

TRANSCRIPTOMICS-MORPHOLOGY GENERATION VIA TREATMENT CONDITIONING WITH RECTIFIED FLOW

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Predicting cellular responses to drug perturbations requires capturing complex
012 dependencies between transcriptomic and morphological changes that single-
013 modality approaches cannot adequately model. We introduce **PertFlow**, the first
014 unified framework that jointly predicts gene expression profiles and generates cel-
015 lular morphology images in response to drug treatments, conditioned on control
016 cellular states. Our method integrates control transcriptomic and imaging data
017 through multi-head cross-modal attention mechanisms, learning a shared latent
018 representation that incorporates drug compound features, background cellular pro-
019 files, and treatment specifications. From this unified representation, PertFlow
020 employs a regression head for RNA-seq prediction and rectified flow dynamics
021 for stable morphological image generation, with cross-modal consistency losses
022 ensuring coherent molecular and phenotypic predictions. PertFlow enables ac-
023 curate predictions from either complete multi-modal inputs or single-modality
024 data alone, demonstrating robust cross-modal learning. Our evaluation on paired
025 RNA-seq and Cell Painting fluorescent imaging datasets demonstrates that Pert-
026 Flow achieves stronger cross-modal consistency and accurate prediction of drug-
027 induced changes compared to diffusion baselines.

1 INTRODUCTION

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: (LEFT) Cross-modal mapping from control RNA-seq and image to treatment RNA-seq and image with drug conditioning through PertFlow. (RIGHT) Comparison of generated treatment vs real treatment images with drug name and concentration. Yellow boxes indicate similar features.

Understanding how drugs alter cellular states is essential for drug discovery, mechanistic understanding, and personalized medicine. Traditional drug response models typically focus on either transcriptomic data or imaging, missing the complex interdependencies between molecular and morphological changes that occur simultaneously in cells. Recent advances in high-throughput profiling now allow paired RNA sequencing and imaging, offering complementary insights: transcriptomics captures molecular mechanisms and gene regulation, while morphology reflects structural and phenotypic changes. These modalities are linked as gene expression can drive morphological transformations, and structural changes can modulate gene activity yet most models treat them in isolation.

054 Existing methods fall short as transcriptomics-based approaches cannot model morphological ef-
 055 fects; image-based models lack molecular interpretability; and cross-modal predictors generate only
 056 one modality from another, without joint modeling. Moreover, most studies prioritize genetic over
 057 chemical perturbations and analyze rather than predict multi-modal responses. Joint generation of
 058 multi-modal responses poses three main challenges: (1) aligning transcriptomic and morphological
 059 data across fundamentally different representational spaces; (2) capturing complex drug condition-
 060 ing involving compound, dose, cell type, and timepoint; and (3) simultaneously predicting discrete
 061 gene expression and continuous image data with biological realism and cross-modal consistency.

062 We introduce **PertFlow** (Figure 1), a novel unified generative framework for jointly predicting treat-
 063 ment gene expression and synthesizing cellular morphology from control conditions, conditioned on
 064 drug metadata. Our contributions are: (1) First method to jointly predict transcriptomic and generate
 065 morphological responses to chemical perturbations. (2) A shared embedding space integrating con-
 066 trol RNA-seq, control images, and drug metadata to model complex dependencies. (3) Multi-token
 067 cross-attention to align molecular and morphological features across modalities. We set the bench-
 068 mark for state-of-the-art performance on the GDPx3 dataset, improving cross-modal alignment and
 069 prediction quality over single-modality and diffusion baselines. PertFlow could support downstream
 070 applications in virtual drug screening, mechanism discovery, and integrated pharmacological mod-
 071 eling by enabling joint prediction of RNA-seq and image responses to perturbations; a capability, to
 072 our knowledge, the first and unique among current methods.

074 2 RELATED WORKS

076 **Drug-Conditioned and Cross-Modal Modeling:** Recent methods predict transcriptional responses
 077 to chemical perturbations but remain largely transcriptomics-focused. Foundational models like
 078 scGen (Lotfollahi et al., 2019) pioneered the use of variational autoencoders (VAEs) and latent
 079 space vector arithmetic to predict responses to unseen perturbation combinations. Building on this,
 080 the Compositional Perturbation Autoencoder (CPA) (Lotfollahi et al., 2021) advanced this concept
 081 with a deep generative model to predict single-cell responses to unseen combinations of seen drugs.
 082 Its successor, chemCPA (Hetzell et al., 2022), further integrated chemical structures to predict effects
 083 for completely unseen drugs. While focused on genetic perturbations, GEARS (Roohani et al.,
 084 2024) is another key method using geometric deep learning on gene-gene interaction graphs to
 085 predict outcomes for unseen gene perturbations. More recently, PRnet (Qi et al., 2024) employs a
 086 perturbation-conditioned generative model to predict expression changes for novel compounds at
 087 bulk and single-cell levels. Finally, TranSiGen (Tong et al., 2024) uses self-supervised learning to
 088 reconstruct drug-induced profiles from basal expression and compound structure, though limited to
 089 denoising and reconstruction. Though Ahlmann-Eltze et al. (2025) demonstrated that performance
 090 of deep learning-based models do not significantly yield traditional baselines or statistical methods,
 091 the evaluations were predominantly carried on genetic perturbation experiments and leaves chemical
 092 perturbation effect untouched.

093 In parallel, integration of transcriptomic and imaging modalities has emphasized prediction over
 094 generation. BLEEP (Xie et al., 2023) applies bi-modal contrastive learning to predict spatial gene
 095 expression from H&E images, while SCHAF (Comiter, 2024) is among the few generative models,
 096 using GANs to synthesize spatially resolved single-cell omics from histology. TransformerST (Zhao
 097 et al., 2024) fuses histology with gene expression for super-resolution predictions, prioritizing data
 098 enhancement. Multi-modal perturbation frameworks such as Perturb-multi-modal (Saunders et al.,
 099 2025) and CRISPR ST (Binan et al., 2025) integrate imaging and RNA-seq to study genetic pertur-
 100 bations, but focus on measurement rather than synthesis and mainly on genetic rather than chemical
 101 interventions. Fusion-based methods (Lu et al., 2024) combine chemical, transcriptomic, and other
 102 biological data for prediction and classification, yet cross-modal generative modeling of cellular
 103 responses remains unaddressed.

104 **Morphological Profiling and Generative Frameworks:** Cellular imaging provides critical insights
 105 into drug mechanisms, with Cell Painting (Bray et al., 2016) capturing multiplexed phenotypes under
 106 perturbations and widely used in virtual screening. Advances in deep learning have enhanced mor-
 107 phological profiling through convolutional models and computer vision (Tang et al., 2024), where
 108 tools such as CellProfiler (McQuin et al., 2018) automate analysis and Cellpose (Stringer et al.,
 109 2021) improves segmentation. [However, generative modeling of cellular images conditioned on](#)

108 perturbations remains limited. For instance, recent efforts focus purely on image-to-image translation,
 109 such as PhenDiff (Bourou et al., 2023), which uses a conditional diffusion model, and Lamiable
 110 et al. (2023), which employs conditional GANs. Critically, these methods generate a cell image in
 111 one condition given an image from another but operate without any transcriptomic context.

112 Progress in generative frameworks highlights potential for this gap: diffusion models achieve state-
 113 of-the-art performance in image, protein, and molecule generation (Guo et al., 2024), but suffer from
 114 high computational cost and slow sampling. Rectified Flow (Liu et al., 2022) offers a more efficient
 115 alternative by learning straight-line transport between distributions, reducing sampling steps without
 116 loss of quality. This efficiency stems from flow matching (Lipman et al., 2022), which linearly
 117 interpolates between noise and data, making rectified flow especially suited for large-scale drug
 118 screening. While most current methods are single-modal, advances such as Stable Diffusion 3 (Esser
 119 et al., 2024) demonstrate the feasibility of multi-modal generative modeling, opening opportunities
 120 for predictive simulation of cellular responses.

121

122 3 METHODS

123

134

135
136

Figure 2: (LEFT) UMAP representation of control vs real treatment vs generated treatment gene expression data. (RIGHT) Distribution of cell lines and compounds in dataset.

137

Problem Formulation. We formalize the drug conditioned multi modal generation problem as learning a mapping from control cellular states to treatment responses across transcriptomic and morphological modalities. Given control gene expression $\mathbf{x}_{\text{rna}}^{\text{ctrl}} \in \mathbb{R}^G$ where G is the number of genes, control cellular images $\mathbf{x}_{\text{img}}^{\text{ctrl}} \in \mathbb{R}^{C \times H \times W}$ with C channels and spatial dimensions $H \times W$, and drug conditioning information $\mathbf{c} = \{c_{\text{compound}}, c_{\text{cell}}, c_{\text{conc}}, c_{\text{time}}\}$ including compound identity, cell line, concentration, and timepoint, our objective is to generate treatment outcomes, where f_{θ} represents our unified generative model parameterized by θ : $\mathbf{x}_{\text{rna}}^{\text{treat}}, \mathbf{x}_{\text{img}}^{\text{treat}} = f_{\theta}(\mathbf{x}_{\text{rna}}^{\text{ctrl}}, \mathbf{x}_{\text{img}}^{\text{ctrl}}, \mathbf{c})$

144

Dataset Description. Our study leverages the Ginkgo Data Platform (GDP) series (Model & Biologics, 2025), a multimodal dataset integrating transcriptomic profiles (GDPx1/GDPx2) and four-channel fluorescence microscopy images (GDPx3) from drug-treated cell cultures. We curated paired bulk RNA-seq and Cell Painting imaging dataset from 3 cell lines and 40 drugs as illustrated in Figure 2 (RIGHT). We implemented cross-modal pairing by identifying overlapping compounds and experimental conditions, standardizing metadata (concentration units, cell line nomenclature, temporal alignment), and establishing DMSO controls as baseline references. Transcriptomic preprocessing follows established protocols like total count normalization to 10^6 reads per sample, log1p transformation, and highly variable gene selection ($n=8000$) using scanpy, to focus on the most informative genomic features. Image preprocessing addresses 16-bit microscopy data through proper intensity scaling (16-bit to $[-1,1]$ range), percentile-based contrast enhancement ($1^{\text{st}}\text{-}99^{\text{th}}$ percentile) applied per channel, and bilinear interpolation to uniform spatial dimensions. **The dataset consists of 17242 paired samples that were split by 80:20 for training and testing.**

145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Drug compounds are represented through multi-modal molecular encodings combining structural and physicochemical information. We extract Morgan and RDKit molecular fingerprints (1024 bits each) from canonical SMILES strings, providing binary structural descriptors capturing substructural patterns and pharmacophoric features. Molecular descriptors include eighteen 2D properties (molecular weight, logP, topological polar surface area, hydrogen bond donors/acceptors, rotatable bonds, aromatic rings, and complexity measures) and five 3D properties when available from SDF

structures. For compounds lacking preprocessed molecular data, we implement on-demand SMILES processing with RDKit to ensure comprehensive coverage. Missing molecular information is handled through zero-padding with appropriate masking, while molecular descriptors are normalized using dataset-wide statistics to ensure stable training dynamics across diverse chemical spaces. The dataset allows stratified paired control-treatment comparisons, where drug-treated samples are systematically matched with vehicle DMSO controls from identical cell lines and experimental conditions. This preserves the combinatorial structure of cell line-compound-dose-time relationships across training and validation partitions, ensuring robust model generalization across the full experimental parameter space.

Figure 3: PertFlow architecture for drug conditioned control RNA-image to treatment RNA-image. Input RNA-seq and image going through their respective encoders; output from the two encoders then pass through the multi-token cross-modal attention, before entering the shared encoder along with conditioning information which passes through the drug encoder. The transcriptome head uses MSE loss to predict treatment RNA, and the image UNet (Huang et al., 2020) with noise and time parameter input uses triplet contrastive loss and rectified flow dynamics to generate treatment cellular image, from the shared embeddings, respectively. More details in the appendix.

Architecture. PertFlow (Figure 3) uses a shared representation learning paradigm with 3 components: (1) individual modality encoders that process control RNA-seq and imaging data, (2) cross-modal attention mechanism that aligns features across modalities, (3) generation heads that produce treatment RNA-seq via direct prediction and treatment images via rectified flow dynamics.

PertFlow processes control RNA-seq and cellular images through specialized encoders. The RNA-seq encoder applies multi-layer self-attention to capture gene-gene interactions, embedding each gene expression value into high-dimensional space and processing through attention and feed-forward layers with residual connections. Attention-weighted pooling aggregates the final embeddings into a single RNA-seq representation encoding the transcriptomic state. Control images are encoded through a ResNet-style convolutional architecture with global pooling, extracting hierarchical visual features from cellular morphology. Both modalities are enhanced through PrimeKG knowledge graph integration. For RNA-seq, a heterogeneous graph neural network processes protein-protein interactions and pathway information. For drugs, the graph encoder processes drug-protein interactions and pharmacological relationships. Knowledge embeddings are integrated additively with learned representations using weighting factors $\alpha_{\text{drug}} = 0.3$ and $\alpha_{\text{RNA}} = 0.3$. Drug conditions are encoded through a fusion module combining learned embeddings for compound and cell line identities with encoded concentration and time parameters.

Each modality embedding is projected to K token representations to prevent information bottlenecks. RNA and image tokens undergo self-attention within modalities, then bidirectional cross-

attention: RNA tokens attend to image tokens and vice versa, integrating information across modalities. Cross-attended tokens combine with original tokens through residual connections, then aggregate to single vectors via attention pooling. The enhanced RNA and image embeddings concatenate with drug conditioning and process through a shared encoder—a multi-layer perceptron producing unified representation $\mathbf{h}_{\text{shared}}$ where all modalities converge. This representation branches to two task-specific generation heads. Treatment transcriptomes are generated through direct regression from $\mathbf{h}_{\text{shared}}$ via a fully-connected prediction head. For images, PertFlow adapts rectified flow, defining linear interpolation paths $\mathbf{x}_t = (1 - t)\mathbf{z}_0 + t\mathbf{x}_{\text{img}}^{\text{treat}}$ for $t \in [0, 1]$ with constant velocity $\mathbf{v}_t = \mathbf{x}_{\text{img}}^{\text{treat}} - \mathbf{z}_0$. A UNet predicts this velocity field conditioned on noisy state \mathbf{x}_t , timestep t , and $\mathbf{h}_{\text{shared}}$ injected through cross-attention layers. During inference, an adaptive DOPRI5 ODE solver integrates the learned velocity field from noise to treatment image with automatic step size adjustment.

Transcriptome prediction combines MSE with Pearson correlation loss:

$$\mathcal{L}_{\text{rna}} = 0.9 \cdot \text{MSE}(\mathbf{x}_{\text{rna}}^{\text{treat}}, \hat{\mathbf{x}}_{\text{rna}}^{\text{treat}}) + 0.1 \cdot (1 - \text{PC}(\mathbf{x}_{\text{rna}}^{\text{treat}}, \hat{\mathbf{x}}_{\text{rna}}^{\text{treat}})) \quad (1)$$

where MSE ensures gene-level accuracy and correlation preserves relative expression patterns. The rectified flow objective trains velocity prediction:

$$\mathcal{L}_{\text{img}} = \mathbb{E}_{t, \mathbf{z}_0, \mathbf{x}_{\text{img}}^{\text{treat}}} [\|\mathbf{v}_{\theta}(\mathbf{x}_t, t, \mathbf{h}_{\text{shared}}) - (\mathbf{x}_{\text{img}}^{\text{treat}} - \mathbf{z}_0)\|^2] \quad (2)$$

over random timesteps $t \sim \text{Uniform}(0, 1)$ and noise samples \mathbf{z}_0 .

Triplet contrastive consistency enforces coherent multi-modal predictions by comparing aligned versus misaligned features:

$$\mathcal{L}_{\text{triplet}} = \mathbb{E}[\max(0, \text{margin} - (\mathcal{L}_{\text{neg}} - \mathcal{L}_{\text{pos}}))] \quad (3)$$

where \mathcal{L}_{pos} is prediction error with aligned RNA-image features and \mathcal{L}_{neg} with shuffled features. The complete objective combines all losses:

$$\mathcal{L}_{\text{total}} = w_{\text{rna}} \mathcal{L}_{\text{rna}} + w_{\text{img}} \mathcal{L}_{\text{img}} + w_{\text{triplet}} \mathcal{L}_{\text{triplet}} \quad (4)$$

with weights $w_{\text{rna}} = 0.5$, $w_{\text{img}} = 0.5$, $w_{\text{triplet}} = 0.05$. All parameters are jointly optimized for end-to-end multi-modal learning.

Training Parameters. We use 4 attention heads with embedding dimension 128, applying 1 layer of self-attention followed by attention-based pooling. Multi-token representations use $K = 16$ tokens with hidden dimension 256 and 8 attention heads. The rectified flow UNet uses 192 base channels with channel multipliers (1, 2, 2, 2), attention at 16×16 resolution, and cross-attention conditioning at layers 2, 3, 4, and 5. Models are trained with AdamW optimizer ($\beta_1 = 0.9$, $\beta_2 = 0.95$), learning rate 10^{-4} with cosine annealing, and automatic mixed precision. Cross-modal consistency weights are gradually increased during training to ensure stable convergence. RNA-seq generation requires a single forward pass, while image generation uses 7-10 DOPRI5 steps with relative tolerance 10^{-3} and absolute tolerance 10^{-4} for high-quality synthesis. The models were trained with an effective batch size of 32 taking 5 hours on 8 H100 NVIDIA GPUs with 80GB VRAM.

4 EXPERIMENTS

We emphasize, since our method is the first to introduce the problem of multi-modal RNA-Image generation with drug conditioning, we have **no previous multi-modal method** to fairly compare to as baseline. To create baselines we trained three diffusion models, along with ablations of knowledge graph module, triplet contrastive objective, and Pearson correlation loss, with RNA only and Image only models. We still included PRNet Qi et al. (2024) and PhenDiff Bourou et al. (2023) as uni-modal method for reference. We set the state-of-the-art performance for this problem on the GDPx3 dataset.

Drug effects on gene expression and cell morphology: We trained PertFlow (control RNA-seq and image to treatment RNA-seq and image), PertRNA (control RNA-seq to treatment RNA-seq), PertImage (control image to treatment image), and their respective ablations omitting the knowledge-graph and contrastive rectified flow objective. PertFlow demonstrates strong performance in predicting treatment gene expression from control conditions in Table 1. Achieving Pearson correlation

270 **Table 1: PertFlow & PertRNA metrics (mean \pm std)**

271

Model	MSE \downarrow	RMSE \downarrow	MAE \downarrow	Pearson r \uparrow	Spearman r \uparrow
MLP Baseline	63.846 \pm 0.656	8.513 \pm 0.660	5.281 \pm 0.665	0.224 \pm 0.040	0.508 \pm 0.054
VAE PRNet	25.655 \pm 0.453	5.075 \pm 0.597	3.244 \pm 0.977	0.452 \pm 0.034	0.697 \pm 0.049
PertRNA(-PC)	0.412 \pm 0.525	0.598 \pm 0.912	0.286 \pm 0.374	0.511 \pm 0.144	0.502 \pm 0.097
PertRNA(-KG)	0.360 \pm 1.274	0.475 \pm 0.366	0.112 \pm 0.106	0.770 \pm 0.098	0.791 \pm 0.063
PertRNA	0.311 \pm 0.956	0.472 \pm 0.271	0.111 \pm 0.025	0.779 \pm 0.081	0.795 \pm 0.026
PertFlow(-KG)	0.262 \pm 0.394	0.470 \pm 0.202	0.114 \pm 0.034	0.772 \pm 0.107	0.735 \pm 0.066
PertFlow	0.231 \pm 0.708	0.462 \pm 0.107	0.110 \pm 0.166	0.780 \pm 0.264	0.792 \pm 0.041

277 **Table 2: PertFlow & PertImage metrics (mean \pm std)**

278

Model	SSIM \uparrow	PSNR \uparrow	LPIPS \rightarrow	FID \downarrow
UNet Baseline	0.085 \pm 0.013	03.55 \pm 0.73	2.125 \pm 0.158	583.21
UNet PhenDiff	0.189 \pm 0.025	9.64 \pm 0.64	0.613 \pm 0.531	62.50
PertDiff _N	0.010 \pm 0.003	06.62 \pm 0.73	1.087 \pm 0.096	246.01
PertDiff _{x0}	0.192 \pm 0.075	10.71 \pm 0.54	0.505 \pm 0.045	73.63
PertDiff _V	0.194 \pm 0.071	11.33 \pm 0.42	0.499 \pm 0.040	55.92
PertImage(-triplet)	0.120 \pm 0.102	08.22 \pm 0.13	0.308 \pm 0.178	106.72
PertImage(-KG)	0.182 \pm 0.099	11.05 \pm 0.58	0.498 \pm 0.035	50.38
PertImage	0.187 \pm 0.095	11.46 \pm 0.61	0.509 \pm 0.043	46.88
PertFlow(-KG)	0.206 \pm 0.094	11.51 \pm 0.70	0.505 \pm 0.043	31.59
PertFlow	0.205 \pm 0.097	11.66 \pm 0.68	0.511 \pm 0.038	24.06

288 **Table 3: Effect of Loss Weight Ratios**

289

w_{ma}	w_{img}	MSE \downarrow	Pearson r \uparrow	Spearman r \uparrow	SSIM \uparrow	PSNR \uparrow	FID \downarrow
0.4	0.6	0.268 \pm 0.752	0.761 \pm 0.175	0.773 \pm 0.047	0.215 \pm 0.094	11.94 \pm 0.65	21.73
0.5	0.5	0.231 \pm 0.708	0.780 \pm 0.264	0.792 \pm 0.041	0.205 \pm 0.097	11.66 \pm 0.68	24.06
0.6	0.4	0.219 \pm 0.694	0.791 \pm 0.251	0.801 \pm 0.038	0.193 \pm 0.101	11.29 \pm 0.73	27.15

293 **Table 4: Effect of Knowledge Graph Embedding Weight**

294

α_{drug}	MSE \downarrow	Pearson r \uparrow	Spearman r \uparrow	SSIM \uparrow	PSNR \uparrow	FID \downarrow
0.1	0.289 \pm 0.784	0.741 \pm 0.287	0.753 \pm 0.052	0.187 \pm 0.103	11.12 \pm 0.76	29.31
0.3	0.231 \pm 0.708	0.780 \pm 0.264	0.792 \pm 0.041	0.205 \pm 0.097	11.66 \pm 0.68	24.06
0.5	0.248 \pm 0.761	0.759 \pm 0.279	0.769 \pm 0.048	0.194 \pm 0.101	11.38 \pm 0.73	28.47

299 (0.780 \pm 0.264) and Spearman correlation (0.792 \pm 0.041) across drug perturbations, measuring with all genes. MSE (0.231 \pm 0.708) and MAE (0.110 \pm 0.166) indicate robust prediction accuracy for transcriptomic responses. While the PertRNA baseline achieved correlation metrics (Pearson r (0.779 \pm 0.081), Spearman r (0.795 \pm 0.026)), PertFlow’s joint modeling approach maintains competitive performance while simultaneously generating cellular morphological responses compared to baselines and ablations.

306 PRNet Qi et al. (2024) is a perturbation-conditioned generative model comprising three components: 307 a Perturb-adapter encoding compound SMILES structures to latent embeddings, a Perturb-encoder 308 mapping perturbation effects to latent space, and a Perturb-decoder estimating Gaussian 309 distributions of perturbed transcriptional profiles. The simple MLP baseline replaces the full encoder-decoder 310 architecture with a multilayer perceptron that directly learns perturbation effects on gene expression 311 using MSE loss. This simplified architecture achieved only Pearson correlation of 0.224 \pm 0.040 and 312 Spearman correlation of 0.508 \pm 0.054, with MSE of 63.846 \pm 0.656. The VAE PRNet baseline 313 implements the complete VAE-inspired framework with encoder-decoder architecture estimating Gaussian 314 distributions parameterized by mean and variance, but operates on transcriptional data alone 315 without multi-modal integration. VAE PRNet substantially improved over the MLP variant with 316 Pearson correlation of 0.452 \pm 0.034 and Spearman correlation of 0.697 \pm 0.049 (MSE 25.655 \pm 0.453), 317 yet remained far below PertRNA (Pearson 0.779 \pm 0.081, Spearman 0.795 \pm 0.026) and PertFlow 318 (Pearson 0.780 \pm 0.264, Spearman 0.792 \pm 0.041). Both PRNet variants predict treatment RNA 319 profiles but lack the cross-modal enhancement, knowledge graph integration, and shared representation 320 learning that enables PertFlow to achieve coherent simultaneous prediction of transcriptional and 321 morphological responses while maintaining competitive performance on both modalities.

322 PertFlow also outperformed the PertImage baseline in the image generation task achieving higher 323 SSIM (0.205 \pm 0.097), PSNR (11.66 \pm 0.68), LPIPS (0.511 \pm 0.038), and lower FID (24.06). 324 This demonstrates that incorporating cross-modal information and drug conditioning does not 325 compromise transcriptomic prediction and cellular image generation quality, while enabling the unique

Figure 4: Pathologist image similarity score of generated vs ground truth cellular morphology after treatment. (Mean solid lines, Median orange line)

Figure 5: FID vs NFE

Figure 6: Generated vs real treatment for (a) Aortic Smooth Muscle Cell (b) Dermal Fibroblasts.

capability of joint multi-modal generation. The strong correlation values and lower FID indicates that PertFlow successfully captures the complex cellular relationships between drug perturbations and gene expression changes.

We compare our PertFlow model with three PertDiff diffusion variants in Table 2. Diffusion serves as the baseline against our contrastive rectified flow method. The standard DDPM formulation trains the model to predict the injected noise $\epsilon \sim N(0, I)$ from the noisy input x_t . This requires disentangling signal from noise across noise levels, causing instabilities when signal-to-noise ratios are low. The weak performance of PertDiff_N (SSIM: 0.010, FID: 246.01) illustrates these challenges, as the model fails to generate coherent cellular structures from pure noise predictions. The direct x_0 parameterization predicts the clean target x_0 from noisy x_t . While more stable, it forces the model to implicitly learn the full denoising trajectory. PertDiff_{x0} achieves better but still limited results (SSIM: 0.192, FID: 73.63), reflecting the lack of strong theoretical grounding. The velocity (v) parameterization improves training stability by predicting $v = \alpha_t \epsilon - \sigma_t x_0$, which balances objectives across timesteps, reduces variance, and improves gradient flow. PertDiff_V shows marked improvement (SSIM: 0.194, FID: 55.92), validating this formulation for biological image generation. Compared to baselines and ablations we observe that PertFlow successfully learns more meaningful representations that generalize across different compounds, concentrations, cell lines, and timepoints in the dataset.

PhenDiff Bourou et al. (2023) is a conditional diffusion model that performs image-to-image translation to identify phenotypic shifts in microscopy images. The model operates through two stages: an inversion phase that maps real source images to Gaussian latent representations using DDIM deterministic sampling, followed by a generation phase that synthesizes images in the target condition. The UNet-based PhenDiff baseline predicts treatment-induced morphological changes without incorporating transcriptional information, serving as a purely vision-based approach. When evaluated on the GDPx3 dataset, UNet PhenDiff achieved moderate performance with SSIM of 0.189 ± 0.025 , PSNR of 9.64 ± 0.64 , and FID of 62.50, substantially outperforming the vanilla UNet baseline (SSIM 0.085 ± 0.013 , FID 583.21) but lagging behind multi-modal approaches. The deterministic UNet baseline performed even worse since it is trained with a simple MSE loss.

Table 3 shows equal loss weighting (0.5–0.5) achieves the best trade-off. Higher w_{rna} improves RNA accuracy but worsens image quality (higher FID). Higher w_{img} improves SSIM/PSNR but reduces RNA correlation metrics. Table 4 shows the effect of KG weight $\alpha_{\text{drug}} = 0.3$ is optimal. Smaller values (0.1, 0.2) underuse the biological prior, while larger values (0.4, 0.5) introduce noise that harms both modalities.

378 Figure 4 shows similarity rating by ACVP
 379 board certified pathologists in blind review (10-
 380 point scale of similarity regarding morphology,
 381 detail and plausibility, with respect to ground
 382 truth Cell Painting images under corresponding
 383 chemical perturbations; 0 indicates poorest
 384 and 10 indicates the best). Two patholo-
 385 gists reported median score of 7.11 and 7.89 for
 386 PertFlow generated images, outperforming the
 387 baseline method PhenDiff (Bourou et al., 2023)
 388 (median scores of 6.11 and 6.33), which con-
 389 firmed the overall satisfying quality of cellu-
 390 lar morphology images generated by PertFlow.
 391 Step-wise comparison (Figure 5) highlights the
 392 difference in inference dynamics. PertFlow
 393 generates recognizable structures by NFE 10
 394 showing nuclear boundaries and cytoplasmic
 395 organization with near-final morphology. Pert-
 396 Diff requires more steps to reach similar organiza-
 397 tion. Both methods preserve multi-channel fluo-
 398 rescence distributions.

397 Recovering drug-induced phenotype and morphology: Figure 1 shows the comparison of generated treatment vs real treatment images with drug name and concentration. Yellow boxes indicate similar cellular features due to drug perturbations in real and generated images. From left to right the drugs have the following effect on the cellular morphology: (1) Cevipabulin is a microtubule-destabilizing agent that binds to tubulin (Yang et al., 2021), disrupting microtubule dynamics, which leads to mitotic arrest and apoptosis in cancer cells. It shows anti-proliferative effects by inhibiting microtubule polymerization. (2) S-Camptothecin and its stereoisomers inhibit DNA topoisomerase (Hansch & Verma, 2007), causing DNA damage during replication. This leads to DNA double-strand breaks, S-phase cell cycle arrest, and apoptosis, especially in rapidly dividing cells. (3) Podophyllotoxin binds to tubulin and inhibits microtubule assembly (Desbene & Giorgi-Renault, 2002), resulting in mitotic arrest at metaphase and subsequent apoptosis. It serves as a precursor for etoposide, a topoisomerase II inhibitor. (4) Dabrafenib selectively inhibits mutant BRAF kinase (commonly V600E mutation) (Planchard et al., 2022), blocking MAPK/ERK signaling pathway, leading to decreased tumor cell proliferation and inducing apoptosis in BRAF-mutated cancer cells.

410 The ACVP certified pathologists provided the following descriptions of generated and real treatment
411 image results in Figures 6 and 7. In Figure 6a control images exhibited typical fusiform cells with
412 parallel alignment and organized architecture. Both predicted and real Ouabain (0.3 μ M) treatment
413 showed decreased cellular density, reduced cell size, increased intercellular spacing, nuclear condensa-
414 tion, and disrupted parallel orientation with cells. Similarly, predicted and actual Podophyllotoxin
415 (3.0 μ M) treatment displayed increased intercellular spacing, elevated multi-nucleated cell popu-
416 lations indicative of cellular injury, loss of fusiform morphology, and decreased cellular density.
417 Suprafenacine (3.0 μ M) predictions and actual treatment both revealed cellular disorganization, loss
418 of fusiform shape, cellular fragmentation, nuclear size reduction, and decreased cell-to-cell contact.

In Figure 6b control images displayed characteristic fibroblast morphology with fusiform cells, organized cellular arrangement, and appropriate cell-to-cell contact. Both predicted and real Podophyllotoxin (0.3 μ M) treatment exhibited decreased cellular density, reduced cell-to-cell contact, and loss of fusiform morphology while maintaining nuclear size. Panobinostat (3.0 μ M) predictions and actual treatment showed minimal morphological deviation from control despite the higher dosage, with the model correctly preserving the relatively unaltered cellular architecture. Nocodazole treatment at 3.0 μ M demonstrated strong concordance between predicted and real images, both displaying substantial loss of cellular density and fusiform morphology, with cells adopting rounded, blob-like shapes while nuclear size remained similar. At the lower nocodazole dose (0.3 μ M), both predicted and actual treatments showed attenuated phenotypic changes including decreased cellular density, partial retention of fusiform morphology, reduced cellular elongation, and less pronounced blob-like transformation compared to the higher dose.

In Figure 7 control images exhibited typical A549 morphology with appropriate cellular density and organization. DMSO treatment (0.0 μ M) served as vehicle control, with both predicted and real

Figure 7: Generated vs real treatment for A549.

432 images showing no morphological deviation from control conditions. Nocodazole ($1.0 \mu\text{M}$) predictions and actual treatment both displayed preserved cellular morphology with substantially decreased cellular density and reduced cellularity. Emetine dihydrochloride hydrate ($1.0 \mu\text{M}$) showed concordance between predicted and real images, both exhibiting decreased cellular density and diminished cellular cohesiveness. Torin2 ($0.1 \mu\text{M}$) predictions and actual treatment demonstrated increased angular cytoplasmic projections, moderate reduction in cellular density, and decreased cellular cohesion. The morphological agreement between predicted and real treatment conditions across varying drug concentrations validates the model's dose-dependent prediction capability.

458 Figure 8: UMAP and t-SNE of RNA and image embeddings before and after cross modal attention
459

481 Figure 9: UMAP of RNA and image embeddings before and after cross modal attention block
482

484 Figure 2 UMAPs (McInnes et al., 2018) demonstrate PertFlow's biological coherence in generating
485 treatment responses. The left panel shows clear control-treatment cluster separation, indicating distinct transcriptomic signatures captured in embedding space. The right panel shows generated

Figure 10: t-SNE of RNA and image embeddings before and after cross modal attention block

treatment samples clustering with real samples, particularly in high-response regions, demonstrating that cross-modal attention effectively leverages imaging to predict directional gene expression changes and produce biologically realistic treatment profiles.

Figures 8, 9, 10 UMAPs and t-SNE illustrate cross-modal attention’s effect on feature alignment. The top panels show transformation from separate feature spaces (left) to joint aligned space (middle), with RNA-seq (blue) and image features (red) demonstrating successful correspondence learning. The middle and bottom panels reveal that cross-modal attention transforms scattered, unstructured distributions into highly structured, clustered organizations in both modalities, indicating that attention not only aligns features across modalities but enhances the internal structure and discriminative power of each individual feature space. The shared representation space (right) demonstrates successful integration of RNA, imaging, and drug modalities. Compound-based organization indicates that cross-modal attention effectively combines gene expression, imaging, and drug conditioning into a unified latent space where biologically similar samples cluster together regardless of modality, enabling improved treatment response prediction and generation.

Cross-modal attention shows correspondence between RNA-image modalities, preserving distinct structures. Pairwise alignment distances average 16.48 (UMAP) and 37.44 (t-SNE), with positive modality separation scores (UMAP: 0.81, t-SNE: 0.59) confirming preserved modality-specific features. Compound clustering improves substantially, with silhouette scores rising from -0.74 to -0.20 (UMAP) and -0.81 to -0.28 (t-SNE). The shared space separation ratio of 1.33 validates treatment-specific representations consistent across both modalities. Alignment metrics used standardized embeddings projected into 2D via UMAP and t-SNE. Pairwise alignment distances were averaged Euclidean distances between corresponding RNA-image pairs. Modality separation used silhouette scores with binary labels (0=RNA, 1=Image), where positive values indicate preserved modality-specific structures. Compound clustering quality was assessed via silhouette scores with treatment labels. Shared space separation ratio was calculated as mean inter-compound cosine distance divided by mean intra-compound distance, values >1 indicate successful treatment discrimination.

Gene Enrichment Analysis. Gradient-based feature importance analysis (Figure 11) of gene contributions to morphological recovery revealed cell line-specific transcriptional responses to pharmaceutical compounds, where gene importance scores were extracted from latent representations, top 200 genes were selected per drug-cell line pair, and GSEA was performed using MSigDB Hallmark 2020 collection. A549 lung cancer cells showed limited pathway enrichment dominated by TNF-alpha/NF- κ B signaling consistent with KRAS-mutant inflammatory dependency, while HASMC and

Figure 11: Dotplot for geneset enrichment analysis from activated genes during inference

dermal fibroblasts demonstrated robust multi-pathway responses with EMT as the most consistently enriched pathway across treatments, followed by TNF-alpha/NF- κ B as the second universal stress signature. Cell-specific responses included vascular pathways (angiogenesis, coagulation, hypoxia) in HASMC and tissue remodeling pathways (myogenesis, adipogenesis, UV response, interferon gamma) in fibroblasts, validating the model's biological accuracy through known drug mechanisms: DNA-damaging agents activated p53/apoptosis pathways in TP53-intact cells, dabrafenib triggered compensatory KRAS signaling, and anti-inflammatory compounds modulated IL-2/STAT5 pathways. Concordance between transcriptional signatures and morphological predictions (cell number decreases with apoptosis-inducing drugs like nocodazole) confirmed that the multimodal architecture captures functionally relevant biological relationships, demonstrating that drug response profiling reveals both universal cellular stress responses and cell type-specific vulnerabilities relevant to therapeutic resistance mechanisms. Further analysis in the appendix.

594 **5 DISCUSSION**

595

596 PertFlow represents a foundational step toward unified modeling of multi-modal cellular drug re-
 597 sponses, bridging the molecular (transcriptomic) and phenotypic (morphological) effects of chemi-
 598 cal perturbations. Unlike previous approaches that treat these modalities in isolation or only predict
 599 one from the other, PertFlow achieves simultaneous, drug-conditioned generation of both gene ex-
 600 pression profiles and cellular morphology. The integration of control transcriptomic and imaging
 601 data into a shared embedding space, combined with rectified flow dynamics, enables biologically
 602 consistent synthesis of treatment outcomes. Despite this progress, several challenges remain. First,
 603 generalization to unseen cell lines or novel compounds is limited by the scarcity of paired multi-
 604 modal datasets with shared metadata. While PertFlow can still infer morphological changes from
 605 control data alone, [future work should explore more targeted integration of chemogenomic databases](#)
 606 (e.g., ChEMBL, DrugBank) that explicitly encode compound-target binding affinities and structure-
 607 activity relationships, building upon our current PrimeKG integration which provides broader bi-
 608 ological context but lacks fine-grained chemical similarity information critical for generalizing to
 609 [truly novel compounds](#). Second, while PertFlow enables modality translation, aligning embeddings
 610 across modalities may inadvertently entangle task-relevant factors. Disentangling causal latent fac-
 611 tors remains an open question for cross-modal modeling. Third, the *in vitro* context of our exper-
 612 iments may not capture drug effects requiring complex microenvironmental interactions, such as
 613 immune modulation. Extending PertFlow to model cell-cell communication or tissue-level organi-
 614 zation could enhance translational utility. Overall, PertFlow sets the stage for future cross-modal
 615 generative modeling in drug discovery, offering a unified framework for understanding how molec-
 616 ular mechanisms manifest as observable phenotypes under pharmacological perturbation.

617

618 **6 CONCLUSION**

619 We introduced PertFlow, the first unified generative framework for jointly modeling transcriptomic
 620 and morphological drug responses using cross-modal attention and rectified flow dynamics. By
 621 aligning control RNA-seq and image features through a shared embedding space conditioned on
 622 drug metadata, PertFlow enables simultaneous prediction of treatment gene expression and syn-
 623 thesis of cellular morphology. Extensive evaluation on the GDPx3 dataset demonstrates strong
 624 cross-modal consistency, biologically realistic image generation, and competitive transcriptomic
 625 prediction performance, outperforming single-modality and diffusion baselines. UMAP analysis of
 626 cross-modal attention and shared embeddings further strengthen our hypothesis. Our results high-
 627 light PertFlow’s potential for virtual drug screening, mechanistic hypothesis generation, and multi-
 628 modal perturbation analysis, paving the way for more integrative and interpretable approaches to
 629 pharmacological modeling.

630

631 **REFERENCES**

632

633 Constantin Ahlmann-Eltze, Wolfgang Huber, and Simon Anders. Deep-learning-based gene per-
 634 turbation effect prediction does not yet outperform simple linear baselines. *Nature Methods*, pp.
 635 1–5, 2025.

636 Loïc Binan, Aiping Jiang, Serwah A Danquah, Vera Valakh, Brooke Simonton, Jon Bezney,
 637 Robert T Manguso, Kathleen B Yates, Ralda Nehme, Brian Cleary, et al. Simultaneous crispr
 638 screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcrip-
 639 tional circuits. *Cell*, 188(8):2141–2158, 2025.

640

641 Anis Bourou, Thomas Boyer, Kévin Daupin, Véronique Dubreuil, Aurélie De Thonel, Valérie
 642 Mezger, and Auguste Genovesio. Phendiff: Revealing invisible phenotypes with conditional
 643 diffusion models. *CoRR*, 2023.

644

645 Mark-Anthony Bray, Shantanu Singh, Han Han, Chadwick T Davis, Blake Borgeson, Cathy Hart-
 646 land, Maria Kost-Alimova, Sigrun M Gustafsdottir, Christopher C Gibson, and Anne E Carpenter.
 647 Cell painting, a high-content image-based assay for morphological profiling using multiplexed
 648 fluorescent dyes. *Nature protocols*, 11(9):1757–1774, 2016.

648 Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable pre-
 649 cision medicine. *Scientific Data*, 10(1):67, 2023. URL <https://doi.org/10.1038/s41597-023-01960-3>.

650

651 Charles Comiter. *Inference of single cell profiles from histology stains with the Single-Cell omics*
 652 *from Histology Analysis Framework (SCHAFF)*. Massachusetts Institute of Technology, 2024.

653

654 Stephanie Desbene and Sylviane Giorgi-Renault. Drugs that inhibit tubulin polymerization: the
 655 particular case of podophyllotoxin and analogues. *Current Medicinal Chemistry-Anti-Cancer*
 656 *Agents*, 2(1):71–90, 2002.

657

658 John R Dormand and Peter J Prince. Runge-kutta triples. *Computers & Mathematics with Applications*,
 659 12(9):1007–1017, 1986.

660

661 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 662 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 663 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 2024.

664

665 Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
 666 Diffusion models in bioinformatics and computational biology. *Nature reviews bioengineering*, 2(2):136–154, 2024.

667

668 Corwin Hansch and Rajeshwar P Verma. 20-(s)-camptothecin analogues as dna topoisomerase i
 669 inhibitors: a qsar study. *ChemMedChem: Chemistry Enabling Drug Discovery*, 2(12):1807–
 670 1813, 2007.

671

672 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 673 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 770–778, 2016.

674

675 Leon Hetzel, Simon Boehm, Niki Kilbertus, Stephan Günnemann, Fabian Theis, et al. Predicting
 676 cellular responses to novel drug perturbations at a single-cell resolution. *Advances in Neural*
 677 *Information Processing Systems*, 35:26711–26722, 2022.

678

679 Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xianhua
 680 Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for medical image
 681 segmentation. In *ICASSP 2020-2020 IEEE international conference on acoustics, speech and*
 682 *signal processing (ICASSP)*, pp. 1055–1059. Ieee, 2020.

683

684 Alexis Lamiable, Tiphaine Champetier, Francesco Leonardi, Ethan Cohen, Peter Sommer, David
 685 Hardy, Nicolas Argy, Achille Massougbedji, Elaine Del Nery, Gilles Cottrell, et al. Revealing
 686 invisible cell phenotypes with conditional generative modeling. *Nature Communications*, 14(1):
 687 6386, 2023.

688

689 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 690 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

691

692 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 693 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

694

695 Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
 696 tion responses. *Nature methods*, 16(8):715–721, 2019.

697

698 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji, Ignacio L Ibarra,
 699 F Alexander Wolf, Nafissa Yakubova, Fabian J Theis, and David Lopez-Paz. Compositional
 700 perturbation autoencoder for single-cell response modeling. *BioRxiv*, 2021.

701

Xiaohua Lu, Liangxu Xie, Lei Xu, Rongzhi Mao, Xiaojun Xu, and Shan Chang. Multimodal fused
 702 deep learning for drug property prediction: Integrating chemical language and molecular graph.
 703 *Computational and Structural Biotechnology Journal*, 23:1666–1679, 2024.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 704 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

702 Claire McQuin, Allen Goodman, Vasiliy Chernyshev, Lee Kamentsky, Beth A Cimini, Kyle W
 703 Karhohs, Minh Doan, Liya Ding, Susanne M Rafelski, Derek Thirstrup, et al. Cellprofiler 3.0:
 704 Next-generation image processing for biology. *PLoS biology*, 16(7):e2005970, 2018.

705

706 API Model and Enzymes Biologics. Ginkgo datapoints: Data generation for ai model training. 2025.

707

708 David Planchard, Benjamin Besse, Harry JM Groen, Sayed MS Hashemi, Julien Mazieres, Tae Min
 709 Kim, Elisabeth Quoix, Pierre-Jean Souquet, Fabrice Barlesi, Christina Baik, et al. Phase 2 study
 710 of dabrafenib plus trametinib in patients with braf v600e-mutant metastatic nsclc: updated 5-year
 711 survival rates and genomic analysis. *Journal of Thoracic Oncology*, 17(1):103–115, 2022.

712

713 Xiaoning Qi, Lianhe Zhao, Chenyu Tian, Yueyue Li, Zhen-Lin Chen, Peipei Huo, Runsheng Chen,
 714 Xiaodong Liu, Baoping Wan, Shengyong Yang, et al. Predicting transcriptional responses to novel
 715 chemical perturbations using deep generative model for drug discovery. *Nature Communications*,
 15(1):9256, 2024.

716

717 Yusuf Roohani, Kexin Huang, and Jure Leskovec. Predicting transcriptional outcomes of novel
 718 multigene perturbations with gears. *Nature Biotechnology*, 42(6):927–935, 2024.

719

720 Reuben A Saunders, William E Allen, Xingjie Pan, Jaspreet Sandhu, Jiaqi Lu, Thomas K Lau, Ka-
 721 rina Smolyar, Zuri A Sullivan, Catherine Dulac, Jonathan S Weissman, et al. Perturb-multimodal:
 722 A platform for pooled genetic screens with imaging and sequencing in intact mammalian tissue.
 723 *Cell*, 2025.

724

725 George Stoica, Vivek Ramanujan, Xiang Fan, Ali Farhadi, Ranjay Krishna, and Judy Hoffman.
 726 Contrastive flow matching. *arXiv preprint arXiv:2506.05350*, 2025.

727

728 Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist
 729 algorithm for cellular segmentation. *Nature methods*, 18(1):100–106, 2021.

730

731 Qiaosi Tang, Ranjala Ratnayake, Gustavo Seabra, Zhe Jiang, Ruogu Fang, Lina Cui, Yousong Ding,
 732 Tamer Kahveci, Jiang Bian, Chenglong Li, et al. Morphological profiling for drug discovery in
 733 the era of deep learning. *Briefings in Bioinformatics*, 25(4), 2024.

734

735 Xiaochu Tong, Ning Qu, Xiangtai Kong, Shengkun Ni, Jingyi Zhou, Kun Wang, Lehan Zhang,
 736 Yiming Wen, Jiangshan Shi, Sulin Zhang, et al. Deep representation learning of chemical-induced
 737 transcriptional profile for phenotype-based drug discovery. *Nature Communications*, 15(1):5378,
 738 2024.

739

740 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 741 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information
 742 processing systems*, pp. 5998–6008, 2017.

743

744 Ronald Xie, Kuan Pang, Sai Chung, Catia Perciani, Sonya MacParland, Bo Wang, and Gary Bader.
 745 Spatially resolved gene expression prediction from histology images via bi-modal contrastive
 746 learning. *Advances in Neural Information Processing Systems*, 36:70626–70637, 2023.

747

748 J Yang, Y Yu, Y Li, W Yan, H Ye, L Niu, M Tang, Z Wang, Z Yang, H Pei, et al. Cevipabulin-tubulin
 749 complex reveals a novel agent binding site on α -tubulin with tubulin degradation effect. *sci adv*
 7: eabg4168, 2021.

750

751

752 Chongyue Zhao, Zhongli Xu, Xinjun Wang, Shiyue Tao, William A MacDonald, Kun He, Amanda C
 753 Poholek, Kong Chen, Heng Huang, and Wei Chen. Innovative super-resolution in spatial
 754 transcriptomics: a transformer model exploiting histology images and spatial gene expression. *Brief-
 755 ings in Bioinformatics*, 25(2):bbae052, 2024.

756 **A APPENDIX**757 **A.1 ETHICS STATEMENT**

760 We used large language models solely for manuscript proofreading and grammar checking, with no
 761 involvement in code or content generation.

762 **A.2 REPRODUCIBILITY STATEMENT**

763 We will release the code and pretrained model weights upon acceptance.

764 **A.3 ARCHITECTURE DETAILS**

765 Our RNA-seq encoder processes gene expression data through multi-layer self-attention (Vaswani
 766 et al., 2017) to capture gene-gene interactions:

$$771 \mathbf{E}_{\text{gene}} = \text{GeneEmbedding}(\mathbf{x}_{\text{rna}}^{\text{ctrl}}) \quad (5)$$

772 where each gene expression value is projected to a d_{gene} -dimensional embedding space. We apply L
 773 layers of multi-head self-attention (MHA):

$$774 \mathbf{A}^{(l)} = \text{MHA}(\mathbf{E}^{(l-1)}, \mathbf{E}^{(l-1)}, \mathbf{E}^{(l-1)}) \quad (6)$$

$$776 \mathbf{E}^{(l)} = \text{LayerNorm}(\mathbf{E}^{(l-1)} + \text{FFN}(\text{LayerNorm}(\mathbf{E}^{(l-1)} + \mathbf{A}^{(l)}))) \quad (7)$$

777 The final RNA-seq features are obtained through attention-based pooling:

$$779 \mathbf{h}_{\text{rna}} = \sum_{i=1}^G \alpha_i \mathbf{E}_i^{(L)}, \quad \alpha_i = \frac{\exp(\mathbf{w}^T \tanh(\mathbf{W}_{\text{pool}} \mathbf{E}_i^{(L)}))}{\sum_{j=1}^G \exp(\mathbf{w}^T \tanh(\mathbf{W}_{\text{pool}} \mathbf{E}_j^{(L)}))} \quad (8)$$

782 Control cellular images are processed through a ResNet-style convolutional (He et al., 2016) archi-
 783 tecture:

$$784 \mathbf{h}_{\text{img}} = \text{GlobalPool}(\text{ResNet}(\mathbf{x}_{\text{img}}^{\text{ctrl}})) \quad (9)$$

785 Drug conditioning information combines categorical and continuous variables:

$$786 \mathbf{h}_{\text{drug}} = \text{Fusion}([\mathbf{e}_{\text{compound}}, \mathbf{e}_{\text{cell}}, \text{Conc}(c_{\text{conc}}), \text{Time}(c_{\text{time}})]) \quad (10)$$

788 where $\mathbf{e}_{\text{compound}}$ and \mathbf{e}_{cell} are learned embeddings for compound and cell line identities.

789 Knowledge graph integration enhances both molecular and genomic representations through struc-
 790 tured biological knowledge from PrimeKG (Chandak et al., 2023). For drug embeddings, com-
 791 pounds are mapped to knowledge graph entities capturing molecular interactions, pathways, and
 792 pharmacological relationships. The heterogeneous graph neural network processes drug-protein,
 793 drug-drug, and protein-protein interactions:

$$794 \mathbf{h}_{\text{drug}}^{\text{kg}} = \text{KGDrugEncoder}(\mathbf{G}_{\text{drug}}, \mathbf{E}_{\text{rel}}) \quad (11)$$

796 where \mathbf{G}_{drug} represents drug nodes and \mathbf{E}_{rel} captures multi-relational edges. Similarly, gene expres-
 797 sions are enhanced with protein interaction networks and pathway information:

$$798 \mathbf{E}_{\text{RNA}}^{\text{kg}} = \text{KGGeneEncoder}(\mathbf{G}_{\text{gene}}, \mathbf{E}_{\text{ppi}}) \quad (12)$$

800 The knowledge graph embeddings are integrated additively with learned representations:

$$801 \mathbf{h}_{\text{drug}} = \mathbf{h}_{\text{drug}} + \alpha_{\text{drug}} \mathbf{h}_{\text{drug}}^{\text{kg}} \text{ and } \mathbf{E}_{\text{RNA}} = \mathbf{E}_{\text{RNA}} + \alpha_{\text{RNA}} \mathbf{E}_{\text{RNA}}^{\text{kg}} \quad (13)$$

803 where $\alpha_{\text{drug}} = 0.3$ and $\alpha_{\text{RNA}} = 0.3$ are learned weighting factors.

804 To capture cross-modal RNA-Image dependencies, we use multi-token cross-attention. Each modal-
 805 ity is projected to K token representations:

$$806 \mathbf{T}_{\text{rna}} = \text{RNAProj}(\mathbf{h}_{\text{rna}}) \quad \mathbf{T}_{\text{img}} = \text{ImageProj}(\mathbf{h}_{\text{img}}) \quad (14)$$

808 Each modality goes through a self-attention block, then cross-attention is applied bidirectionally
 809 (Eq. 6):

$$810 \mathbf{T}_{\text{rna}}^{\text{cross}} = \text{MHA}(\mathbf{T}_{\text{rna}}, \mathbf{T}_{\text{img}}, \mathbf{T}_{\text{img}}) \quad \mathbf{T}_{\text{img}}^{\text{cross}} = \text{MHA}(\mathbf{T}_{\text{img}}, \mathbf{T}_{\text{rna}}, \mathbf{T}_{\text{rna}}) \quad (15)$$

Enhanced features are obtained through residual connections and attention pooling:

$$\mathbf{h}_{\text{rna}}^{\text{enh}} = \text{AttentionPool}(\mathbf{T}_{\text{rna}} + \mathbf{T}_{\text{rna}}^{\text{cross}}) \quad \mathbf{h}_{\text{img}}^{\text{enh}} = \text{AttentionPool}(\mathbf{T}_{\text{img}} + \mathbf{T}_{\text{img}}^{\text{cross}}) \quad (16)$$

The cross-modal features are combined with drug conditioning (Eq. 10) to form a unified representation:

$$\mathbf{h}_{\text{shared}} = \text{SharedEncoder}([\mathbf{h}_{\text{rna}}^{\text{enh}}, \mathbf{h}_{\text{img}}^{\text{enh}}, \mathbf{h}_{\text{drug}}]) \quad (17)$$

This shared representation captures the complex dependencies between molecular states, morphological features, and drug effects necessary for coherent multi-modal generation.

Treatment gene expression is generated through direct prediction from the shared representation (Eq. 17):

$$\mathbf{x}_{\text{rna}}^{\text{treat}} = \text{TranscriptomeHead}(\mathbf{h}_{\text{shared}}) \quad (18)$$

For image generation, we adapt rectified flow dynamics. Given noise $\mathbf{z}_0 \sim \mathcal{N}(0, \mathbf{I})$ and target image $\mathbf{x}_{\text{img}}^{\text{treat}}$, rectified flow defines a linear interpolation path:

$$\mathbf{x}_t = (1 - t)\mathbf{z}_0 + t\mathbf{x}_{\text{img}}^{\text{treat}}, \quad t \in [0, 1] \quad (19)$$

The velocity field is defined as:

$$\mathbf{v}_t = \mathbf{x}_{\text{img}}^{\text{treat}} - \mathbf{z}_0 \quad (20)$$

and our multi-modal-conditioned UNet learns to predict this velocity:

$$\mathbf{v}_{\theta}(\mathbf{x}_t, t, \mathbf{h}_{\text{shared}}) \approx \mathbf{v}_t \quad (21)$$

The UNet incorporates cross-attention layers that attend to image conditioning derived from the shared representation:

$$\mathbf{c}_{\text{img}} = \text{ImageUNet}(\mathbf{h}_{\text{shared}}) \quad (22)$$

Our training strategy combines task-specific losses with cross-modal consistency objectives. We use a combination of MSE and auxiliary Pearson Correlation loss for transcriptome prediction:

$$\mathcal{L}_{\text{rna}} = 0.9 \cdot \text{MSE}(\mathbf{x}_{\text{rna}}^{\text{treat}}, \hat{\mathbf{x}}_{\text{rna}}^{\text{treat}}) + 0.1 \cdot \text{PC}(\mathbf{x}_{\text{rna}}^{\text{treat}}, \hat{\mathbf{x}}_{\text{rna}}^{\text{treat}}) \quad (23)$$

For rectified flow training, we minimize the velocity prediction error for image generation:

$$\mathcal{L}_{\text{img}} = \mathbf{E}_{t, \mathbf{z}_0, \mathbf{x}_{\text{img}}^{\text{treat}}} [\|\mathbf{v}_{\theta}(\mathbf{x}_t, t, \mathbf{h}_{\text{shared}}) - (\mathbf{x}_{\text{img}}^{\text{treat}} - \mathbf{z}_0)\|^2] \quad (24)$$

We implement triplet contrastive consistency (Stoica et al., 2025) to ensure well-aligned features produce better predictions than misaligned ones:

$$\mathcal{L}_{\text{triplet}} = \mathbf{E}[\max(0, \text{margin} - (\mathcal{L}_{\text{neg}} - \mathcal{L}_{\text{pos}}))] \quad (25)$$

where \mathcal{L}_{pos} is the prediction error with aligned features and \mathcal{L}_{neg} with misaligned features. The complete training objective combines all losses (Eqs. 23-25):

$$\mathcal{L}_{\text{total}} = w_{\text{rna}} \mathcal{L}_{\text{rna}} + w_{\text{img}} \mathcal{L}_{\text{img}} + w_{\text{triplet}} \mathcal{L}_{\text{triplet}} \quad (26)$$

where the weights are set to $w_{\text{rna}} = 0.5$, $w_{\text{img}} = 0.5$, $w_{\text{triplet}} = 0.05$.

Treatment RNA-seq is generated through a single forward pass using Eq. 18:

$$\mathbf{x}_{\text{rna}}^{\text{treat}} = f_{\theta}(\mathbf{x}_{\text{rna}}^{\text{ctrl}}, \mathbf{x}_{\text{img}}^{\text{ctrl}}, \mathbf{c}) \quad (27)$$

For high-quality image generation, we use an adaptive DOPRI5 solver (Dormand & Prince, 1986) that iteratively integrates the learned velocity field:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}_{\theta}(\mathbf{x}_t, t, \mathbf{h}_{\text{shared}}) \quad (28)$$

Starting from noise $\mathbf{x}_0 \sim \mathcal{N}(0, \mathbf{I})$ at $t = 0$, the solver adaptively adjusts step sizes based on error estimation to reach the treatment image at $t = 1$. The adaptive integration ensures both computational efficiency and generation quality. The DOPRI5 method uses a 5th-order Runge-Kutta scheme with embedded 4th-order error estimation for automatic step size control. The step size h is adapted based on the estimated local truncation error to maintain tolerance levels.

864 A.4 IDENTIFYING GENES CHANGING MORPHOLOGIC PHENOTYPES:
865

866
867 We evaluated gene contributions to morphological recovery using gradient-based feature impor-
868 tance with respect to the flow-matching loss during inference. Through cross-modal embedding co-
869 registration, the model correctly identified gene modules linked to treatment-induced morphology
870 changes for example, apoptosis pathway genes activated in A549 cells under camptothecin or etopo-
871 side, and reduced activation of cell-cycle modules under proliferation inhibitors compared to nega-
872 tive controls. To map pathways affected by drug treatments, we extracted gene importance scores
873 from the model’s latent representations for each sample (Figure 11). Scores capture the model’s
874 learned associations between gene expression and drug-induced transcriptional changes. For each
875 drug-cell line pair, we averaged scores across samples, selected the top 200 genes, and performed
876 gene set enrichment analysis with GSEAp using the MSigDB Hallmark 2020 collection (adjusted
877 $p < 0.25$). This pipeline systematically linked drug-specific transcriptional signatures to biological
878 processes, revealing both universal stress responses (e.g., EMT, TNF-alpha/NF- κ B signaling) and cell
879 line-specific activations. Enrichment results were visualized with scanpy-style dotplots, where
880 dot size reflects gene overlap and color intensity indicates significance, enabling clear comparison
881 of pathway activation across compounds and cell types.

882 Gene set enrichment analysis revealed distinct cell line-specific responses to pharmaceutical com-
883 pounds, with notable differences in pathway activation between A549 lung cancer cells, human
884 aortic smooth muscle cells (HASMC), and human dermal fibroblasts. A549 cells consistently
885 showed limited pathway enrichment, with most drugs activating only TNF-alpha signaling via NF-
886 κ B and occasionally inflammatory response pathways. In contrast, both HASMC and dermal fi-
887 broblasts demonstrated robust, multi-pathway responses to the same compounds, suggesting that
888 A549 cells may have inherent resistance mechanisms or altered sensitivity to drug-induced trans-
889 scriptional changes. Epithelial Mesenchymal Transition (EMT) emerged as the most consistently
890 enriched pathway across drug-cell line combinations, appearing as the top-ranked pathway in nearly
891 all HASMC and fibroblast treatments. This universal EMT activation suggests that pharmaceutical
892 stress triggers fundamental cellular reprogramming programs associated with cell plasticity and sur-
893 vival. TNF- α signaling via NF- κ B represented the second most common response, activated across
894 all three cell lines, indicating that drug treatment consistently triggers inflammatory stress response
895 cascades regardless of the specific compound mechanism of action.

896 Beyond the universal stress signatures, each cell type exhibited specialized pathway responses re-
897 flecting their distinct biological functions. HASMC consistently activated vascular-specific path-
898 ways including angiogenesis, coagulation, and hypoxia response, which aligns with their role in
899 vascular homeostasis and their sensitivity to oxygen and hemodynamic stress. Human dermal fi-
900 broblasts uniquely enriched for tissue remodeling pathways including myogenesis, adipogenesis,
901 and UV response, consistent with their role in tissue repair and their exposure to environmental
902 stressors. Notably, fibroblasts also showed strong enrichment for interferon gamma response path-
903 ways, suggesting heightened immune surveillance capabilities compared to the other cell types.
904 Our multimodal model’s gene importance scoring successfully captured biologically relevant drug-
905 target relationships, as evidenced by cell-type-specific pathway enrichment patterns. The A549 lung
906 cancer cell line’s dominant TNF- α /NF- κ B activation across diverse compounds aligns with estab-
907 lished literature showing that KRAS-mutant lung adenocarcinomas exhibit heightened inflammatory
908 signaling dependency. This universal inflammatory response contrasts with the diverse EMT and
909 angiogenesis signatures observed in primary cells, recapitulating known differences between trans-
910 formed cancer cells and stromal cells. Mechanistic validation was further demonstrated through
911 drug-specific responses: DNA-damaging agents activated p53 pathways in TP53-intact A549 cells,
912 while dabrafenib triggered compensatory KRAS signaling in non-mutant cells - mirroring clinical
913 resistance mechanisms.

914 The model’s biological accuracy extends to morphological predictions, as evidenced by paired Cell
915 Painting data showing dramatic cell number decreases in samples treated with apoptosis-inducing
916 drugs like nocodazole, consistent with the observed enrichment of apoptosis pathways in our trans-
917 scriptional analysis. These concordant transcriptional and morphological responses demonstrate that
918 our multimodal architecture captures functionally relevant biological relationships rather than mere
919 correlative patterns, validating the gene importance scores as mechanistically informative features
920 for drug response prediction. The enrichment patterns largely validated known drug mechanisms
921 of action. DNA-damaging agents such as etoposide, mitoxantrone, and camptothecin consistently

918 activated p53 pathway and apoptosis responses in responsive cell lines. Anti-inflammatory com-
919 pounds including dexamethasone and corticosterone showed expected modulation of inflammatory
920 response and IL-2/STAT5 signaling pathways. Targeted inhibitors like dabrafenib demonstrated
921 compensatory KRAS signaling activation, consistent with known resistance mechanisms in cancer
922 cells. However, the limited response in A549 cells to many compounds suggests potential resistance
923 mechanisms that may be clinically relevant for lung cancer treatment strategies.

924 These findings demonstrate that drug response profiling through transcriptional analysis can reveal
925 both universal cellular stress responses and cell type-specific vulnerabilities, providing insights into
926 both drug mechanism of action and potential therapeutic resistance patterns across different tissue
927 contexts.

929 **A.5 FURTHER EXAMPLES OF GENERATED IMAGES**

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 13: Cell line Aortic Smooth Muscle Cell

Figure 14: Cell line Aortic Smooth Muscle Cell

Figure 15: Cell line Dermal Fibroblast

Figure 16: Cell line Dermal Fibroblast