
vascular homeostasis and their sensitivity to oxygen and hemodynamic stress. Human dermal fi-
broblasts uniquely enriched for tissue remodeling pathways including myogenesis, adipogenesis,
and UV response, consistent with their role in tissue repair and their exposure to environmental
stressors. Notably, fibroblasts also showed strong enrichment for interferon gamma response path-
ways, suggesting heightened immune surveillance capabilities compared to the other cell types.
Our multimodal model’s gene importance scoring successfully captured biologically relevant drug-
target relationships, as evidenced by cell-type-specific pathway enrichment patterns. The A549 lung
cancer cell line’s dominant TNF-a/NF-x B activation across diverse compounds aligns with estab-
lished literature showing that KRAS-mutant lung adenocarcinomas exhibit heightened inflammatory
signaling dependency. This universal inflammatory response contrasts with the diverse EMT and
angiogenesis signatures observed in primary cells, recapitulating known differences between trans-
formed cancer cells and stromal cells. Mechanistic validation was further demonstrated through
drug-specific responses: DNA-damaging agents activated pS3 pathways in TP53-intact A549 cells,
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Figure 8: Dotplot for geneset enrichment anlaysis from activated genes during inference

while dabrafenib triggered compensatory KRAS signaling in non-mutant cells - mirroring clinical

resistance mechanisms.

The model’s biological accuracy extends to morphological predictions, as evidenced by paired Cell
Painting data showing dramatic cell number decreases in samples treated with apoptosis-inducing
drugs like nocodazole, consistent with the observed enrichment of apoptosis pathways in our tran-
scriptional analysis. These concordant transcriptional and morphological responses demonstrate that
our multimodal architecture captures functionally relevant biological relationships rather than mere
correlative patterns, validating the gene importance scores as mechanistically informative features
for drug response prediction. The enrichment patterns largely validated known drug mechanisms
of action. DNA-damaging agents such as etoposide, mitoxantrone, and camptothecin consistently
activated p53 pathway and apoptosis responses in responsive cell lines. Anti-inflammatory com-
pounds including dexamethasone and corticosterone showed expected modulation of inflammatory
response and IL-2/STATS signaling pathways. Targeted inhibitors like dabrafenib demonstrated
compensatory KRAS signaling activation, consistent with known resistance mechanisms in cancer
cells. However, the limited response in A549 cells to many compounds suggests potential resistance

mechanisms that may be clinically relevant for lung cancer treatment strategies.
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Figure 9: Cell line A549

These findings demonstrate that drug response profiling through transcriptional analysis can reveal
both universal cellular stress responses and cell type-specific vulnerabilities, providing insights into
both drug mechanism of action and potential therapeutic resistance patterns across different tissue
contexts.

A.4 FURTHER EXAMPLES OF GENERATED IMAGES
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Figure 10: Cell line Aortic Smooth Muscle Cell
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Figure 11: Cell line Aortic Smooth Muscle Cell
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Figure 12: Cell line Dermal Fibroblast
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