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ABSTRACT

Predicting cellular responses to drug perturbations requires capturing complex
dependencies between transcriptomic and morphological changes that single-
modality approaches cannot adequately model. We introduce PertFlow, the first
unified framework that jointly predicts gene expression profiles and generates cel-
lular morphology images in response to drug treatments, conditioned on control
cellular states. Our method integrates control transcriptomic and imaging data
through multi-head cross-modal attention mechanisms, learning a shared latent
representation that incorporates drug compound features, background cellular pro-
files, and treatment specifications. From this unified representation, PertFlow
employs a regression head for RNA-seq prediction and rectified flow dynamics
for stable morphological image generation, with cross-modal consistency losses
ensuring coherent molecular and phenotypic predictions. PertFlow enables ac-
curate predictions from either complete multi-modal inputs or single-modality
data alone, demonstrating robust cross-modal learning. Our evaluation on paired
RNA-seq and Cell Painting fluorescent imaging datasets demonstrates that Pert-
Flow achieves stronger cross-modal consistency and accurate prediction of drug-
induced changes compared to diffusion baselines.

1 INTRODUCTION

Figure 1: (LEFT) Cross-modal mapping from control RNA-seq and image to treatment RNA-seq
and image with drug conditioning through PertFlow. (RIGHT) Comparison of generated treatment
vs real treatment images with drug name and concentration. Yellow boxes indicate similar features.

Understanding how drugs alter cellular states is essential for drug discovery, mechanistic under-
standing, and personalized medicine. Traditional drug response models typically focus on either
transcriptomic data or imaging, missing the complex interdependencies between molecular and mor-
phological changes that occur simultaneously in cells. Recent advances in high-throughput profiling
now allow paired RNA sequencing and imaging, offering complementary insights: transcriptomics
captures molecular mechanisms and gene regulation, while morphology reflects structural and phe-
notypic changes. These modalities are linked as gene expression can drive morphological transfor-
mations, and structural changes can modulate gene activity yet most models treat them in isolation.
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Existing methods fall short as transcriptomics-based approaches cannot model morphological ef-
fects; image-based models lack molecular interpretability; and cross-modal predictors generate only
one modality from another, without joint modeling. Moreover, most studies prioritize genetic over
chemical perturbations and analyze rather than predict multi-modal responses. Joint generation of
multi-modal responses poses three main challenges: (1) aligning transcriptomic and morphological
data across fundamentally different representational spaces; (2) capturing complex drug condition-
ing involving compound, dose, cell type, and timepoint; and (3) simultaneously predicting discrete
gene expression and continuous image data with biological realism and cross-modal consistency.

We introduce PertFlow (Figure 1), a novel unified generative framework for jointly predicting treat-
ment gene expression and synthesizing cellular morphology from control conditions, conditioned on
drug metadata. Our contributions are: (1) First method to jointly predict transcriptomic and generate
morphological responses to chemical perturbations. (2) A shared embedding space integrating con-
trol RNA-seq, control images, and drug metadata to model complex dependencies. (3) Multi-token
cross-attention to align molecular and morphological features across modalities. We set the bench-
mark for state-of-the-art performance on the GDPx3 dataset, improving cross-modal alignment and
prediction quality over single-modality and diffusion baselines. PertFlow could support downstream
applications in virtual drug screening, mechanism discovery, and integrated pharmacological mod-
eling by enabling joint prediction of RNA-seq and image responses to perturbations; a capability, to
our knowledge, the first and unique among current methods.

2 RELATED WORKS

Drug-Conditioned and Cross-Modal Modeling: Recent methods predict transcriptional responses
to chemical perturbations but remain largely transcriptomics-focused. Foundational models like
scGen (Lotfollahi et al., 2019) pioneered the use of variational autoencoders (VAEs) and latent
space vector arithmetic to predict responses to unseen perturbation combinations. Building on this,
the Compositional Perturbation Autoencoder (CPA) (Lotfollahi et al., 2021) advanced this concept
with a deep generative model to predict single-cell responses to unseen combinations of seen drugs.
Its successor, chemCPA (Hetzel et al., 2022), further integrated chemical structures to predict effects
for completely unseen drugs. While focused on genetic perturbations, GEARS (Roohani et al.,
2024) is another key method using geometric deep learning on gene-gene interaction graphs to
predict outcomes for unseen gene perturbations. More recently, PRnet (Qi et al., 2024) employs a
perturbation-conditioned generative model to predict expression changes for novel compounds at
bulk and single-cell levels. Finally, TranSiGen (Tong et al., 2024) uses self-supervised learning to
reconstruct drug-induced profiles from basal expression and compound structure, though limited to
denoising and reconstruction. Though Ahlmann-Eltze et al. (2025) demonstrated that performance
of deep learning-based models do not significantly yield traditional baselines or statistical methods,
the evaluations were predominantly carried on genetic perturbation experiments and leaves chemical
perturbation effect untouched.

In parallel, integration of transcriptomic and imaging modalities has emphasized prediction over
generation. BLEEP (Xie et al., 2023) applies bi-modal contrastive learning to predict spatial gene
expression from H&E images, while SCHAF (Comiter, 2024) is among the few generative models,
using GANs to synthesize spatially resolved single-cell omics from histology. TransformerST (Zhao
et al., 2024) fuses histology with gene expression for super-resolution predictions, prioritizing data
enhancement. Multi-modal perturbation frameworks such as Perturb-multi-modal (Saunders et al.,
2025) and CRISPR ST (Binan et al., 2025) integrate imaging and RNA-seq to study genetic pertur-
bations, but focus on measurement rather than synthesis and mainly on genetic rather than chemical
interventions. Fusion-based methods (Lu et al., 2024) combine chemical, transcriptomic, and other
biological data for prediction and classification, yet cross-modal generative modeling of cellular
responses remains unaddressed.

Morphological Profiling and Generative Frameworks: Cellular imaging provides critical insights
into drug mechanisms, with Cell Painting (Bray et al., 2016) capturing multiplexed phenotypes under
perturbations and widely used in virtual screening. Advances in deep learning have enhanced mor-
phological profiling through convolutional models and computer vision (Tang et al., 2024), where
tools such as CellProfiler (McQuin et al., 2018) automate analysis and Cellpose (Stringer et al.,
2021) improves segmentation. However, generative modeling of cellular images conditioned on
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perturbations remains limited. For instance, recent efforts focus purely on image-to-image transla-
tion, such as PhenDiff (Bourou et al., 2023), which uses a conditional diffusion model, and Lamiable
et al. (2023), which employs conditional GANs. Critically, these methods generate a cell image in
one condition given an image from another but operate without any transcriptomic context.

Progress in generative frameworks highlights potential for this gap: diffusion models achieve state-
of-the-art performance in image, protein, and molecule generation (Guo et al., 2024), but suffer from
high computational cost and slow sampling. Rectified Flow (Liu et al., 2022) offers a more efficient
alternative by learning straight-line transport between distributions, reducing sampling steps without
loss of quality. This efficiency stems from flow matching (Lipman et al., 2022), which linearly
interpolates between noise and data, making rectified flow especially suited for large-scale drug
screening. While most current methods are single-modal, advances such as Stable Diffusion 3 (Esser
et al., 2024) demonstrate the feasibility of multi-modal generative modeling, opening opportunities
for predictive simulation of cellular responses.

3 METHODS

Figure 2: (LEFT) UMAP representation of control vs real treatment vs generated treatment gene
expression data. (RIGHT) Distribution of cell lines and compounds in dataset.

Problem Formulation. We formalize the drug conditioned multi modal generation problem as
learning a mapping from control cellular states to treatment responses across transcriptomic and
morphological modalities. Given control gene expression xctrl

rna ∈ RG where G is the number of
genes, control cellular images xctrl

img ∈ RC×H×W with C channels and spatial dimensions H ×W ,
and drug conditioning information c = {ccompound, ccell, cconc, ctime} including compound identity,
cell line, concentration, and timepoint, our objective is to generate treatment outcomes, where fθ
represents our unified generative model parameterized by θ: xtreat

rna ,xtreat
img = fθ(x

ctrl
rna ,x

ctrl
img, c)

Dataset Description. Our study leverages the Ginkgo Data Platform (GDP) series (Model & Bi-
ologics, 2025), a multimodal dataset integrating transcriptomic profiles (GDPx1/GDPx2) and four-
channel fluorescence microscopy images (GDPx3) from drug-treated cell cultures. We curated
paired bulk RNA-seq and Cell Painting imaging dataset from 3 cell lines and 40 drugs as illutrated
in Figure 2 (RIGHT). We implemented cross-modal pairing by identifying overlapping compounds
and experimental conditions, standardizing metadata (concentration units, cell line nomenclature,
temporal alignment), and establishing DMSO controls as baseline references. Transcriptomic pre-
processing follows established protocols like total count normalization to 106 reads per sample,
log1p transformation, and highly variable gene selection (n=8000) using scanpy, to focus on the
most informative genomic features. Image preprocessing addresses 16-bit microscopy data through
proper intensity scaling (16-bit to [-1,1] range), percentile-based contrast enhancement (1st-99th
percentile) applied per channel, and bilinear interpolation to uniform spatial dimensions. The dataset
consists of 17242 paired samples that were split by 80:20 for training and testing.

Drug compounds are represented through multi-modal molecular encodings combining structural
and physicochemical information. We extract Morgan and RDKit molecular fingerprints (1024 bits
each) from canonical SMILES strings, providing binary structural descriptors capturing substruc-
tural patterns and pharmacophoric features. Molecular descriptors include eighteen 2D properties
(molecular weight, logP, topological polar surface area, hydrogen bond donors/acceptors, rotatable
bonds, aromatic rings, and complexity measures) and five 3D properties when available from SDF
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structures. For compounds lacking preprocessed molecular data, we implement on-demand SMILES
processing with RDKit to ensure comprehensive coverage. Missing molecular information is han-
dled through zero-padding with appropriate masking, while molecular descriptors are normalized
using dataset-wide statistics to ensure stable training dynamics across diverse chemical spaces. The
dataset allows stratified paired control-treatment comparisons, where drug-treated samples are sys-
tematically matched with vehicle DMSO controls from identical cell lines and experimental con-
ditions. This preserves the combinatorial structure of cell line-compound-dose-time relationships
across training and validation partitions, ensuring robust model generalization across the full exper-
imental parameter space.

Figure 3: PertFlow architecture for drug conditioned control RNA-image to treatment RNA-image.
Input RNA-seq and image going through their respective encoders; output from the two encoders
then pass through the multi-token cross-modal attention, before entering the shared encoder along
with conditioning information which passes through the drug encoder. The transcriptome head
uses MSE loss to predict treatment RNA, and the image UNet (Huang et al., 2020) with noise and
time parameter input uses triplet contrastive loss and rectified flow dynamics to generate treatment
cellular image, from the shared embeddings, respectively. More details in the appendix.

Architecture. PertFlow (Figure 3) uses a shared representation learning paradigm with 3 compo-
nents: (1) individual modality encoders that process control RNA-seq and imaging data, (2) cross-
modal attention mechanism that aligns features across modalities, (3) generation heads that produce
treatment RNA-seq via direct prediction and treatment images via rectified flow dynamics.

PertFlow processes control RNA-seq and cellular images through specialized encoders. The RNA-
seq encoder applies multi-layer self-attention to capture gene-gene interactions, embedding each
gene expression value into high-dimensional space and processing through attention and feedfor-
ward layers with residual connections. Attention-weighted pooling aggregates the final embeddings
into a single RNA-seq representation encoding the transcriptomic state. Control images are encoded
through a ResNet-style convolutional architecture with global pooling, extracting hierarchical vi-
sual features from cellular morphology. Both modalities are enhanced through PrimeKG knowledge
graph integration. For RNA-seq, a heterogeneous graph neural network processes protein-protein
interactions and pathway information. For drugs, the graph encoder processes drug-protein inter-
actions and pharmacological relationships. Knowledge embeddings are integrated additively with
learned representations using weighting factors αdrug = 0.3 and αRNA = 0.3. Drug conditions
are encoded through a fusion module combining learned embeddings for compound and cell line
identities with encoded concentration and time parameters.

Each modality embedding is projected to K token representations to prevent information bottle-
necks. RNA and image tokens undergo self-attention within modalities, then bidirectional cross-
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attention: RNA tokens attend to image tokens and vice versa, integrating information across modal-
ities. Cross-attended tokens combine with original tokens through residual connections, then aggre-
gate to single vectors via attention pooling. The enhanced RNA and image embeddings concatenate
with drug conditioning and process through a shared encoder—a multi-layer perceptron produc-
ing unified representation hshared where all modalities converge. This representation branches to
two task-specific generation heads. Treatment transcriptomes are generated through direct regres-
sion from hshared via a fully-connected prediction head. For images, PertFlow adapts rectified flow,
defining linear interpolation paths xt = (1 − t)z0 + txtreat

img for t ∈ [0, 1] with constant velocity
vt = xtreat

img − z0. A UNet predicts this velocity field conditioned on noisy state xt, timestep t,
and hshared injected through cross-attention layers. During inference, an adaptive DOPRI5 ODE
solver integrates the learned velocity field from noise to treatment image with automatic step size
adjustment.

Transcriptome prediction combines MSE with Pearson correlation loss:

Lrna = 0.9 · MSE(xtreat
rna , x̂treat

rna ) + 0.1 · (1− PC(xtreat
rna , x̂treat

rna )) (1)

where MSE ensures gene-level accuracy and correlation preserves relative expression patterns. The
rectified flow objective trains velocity prediction:

Limg = Et,z0,xtreat
img

[
∥vθ(xt, t,hshared)− (xtreat

img − z0)∥2
]

(2)

over random timesteps t ∼ Uniform(0, 1) and noise samples z0.

Triplet contrastive consistency enforces coherent multi-modal predictions by comparing aligned ver-
sus misaligned features:

Ltriplet = E[max(0,margin − (Lneg − Lpos))] (3)

where Lpos is prediction error with aligned RNA-image features and Lneg with shuffled features. The
complete objective combines all losses:

Ltotal = wrnaLrna + wimgLimg + wtripletLtriplet (4)

with weights wrna = 0.5, wimg = 0.5, wtriplet = 0.05. All parameters are jointly optimized for
end-to-end multi-modal learning.

Training Parameters. We use 4 attention heads with embedding dimension 128, applying 1 layer of
self-attention followed by attention-based pooling. Multi-token representations use K = 16 tokens
with hidden dimension 256 and 8 attention heads. The rectified flow UNet uses 192 base channels
with channel multipliers (1, 2, 2, 2), attention at 16×16 resolution, and cross-attention conditioning
at layers 2, 3, 4, and 5. Models are trained with AdamW optimizer (β1 = 0.9, β2 = 0.95), learning
rate 10−4 with cosine annealing, and automatic mixed precision. Cross-modal consistency weights
are gradually increased during training to ensure stable convergence. RNA-seq generation requires
a single forward pass, while image generation uses 7-10 DOPRI5 steps with relative tolerance 10−3

and absolute tolerance 10−4 for high-quality synthesis. The models were trained with an effective
batch size of 32 taking 5 hours on 8 H100 NVIDIA GPUs with 80GB VRAM.

4 EXPERIMENTS

We emphasize, since our method is the first to introduce the problem of multi-modal RNA-Image
generation with drug conditioning, we have no previous multi-modal method to fairly compare to
as baseline. To create baselines we trained three diffusion models, along with ablations of knowledge
graph module, triplet contrastive objective, and Pearson correlation loss, with RNA only and Image
only models. We still included PRNet Qi et al. (2024) and PhenDiff Bourou et al. (2023) as uni-
modal method for reference. We set the state-of-the-art performance for this problem on the GDPx3
dataset.

Drug effects on gene expression and cell morphology: We trained PertFlow (control RNA-seq and
image to treatment RNA-seq and image), PertRNA (control RNA-seq to treatment RNA-seq), Per-
tImage (control image to treatment image), and their respective ablations omitting the knowledge-
graph and contrastive rectified flow objective. PertFlow demonstrates strong performance in pre-
dicting treatment gene expression from control conditions in Table 1. Achieving Pearson correlation
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Table 1: PertFlow & PertRNA metrics (mean ± std)
Model MSE ↓ RMSE ↓ MAE ↓ Pearson r ↑ Spearman r ↑

MLP Baseline 63.846 ± 0.656 8.513 ± 0.660 5.281 ± 0.665 0.224 ± 0.040 0.508 ± 0.054
VAE PRNet 25.655 ± 0.453 5.075 ± 0.597 3.244 ± 0.977 0.452 ± 0.034 0.697 ± 0.049

PertRNA(-PC) 0.412 ± 0.525 0.598 ± 0.912 0.286 ± 0.374 0.511 ± 0.144 0.502 ± 0.097
PertRNA(-KG) 0.360 ± 1.274 0.475 ± 0.366 0.112 ± 0.106 0.770 ± 0.098 0.791 ± 0.063
PertRNA 0.311 ± 0.956 0.472 ± 0.271 0.111 ± 0.025 0.779 ± 0.081 0.795 ± 0.026

PertFlow(-KG) 0.262 ± 0.394 0.470 ± 0.202 0.114 ± 0.034 0.772 ± 0.107 0.735 ± 0.066
PertFlow 0.231 ± 0.708 0.462 ± 0.107 0.110 ± 0.166 0.780 ± 0.264 0.792 ± 0.041

Table 2: PertFlow & PertImage metrics (mean ± std)
Model SSIM ↑ PSNR ↑ LPIPS → FID ↓

UNet Baseline 0.085 ± 0.013 03.55 ± 0.73 2.125 ± 0.158 583.21
UNet PhenDiff 0.189 ± 0.025 9.64 ± 0.64 0.613 ± 0.531 62.50

PertDiffN 0.010 ± 0.003 06.62 ± 0.73 1.087 ± 0.096 246.01
PertDiffx0 0.192 ± 0.075 10.71 ± 0.54 0.505 ± 0.045 73.63
PertDiffV 0.194 ± 0.071 11.33 ± 0.42 0.499 ± 0.040 55.92

PertImage(-triplet) 0.120 ± 0.102 08.22 ± 0.13 0.308 ± 0.178 106.72
PertImage(-KG) 0.182 ± 0.099 11.05 ± 0.58 0.498 ± 0.035 50.38
PertImage 0.187 ± 0.095 11.46 ± 0.61 0.509 ± 0.043 46.88

PertFlow(-KG) 0.206 ± 0.094 11.51 ± 0.70 0.505 ± 0.043 31.59
PertFlow 0.205 ± 0.097 11.66 ± 0.68 0.511 ± 0.038 24.06

Figure 4: Pathologist image similar-
ity score of generated vs ground truth
cellular morphology after treatment.
(Mean solid lines, Median orange line)

Table 3: Effect of Loss Weight Ratios
wrna wimg MSE ↓ Pearson r ↑ Spearman r ↑ SSIM ↑ PSNR ↑ FID ↓
0.4 0.6 0.268±0.752 0.761±0.175 0.773±0.047 0.215±0.094 11.94±0.65 21.73
0.5 0.5 0.231±0.708 0.780±0.264 0.792±0.041 0.205±0.097 11.66±0.68 24.06
0.6 0.4 0.219±0.694 0.791±0.251 0.801±0.038 0.193±0.101 11.29±0.73 27.15

Table 4: Effect of Knowledge Graph Embedding Weight
αdrug MSE ↓ Pearson r ↑ Spearman r ↑ SSIM ↑ PSNR ↑ FID ↓
0.1 0.289±0.784 0.741±0.287 0.753±0.052 0.187±0.103 11.12±0.76 29.31
0.3 0.231±0.708 0.780±0.264 0.792±0.041 0.205±0.097 11.66±0.68 24.06
0.5 0.248±0.761 0.759±0.279 0.769±0.048 0.194±0.101 11.38±0.73 28.47 Figure 5: FID vs NFE

(0.780 ± 0.264) and Spearman correlation (0.792 ± 0.041) across drug perturbations, measuring
with all genes. MSE (0.231 ± 0.708) and MAE (0.110 ± 0.166) indicate robust prediction accuracy
for transcriptomic responses. While the PertRNA baseline achieved correlation metrics (Pearson r
(0.779 ± 0.081), Spearman r (0.795 ± 0.026)), PertFlow’s joint modeling approach maintains com-
petitive performance while simultaneously generating cellular morphological responses compared
to baselines and ablations.

PRNet Qi et al. (2024) is a perturbation-conditioned generative model comprising three components:
a Perturb-adapter encoding compound SMILES structures to latent embeddings, a Perturb-encoder
mapping perturbation effects to latent space, and a Perturb-decoder estimating Gaussian distributions
of perturbed transcriptional profiles. The simple MLP baseline replaces the full encoder-decoder ar-
chitecture with a multilayer perceptron that directly learns perturbation effects on gene expression
using MSE loss. This simplified architecture achieved only Pearson correlation of 0.224±0.040 and
Spearman correlation of 0.508±0.054, with MSE of 63.846±0.656. The VAE PRNet baseline imple-
ments the complete VAE-inspired framework with encoder-decoder architecture estimating Gaus-
sian distributions parameterized by mean and variance, but operates on transcriptional data alone
without multi-modal integration. VAE PRNet substantially improved over the MLP variant with
Pearson correlation of 0.452±0.034 and Spearman correlation of 0.697±0.049 (MSE 25.655±0.453),
yet remained far below PertRNA (Pearson 0.779±0.081, Spearman 0.795±0.026) and PertFlow
(Pearson 0.780±0.264, Spearman 0.792±0.041). Both PRNet variants predict treatment RNA pro-
files but lack the cross-modal enhancement, knowledge graph integration, and shared representation
learning that enables PertFlow to achieve coherent simultaneous prediction of transcriptional and
morphological responses while maintaining competitive performance on both modalities.

PertFlow also outperformed the PertImage baseline in the image generation task achieving higher
SSIM (0.205 ± 0.097), PSNR (11.66 ± 0.68), LPIPS (0.511 ± 0.038), and lower FID (24.06).
This demonstrates that incorporating cross-modal information and drug conditioning does not com-
promise transcriptomic prediction and cellular image generation quality, while enabling the unique
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(a) (b)

Figure 6: Generated vs real treatment for (a) Aortic Smooth Muscle Cell (b) Dermal Fibroblasts.

capability of joint multi-modal generation. The strong correlation values and lower FID indicates
that PertFlow successfully captures the complex cellular relationships between drug perturbations
and gene expression changes.

We compare our PertFlow model with three PertDiff diffusion variants in Table 2. Diffusion serves
as the baseline against our contrastive rectified flow method. The standard DDPM formulation trains
the model to predict the injected noise ϵ ∼ N(0, I) from the noisy input xt. This requires disen-
tangling signal from noise across noise levels, causing instabilities when signal-to-noise ratios are
low. The weak performance of PertDiffN (SSIM: 0.010, FID: 246.01) illustrates these challenges,
as the model fails to generate coherent cellular structures from pure noise predictions. The direct
x0 parameterization predicts the clean target x0 from noisy xt. While more stable, it forces the
model to implicitly learn the full denoising trajectory. PertDiffx0 achieves better but still limited
results (SSIM: 0.192, FID: 73.63), reflecting the lack of strong theoretical grounding. The veloc-
ity (v) parameterization improves training stability by predicting v = αtϵ − σtx0, which balances
objectives across timesteps, reduces variance, and improves gradient flow. PertDiffV shows marked
improvement (SSIM: 0.194, FID: 55.92), validating this formulation for biological image gener-
ation. Compared to baselines and ablations we observe that PertFlow successfully learns more
meaningful representations that generalize across different compounds, concentrations, cell lines,
and timepoints in the dataset.

PhenDiff Bourou et al. (2023) is a conditional diffusion model that performs image-to-image trans-
lation to identify phenotypic shifts in microscopy images. The model operates through two stages:
an inversion phase that maps real source images to Gaussian latent representations using DDIM de-
terministic sampling, followed by a generation phase that synthesizes images in the target condition.
The UNet-based PhenDiff baseline predicts treatment-induced morphological changes without in-
corporating transcriptional information, serving as a purely vision-based approach. When evaluated
on the GDPx3 dataset, UNet PhenDiff achieved moderate performance with SSIM of 0.189±0.025,
PSNR of 9.64±0.64, and FID of 62.50, substantially outperforming the vanilla UNet baseline (SSIM
0.085±0.013, FID 583.21) but lagging behind multi-modal approaches. The deterministic UNet
baseline performed even worse since it is trained with a simple MSE loss.

Table 3 shows equal loss weighting (0.5–0.5) achieves the best trade-off. Higher wrna improves RNA
accuracy but worsens image quality (higher FID). Higher wimg improves SSIM/PSNR but reduces
RNA correlation metrics. Table 4 shows the effect of KG weight αdrug = 0.3 is optimal. Smaller
values (0.1, 0.2) underuse the biological prior, while larger values (0.4, 0.5) introduce noise that
harms both modalities.
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Figure 7: Generated vs real treatment for A549.

Figure 4 shows similarity rating by ACVP
board certified pathologists in blind review (10-
point scale of similarity regarding morphology,
detail and plausibility, with respect to ground
truth Cell Painting images under correspond-
ing chemical perturbations; 0 indicates poor-
est and 10 indicates the best). Two patholo-
gists reported median score of 7.11 and 7.89 for
PertFlow generated images, outperforming the
baseline method PhenDiff (Bourou et al., 2023)
(median scores of 6.11 and 6.33), which con-
firmed the overall satisfying quality of cellu-
lar morphology images generated by PertFlow.
Step-wise comparison (Figure 5) highlights the
difference in inference dynamics. PertFlow
generates recognizable structures by NFE 10
showing nuclear boundaries and cytoplasmic
organization with near-final morphology. Pert-
Diff requires more steps to reach similar organization. Both methods preserve multi-channel fluo-
rescence distributions.

Recovering drug-induced phenotype and morphology: Figure 1 shows the comparison of gener-
ated treatment vs real treatment images with drug name and concentration. Yellow boxes indicate
similar cellular features due to drug perturbations in real and generated images. From left to right
the drugs have the following effect on the cellular morphology: (1) Cevipabulin is a microtubule-
destabilizing agent that binds to tubulin (Yang et al., 2021), disrupting microtubule dynamics, which
leads to mitotic arrest and apoptosis in cancer cells. It shows anti-proliferative effects by inhibiting
microtubule polymerization. (2) S-Camptothecin and its stereoisomers inhibit DNA topoisomerase
(Hansch & Verma, 2007), causing DNA damage during replication. This leads to DNA double-
strand breaks, S-phase cell cycle arrest, and apoptosis, especially in rapidly dividing cells. (3)
Podophyllotoxin binds to tubulin and inhibits microtubule assembly (Desbene & Giorgi-Renault,
2002), resulting in mitotic arrest at metaphase and subsequent apoptosis. It serves as a precursor
for etoposide, a topoisomerase II inhibitor. (4) Dabrafenib selectively inhibits mutant BRAF kinase
(commonly V600E mutation) (Planchard et al., 2022), blocking MAPK/ERK signaling pathway,
leading to decreased tumor cell proliferation and inducing apoptosis in BRAF-mutated cancer cells.

The ACVP certified pathologists provided the following descriptions of generated and real treatment
image results in Figures 6 and 7. In Figure 6a control images exhibited typical fusiform cells with
parallel alignment and organized architecture. Both predicted and real Ouabain (0.3 µM) treatment
showed decreased cellular density, reduced cell size, increased intercellular spacing, nuclear conden-
sation, and disrupted parallel orientation with cells. Similarly, predicted and actual Podophyllotoxin
(3.0 µM) treatment displayed increased intercellular spacing, elevated multi-nucleated cell popu-
lations indicative of cellular injury, loss of fusiform morphology, and decreased cellular density.
Suprafenacine (3.0 µM) predictions and actual treatment both revealed cellular disorganization, loss
of fusiform shape, cellular fragmentation, nuclear size reduction, and decreased cell-to-cell contact.

In Figure 6b control images displayed characteristic fibroblast morphology with fusiform cells, orga-
nized cellular arrangement, and appropriate cell-to-cell contact. Both predicted and real Podophyllo-
toxin (0.3 µM) treatment exhibited decreased cellular density, reduced cell-to-cell contact, and loss
of fusiform morphology while maintaining nuclear size. Panobinostat (3.0 µM) predictions and ac-
tual treatment showed minimal morphological deviation from control despite the higher dosage, with
the model correctly preserving the relatively unaltered cellular architecture. Nocodazole treatment
at 3.0 µM demonstrated strong concordance between predicted and real images, both displaying
substantial loss of cellular density and fusiform morphology, with cells adopting rounded, blob-like
shapes while nuclear size remained similar. At the lower nocodazole dose (0.3 µM), both predicted
and actual treatments showed attenuated phenotypic changes including decreased cellular density,
partial retention of fusiform morphology, reduced cellular elongation, and less pronounced blob-like
transformation compared to the higher dose.

In Figure 7 control images exhibited typical A549 morphology with appropriate cellular density and
organization. DMSO treatment (0.0 µM) served as vehicle control, with both predicted and real
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images showing no morphological deviation from control conditions. Nocodazole (1.0 µM) pre-
dictions and actual treatment both displayed preserved cellular morphology with substantially de-
creased cellular density and reduced cellularity. Emetine dihydrochloride hydrate (1.0 µM) showed
concordance between predicted and real images, both exhibiting decreased cellular density and di-
minished cellular cohesiveness. Torin2 (0.1 µM) predictions and actual treatment demonstrated
increased angular cytoplasmic projections, moderate reduction in cellular density, and decreased
cellular cohesion. The morphological agreement between predicted and real treatment conditions
across varying drug concentrations validates the model’s dose-dependent prediction capability.

Figure 8: UMAP and t-SNE of RNA and image embeddings before and after cross modal attention

Figure 9: UMAP of RNA and image embeddings before and after cross modal attention block

Figure 2 UMAPs (McInnes et al., 2018) demonstrate PertFlow’s biological coherence in generat-
ing treatment responses. The left panel shows clear control-treatment cluster separation, indicating
distinct transcriptomic signatures captured in embedding space. The right panel shows generated
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Figure 10: t-SNE of RNA and image embeddings before and after cross modal attention block

treatment samples clustering with real samples, particularly in high-response regions, demonstrat-
ing that cross-modal attention effectively leverages imaging to predict directional gene expression
changes and produce biologically realistic treatment profiles.

Figures 8, 9, 10 UMAPs and t-SNE illustrate cross-modal attention’s effect on feature alignment.
The top panels show transformation from separate feature spaces (left) to joint aligned space (mid-
dle), with RNA-seq (blue) and image features (red) demonstrating successful correspondence learn-
ing. The middle and bottom panels reveal that cross-modal attention transforms scattered, unstruc-
tured distributions into highly structured, clustered organizations in both modalities, indicating that
attention not only aligns features across modalities but enhances the internal structure and discrimi-
native power of each individual feature space. The shared representation space (right) demonstrates
successful integration of RNA, imaging, and drug modalities. Compound-based organization in-
dicates that cross-modal attention effectively combines gene expression, imaging, and drug condi-
tioning into a unified latent space where biologically similar samples cluster together regardless of
modality, enabling improved treatment response prediction and generation.

Cross-modal attention shows correspondence between RNA-image modalities, preserving distinct
structures. Pairwise alignment distances average 16.48 (UMAP) and 37.44 (t-SNE), with positive
modality separation scores (UMAP: 0.81, t-SNE: 0.59) confirming preserved modality-specific fea-
tures. Compound clustering improves substantially, with silhouette scores rising from -0.74 to -0.20
(UMAP) and -0.81 to -0.28 (t-SNE). The shared space separation ratio of 1.33 validates treatment-
specific representations consistent across both modalities. Alignment metrics used standardized
embeddings projected into 2D via UMAP and t-SNE. Pairwise alignment distances were averaged
Euclidean distances between corresponding RNA-image pairs. Modality separation used silhouette
scores with binary labels (0=RNA, 1=Image), where positive values indicate preserved modality-
specific structures. Compound clustering quality was assessed via silhouette scores with treatment
labels. Shared space separation ratio was calculated as mean inter-compound cosine distance divided
by mean intra-compound distance, values >1 indicate successful treatment discrimination.

Gene Enrichment Analysis. Gradient-based feature importance analysis (Figure 11) of gene con-
tributions to morphological recovery revealed cell line-specific transcriptional responses to pharma-
ceutical compounds, where gene importance scores were extracted from latent representations, top
200 genes were selected per drug-cell line pair, and GSEA was performed using MSigDB Hallmark
2020 collection. A549 lung cancer cells showed limited pathway enrichment dominated by TNF-
alpha/NF-kB signaling consistent with KRAS-mutant inflammatory dependency, while HASMC and
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Figure 11: Dotplot for geneset enrichment anlaysis from activated genes during inference

dermal fibroblasts demonstrated robust multi-pathway responses with EMT as the most consistently
enriched pathway across treatments, followed by TNF-alpha/NF-kB as the second universal stress
signature. Cell-specific responses included vascular pathways (angiogenesis, coagulation, hypoxia)
in HASMC and tissue remodeling pathways (myogenesis, adipogenesis, UV response, interferon
gamma) in fibroblasts, validating the model’s biological accuracy through known drug mechanisms:
DNA-damaging agents activated p53/apoptosis pathways in TP53-intact cells, dabrafenib triggered
compensatory KRAS signaling, and anti-inflammatory compounds modulated IL-2/STAT5 path-
ways. Concordance between transcriptional signatures and morphological predictions (cell number
decreases with apoptosis-inducing drugs like nocodazole) confirmed that the multimodal architec-
ture captures functionally relevant biological relationships, demonstrating that drug response profil-
ing reveals both universal cellular stress responses and cell type-specific vulnerabilities relevant to
therapeutic resistance mechanisms. Further analysis in the appendix.
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5 DISCUSSION

PertFlow represents a foundational step toward unified modeling of multi-modal cellular drug re-
sponses, bridging the molecular (transcriptomic) and phenotypic (morphological) effects of chemi-
cal perturbations. Unlike previous approaches that treat these modalities in isolation or only predict
one from the other, PertFlow achieves simultaneous, drug-conditioned generation of both gene ex-
pression profiles and cellular morphology. The integration of control transcriptomic and imaging
data into a shared embedding space, combined with rectified flow dynamics, enables biologically
consistent synthesis of treatment outcomes. Despite this progress, several challenges remain. First,
generalization to unseen cell lines or novel compounds is limited by the scarcity of paired multi-
modal datasets with shared metadata. While PertFlow can still infer morphological changes from
control data alone, future work should explore more targeted integration of chemogenomic databases
(e.g., ChEMBL, DrugBank) that explicitly encode compound-target binding affinities and structure-
activity relationships, building upon our current PrimeKG integration which provides broader bi-
ological context but lacks fine-grained chemical similarity information critical for generalizing to
truly novel compounds. Second, while PertFlow enables modality translation, aligning embeddings
across modalities may inadvertently entangle task-relevant factors. Disentangling causal latent fac-
tors remains an open question for cross-modal modeling. Third, the in vitro context of our exper-
iments may not capture drug effects requiring complex microenvironmental interactions, such as
immune modulation. Extending PertFlow to model cell-cell communication or tissue-level organi-
zation could enhance translational utility. Overall, PertFlow sets the stage for future cross-modal
generative modeling in drug discovery, offering a unified framework for understanding how molec-
ular mechanisms manifest as observable phenotypes under pharmacological perturbation.

6 CONCLUSION

We introduced PertFlow, the first unified generative framework for jointly modeling transcriptomic
and morphological drug responses using cross-modal attention and rectified flow dynamics. By
aligning control RNA-seq and image features through a shared embedding space conditioned on
drug metadata, PertFlow enables simultaneous prediction of treatment gene expression and syn-
thesis of cellular morphology. Extensive evaluation on the GDPx3 dataset demonstrates strong
cross-modal consistency, biologically realistic image generation, and competitive transcriptomic
prediction performance, outperforming single-modality and diffusion baselines. UMAP analysis of
cross-modal attention and shared embeddings further strengthen our hypothesis. Our results high-
light PertFlow’s potential for virtual drug screening, mechanistic hypothesis generation, and multi-
modal perturbation analysis, paving the way for more integrative and interpretable approaches to
pharmacological modeling.
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A APPENDIX

A.1 ETHICS STATEMENT

We used large language models solely for manuscript proofreading and grammar checking, with no
involvement in code or content generation.

A.2 REPRODUCIBILITY STATEMENT

We will release the code and pretrained model weights upon acceptance.

A.3 ARCHITECTURE DETAILS

Our RNA-seq encoder processes gene expression data through multi-layer self-attention (Vaswani
et al., 2017) to capture gene-gene interactions:

Egene = GeneEmbedding(xctrl
rna) (5)

where each gene expression value is projected to a dgene-dimensional embedding space. We apply L
layers of multi-head self-attention (MHA):

A(l) = MHA(E(l−1),E(l−1),E(l−1)) (6)

E(l) = LayerNorm(E(l−1) + FFN(LayerNorm(E(l−1) +A(l)))) (7)
The final RNA-seq features are obtained through attention-based pooling:

hrna =

G∑
i=1

αiE
(L)
i , αi =

exp(wT tanh(WpoolE
(L)
i ))∑G

j=1 exp(w
T tanh(WpoolE

(L)
j ))

(8)

Control cellular images are processed through a ResNet-style convolutional (He et al., 2016) archi-
tecture:

himg = GlobalPool(ResNet(xctrl
img)) (9)

Drug conditioning information combines categorical and continuous variables:

hdrug = Fusion([ecompound, ecell,Conc(cconc),Time(ctime)]) (10)

where ecompound and ecell are learned embeddings for compound and cell line identities.

Knowledge graph integration enhances both molecular and genomic representations through struc-
tured biological knowledge from PrimeKG (Chandak et al., 2023). For drug embeddings, com-
pounds are mapped to knowledge graph entities capturing molecular interactions, pathways, and
pharmacological relationships. The heterogeneous graph neural network processes drug-protein,
drug-drug, and protein-protein interactions:

hkg
drug = KGDrugEncoder(Gdrug,Erel) (11)

where Gdrug represents drug nodes and Erel captures multi-relational edges. Similarly, gene expres-
sions are enhanced with protein interaction networks and pathway information:

Ekg
RNA = KGGeneEncoder(Ggene,Eppi) (12)

The knowledge graph embeddings are integrated additively with learned representations:

hdrug = hdrug + αdrugh
kg
drug and ERNA = ERNA + αRNAE

kg
RNA (13)

where αdrug = 0.3 and αRNA = 0.3 are learned weighting factors.

To capture cross-modal RNA-Image dependencies, we use multi-token cross-attention. Each modal-
ity is projected to K token representations:

Trna = RNAProj(hrna) Timg = ImageProj(himg) (14)

Each modality goes through a self-attention block, then cross-attention is applied bidirectionally
(Eq. 6):

Tcross
rna = MHA(Trna,Timg,Timg) Tcross

img = MHA(Timg,Trna,Trna) (15)
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Enhanced features are obtained through residual connections and attention pooling:

henh
rna = AttentionPool(Trna +Tcross

rna ) henh
img = AttentionPool(Timg +Tcross

img ) (16)

The cross-modal features are combined with drug conditioning (Eq. 10) to form a unified represen-
tation:

hshared = SharedEncoder([henh
rna ,h

enh
img,hdrug]) (17)

This shared representation captures the complex dependencies between molecular states, morpho-
logical features, and drug effects necessary for coherent multi-modal generation.

Treatment gene expression is generated through direct prediction from the shared representation
(Eq. 17):

xtreat
rna = TranscriptomeHead(hshared) (18)

For image generation, we adapt rectified flow dynamics. Given noise z0 ∼ N (0, I) and target image
xtreat

img , rectified flow defines a linear interpolation path:

xt = (1− t)z0 + txtreat
img , t ∈ [0, 1] (19)

The velocity field is defined as:
vt = xtreat

img − z0 (20)

and our multi-modal-conditioned UNet learns to predict this velocity:

vθ(xt, t,hshared) ≈ vt (21)

The UNet incorporates cross-attention layers that attend to image conditioning derived from the
shared representation:

cimg = ImageUNet(hshared) (22)

Our training strategy combines task-specific losses with cross-modal consistency objectives. We use
a combination of MSE and auxiliary Pearson Correlation loss for transcriptome prediction:

Lrna = 0.9 · MSE(xtreat
rna , x̂treat

rna ) + 0.1 · PC(xtreat
rna , x̂treat

rna ) (23)

For rectified flow training, we minimize the velocity prediction error for image generation:

Limg = Et,z0,xtreat
img

[
∥vθ(xt, t,hshared)− (xtreat

img − z0)∥2
]

(24)

We implement triplet contrastive consistency (Stoica et al., 2025) to ensure well-aligned features
produce better predictions than misaligned ones:

Ltriplet = E[max(0,margin − (Lneg − Lpos))] (25)

where Lpos is the prediction error with aligned features and Lneg with misaligned features. The
complete training objective combines all losses (Eqs. 23-25):

Ltotal = wrnaLrna + wimgLimg + wtripletLtriplet (26)

where the weights are set to wrna = 0.5, wimg = 0.5, wtriplet = 0.05.

Treatment RNA-seq is generated through a single forward pass using Eq. 18:

xtreat
rna = fθ(x

ctrl
rna ,x

ctrl
img, c) (27)

For high-quality image generation, we use an adaptive DOPRI5 solver (Dormand & Prince, 1986)
that iteratively integrates the learned velocity field:

dx

dt
= vθ(xt, t,hshared) (28)

Starting from noise x0 ∼ N (0, I) at t = 0, the solver adaptively adjusts step sizes based on error
estimation to reach the treatment image at t = 1. The adaptive integration ensures both computa-
tional efficiency and generation quality. The DOPRI5 method uses a 5th-order Runge-Kutta scheme
with embedded 4th-order error estimation for automatic step size control. The step size h is adapted
based on the estimated local truncation error to maintain tolerance levels.
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A.4 IDENTIFYING GENES CHANGING MORPHOLOGIC PHENOTYPES:

We evaluated gene contributions to morphological recovery using gradient-based feature impor-
tance with respect to the flow-matching loss during inference. Through cross-modal embedding co-
registration, the model correctly identified gene modules linked to treatment-induced morphology
changes for example, apoptosis pathway genes activated in A549 cells under camptothecin or etopo-
side, and reduced activation of cell-cycle modules under proliferation inhibitors compared to nega-
tive controls. To map pathways affected by drug treatments, we extracted gene importance scores
from the model’s latent representations for each sample (Figure 11). Scores capture the model’s
learned associations between gene expression and drug-induced transcriptional changes. For each
drug–cell line pair, we averaged scores across samples, selected the top 200 genes, and performed
gene set enrichment analysis with GSEApy using the MSigDB Hallmark 2020 collection (adjusted
p ¡ 0.25). This pipeline systematically linked drug-specific transcriptional signatures to biological
processes, revealing both universal stress responses (e.g., EMT, TNF-alpha/NF-kB signaling) and
cell line–specific activations. Enrichment results were visualized with scanpy-style dotplots, where
dot size reflects gene overlap and color intensity indicates significance, enabling clear comparison
of pathway activation across compounds and cell types.

Gene set enrichment analysis revealed distinct cell line-specific responses to pharmaceutical com-
pounds, with notable differences in pathway activation between A549 lung cancer cells, human
aortic smooth muscle cells (HASMC), and human dermal fibroblasts. A549 cells consistently
showed limited pathway enrichment, with most drugs activating only TNF-alpha signaling via NF-
kB and occasionally inflammatory response pathways. In contrast, both HASMC and dermal fi-
broblasts demonstrated robust, multi-pathway responses to the same compounds, suggesting that
A549 cells may have inherent resistance mechanisms or altered sensitivity to drug-induced tran-
scriptional changes. Epithelial Mesenchymal Transition (EMT) emerged as the most consistently
enriched pathway across drug-cell line combinations, appearing as the top-ranked pathway in nearly
all HASMC and fibroblast treatments. This universal EMT activation suggests that pharmaceutical
stress triggers fundamental cellular reprogramming programs associated with cell plasticity and sur-
vival. TNF-α signaling via NF-κB represented the second most common response, activated across
all three cell lines, indicating that drug treatment consistently triggers inflammatory stress response
cascades regardless of the specific compound mechanism of action.

Beyond the universal stress signatures, each cell type exhibited specialized pathway responses re-
flecting their distinct biological functions. HASMC consistently activated vascular-specific path-
ways including angiogenesis, coagulation, and hypoxia response, which aligns with their role in
vascular homeostasis and their sensitivity to oxygen and hemodynamic stress. Human dermal fi-
broblasts uniquely enriched for tissue remodeling pathways including myogenesis, adipogenesis,
and UV response, consistent with their role in tissue repair and their exposure to environmental
stressors. Notably, fibroblasts also showed strong enrichment for interferon gamma response path-
ways, suggesting heightened immune surveillance capabilities compared to the other cell types.
Our multimodal model’s gene importance scoring successfully captured biologically relevant drug-
target relationships, as evidenced by cell-type-specific pathway enrichment patterns. The A549 lung
cancer cell line’s dominant TNF-α/NF-κ B activation across diverse compounds aligns with estab-
lished literature showing that KRAS-mutant lung adenocarcinomas exhibit heightened inflammatory
signaling dependency. This universal inflammatory response contrasts with the diverse EMT and
angiogenesis signatures observed in primary cells, recapitulating known differences between trans-
formed cancer cells and stromal cells. Mechanistic validation was further demonstrated through
drug-specific responses: DNA-damaging agents activated p53 pathways in TP53-intact A549 cells,
while dabrafenib triggered compensatory KRAS signaling in non-mutant cells - mirroring clinical
resistance mechanisms.

The model’s biological accuracy extends to morphological predictions, as evidenced by paired Cell
Painting data showing dramatic cell number decreases in samples treated with apoptosis-inducing
drugs like nocodazole, consistent with the observed enrichment of apoptosis pathways in our tran-
scriptional analysis. These concordant transcriptional and morphological responses demonstrate that
our multimodal architecture captures functionally relevant biological relationships rather than mere
correlative patterns, validating the gene importance scores as mechanistically informative features
for drug response prediction. The enrichment patterns largely validated known drug mechanisms
of action. DNA-damaging agents such as etoposide, mitoxantrone, and camptothecin consistently
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activated p53 pathway and apoptosis responses in responsive cell lines. Anti-inflammatory com-
pounds including dexamethasone and corticosterone showed expected modulation of inflammatory
response and IL-2/STAT5 signaling pathways. Targeted inhibitors like dabrafenib demonstrated
compensatory KRAS signaling activation, consistent with known resistance mechanisms in cancer
cells. However, the limited response in A549 cells to many compounds suggests potential resistance
mechanisms that may be clinically relevant for lung cancer treatment strategies.

These findings demonstrate that drug response profiling through transcriptional analysis can reveal
both universal cellular stress responses and cell type-specific vulnerabilities, providing insights into
both drug mechanism of action and potential therapeutic resistance patterns across different tissue
contexts.

A.5 FURTHER EXAMPLES OF GENERATED IMAGES
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Figure 12: Cell line A549
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Figure 13: Cell line Aortic Smooth Muscle Cell
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Figure 14: Cell line Aortic Smooth Muscle Cell
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Figure 15: Cell line Dermal Fibroblast
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Figure 16: Cell line Dermal Fibroblast
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