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Abstract

Processing data that lies on multiple interacting (product) graphs is increasingly
important in practical applications, yet existing methods are mostly restricted to
discrete graph filtering. Tensorial partial differential equations on graphs (TPDEGs)
offer a principled framework for modeling such multidomain data in a continu-
ous setting. However, current continuous approaches are limited to first-order
derivatives, which tend to dampen high-frequency signals and slow down infor-
mation propagation. This makes these TPDEGs-based approaches less effective
for capturing complex, multi-scale, and heterophilic structures. In this paper, we
introduce second-order TPDEGs (So-TPDEGs) and propose the first theoretically
grounded framework for second-order continuous product graph neural networks.
Our approach leverages the separability of cosine kernels in Cartesian product
graphs to implement efficient spectral decomposition, while naturally preserving
high-frequency information. We provide rigorous theoretical analyses of stability
under graph perturbations and over-smoothing behavior regarding spectral proper-
ties. Our theoretical results establish a robust foundation for advancing continuous
graph learning across multiple practical domains.

1 Introduction

Tensors [l 2]], which generalize matrices to higher dimensions, arise in diverse domains such as
hyperspectral imaging [3]], video analytics [4], recommender systems [3]], spatiotemporal modeling
[6]], and brain signal processing [[7]]. When tensors are linked to multiple interdependent graphs, they
give rise to what we call multidomain graph data [8, 9, [10]. Unlike conventional graph machine
learning, which typically considers a single graph [11} 9], this setting requires jointly processing
across several interacting graph domains. Although such data structures are increasingly common in
real-world applications, existing methods for learning from multidomain graph data remain scarce
[12, 19} [13]. Therefore, developing graph learning techniques for tensorial representations holds great
promise for advancing the theory and applications in graph machine learning.

Learning from multidomain graph data is challenging because it requires frameworks capable of
capturing joint dependencies across several domain-specific graphs [12, [14]. A common strategy
is to use product graphs [[12| [15], a concept rooted in graph signal processing (GSP) [16} [17]],
where discrete filtering operations combine information across domains. However, these methods
inherit well-known limitations of conventional graph neural networks (GNNs) [18 19,20} 21]], such

NeurIPS 2025 Workshop: New Perspectives in Advancing Graph Machine Learning.



as over-smoothing and over-squashing, which restrict receptive fields and long-range modeling
[22]. Discrete filtering-based models are also computationally expensive, relying on exhaustive
hyperparameter searches, and are usually restricted to two-domain cases such as spatial-temporal
graphs [12} 23 {15} 24].

Within standard non-tensorial GNNs, continuous GNNs (CGNNs) have emerged as an effective
approach to mitigate the challenges of over-smoothing and over-squashing [25]. CGNNs formulate
graph learning as solving partial differential equations (PDEs) on graphs—such as the heat or wave
equations—through neural architectures that approximate these solutions [26 25]]. This leads to the
exponential graph filter, a continuous, infinite-order generalization of discrete convolutional filters
[25]. Because these filters are differentiable with respect to the receptive field, CGNNs can adaptively
learn effective neighborhoods, enabling both local and global message passing [25} 122} 27]]. While
these frameworks have shown promise, they are mostly designed for single-graph settings. A notable
exception is CITRUS [[13], which extends continuous GNNs to multidomain data by introducing
TPDEGs and leveraging product graph structures.

Despite its contributions, CITRUS is limited to first-order derivatives, which dampen high-frequency
signals and slow information propagation—issues that are particularly problematic in oscillatory
(periodic or high-frequency fine-grained) tasks such as spatiotemporal forecasting, heterophilic
networks, and continuum mechanics simulations [28 |29, |30]. To overcome these limitations, we
propose the first principled second-order TPDEGs (So-TPDEGs), which provide a stronger foundation
for modeling multidomain data across multiple interacting graphs. Building on this formulation,
we introduce a continuous graph learning model that efficiently solves So-TPDEGs using separable
cosine oscillatory kernels on Cartesian product graphs. Our design avoids the computational burden
of full spectral decompositions by reusing a small subset of eigenvalue decompositions from the
factor graphs. We further provide rigorous theoretical analyses, showing that our model preserves
stability under graph perturbations and controls the over-smoothing rate. The key contributions of
this work are summarized below:

* We propose second-order tensorial PDEs on graphs (So-TPDEGsS) as a unified framework for
modeling multidomain graph data.

* We derive a continuous graph filtering mechanism over Cartesian product spaces, as a natural
solution to So-TPDEGs.

* We provide comprehensive theoretical analyses of our model, establishing its stability and
demonstrating its ability to alleviate over-smoothing.

2 Related Work

PDEs on graphs have recently attracted substantial attention, as reviewed in [25]]. Several methods
related to second-order PDEs—such as graph wave networks [28]], hyperbolic-PDE GNNs [29], and
graph-coupled oscillator networks [30]—have been proposed to capture oscillatory behaviors in
graph signals. While effective, these models are designed for single-graph settings and do not provide
a unified framework for multidomain data distributed over multiple interacting graphs.

Product graphs have been extensively studied in mathematics and signal processing [31}32], but their
research in GNNs remains limited. The graph-time convolutional neural network (GTCNN) [12] 23]
and CITRUS [13] are, to the best of our knowledge, the only existing GNN-based frameworks
explicitly designed for product graphs. GTCNN introduces a discrete filtering mechanism to jointly
process spatial and temporal information, but suffers from three key limitations: (i) it requires costly
grid searches to tune filter orders, (i7) polynomial filters restrict receptive fields and limit long-range
modeling [22,25]], and (iii) it is inherently constrained to two-factor graphs (space and time). CITRUS
[14] addresses some of these issues by introducing TPDEGs and providing a continuous filtering
framework for multidomain data. However, it remains restricted to first-order derivatives, which
dampen high-frequency components and slow down information propagation [28 30].

In contrast to prior work, our approach introduces a second-order framework for multidomain learn-
ing, extending beyond the first-order formulation of CITRUS. By employing continuous separable
cosine kernels on Cartesian product graphs, our model preserves high-frequency components and
enables faster information propagation across domains. This design also allows receptive fields
to be learned adaptively during training, eliminating the costly grid searches required by discrete



methods. Furthermore, by leveraging the spectral decomposition of factor graphs [22}27], our method
achieves controllable computational complexity. Importantly, the number of learnable parameters is
independent of the number of factor graphs, ensuring scalability to large and complex multidomain
settings.

3 Methodology

Preliminaries and notation. An undirected, weighted graph G with IV vertices is represented as
G ={V,¢, A;(], where V and £ denote the sets of vertices and edges, respectively. The adjacency
matrix A € RV*N characterizes the graph structure, with A;; = A; > 0 indicating the connection
strength between vertices 7 and j. We assume A;; = 0 for all 4, meaning the graph contains no
self-loops. The graph Laplacian L € RV*V is defined as L = D — A, where D = diag(A1) is
the diagonal degree matrix and 1 is the all-ones vector. A graph signal is defined as a mapping
x : ¥V — R, which assigns a real value to each node. Such a signal can be represented in vector form
asx = [r1,...,7y] . Forageneral vectora = [ay,...,ay]" € RV*! we define the element-wise
cosine as cos(a) = [cos(ay), ..., cos(an)] . We denote the vectorization operator by vec(-). Finally,
using the Kronecker product ®, the Kronecker sum (also referred to as the Cartesian product) €, and

the Laplacian factors {L, € RV»*N» }I" | we introduce the following definitions.

l@f | Ly=Lpa®...0L, ®_L,=Li®...0Lp, |® L,:=Lp®...@L;, (1)
where the Laplacian matrix of the Cartesian product between two factor graphs can be stated as [31]:
2L, =L ®Ly =L ® Iy, + Iy, ® Lo. 2

Here, I,, denotes the identity matrix of size n. An illustration of a Cartesian graph product between
three factor graphs is shown in Figure[T|(a). A relationship analogous to (2) also applies to adjacency
matrices [32] 33]. We define a D-dimensional tensor as U € RN1X~"XNp - The matrix Q(i) €

RVi% [T s N ] represents the i-th mode matricization (unfolding) of the tensor U [[1]. The mode-
i tensor multiplication of a tensor U by a matrix X € R™*%i is defined as G = U x; X, where
G € RNvx - xNicaxmxNipax--xNo [] - All the proofs of theorems and propositions of this paper
are provided in the appendices.

3.1 Second-Order Continuous Product Graph Neural Networks

We first propose the second-order generative PDE for product graphs as follows:

Definition 3.1 (Second-order Tensorial PDE on graphs (So-TPDEG)). Let U, € RNt xNax-xNp
denote a multidomain tensor whose elements vary as functions of time ¢. We further define the
So-TPDEG with {L,, € RN»*N2} " a5 the set of domain-specific Laplacian matrices corresponding
to each factor graph, as follows:

’U, _ v >
YU, xiLi-2 > U, x; L x; L. 3)
i=1

otz
= 1<i<j<P

Here, there are two important key differences with the first-order TPDEGs [13]]: (i) The first term
in the RHS applies L?, compared to TPDEG, which exploits L;. Therefore, So-TPDEG potentially
searches for further neighborhoods. (if) The second term in the RHS of () models the cross-
interaction between factor graphs, compared to the TPDEG relying only on the independencies of the
domain-specific factor graphs.

Theorem 3.2. Assuming QO as the initial value of Qt, the solution to the So-TPDEG in (3) (with the

. au,
assumption of —=
t=

= 0) is given by:
0

U, = Z (D)2 Ty 31 g{ (L) X2 90 (La) -+ xp 9,7 (Lp), 4)

ec{0,1}*
|€| even

where gt(o)(Li) = cos(tL;), gt(l)(Li) = sin(tL;), € = (e1,...,ep) € {0, 1}, with {0, 1}F being
the Cartesian product between P sets of {0, 1}. Besides, |e| := Zil €;-
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Figure 1: Illustration of key concepts of our model. (a) Cartesian product between three-factor graphs.
(b) Continous product graph function operating on the multidomain graph data U.

Let U, € RM X xNpxFi pe the input tensor, W; € RF1*Fi+1 3 matrix of learnable parameters, ¢,
the learnable graph receptive field, and f(U,) € RN ¥ *NpXFit1 the output tensor. Using Theorem
[B:2] we can define the core function of our framework as follows:

FU) = Y (D)2 U, 5 g (L) 2 g1 (L) - xp gt (Lip) xpya W
cc{o1}” 4)

|€| even

Therefore, the core graph filtering operation is obtained on a product graph as follows (see Figure
[[[b) for a high-level description):

Proposition 3.3. The core function of our framework in () can be rewritten as:

-
[f(gl)(P-&-l)] = COS(tlLo)[QZ(PH)]TWl» (6)
where L :=] @5:11410 is the Laplacian of the Cartesian product graph.

Proposition [3.3]provides the theoretical basis for the practical implementation of our framework. To
compute the solution efficiently, we can use the spectral decompositions of the factor and product
Laplacians {L, = V,A, V] }" | and {L, = V,A,V ]}, respectively. Here, the eigenvectors
of the product graph are obtained as V, =] ®5:1Vp, and the corresponding eigenvalues follow

A, =] @5:1Ap [31]. For each factor graph, we choose the top K,, < N, eigenvalue—eigenvector
pairs to reduce computational cost. More precisely, it can be shown that [27, 22]] Equation (6) can be
equivalently expressed in the following form:

F) times
—_— T T
T K, K,
[fU)psn] = VE | - A @ (v£ " [ Uipa] ) Wi, @
—_———
A,
Wlth Xl — Z (_1)‘6'/2 \L ®5:1gt(lep)(A1()Kp)), V<(>Kp) :\L ®11::1V1()Kp). (8)

ec{0,1}*
|€| even

Here, )\;Kp) € RE»x1 and V) € RN»* K> represent the top K, < N, eigenvalues and their
corresponding eigenvectors of L, selected according to the largest magnitudes of the eigenvalues.
The symbol ® denotes the element-wise (Hadamard) product. Using these components, the output of
the (1)-th layer in our model is expressed as Ql+1(13+1) =0 (f(U;)(p+1)), where o(-) denotes a
suitable nonlinear activation function.

Remark 3.4. To enhance the flexibility of our framework, we introduce factor-specific learnable

graph receptive fields, denoted by {tl(p ) }5:1. Using these parameters, X in can be refor-
I _ 2 P (&) (y(Kp :

mulated as A; = 266{071}}:7‘6'%“ (—1)lel/2 | ®P:19t§") ()\; )), allowing each factor graph

to learn its own adaptive receptive field. This idea can be further extended to channel-wise

receptive fields {t{""°) }ool_1. where the c-th column of A; in (@) is computed as A, =

€ (ep) Ky
ZeE{O,l}Pv |€| even (_1)‘ 2 + ®5:1gtl(p’c> (A; ))'



Remark 3.5. The eigenvalue decomposition (EVD) of the product graph Laplacian L, in (6) has

3
a computational cost of O ( {Hle Np} > in the general case. However, leveraging the separable

structure of product graphs significantly reduces the complexity to O (25:1 NS) in ({7), since EVD

is performed independently on each factor graph. Furthermore, if we retain only the top K, most
significant eigenvalue-eigenvector pairs [22] per factor graph, the cost of spectral decomposition is

further reduced to O(sz K,) for each factor, resulting in an overall complexity of O (Z;J:l NgK p).

3.2 Stability Analysis

We investigate the stability of So-CITRUS under potential perturbations in the factor graphs. Follow-
ing the approach in [34], a perturbation on the p-th graph is modeled by adding an error matrix E,, to
its Laplacian L, where the magnitude of the perturbation is bounded by ¢,, with respect to a matrix
norm |||-||, as follows:

Ly, =Ly, + Ep; IEpl| < ¢p. C))
Proposition 3.6. Ler L, and L, denote the original and perturbed Laplacian matrices of the
Cartesian product graph, where the perturbation for each factor graph follows the model described
in ©O). Under this formulation, the perturbation matrix E admits the Cartesian structure, such that
E = @5:1Ep, and the following relationship holds:

P
Lo=L,+E; [[E|| <) &, (10)

p=1

Let (u, t) and ¢(u, t) denote the outputs of our model under the original and perturbed Laplacian L,

respectively. The Laplacian L, governs the evolution of Qt( p-1) through the flow PDE % =

—L2¢(u,t) as described in (6), with the corresponding solution ¢(u,t) = cos(tLs)p(u, 0), assum-

ing w ’ = 0. The following theorem then establishes that, for Cartesian product graphs, the
t=0

error bound on the stability of our model admits the integrated sum of stability over the factor graphs.

Theorem 3.7. Consider a Cartesian product graph (assumed to have no isolated nodes) with
Laplacians Ly, and Ly, as defined in (6). Suppose the perturbation on each factor graph is modeled
as L, = Ly, + E,, with factor-wise error bounds {||E,|| < €,}1_, as described in Proposition
[3.61 Under this setup, the stability of our model can be characterized by comparing the outputs
o(u,t) and @(u,t) corresponding to the true and perturbed Laplacians, respectively. Particularly,
the overall stability bound is given by the sum of the individual stability from each factor graph:

P

P
l[(u, t) = p(u, )| < tlleu, 0)]i <Z €p> = 0(c). (11

p=1

Theorem [3.7] establishes that the solution of the So-TPDEG () remains stable with respect to the
magnitude of perturbations in the factor graphs. This robustness is particularly important when the
factor graphs are subject to errors.

3.3 Over-smoothing Analysis

Over-smoothing in GNNs is commonly characterized by the decay of Dirichlet energy as the number
of layers increases. This phenomenon has been theoretically studied in prior works [35} 36} 25]] and
can be formulated for the output of a continuous GNN [25]. Specifically, consider the GNN output
U; = [u(t)1,...,u(t)y] ", where u(t); represents the feature vector of node i, which has degree
deg,. Inspired by the previous studies [13]], the Dirichlet energy can then be defined as:

2
=tr(U'LU). (12

u; _ u;
/deg; y/deg;

Motivated by (12)), we generalize the concept of Dirichlet energy to tensors as follows:

. 1
Jim E(U,) =0, where  E(U) := 5 ( Z):S
%,7)€




Definition 3.8. (Tensorial Dirichlet Energy [13]]). Let {Lp} _; denote the normalized factor Lapla-
cians. For a tensor U € RN1> - XNeXF ‘the Tensorial Dirichlet Energy is defined by:

U) = PZZtr(Uf<)L Us, ) (13)

f=1p=1

where fJf(p) =UL,..., flp € RNp XI5, Ni represents the p-th mode matricization of the f-th
slice of U along the (P + 1)-th dimension.

Drawing on prior work in the GSP literature [33] [37| 38], the tensorial Dirichlet energy E(U)
defined in (I3) can alternatively be expressed in matrix form as E(U) = tr(ﬁTflﬂ), where

U e R M) *F with columns given by fj[ f]=vec(U[,..., ,f}) and where the normalized
product graph Laplacian is defined as L = @P 1 L GBP 1 P , implying a useful spectral

property that the spectrum of L spans the 1nterva1 of [0,2] [13]l. From (I3), we note that the
separability of Cartesian heat kernels naturally extends to analyzing over-smoothing across the
different modes of the data. This property is particularly advantageous when the factor graphs exhibit
diverse characteristics. We now proceed with a formal analysis of over-smoothing in our model.
Specifically, for the [-th layer, which consists of H; hidden MLP layers, nonlinear activation functions

o(+), and learnable weight matrices {th};}il, we define:

X1 = fi(Xy), fi(X) := MLP;(cos(L®)X), MLP;(X) := o(...0(c(X)W1)Wia... Wiz,

(14)
Here, X denotes the initial node feature matrix, and f(-) represents a generalized form of (6). The
term cos(L®)) is defined as L:=% @P L , where t(P) corresponds to the receptive field of the
p-th factor graph. The following theorem then prov1des the formal criteria for over-smoothing.
Theorem 3.9. For the product Laplacian L:= 1 ﬂ with domain-specific receptive field t(*)
for the i-th factor graph and the activations o ( m @ bemg ReLU or Leaky ReLU, we have:
BE(X®) < (scos® (tX3)) E(X),
where cos (t \g) = Z (—1)I51/2 H sin(t )\Z(-f)) H cos(t /\Ef)). (15)
scii,...,P} peS p¢S
|S| even
Here, s := Supjen, Si and s; ‘= HhH;1 Sip, With sy, being the square of maximum singular value

of WlTh Additionally, /\Z(.i7 ) is the i,-th eigenvalue of the p-th normalized factor graph such that
cos? (tXG) = max; cos® (tAY), where XY is the i-th non-zero eigenvalue of Lo and A3, = 25:1 /\l(-f ),
Besides, cos? (tAG) = max; cos? (tX?), where XS is the i-th non-zero eigenvalue of L.

Corollary 3.10. If s cos? (tAg) < landl — oo, E(X) exponentially converges to 0, leading to:

te U 2% <2kﬂ' + arccos (i — 1) 2(k + 1) — arccos (i - 1)) . (16)

kEZ

Theorem [3.9]and Corollary [3.10|demonstrate that the oversmoothing rate is influenced by three key
factors: the learnable weight matrices (through s), the spectral characteristics of the factor and product
graph (via \§ ), and the graph receptive field ¢. Unlike first-order TPDEGs [[13]], which yield only a
single lower bound on t and consequently suppress high-frequency components, Eqn. (I6) produces
infinitely many valid intervals. This flexibility enables control over oversmoothing by tuning ¢ and
naturally leads to oscillatory solutions that act as an inherent band-pass filter on the factor graphs.

4 Conclusion and Discussion

In this work, we introduced So-TPDEG, a second-order tensorial PDE framework designed to process
data over multiple interacting (product) graphs, supported by a rigorous theoretical foundation.



Leveraging this formulation, we develop a second-order continuous product GNN, a novel model that
effectively solves these PDEs while providing a principled treatment of stability and over-smoothing.
Compared to current first-order TPDEG models, So-TPDEG does not dampen the medium to high-
frequency components (because it is not a low-pass graph filter [[16]), which might be applicable in
some real-world applications with periodic patterns or fine-grained details [28 29} [30]].

In future work, we will complement these theoretical advances with systematic experimental vali-
dation on real-world benchmarks, as well as experimental validation of the theoretical statements
describing its foundational aspects. A natural direction is spatiotemporal forecasting, where inter-
actions between spatial and temporal graphs across multiple time steps, together with seasonal or
yearly periodicities, provide a compelling testbed for our model.
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A Proof Theorem 3.2

First, we state and prove the following Lemma:
Lemma A.1. By defining ggo) (Lp) := cos(tL,) and gil)(Lp) := sin(tL,) for a specific p, the
cosine filter applied in the product graph can be stated in terms of the factor graphs as follows:

cos(tLe) = Y (D)2 L@l g (L,), (17)

ec{0,1}*
|€| even

Proof. LetL, =| @5:11‘1)' Using the Kronecker-sum property of the matrix exponential,
ei15L<> :l« ®[I)3:1eitLp . (18)

Since cos(tL,) = R(e!"™), where R(.) computes the real part of a complex number, it suffices to
expand the right-hand side. For each p, one can write:

¢ = cos(tL;) + isin(tLy) = gt (Ly) + 19 (L), (19)
with gt(o) (L) := cos(tL,) and g,gl) (L,) = sin(tL,). The Kronecker product of these sums expands
as:

el (0@ +ig @) = > i Lo g (L)), (20)
ec{0,1}F

because choosing ¢, = 1 picks the igt(l) (L,) term in factor p, contributing one factor of p per chosen
sine.

Taking real parts, only multi-indices with even [e| = }_ ¢, remain, and for [e| = 2k we have
R({2F) = R((—=1)*) = (—1)*. Hence:

cos(tLe) = Y (D)2 Lol g (L,), @1)

ec{0,1}*
|€| even

which is the claimed formula. O

Now, using Lemma[A.T|and by performing vectorization on two sides of the equation ():

vee(Uy) = > (=12 L@l gf) (L,)vec(U,) = cos(tLo)vec(Uy), (22)

ec{0,1}*
|€| even

By defining u; := vec(U,) and ug := vec(U,) and considering the Cartesian product Laplacian:
P
Li=) In®-®Iy, 0L oly,, @ 2ly,. (23)
p=1

So, we have:
u; = cos(tLe)uy, (24)

and the following steps are needed to conclude the proof:

Step 1: Second derivative in vectorized form

Using the standard derivative formula for the matrix cosine:
d? 9
p7e] cos(tLs) = —Lg cos(tLs), (25)

we have:
u) = —L2u,. (26)
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Step 2: Expand L2

Define the Kronecker sum terms:

LEZ) =Iny, ®- - @In_, LRIy, @ - ®In,. 27
Then:
P ' P ) ) )
Lo=Y LY,  L2=Y@"?+2 Y LVLY. (28)
i=1 i=1 1<i<j<P

Step 3: Map to tensor mode multiplications

For any tensor X:
L2 vec X) = vec(X x; L?), LYLY) vec X) = vec(X x; L; x; Lj). (29
% 7 % J J =

Applying this to u} = —LZu; and reshaping into tensor form gives:
0’U
a;t: ZU x; L7 —2 Z U, x; L; x; Ly, (30)
1<i<j<P

and the proof is completed.

B Proof of Proposition 3.3]

Now, by performing mode-( P + 1) unfolding on the tensor f(U) in Eq. (31I) and relying on Lemma
[A1] we have:

.
FU) iy = > (DR WIU ) [L o6 (@)]

ec{0,1}* @D
|€| even
Now, by applying transposition and further simplification, we get:
FU) )T = Y (D L) 00 (L) Uy, TW
1) (P+1) p=191, p) [ X1(P+1) !
ec{0,1}F (32)

|€| even
= cos(tiLo) Uy p 1)) Wi,

which concludes the proof.

C Proof of Proposition [3.6]

The proof is presented by induction. Therefore, we first show it is true for the case of P = 2 as:
Lo=L,®L+1; ® Ly
=L +E)®L+I ® (Ly + Eg)
Lo E (33)

=(LioL+LoL)+(E L +I; 9E))

=L+ E.
Then, by assuming the theorem holds for the case of P = K and the definitions of ﬂ’ = @K 1L
and I:’K = @ff:lﬂp, we next show it also holds for P = K + 1 as follows:

L= @KHL (@leLp) GLgy1 =L @I +1; @ L

—( K +EK) ®12+Il ® (LK+1 +EK+1)

(34
L=o/"'L, E=0 'E,

=L ®L+L QL)+ (Ex L+ 1 @ Exiq)
=L+ E.
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To prove the upper bound of the norm of E, in a similar approach to the previous proof, we first prove
for the case of P = 2 as:

IEfl =IE: @ I> + I @ Eof| < [|Ey @ L] + [Ty ® Eqf|
€1 constant  constant g2 (35)
~ = N AN
< NELl- T2l + ITl - IE2fl = Ofer + e2).
Using a similar approach to the proof in (34), we assume the theorem holds for P = K as ||E|| <

O(Zf;l €p), and, based on this information, then, we prove the theorem for the case of P = K + 1
as follows:

IE[ = IEx @ I + I ® B || < 1Bk @ Lo + I @ Exa|

Z;{(:/1 €p constant  constant EK+1 K+1 (36)
< ERM - T + WLl Bkl = O € |
p=1

which concludes the proof.

D Proof of Theorem 3.7

Due to the filtering approach o(u,t) = cos(tLs)@(u,0), we only need to bound || cos(tLs) —

cos(tLs) ||, where L — L = E. The following Lemma describes the properties of Lipschitz continuity
for cosine operators.

Lemma D.1. Ler A, B be Hermitian matrices and let t > 0. Then:
|| cos(tA) — cos(tB)|| < t|A — BJ|.
Moreover, the constant t is optimal: one cannot replace t by a smaller constant valid for all Hermitian
A B.
Proof. Using cos(X) = (e + e¢7'*) and the Duhamel identity:
t
eitA o eitB _ 1/ ei(tfs)A(A o B)eisB dS,
0

we obtain, since e'? and !B are unitary,

t
[eitA — itB|| S/ |A —Bllds =t|A—B].
0

The same bound holds for e 1A — e~#B_ Averaging yields:

Icos(tA) —cos(tB)|| < [l — B[ + Flle™*A — 7B < t||A — B].
For optimality, note that restricting to commuting (diagonal) matrices reduces the inequality to the
scalar Lipschitz bound | cos(tA\) — cos(ty)| < C|A — p|, which forces C' > sup,, |M372(m)|

sup,, |(—tsin(tz))| = t. O

Therefore, using Lemma [D.T]and Proposition [3.6] one can write:

P P
llCu, t) = @ (u, )l < t-[lle(u, O)I- IEN < #[lleu, 0)] (Z €p> =) 0(5). @D

p=1 p=1
E Proof of Theorem

First, Note that Using X as the Graph Fourier Transform (GFT) [16] of x w.r.t. L (with eigenvalues
{Ai}Y)), one can write [20]:

N
B(x)=xLx =) \i}. (38)
1=1

Next, by defining X as the smallest non-zero eigenvalue of the Laplacian L, the following lemma
characterizes the over-smoothing aspects of applying a heat kernel in the simplest case.

12



Lemma E.1. We have: .
E(cos (tL)x) < cos? (tAy) E(x), (39)

where cos® (t\s) = max; cos? (t);).

Proof. By considering the EVD forms of L = VAV and cos (tL) = V cos (tA)VT, one can
write:

E(cos (tL)x)
V cos (tA)VT cos (tLAYVT
~ VAV' V (tA)V N
=x' cos(tL) L cos(tL) x= Z \i@? cos? (tA;) (40)
i=1

N
< cos? (tAy) (Z )xﬁ:f) = cos? (t\y) E(x).

Note that in the above proof, we ruled out the zero eigenvalues since they are useless in analyzing the
Dirichlet energy.

Then by considering the following lemmas from [20]:
Lemma E.2. (Lemma 3.2 in [20]). E(XW) < |[WT|2E(X).
Lemma E.3. (Lemma 3.3 in [20]). For ReLU and Leaky-ReLU nonlinearities E(o(X)) < E(X).

Lemma E.4 (Closed form for a cosine of a sum). For any integer P > 1 and any real numbers
A,...,Ap €ER,

-
COS(Z Aza) = > (P2 I sin(y) [T cos(hy) (41)

SC{1,...,P} pES pgS
|S| even

Proof. We set our proof by induction using the two-angle formula. We prove (1) for all P € N.
For P = 1, the only even subset is @, giving cos(A;). Assume (@) holds for some P and let

Lp = 25:1 Ap. Using cos(x + y) = cos(z) cos(y) — sin(x) sin(y),
cos(Lp + Apt1) = cos(Lp) cos(Aps1) — sin(Lp) sin(Apy1). 42)
The companion identity is

sin(Lp) = Z (—1)(IsI=1/2 (H sin(/\p))(H cos()\p)).

Sc{1,...,P} peS p¢sS
S| odd

Substituting the two expansions into (42)) and distributing shows that all even-cardinality subsets
T C{1,..., P+ 1} occur with coefficient (—1)!71/2, yielding with P + 1 in place of P. Thus
the result holds for all P by induction. O

Therefore, by combining the previous concepts, for [ layers, it can be said that:
E(XWY) < (scos? (t)\Z))lE(X),
where cos (t\g) = Z (—1)!51/2 H sin(t )\Ef)) H cos(t )\Ef)). (43)

sSc{1,...,P} peS pes

Here, )\Ef ) is the i,-th eigenvalue of the p-th normalized factor graph such that cos? (t)\z) =
Py (p)
A

max; cos? (tA?), where A? is the i-th non-zero eigenvalue of L, and g =21 Ny -

So, E(X ") exponentially converges to 0, when lim;_, », (s cos? (tA4))! = 0, i.e., scos? (tAg) < 1:

2 2
te U <2k7r + arccos (s — 1) , 2(k 4+ 1)m — arccos (s - 1)) . (44)

kEZ
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