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Abstract
Effective denoising is critical for managing complex visual inputs contaminated
with noisy distractors in model-based reinforcement learning (RL). Current meth-
ods often oversimplify the decomposition of observations by neglecting the con-
ditional dependence between task-relevant and task-irrelevant components given
an observation. To address this limitation, we introduce CsDreamer, a model-
based RL approach built upon the world model of Collider-structure Recurrent
State-Space Model (CsRSSM). CsRSSM incorporates colliders to comprehensively
model the denoising inference process and explicitly capture the conditional de-
pendence. Furthermore, it employs a decoupling regularization to balance the
influence of this conditional dependence. By accurately inferring a task-relevant
state space, CsDreamer improves learning efficiency during rollouts. Experimental
results demonstrate the effectiveness of CsRSSM in extracting task-relevant infor-
mation, leading to CsDreamer outperforming existing approaches in environments
characterized by complex noise interference. 1

1 Introduction

Reinforcement Learning has achieved remarkable success in complex applications such as au-
tonomous driving [1] and conversational interactions [2, 3]. A key factor in these advancements is
the agent’s ability to accurately perceive and interpret observations from its environment. However,
real-world observations are often corrupted by noise and extraneous information, which can severely
impair an agent’s ability to make sound decisions. This challenge intensifies significantly when
dealing with high-dimensional observations like images [4, 5, 6]. Therefore, effectively managing
such noisy observations is essential for developing robust and reliable RL agents.

From a generative model perspective [7], at timestep t, an observation ot is generated by two
distinct sets of latent variables: task-relevant variables st, which directly influence the agent’s
rewards or actions, and task-irrelevant variables ct, which introduce noise and distractions without
contributing to the task (Figure 1 (a)). Existing model-based RL approaches have sought to extract
task-relevant information from observations [8, 9]. Some methods utilize two separate dynamics
models to extract task-relevant and task-irrelevant information from observations [10, 11], while
others decompose observations into task-relevant and task-irrelevant branches [12] or pursue more
fine-grained decomposition [13, 14]. However, these methods oversimplify the decomposition of
observations by neglecting the conditional dependence between st and ct given ot. The importance
of this conditional dependence can be illustrated with a simple example: consider random variables
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A, B, and C where A + B = C. If C is unknown, A and B are independent. However, once
C is observed (e.g., C = c), their joint probability becomes P (a, b | C = c) = P (a,b)I(a+b=c)

P (C=c) .
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Figure 1: (a) Generation process of noisy observations.
(b) Inference process where we consider the conditional
dependence.

This implies that if we determineA = a,
then B must be c − a. Thus, A and B
become conditionally dependent given
C. This conditional dependence can be
leveraged for efficient denoising. For
instance, as illustrated in Figure 1 (b),
previous approaches perform separate
inferences for st (the walker’s state) and
ct (the background) by assuming condi-
tional independence. However, the back-
ground information can significantly in-
fluence the inference of the walker’s
state. By capturing the conditional de-
pendence between st and ct, we can sig-
nificantly enhance the inference process, as the walker’s state can be rapidly deduced by comparing
differences between the background and the noisy observation. Therefore, capturing this conditional
dependence is beneficial and can improve the inference process.

Inspired by this, we propose Collider-structure Recurrent State-Space Model (CsRSSM), a world
model designed for denoising from a generative modeling perspective. CsRSSM extends Recurrent
State-Space Model (RSSM) [15] by modeling the noisy observation generation process as a sequen-
tial collider-structure model. By explicitly utilizing the collider structures, CsRSSM exploits the
conditional dependence between st and ct given ot to effectively extract task-relevant information.
Specifically, CsRSSM first infers the task-irrelevant variable ct from ot and then utilizes both ct
and ot to infer the task-relevant latent variable st. This sequential inference approach utilizes the
contextual information provided by task-irrelevant variables to enhance the efficiency of task-relevant
information extraction. Additionally, we regularize the model using conditional mutual information
to balance the conditional dependence between st and ct during learning. Furthermore, existing
methods typically employ masking mechanisms [10, 12] or tailored optimization objectives [16],
which depend on prior knowledge or assumptions, to distinguish task-relevant information from
task-irrelevant information. Compared with these strategies which may constrain model flexibility
and introduce biases, CsRSSM adopts a generative modeling perspective, employing dual latent
variables to model the generation of noisy observations and the environment dynamics. It relies solely
on the decoupling regularization and the inherent optimization objectives of the generative model,
without incorporating any additional prior knowledge or supplementary optimization objectives.
Experimental results demonstrate the feasibility and effectiveness of this approach.

Finally, we introduce CsDreamer, an extension of the Dreamer framework [17], that employs
CsRSSM to effectively extract task-relevant information from noisy observations. By conducting
rollouts exclusively within the space of st, CsDreamer enhances the agent’s ability to efficiently learn
policies in high-dimensional visual environments characterized by complex noise distractors. Our
contributions are threefold:

• We propose CsRSSM, a novel generative model for environment dynamics that explicitly
utilizes conditional dependence to model the noisy observation generation.

• We introduce CsDreamer, which builds upon CsRSSM to effectively denoise observations
and train policies within the task-relevant space.

• We conduct extensive experiments demonstrating that our approach outperforms existing
state-of-the-art methods in handling noisy observations.

2 Preliminaries
Recurrent State-Space Model. A Recurrent State-Space Model (RSSM) [15] can capture the
dynamic relationships in the latent space. Dreamer [18, 19, 17] adopts a world model based on RSSM
to construct the dynamics model of the environment perceived by the agent in the latent space. In the
real environment, the agent receives an observation input ot and performs an action at, after which it
receives the next observation ot+1 following the environment’s state transition governed by the proba-
bility distribution P (ot+1|ot, at). The world model captures the dynamics in observation space based
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on a dynamics model in the latent space Z , which primarily comprises the following components: the
trajectory history model ht = fϕ(ht−1, zt−1, at−1), the encoder model qϕ(zt|ht, ot), the transition
model in latent space pϕ(ẑt|ht) and the reward model pϕ(r̂t|ht, zt), where ϕ represents the parameter
vector of the world model. The dynamics model in Z uses the same action space A as the real
environment. In the dynamics model, ht records the historical trajectory information, qϕ(zt|ht, ot)
extracts the useful information from the observation, and pϕ(ẑt|ht) represents the transition in the
latent space.

3 Related Work
Reinforcement Learning with Noisy Observations. Many recent studies have focused on the
reinforcement learning problem with noisy observations. Some studies adopt metric-based repre-
sentation learning approaches to deal with noisy observations [20, 21, 22, 23]. MIIR [24] adopts
information-theoretic principles to learn invariant representations. InfoPower [8] prioritizes action-
correlated factors. RePo [6] encourages reward-predictive yet compact encodings. Another line of
work relies on data augmentation to reduce distractors [25, 26, 27]. Additionally, structured latent
variables have been explored for denoising. SEAR [28] partitions agent- and environment-related
components via segmentation, while DEAR [29] applies a similar mask-based approach without re-
constructing the entire observation. Other methods decompose observations by training two separate
dynamics models to separate task-relevant and task-irrelevant information [10, 11], splitting them
into distinct branches [12], or adopting more fine-grained decomposition [13, 14]. However, these
decomposition-based approaches typically assume conditional independence between factors given
the observation.

Generative Models in Reinforcement Learning. Generative models have played a pivotal role
in tackling high-dimensional observations for RL. Some works employ the Variational Autoen-
coder (VAE) [30, 31] to learn lower-dimensional latent variables from images, facilitating latent-space
policy optimization [32, 15]. Flow-based generative models [33, 34] also provide a way to learn
flexible distributions with explicit likelihoods, though balancing model complexity with real-time
efficiency can be challenging in RL settings. Diffusion models [35, 36] have demonstrated impressive
performance in image generation, and their potential for RL has begun to attract attention [37].
However, most of these generative approaches focus primarily on high-fidelity reconstruction or
predictive modeling, as opposed to explicitly separating out different observational factors such as
background noise or irrelevant distractors.

Disentanglement in Reinforcement Learning. Several studies concentrate on disentanglement
within reinforcement learning to derive efficient representations for behavioral learning. TED [38] and
CMID [39] introduce disentanglement techniques into feature learning process for RL. Our method
draws inspiration from them while focusing on decoupling between two sets of latent variables rather
than disentangling the original feature into individual feature dimensions. Some causal reinforcement
learning approaches target the disentanglement of different state components [40, 41, 16], while they
pay less attention to the observation generation process or employ counterfactual and intervention
mechanisms [42, 43]. Instead, we treat noisy observations from a generative model perspective and
focus on conditional dependence between task-relevant and task-irrelevant variables during inference.
Although Cao et al. [44] also notice the conditional dependence, they combine two separate generative
models rather than utilizing a unified model directly.

4 Method
In this section, we first introduce the underlying assumption regarding the structure of noisy ob-
servations and then present the Collider-structure Recurrent State-Space Model (CsRSSM) from
a generative modeling perspective in Section 4.1. Subsequently, we introduce a decoupling reg-
ularization according to the characteristics of the network in Section 4.2 to facilitate subsequent
reinforcement learning. We present the overall loss objective for the CsRSSM world model in
Section 4.3 and introduce the policy learning in Section 4.4. The overall framework of the CsRSSM
world model is shown in Figure 2.

4.1 Collider-Structure Recurrent State-Space Model
In real-world scenarios, agent observations are often contaminated by noise and irrelevant information,
which degrades decision-making performance. From a generative modeling perspective, we propose
the following assumption to elucidate the relationship between latent variables and the generation of
observations in such environments.
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Figure 2: Framework of the CsRSSM world model. For brevity, content related to historical
information in Eq. (3) is omitted. (a) Probabilistic graphical model of CsRSSM. Shaded nodes
represent observed variables such as actions and observations. Among the unshaded nodes, a2 and o3
are future variables that have not yet been observed at timestep t = 2, while the remaining unshaded
nodes are latent variables. The black solid lines represent the generative model, and the blue dotted
lines illustrate the inference process, which accounts for conditional dependence. (b) The training
framework of the world model.

Assumption 4.1. (Collider structure assumption) There exist two distinct sets of latent variables
that jointly determine the generation of the observation ot ∈ O: the task-relevant latent variable
st ∈ S, which is associated with the agent’s actions and rewards, and the task-irrelevant latent
variable ct ∈ C, which pertains solely to interference.

This assumption posits that the observations an agent perceives are a composite of two underlying
factors and acknowledges the conditional dependence between the latent variables st and ct given
the observation ot. This nuanced modeling ensures that the interplay between task-relevant and
task-irrelevant factors is accurately captured, thereby enhancing the agent’s ability to make informed
and robust decisions despite the presence of noise and irrelevant information. Under Assumption 4.1,
we can obtain the following generative process

p(st, ct, ot) = p(ct)p(st)p(ot|ct, st), (1)

which is similar to the former methods [10, 12, 13]. Due to the presence of collider structures, condi-
tional independence typically does not hold during inference; that is, p(ct, st|ot) ̸= p(ct|ot)p(st|ot).
Instead, we recognize the dependence between st and ct and employ the chain rule of probability
rather than the arbitrary factorization based on conditional independence to factorize the inference
probability. There are two ways to implement the probability chain rule: either by inferring ct first or
inferring st first. In scenarios where agents receive noisy observations, the provision of additional
task-irrelevant information can aid in inferring task-relevant information given the observations of an
agent, as indicated by a reduction in conditional entropy: H(st|ct, ot) ≤ H(st|ot). Therefore, we
utilize

p(ct, st|ot) = p(ct|ot)p(st|ct, ot), (2)

where the main difference lies in the inclusion of ct for the inference of st. We first use the
observation ot to infer ct, the task-irrelevant information, and then utilize both ct and ot to infer st,
the task-relevant information.

To better capture the temporal information in noise, we model the task-irrelevant variables ct as
time-varying. Constant noise can be regarded as a special case of time-varying noise where ct remains
constant. In practice, the noise at the next moment is primarily influenced by the noise at the current
moment. Hence, we posit the following assumption.

Assumption 4.2. The transitions of the task-irrelevant latent variables ct satisfy the Markov property,
i.e., ct ∼ p(ct|c<t) = p(ct|ct−1).
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Remark 4.3. Assumption 4.2 is analogous to the Markov property in Reinforcement learning, with
the distinction that transitions of ct are independent of the agent’s actions.

Consider the sequences {ot, at, rt, xt}Tt=1, where t is the timestep, at is the action taken by the agent,
rt is the reward signal, xt is the episode continuation flag and T is the length of the sequence. Under
Assumption 4.1 and Assumption 4.2, we propose the CsRSSM world model, which leverages the
conditional dependence of the collider structures to model the noisy observation generation process
from a generative modeling perspective:

Task-irrelevant history: hct = fϕ(h
c
t−1, ct−1)

Task-relevant history: hst = fϕ(h
s
t−1, st−1, at−1)

Task-relevant transition: pϕ(ŝt|hst )
Task-irrelevant transition: pϕ(ĉt|hct)
Task-irrelevant encoder: qϕ(ct|hct , hst , ot)
Task-relevant encoder: qϕ(st|hct , hst , ct, ot)
Reconstruction model: pϕ(ôt|hst , st, hct , ct)
Reward model: pϕ(r̂t|hst , st),
Continuation predictor: pϕ(x̂t|hst , st)

(3)

where ϕ is the parameter vector of the world model. Analogous to the RSSM [15], our approach
incorporates historical information. We denote the task-irrelevant history as hct and the task-relevant
history as hst . The transition models provide the transition priors: pϕ(ŝt|hst ) predicts the next
task-relevant state based on the current task-relevant history, while pϕ(ĉt|hct) predicts the next
task-irrelevant state from the current task-irrelevant history. The two observation encoders operate
similarly to the transition models but incorporate observations as inputs.

The inclusion of historical information introduces conditional dependence, and the posterior distri-
butions of st and ct capture all conditional dependence between task-relevant and task-irrelevant
information within the collider structures given the observations. Specifically, for each collider
structure, the model first uses the history and the current observation ot to infer the task-irrelevant
information ct. Subsequently, it utilizes the history along with both ot and ct to infer the task-relevant
information st. We use the features of both ct and st to reconstruct the observation. In contrast, we
only use the features of st to predict the task information, such as rewards and episode continuation
flags. These task information reconstructions facilitate the learning of task-relevant latent variables
st. Finally, we derive the evidence lower bound (ELBO) loss for the CsRSSM world model from a
generative modeling perspective:

LELBO =−
T∑
t=1

[
E[ln pϕ(ot|hst , st, hct , ct) + ln pϕ(rt|hst , st) + ln pϕ(xt|hst , st)]

− E[KL[qϕ(ct|hct , hst , ot)∥pϕ(ct|hct)]]− E[KL [qϕ(st|hct , hst , ct, ot)∥pϕ(st|hst )]]
]
,

(4)

where we maximize the log-likelihood of observations, rewards and continuation flags. The two KL
divergence losses serve separately for task-relevant and task-irrelevant information, simultaneously
training the priors toward the representations and regularizing the representations toward the priors.
The derivation of Eq. (4) can refer to Appendix A.1. Notably, when faced with noisy observations, the
presence of conditional dependence mitigates trivial solutions where ct = 0 and st = ot, ensuring
that both ct and st are effectively utilized.

4.2 Decoupling Regularization in CsRSSM

Directly training the CsRSSM world model may present some issues. Specifically, since the model
training primarily relies on the reconstruction objectives, there is a risk of conflating the task-
relevant and task-irrelevant variables during the training process. This conflation can hinder the
model’s ability to accurately disentangle the underlying factors of the observations, ultimately de-
grading performance and slowing convergence. To mitigate these issues, we propose explicitly
decoupling the task-relevant latent variables st from the task-irrelevant latent variables ct. We
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measure the information shared between st and ct given ot using the conditional mutual informa-
tion, denoted as I(st; ct|ot). Noting the relationship that the KL divergence between conditional
dependence and conditional independence is equivalent to the conditional mutual information, i.e.,
KL[p(ct|ot)p(st|ct, ot)∥p(ct|ot)p(st|ot)] = I(st; ct|ot), we achieve decoupling by introducing a
regularization loss that minimizes the conditional mutual information between st and ct given the
condition variables {o≤t, a<t}, denoted as I(st; ct|hct , hst , ot). Minimizing this mutual information
encourages the task-relevant and task-irrelevant variables to capture distinct and non-overlapping
aspects of the observations, thereby facilitating more effective learning for CsRSSM. Directly min-
imizing the conditional mutual information is intractable. By incorporating qξ(st|hct , hst , ot), a
variational distribution with parameters ξ that approximates the true posterior, we can obtain an upper
bound loss for the conditional mutual information:

LMI = E[KL[qϕ(st|ct, hct , hst , ot)∥qξ(st|hct , hst , ot)]], (5)

where qϕ(st|ct, hct , hst , ot) is the task-relevant encoder of CsRSSM. The Derivation can refer to
Appendix A.2. We can minimize the conditional mutual information for the task-relevant latent
variables st and the task-irrelevant latent variables ct by minimizing the upper bound in Eq. (5).

4.3 Overall Objective for CsRSSM

Integrating the discussions in Sections 4.1 and 4.2, we obtain the final loss function for CsRSSM
world model

LCsRSSM = LELBO + λLMI, (6)

where the second item serves as the regularization of the ELBO loss to balance the conditional
dependence between st and ct. The hyperparameter λ controls the weight of the regularization.
A larger λ enforces greater separation between st and ct, promoting distinct representations of
task-relevant and task-irrelevant information within the latent space, while a smaller λ leverages the
conditional dependence to facilitate more efficient inference.

Previous studies operate under the conditional independence assumption for st and ct [10, 12] given an
observation. This assumption is a special case of our formulation where the regularization coefficient
λ approaches infinity. In such scenarios, LMI dominates the loss function, effectively reducing the
mutual information between st and ct to zero. This enforces strict independence between the task-
relevant and task-irrelevant variables given an observation, aligning with the conditional independence
assumption. Our approach generalizes existing methods by introducing a finite λ, enabling a flexible
trade-off for the degree of decoupling enforced between st and ct. This extension incorporates the
conditional dependence between st and ct for world model denoising. More experimental discussions
are provided in Section 5.3.

Moreover, existing methods typically employ masking mechanisms [10, 12] or tailored optimization
objectives [16], which depend on prior knowledge or assumptions, to distinguish task-relevant infor-
mation from task-irrelevant information. However, these strategies may constrain model flexibility
and introduce biases. Instead, we adopt a generative modeling perspective, employing dual latent
variables to model the generation of noisy observations and the environment dynamics. The model is
trained solely based on the inherent optimization objectives of the generative model (the reconstruc-
tion errors and the prior regularizations in Eq. (4)), and the decoupling regularization according to the
model network (Eq. (5)). It does not incorporate any additional prior knowledge or supplementary
optimization objectives.

4.4 Policy Learning in CsDreamer
Finally, we propose CsDreamer, which is an extension of Dreamer [17] built upon CsRSSM. The
agent’s policy is learned during the imagination phase of the CsRSSM. By focusing on task-relevant
information, we only utilize st to choose the next action. i.e., at ∼ πθ(at | hst , st), where π is the
policy of the agent. During the imagination phase, the agent interacts solely with the task-relevant
transition model, pϕ(ŝt|hst ), to generate rollout trajectories, with rewards predicted by the reward
model pϕ(r̂t|hst , st). We predict the value utilizing Vψ(hst , st) based on st. The agent policy is trained
analogously to Dreamer [17]. Focusing on task-relevant information and leveraging the strengths of
model-based reinforcement learning ensure efficient and targeted policy development.
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Figure 3: Performance on DMC using gray natural videos as background.

0.0 250.0 500.0 750.0 1000.0
Steps (K)

0

200

400

600

800

M
ea

n
Ep

is
od

e
R

et
ur

n

Walker Run + CB

0.0 250.0 500.0 750.0 1000.0
Steps (K)

0

200

400

600

800

M
ea

n
Ep

is
od

e
R

et
ur

n

Cheetah Run + CB

0.0 250.0 500.0 750.0 1000.0
Steps (K)

0

200

400

600

800

1000

M
ea

n
Ep

is
od

e
R

et
ur

n

Finger Spin + CB

0.0 250.0 500.0 750.0 1000.0
Steps (K)

0

20

40

60

80

100

120

M
ea

n
Ep

is
od

e
R

et
ur

n

Hopper Hop + CB

CsDreamer Dreamer DenoisedMDP Iso-Dream TIA

Figure 4: Performance on DMC using colorful natural videos as background.

5 Experiments
We begin by describing the experimental setup in Section 5.1. Subsequently, we address the following
research questions: (1) Can CsDreamer enhance the training performance in complex environments
with distractors? (Section 5.2); (2) What role does the decoupling regularization loss play in the
overall objective, and how do the proposed modules affect performance? (Section 5.3); (3) Do
the latent variables in the proposed framework exhibit interpretable semantics upon reconstruction
visualization? (Section 5.4).

5.1 Experiment Setup
Benchmarks. We evaluate our model and baselines on visual control tasks. First, we assess
performance on four DeepMind Control Suite (DMC) [45] tasks: Walker Run, Cheetah Run, Finger
Spin and Hopper Hop. To introduce noise distractors, we replace the original backgrounds with
two types of task-irrelevant information. The first is a gray background composed of natural videos
from the Kinetics 400 dataset [46], following the DBC [21] configuration (denoted as GB). The
second is a colorful background derived from DAVIS 2017 videos [47], adhering to the background
distractor settings in Distracting Control Suite [48] (denoted as CB). These benchmarks require the
agent to extract task-relevant information, identify the target entity within the DMC environment, and
effectively filter out background distractions. Subsequently, we evaluate these approaches in the more
realistic simulated driving environment, CARLA [49]. Here, the agent must extract task-relevant
information from visual perception while mitigating distractions such as trees and dynamic sunlight.
We also conduct experiments on the complex Atari 100K benchmark [50] in Appendix E.2. Further
details on the experimental setup can be found in Appendix C.

Baselines. To evaluate the effectiveness of our proposed CsDreamer framework, we compare it
against several state-of-the-art model-based RL algorithms known for their strong performance in
high-dimensional observation environments. Our primary baselines include Dreamer [17], TIA [10],
Iso-Dream [12] and Denoised MDP [13]. Dreamer is a classic work in model-based RL but does
not specifically address environments with noisy distractors. TIA targets settings with significant
distractions by employing separate dynamics models for task-relevant and task-irrelevant features
and utilizing masking techniques to isolate essential information. Iso-Dream incorporates separate
task-relevant and task-irrelevant branches within a single world model to focus on aspects of the
environment that the agent can influence. Denoised MDP decomposes observations into more
fine-grained components, enhancing performance in complex environments with noisy distractors.
Additionally, we compare our method with DBC [21], a model-free RL method, in the DMC
environment with gray natural videos as background.
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Figure 6: Ablation study across different λ on Cheetah Run using
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Figure 7: Ablation Performance on DMC using gray natural videos as background.

5.2 Performance in Visual Inputs with Complex Noisy Distractors
Figure 3 presents the performance of various methods on DMC with gray natural video backgrounds.
Solid lines represent mean episode returns, while shaded areas represent the 95% confidence intervals.
All methods show some performance in the Walker Run and Cheetah Run tasks. While most
approaches performed well on the Finger Spin task, the model-free method, DBC, lags behind. Only
CsDreamer, TIA, and DenoisedMDP demonstrate substantial performance on the more complex
Hopper Hop task. Notably, CsDreamer consistently outperforms all baseline methods across all
four benchmark tasks. Figure 4 presents the performance on DMC with colorful backgrounds. The
results also show that CsDreamer consistently outperforms all baseline methods across the four tasks.
Iso-Dream exhibits the lowest performance in every task, likely due to its difficulty in managing
complex and colorful background distraction. In the Cheetah Run and Finger Spin tasks, TIA
shows competitive performance, approaching that of CsDreamer. In addition, Dreamer also delivers
promising results within this benchmark, which may be attributed to the characteristics of the dataset
used in Distracting Control Suite [48]. Specifically, it introduces background variations with multiple
non-continuous images, making it easier for Dreamer to capture and disregard background-related
features compared to scenarios using original videos as backgrounds, as shown in Figure 3.

We also evaluate these algorithms on the CARLA simulator, a more realistic benchmark for au-
tonomous driving. The results are shown in Figure 5. All the methods exhibit similar performance at
the first 200K timesteps. Although the interference-handling baselines such as TIA and Denoised-
MDP perform well in the DMC environment with noisy background distractors, they fail to achieve
comparable performance in the CARLA environment. This discrepancy arises from CARLA’s sub-
stantial complexity, where these methods struggle to effectively distinguish task-relevant information
from irrelevant distractions in first-person views and fail to extract task-relevant features from the
highly intricate and volatile input observation. In contrast, CsDreamer demonstrates superior adapt-
ability, outperforming all baselines and highlighting its strength in addressing more realistic and
complex reinforcement learning tasks. Notably, Dreamer achieves impressive performance in the
CARLA environment, slightly trailing behind CsDreamer. This strong performance is attributable to
Dreamer’s approach of encoding all environmental information into its latent space, which ensures
the preservation of critical task-relevant features essential for autonomous driving. However, the
inclusion of irrelevant information may slightly hinder its efficiency and robustness compared to
CsDreamer.

5.3 Ablation Study
The Role of Regularization. Figure 6 illustrates the effect of varying the coefficient λ in Eq. (6).
As λ increases, the upper bound of mutual information progressively decreases, signaling a reduced
conditional dependence between task-relevant and task-irrelevant variables. Meanwhile, the mean
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episode return exhibits a non-monotonic trend, initially increasing and then decreasing. A small
λ weakens the constraint imposed by the mutual information upper bound, heightening the risk of
confounding task-relevant with task-irrelevant information, as previously discussed. Conversely,
a large λ minimizes the association between these variables. The near independence of ct and st,
given the observation ot, results in poorer performance, thereby validating the analysis presented in
Section 4.3.

Effectiveness of Different Modules. We conduct ablation studies to evaluate the contributions of
the conditional dependence and decoupling regularization modules in CsDreamer. Specifically, we
compare the performance of CsDreamer and Dreamer against:

• CsDreamer w/o CD: CsDreamer using the CsRSSM framework without conditional depen-
dence for st and ct given ot in collider structures.

• CsDreamer w/o MI: CsDreamer with the CsRSSM framework excluding decoupling
regularization.

The implementation details can refer to Appendix D.3. As shown in Figure 7, CsDreamer w/o CD
achieves mean episode returns comparable to or higher than those of Dreamer, demonstrating the
effectiveness of structural decomposition. However, it underperforms compared to CsDreamer w/o
MI, highlighting the importance of conditional dependence. Introducing decoupling regularization,
CsDreamer performs better than CsDreamer w/o MI. It demonstrates that the decoupling regular-
ization can mitigate confusion between task-relevant and task-irrelevant variables, as mentioned in
Section 4.2. CsDreamer consistently outperforms all other models across all tasks, achieving the best
performance. It validates the effectiveness of CsRSSM and the efficient utilization of task-relevant
information within the behavior policy of CsDreamer, ultimately enhancing overall performance.
Additional ablation experiments are provided in Appendix E.5.

5.4 Visualization of The Latent Variables
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Figure 8: Reconstruction visualization of Cheetah
Run + GB.

In this section, we reconstruct the visual input
observation to interpret semantic information
extracted by st and ct. Figure 8 presents the
reconstruction visualization results for Chee-
tah Run + GB. We sample a trajectory and
record both ground truth and reconstructed
images at selected timesteps. The first row
displays the ground truth of the trajectory.
The second row shows reconstructions using
the model pϕ(ôt|hst , st, hct , ct) from CsRSSM,
which concatenates features from both pos-
terior st and ct. To isolate the semantic in-
formation captured by ct, we set all feature
dimensions of st to zero and concatenate it with posterior ct as the features for reconstruction,
denoted as pϕ(ôt|0,0, hct , ct) in the third row. Conversely, to focus on information from st, we set
features of ct to zero and reconstruct using pϕ(ôt|hst , st,0,0), shown in the fourth row. In the fifth
row, we obtain the prior ŝt by imagining within the task-relevant transition model pϕ(ŝt|hst ) using
the first five posterior st features and then reconstruct the subsequent observations accordingly.

The second row demonstrates that combining features from st and ct facilitates effective reconstruc-
tion. In the third row, the cheetah entity is nearly imperceptible, leaving only background automobile
details. Conversely, the fourth row exhibits a highly blurred background while the cheetah remains
clear. This indicates that ct effectively captures task-irrelevant information, whereas st captures
task-relevant information. In the fifth row, the cheetah in the first 30 frames closely matches the
ground truth, and the background is significantly blurred. These observations suggest that performing
imagination in S space allows the model to focus on task-relevant dynamics. These results illus-
trate why CsDreamer achieves outstanding performance. Additional visualization experiments are
provided in Appendix E.8.

6 Conclusion and Future Work
In this work, we adopt a generative modeling perspective and exploit the conditional dependence
between task-relevant and task-irrelevant latent variables for both observation generation and environ-
ment dynamics in scenarios with complex noisy distractors. By effectively separating task-relevant
features from irrelevant background interference, CsDreamer enhances the agent’s decision-making
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capability. Our experiments confirm its superior performance in noisy environments. We also ac-
knowledge the limitations, including the assumption of Markovian, action-independent noise and a
simplified binary partition of latent variables, which may not capture the complexity of real-world
scenarios. The model’s capability carries some societal implications. While it can improve safety
in applications like autonomous navigation and robotics, it also presents some risks. These include
overreliance, where a critical safety signal could be erroneously ignored, and dual-use potential,
where the technology could be repurposed for invasive surveillance. Our future work will address
these challenges on two fronts. Technically, we will focus on modeling more complex non-Markovian
dynamics and exploring richer, more structured latent representations. Concurrently, we will pri-
oritize research into enhancing model transparency to mitigate overreliance and will investigate
technical safeguards, such as built-in privacy-preserving mechanisms, to deter misuse. We believe
this dual focus on technical advancement and ethical considerations is essential for the responsible
development of robust autonomous agents.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction describe that we propose to leverage conditional
dependence to implement efficient world model denoising.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mainly describe the limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide a full set of assumptions for each theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information to reproduce the results in the paper, and we
also provide the code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]
Justification: We provide the code in the supplementary materials, and give the instructions
to run the code in the README.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give all the training and test details in the experiment part and the related
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use the confidence intervals and the error bars in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in Appendix D.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive and negative societal impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite them explicitly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Derivations

A.1 Derivation of ELBO Loss in CsRSSM

We use o1:T , a1:T , r1:T and x1:T for observation sequence, action sequence, reward sequence and
episode continuation flag sequence. Similarly, we also use s1:T and c1:T for task-relevant and
task-irrelevant latent variables. After introducing the variational posterior q(s1:T , c1:T |o1:T , a1:T ) =∏
t q(ct|o≤t, a<t)q(st|ct, o≤t, a<t), we can obtain the variational bound for the dynamics models

p((o1:T , r1:T , x1:T ), s1:T , c1:T |a1:T ) =
∏
t p(st|st−1, at−1)p(ct|ct−1)p(ot|st, ct)p(rt|st)p(xt|st)

in CsRSSM using Jensen’s inequality

ln p((o1:T , r1:T , x1:T )|a1:T )

= ln

[
Eq(s1:T ,c1:T |o1:T ,a1:T )

[
p((o1:T , r1:T , x1:T ), s1:T , c1:T |a1:T )

q(s1:T , c1:T |o1:T , a1:T )

]]
≥Eq(s1:T ,c1:T |o1:T ,a1:T )

[
ln
p((o1:T , r1:T , x1:T ), s1:T , c1:T |a1:T )

q(s1:T , c1:T |o1:T , a1:T )

]
=Eq(s1:T ,c1:T |o1:T ,a1:T )

[
ln

∏
t p(st|st−1, at−1)p(ct|ct−1)p(ot|st, ct)p(rt|st)p(xt|st)∏

t q(ct|o≤t, a<t)q(st|ct, o≤t, a<t)

]
=Eq(s1:T ,c1:T |o1:T ,a1:T )

[
T∑
t=1

[ln p(st|st−1, at−1) + ln p(ct|ct−1) + ln p(ot|st, ct) + ln p(rt|st) + ln p(xt|st)

− ln q(ct|o≤t, a<t)− ln q(st|ct, o≤t, a<t)]
]

=

T∑
t=1

[∫ T∏
t′=1

q(ct′ |o≤t′ , a<t′)q(st′ |ct′ , o≤t′ , a<t′) [ln p(ot|st, ct) + ln p(rt|st) + ln p(xt|st)

+ (ln p(st|st−1, at−1)− ln q(st|ct, o≤t, a<t)) + (ln p(ct|ct−1)− ln q(ct|o≤t, a<t))] ds1:Tdc1:T
]

=

T∑
t=1

[
Est,ct [ln p(ot|st, ct)] + Est [ln p(rt|st)] + Est [ln p(xt|st)]− Ect−1

[KL[q(ct|o≤t, a<t)∥p(ct|ct−1)]]

− Ect,st−1
[KL [q(st|ct, o≤t, a<t)∥p(st|st−1, at−1)]]

]
.

(7)

By applying the history models in Eq. (3), we can ultimately obtain the LELBO in Eq. (4).

A.2 Derivation of the upper bound for conditional mutual information

By incorporating the variational approximate distribution q(st|hct , hst , ot), the original conditional
mutual information is given by:

I(st; ct|hct , hst , ot) =Eot,st,ct
[
ln

p(st, ct|hct , hst , ot)
p(st|hct , hst , ot)p(ct|hct , hst , ot)

]
=Eot,st,ct

[
ln
p(st|ct, hct , hst , ot)q(st|hct , hst , ot)
p(st|hct , hst , ot)q(st|hct , hst , ot)

]
=Eot,st,ct

[
ln
p(st|ct, hct , hst , ot)
q(st|hct , hst , ot)

]
− Eot,st,ct

[
ln
p(st|hct , hst , ot)
q(st|hct , hst , ot)

]
=Eot,st,ct

[
ln
p(st|ct, hct , hst , ot)
q(st|hct , hst , ot)

]
− Eot,st

[
ln
p(st|hct , hst , ot)
q(st|hct , hst , ot)

]
=Eot,ct [KL[p(st|ct, hct , hst , ot)∥q(st|hct , hst , ot)]]− Eot [KL[p(st|hct , hst , ot)∥q(st|hct , hst , ot)]
≤Eot,ct [KL[p(st|ct, hct , hst , ot)∥q(st|hct , hst , ot)]].

(8)

Then we can obtain the upper bound regularization loss in Eq. (5).
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B Pseudo Code

The whole algorithm is shown in Algorithm 1. For brevity, we omit the episode continuation flag xt.

Algorithm 1 CsDreamer
Initialize: Dataset D collected by random policy, the policy parameters θ, the critic parameters ψ,
the variational estimator parameters ξ and the parameters ϕ in the CsRSSM world model
for training step t1 = 1...T1 do

for update step t2 = 1...T2 do
// Dynamics learning
Sample minibatch {(ot, at, rt)}k+Lt=k ∼ D
Compute loss according to Eq. (6)
Update CsRSSM world model parameters ϕ and the variational estimator parameters ξ
// Behavior learning
Infer the task-irrelevant information ct ∼ qϕ(ct|hct , hst , ot)
Infer the task-relevant information st ∼ qϕ(st|hct , hst , ct, ot)
Imagine trajectories {(st, at, rt)}k+Ht=k using pϕ(ŝt|hst ), pϕ(r̂t|hst , st) and the policy π
Update the policy parameters θ and the critic parameters ψ using the imagined trajectories

end for
for rollout step t3 = 1...T3 do

Infer the task-irrelevant information ct ∼ qϕ(ct|hct , hst , ot)
Infer the task-relevant information st ∼ qϕ(st|hct , hst , ct, ot)
Sample action from exploration policy at ∼ πexp(at|hst , st)
rt, ot+1 ← env.step(at)

end for
Add experience to dataset D ← D ∪ {(ot, at, rt)}

end for

C Details about the Benchmark

(c)(a)

(b) (d)

Figure 9: Example observations of the benchmarks. (a) The observations in DMC with gray videos
in the background and the four tasks from left to right are Walker Run, Cheetah Run, Finger Spin
and Hopper Hop. (b) The observations in DMC with colourful videos in the background and the
four tasks from left to right are Walker Run, Cheetah Run, Finger Spin and Hopper Hop. (c) The
observation in CARLA simulator. (d) The observation in the game Alien, which is one of the 26
games in the Atari 100K benchmark.

DMC with Complex Backgrounds. We introduce the natural video background as the noisy
distractor for the widely used robotic locomotion benchmark, DeepMind Control Suite [45]. We
select four tasks for evaluation. The Walker Run task assesses the stability and coordination of
bipedal locomotion, Cheetah Run examines high-speed movement and agility, Finger Spin evaluates
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precise motor control and object manipulation capabilities, and Hopper Hop tests dynamic balance
and energy management in single-leg hopping. We choose Walker Run and Hopper Hop instead of
Walker Walk and Hopper Stand for more challenging evaluation. For each task, we adopt two types
of noisy distractors. We first introduce the natural video from the Kinetics dataset [46]. We only use
the videos in ’driving car’ class and set it to gray as that in [21, 10] (Figure 9 (a)). Then we utilize
the colourful videos of the DAVIS 2017 dataset [47] as that in [48]. We utilize all the 90 train-val
videos and adopt the dynamic setting, where the video plays forwards or backwards until the last or
first frame is reached at which point the playing direction is reversed, thereby the background motion
is always smooth and without ’cuts’ (Figure 9 (b)). The height and the width of the input observation
image are 64× 64.

CARLA. To evaluate on a more real-world control system, we use the CARLA simulator [49]
to conduct photo-realistic visual observations. The agent’s goal is to drive as far as possible along
CARLA’s Town04’s highway in 1000 timesteps in a first-person way without colliding with other
moving vehicles or barriers as the setting in DBC [21]. To increase the task difficulty, we make
two modifications as that in Iso-Dream setting [12]. We use one camera which obtains images of
64× 64 pixels instead of five to limit the field of view and we include 30 other moving vehicles or
obstacles instead of 20 to increase the likelihood of collisions. The example observation is shown in
Figure 9 (c).

Atari 100K Benchmark. The Atari 100K benchmark [50] comprises 26 distinct Atari games.
Within this benchmark, an agent is permitted 100K interaction steps for each game environment.
Due to a frameskip setting of 4, this translates to 400K frames. This interaction volume is roughly
equivalent to about two hours of real-time gameplay. The game environments within this benchmark
are notably complex, making it a practical testbed for evaluating the algorithms’ robustness and
data efficiency. We keep all implementation details the same as Dreamer [17], and the example
observation is shown in Figure 9 (d).

D Implementation Details

D.1 Base Method

CsDreamer is implemented based on the classic model-based reinforcement learning method,
Dreamer [18, 19, 17]. Given that Dreamer has multiple versions, we first evaluate DreamerV2 [19]
and DreamerV3 [17] 2on DMC using gray natural videos as background.

The performance results are in Figure 10, both DreamerV2 and DreamerV3 demonstrate overall
similar performance across the four tasks. Specifically, DreamerV3 shows a slight advantage in
the Finger Spin + GB tasks, while DreamerV2 performs marginally better in the Walker Run +
GB and Hopper Hop + GB tasks. They have comparable performance in the Cheetah Run + GB
task. Overall, the performance differences between the two versions are minimal. The minimal
performance differences between DreamerV2 and DreamerV3 can likely be attributed to several
factors. Firstly, both models share a significant degree of architectural and methodological overlap.
Secondly, some of the improvements in DreamerV3 are primarily designed to enhance adaptability
across various domains and tasks. However, these enhancements may compromise the model’s
fundamental capabilities. This trade-off means that while DreamerV3 can perform effectively in a
broader range of scenarios, it might not significantly outperform DreamerV2, resulting in similar
performance across the evaluated tasks. Considering that DreamerV3 has a much smaller world
model loss (on the order of tens) than DreamerV2 (over ten thousand) and in our experiments LMI

is typically within single digits, we use DreamerV3 as the base method so that LCsRSSM and LMI

have a similar order of magnitude to avoid problems. Unless otherwise specified, in the experiments,
Dreamer refers to DreamerV3, and CsDreamer is based on DreamerV3.

2In this paper, we utilize the ’S’ size model for DreamerV3 in https://arxiv.org/pdf/2301.04104v1.
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Figure 10: Performance of DreamerV2 and DreamerV3 on DMC using the gray natural videos as
background.

D.2 Key Component Implementation

The RSSM world model in Dreamer implements the KL divergence as two separate components in
different stop-gradient operator places and loss scales [17]. Similarly, the two KL divergences in
Eq. (4) are each composed of two distinct loss terms. Specifically, we have

E[KL[qϕ(ct|hct , hst , ot)∥pϕ(ct|hct)]] = βcdynLcdyn(ϕ) + βcrepLcrep(ϕ)
E[KL [qϕ(st|hct , hst , ct, ot)∥pϕ(st|hst )]] = βsdynLsdyn(ϕ) + βsrepLsrep(ϕ),

(9)

where

Lcdyn(ϕ) = max (1,KL [sg (qϕ(ct|hct , hst , ot)) ∥pϕ(ct|hct)])
Lcrep (ϕ) = max (1,KL [qϕ(ct|hct , hst , ot)∥ sg (pϕ(ct|hct))])
Lsdyn(ϕ) = max (1,KL [sg (qϕ(st|hct , hst , ct, ot)) ∥pϕ(st|hst )])
Lsrep (ϕ) = max (1,KL [qϕ(st|hct , hst , ct, ot)∥ sg (pϕ(st|hst ))]) ,

(10)

and sg(·) denotes the stop-gradient operator. In the CsRSSM world model, the task-relevant com-
ponent utilizes the same network architecture as Dreamer. The primary distinction arises during
the computation of the observation posterior, where both the observation ot and the inferred latent
variable ct are concatenated and provided as input, rather than using only the observation ot as in
Dreamer. Additionally, when reconstructing the observation, the model concatenates the inferred
ct with the variable st to reconstruct ot jointly. The task-irrelevant component employs a network
structure similar to that of Dreamer but with some modifications. It does not take actions as input,
ensuring that it remains unaffected by action-related information. Moreover, it does not predict
task-relevant variables such as rewards, thereby focusing solely on modeling the noise distractors
independent of the task-relevant objectives.

For the regularization loss LMI, we use a variational estimator qξ for the variational approximate
distribution q(st|hct , hst , ot). The variational estimator takes the history (hct , h

s
t ), and the embedding

of ot as the input. The gradients from these variables will be blocked from backpropagation during
the training of the variational estimator, i.e., qξ(st| sg(hct , hst , ot)). This ensures that the learning of
the variational estimator does not influence the parameters of the preceding models. Then, we utilize
the part network of ct to get the embedding of (hct , h

s
t , ot), and we use the embedding to get the

variational approximate distribution after a linear layer.

D.3 Module Ablation Implementation

Here, we detail the implementation of the two ablation methods described in Section 5.3. CsDreamer
w/o MI is implemented by simply removing the decoupling regularization from CsDreamer. Cs-
Dreamer w/o CD adopts the CsRSSM framework with some modifications. Specifically, since
CsDreamer w/o CD does not account for the conditional dependence between st and ct given ot in
collider structures, we adjust its encoders: the task-irrelevant encoder is defined as qϕ(ct|hct , ot) and
the task-relevant encoder is defined as qϕ(st|hst , ot). The world model is then trained using LELBO.
Because CsDreamer w/o CD ignores all conditional dependence, the LMI term is omitted.
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D.4 Hyperparameters and Time Cost

Table 1 presents the primary hyperparameters of CsDreamer. Since the behavior policy relies solely
on the feature of st, and the hyperparameters for st in CsRSSM closely resemble those of the latent
variables in RSSM of DreamerV3, we adopt the same hyperparameters for the behavior policy as in
DreamerV3. The experiments are mainly conducted on NVIDIA RTX 4090 GPUs. With each GPU,
we are able to train each environment at a rate of approximately 24K timesteps per hour.

Table 1: Hyperparameters for CsDreamer

Hyperparameter Value
Action Repeat 4 for CARLA and Atari, and 2 for others
λ 10.0 for Hopper Hop+GB, 0.2 for CARLA and Atari, and 1.0 for others
βsdyn 0.5
βsrep 0.1
βcdyn 0.5
βcrep 0.1
Discrete latent dimensions of st 32
Discrete latent classes of st 32
Discrete latent dimensions of ct 16 for CARLA, 8 for Atari, and 32 for others
Discrete latent classes of ct 16 for CARLA, 8 for Atari, and 32 for others
GRU recurrent units of st 512
GRU recurrent units of ct 256 for CARLA, 128 for Atari, and 512 for others
Dense hidden units of st 512
Dense hidden units of ct 512
MLP layers 2

E Additional Experiment Results

E.1 Performance Scores

In Table 2, we summarize the final mean episode return and their corresponding standard deviations
for various model-based RL methods across multiple environments in the main text, evaluated using
four distinct random seeds, each associated with 10 evaluation episodes. The results consistently
show that CsDreamer outperforms the other methods in the majority of environments, thereby
demonstrating the superior effectiveness of our proposed approach.

Table 2: Final performance across model-based RL methods in different environments.

Environment CsDreamer (Ours) Dreamer TIA Denoised MDP Iso-Dream
Walker Run + GB 533± 98 162± 32 293± 129 117± 81 131± 23
Cheetah Run + GB 547± 159 171± 84 432± 172 215± 191 109± 12
Finger Spin + GB 408± 45 287± 54 123± 201 331± 146 415± 118
Hopper Hop + GB 75± 58 0± 0 50± 48 13± 15 0± 0
Walker Run + CB 678± 74 474± 71 588± 135 85± 18 211± 95
Cheetah Run + CB 821± 58 549± 126 758± 80 392± 195 6± 4
Finger Spin + CB 576± 241 466± 130 490± 136 460± 123 4± 8
Hopper Hop + CB 70± 52 23± 28 42± 40 21± 19 0± 0
CARLA 235± 118 202± 144 44± 119 21± 28 24± 25

E.2 Performance on Atari 100K Benchmark

In order to assess the denoising capabilities of CsDreamer under highly complex visual inputs, we
conduct experiments on the Atari 100K benchmark, and the results are presented in Figure 11 and
Table 3. For each game, we use at least five seeds. During our experiments, we encounter a random
seed that produces performance approximately 20 times higher than the current baseline, which we
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Figure 11: CsDreamer performance on Atari 100K Benchmark. In the Up N Down environment, we
encounter a random seed that yields performance approximately 20 times higher than the current
baseline, which we call the ’crazy seed’. We use 10 seeds in this environment to ensure a more
accurate evaluation. The Up N Down results reflect the performance of the 9 seeds, excluding the
crazy seed, while Up N Down with Crazy Seed presents the outcomes incorporating all 10 seeds.

call the ’crazy seed’. To facilitate a more robust and accurate evaluation, we employ a total of 10
seeds in this environment.

In Figure 11, the results labeled Up N Down reflect the performance obtained from nine seeds
(excluding the crazy seed), whereas Up N Down with Crazy Seed encompasses outcomes derived
from all 10 seeds. In Table 3, values within parentheses indicate results achieved using the crazy seed,
while results outside the parentheses correspond to evaluations without its inclusion. The Dreamer
results in Table 3 are sourced directly from the official DreamerV3 paper [17] 3. The experimental
outcomes clearly indicate that CsDreamer outperforms the baseline approach. This improvement
demonstrates that leveraging conditional dependencies enables CsDreamer to effectively denoise
complex visual inputs, thereby enhancing overall task performance.

E.3 Performance on Standard DMC

We conduct experiments using the standard DeepMind Control (DMC) suite to evaluate performance
on clean benchmarks. Figure 12 illustrates performance across four tasks. As depicted, CsDreamer
generally achieves performance on par with the original Dreamer algorithm across all four evaluated
tasks. These results indicate that the CsDreamer algorithm effectively handles noisy scenarios and
maintains strong performance in noise-free environments.

3In this paper, we utilize the data in https://arxiv.org/pdf/2301.04104v1.
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Table 3: CsDreamer’s performance on the Atari 100K Benchmark. Values in parentheses indicate the
use of the ’crazy seed’.

Game Random Human Dreamer (official) CsDreamer
Alien 228 7128 959 888± 234
Amidar 6 1720 139 184± 43
Assault 222 742 706 748± 262
Asterix 210 8503 932 1114± 266
Bank Heist 14 753 649 946± 465
Battle Zone 2360 37188 12250 3960± 2537
Boxing 0 12 78 80± 13
Breakout 2 30 31 31± 51
Chopper Com. 811 7388 420 864± 480
Crazy Climber 10780 35829 97190 90196± 22281
Demon Attack 152 1971 303 207± 124
Freeway 0 30 0 0± 0
Frostbite 65 4335 909 2177± 995
Gopher 258 2412 3730 7771± 18563
Hero 1027 30826 11161 8124± 3345
James Bond 29 303 445 292± 147
Kangaroo 52 3035 4098 6590± 4797
Krull 1598 2666 7782 9636± 3531
Kung Fu Master 258 22736 21420 24847± 8928
Ms Pacman 307 6952 1327 2170± 1306
Pong −21 15 18 20± 1
Private Eye 25 69571 882 977± 1813
Qbert 164 13455 3405 1050± 692
Road Runner 12 7845 15565 11980± 3946
Seaquest 68 42055 618 578± 252
Up N Down 533 11693 7667 9800± 13122(32050± 69863)

Human Mean 0% 100% 112% 129%(136%)
Human Median 0% 100% 49% 66%(73%)

0 100.0 200.0 300.0 400.0 500.0
Steps (K)

0

200

400

600

M
ea

n
Ep

is
od

e
R

et
ur

n

Walker Run

CsDreamer
Dreamer

0 100.0 200.0 300.0 400.0 500.0
Steps (K)

0

200

400

600

800

M
ea

n
Ep

is
od

e
R

et
ur

n

Cheetah Run

CsDreamer
Dreamer

0 100.0 200.0 300.0 400.0 500.0
Steps (K)

0

200

400

600

800

M
ea

n
Ep

is
od

e
R

et
ur

n

Finger Spin

CsDreamer
Dreamer

0 100.0 200.0 300.0 400.0 500.0
Steps (K)

0

100

200

300

M
ea

n
Ep

is
od

e
R

et
ur

n

Hopper Hop

CsDreamer
Dreamer

Figure 12: Performance on Standard DMC.
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E.4 Performance on DMC + GB Using Train-Eval Split

In the experiments above on DMC + GB, we follow previous work by training and testing using the
same dataset as background. Specifically, we utilize 16 car videos beginning with the letter ’A‘ from
the Kinetics-400 dataset, mentioned in TIA [10]. We download the complete’ driving car’ class using
the GitHub repository4 to ascertain whether CsDreamer’s robustness is a result of merely memorizing
background information or if it genuinely possesses an intrinsic denoising capability. Due to the
reasons mentioned in the repository, we succeed in obtaining 641 videos. Then we alphabetically
split the dataset into a training dataset (512 videos) and an evaluation dataset (129 videos) using an
80 : 20 ratio. We choose the best-performing baseline TIA in DMC + GB as the baseline, and the
experimental results are presented in Figure 13. Compared to the results in DMC + GB above, the
outcomes for Walker Run, Cheetah Run, and Finger Spin are slightly inferior, while the outcome for
Hopper Hop is somewhat superior. The results depicted in the figure demonstrate that CsDreamer
outperforms TIA across all tasks. This confirms that our approach effectively denoises rather than
merely memorizing backgrounds.
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Figure 13: Performance on the train-eval dataset, with 641 driving car videos in total, 512 videos for
the training dataset, and 129 videos for the evaluation dataset.

E.5 Additional Ablation Results

We conduct more module ablation studies on the DMC benchmark using colorful natural videos
as the background. Similar to that in Section 5.3, we compare the performance of the baseline
Dreamer, CsDreamer w/o MI (CsDreamer with CsRSSM framework without the conditional mutual
information-based regularization), CsDreamer w/o CD (CsDreamer with CsRSSM framework
without the conditional dependence) and CsDreamer. Shown in Figure 14, the results are consistent
with those in Section 5.3. The comparison between Dreamer and CsDreamer w/o MI reveals that
the CsRSSM can significantly boost performance in visual input with complex distractors by utilizing
the conditional dependence. By introducing the decoupling regularization, CsDreamer consistently
outperforms baselines on all tasks, achieving the highest performance. This ablation study also
demonstrates that CsRSSM with the decoupling information regularization significantly enhances
learning efficiency and task performance.
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Figure 14: Ablation Performance on DMC using colorful background.

We also examine the role of regularization in the Walker Run + GB as in Section 5.3. As illustrated
in Figure 15, the results echo those from Section 5.3: as the regularization parameter λ increases,

4We use the Github repository in https://github.com/Showmax/kinetics-downloader.
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the upper bound of mutual information progressively decreases, while the mean return follows a
non-monotonic trend—initially rising and then falling. All these experiments validate the analysis
presented in Section 4.3.
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Figure 15: Ablation study across different λ on Walker Run using gray driving car as background.

E.6 Correlation analysis
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Figure 16: Coefficient of determination (R2) on DMC tasks with background distractors.

In this section, we assess the coefficient of determination (R2) within our framework. We find that
the distribution of the test data significantly influences the R2 values. Specifically, evaluating R2

using the data sampled from the current policy may result in artificially high values. To obtain a
more reliable assessment, we use the sampled data from the final phase of a prior training session as
our dataset because, at this stage, the policy has sufficiently learned to perform the task effectively,
leading to the observation continuously undergoing noticeable changes. In detail, we utilize the last
20 sampled episodes from a previous training process, with each episode comprising 1,000 timesteps
(derived from 500 data points with an action repeat factor of 2). Each data point has one observation
and one corresponding agent state. We utilize the observation in these episodes to yield the features
for variables st and ct. We use the feature of st and the feature of ct as the independent variables
separately to predict the agent’s real state. To mitigate potential interference from newly introduced
training parameters, we utilize a parameter-free k-nearest neighbors (KNN) regressor for prediction.
The results are shown in Figure 16. The R2 value for st rapidly increases in the early stages and
stabilizes, demonstrating a strong and consistent correlation. In contrast, theR2 value for ct decreases
and remains low throughout the experiments. The results highlight that st exhibits a much stronger
correlation to the real agent state than ct, suggesting that st can effectively capture the task-relevant
information.

E.7 Additional Results Using Transformer-Based Framework

To clarify whether the proposed collider-structure approach is restricted to RSSM-based designs
or if it is compatible with transformer-style sequence encoders, we extended our methodology to
TransDreamer [51]. TransDreamer utilizes a Transformer State-Space Model (TSSM) to capture long-
term dependencies, replacing the RSSM of Dreamer. We integrate our approach into this baseline,
resulting in the Collider-structure Transformer State-Space Model (CsTSSM) and the corresponding
CsTransDreamer. A primary adaptation challenge stems from TransDreamer’s architecture, which
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is optimized for parallel training. To achieve this, TSSM employs a Myopic Representation Model,
where the posterior inference q(zt|ot) is independent of the deterministic history state ht. CsTSSM
adapts the collider framework within this constraint.

The key modifications in CsTSSM are as follows:

• Dual Transformer Dynamics, where we replace the single dynamic model with two
independent Transformer networks. One models the task-relevant dynamics, generating
hst from past relevant states and actions; the other models the task-irrelevant dynamics,
generating hct solely from past task-irrelevant states.

• Parallel Collider Inference, where we implement the collider-structure inference
pϕ (ct, st | ot) = pϕ (ct | ot) pϕ (st | ct, ot). Crucially, because this inference path does not
depend on the history states, the entire sequence can be encoded in parallel across the time
dimension before the Transformer dynamics are computed, preserving the efficiency of the
architecture.

• Decoupling Regularization, where we adapt the decoupling regularization loss to this archi-
tecture. We introduce the variational estimator qξ (st | ot) to approximate the task-relevant
distribution without conditioning on ct, thereby balancing the conditional dependence within
the parallel framework.

Since TransDreamer open-sources its code for the Atari benchmark, we conduct experiments on the
first three environments of the Atari 100K benchmark (shown in Figure 17). The results demonstrate
that the benefits of leveraging conditional dependence via the collider structure are architecture-
agnostic. The proposed methodology is not limited to RSSM-based designs and can effectively
enhance transformer-based world models in environments with complex noise interference.
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Figure 17: Transformer-based results on three Atari environments.

E.8 Additional Reconstruction Visualization
We extend the reconstruction visualization to additional environments following the configurations
presented in Section 5.4, yielding consistent results (Figure 18-25). Furthermore, in the complex
autonomous driving scenario within CARLA (Figure 18), we find that the reconstruction of task-
irrelevant variables excluded nearby blue and red vehicles (as shown in the third row). In contrast,
the reconstruction of task-relevant variables retains these vehicles, as their proximity influences the
decision-making of the autonomous vehicle. These experiments the interpret semantic information
extracted by the latent variables and qualitatively demonstrate that our method can effectively ex-
tract task-relevant information from noisy observations in complex environments. We also conduct
the reconstruction visualization for the train-eval-split experiments in Appendix E.4. In each fig-
ure (Figure 26-29), the fourth and fifth rows exhibit a heavily blurred background while maintaining
clear task-relevant details. These visualizations demonstrate that CsDreamer effectively learns to
extract task-relevant information from noisy observations rather than memorizing the background
information, thereby accounting for its superior performance.
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Figure 18: Reconstruction visualization of CARLA
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Figure 19: Reconstruction visualization of Walker Run using gray videos as background.
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Figure 20: Reconstruction visualization of Finger Spin using gray videos as background.
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Figure 21: Reconstruction visualization of Hopper Hop using gray videos as background.
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Figure 22: Reconstruction visualization of Cheetah Run using colorful videos as background.
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Figure 23: Reconstruction visualization of Walker Run using colorful videos as background.
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Figure 24: Reconstruction visualization of Finger Spin using colorful videos as background.
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Figure 25: Reconstruction visualization of Hopper Hop using colorful videos as background.
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Figure 26: Reconstruction visualization of Cheetah Run using train-eval gray videos as background.
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Figure 27: Reconstruction visualization of Walker Run using train-eval gray videos as background.
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Figure 28: Reconstruction visualization of Finger Spin using train-eval gray videos as background.
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Figure 29: Reconstruction visualization of Hopper Hop using train-eval gray videos as background.

34


	Introduction
	Preliminaries
	Related Work
	Method
	Collider-Structure Recurrent State-Space Model
	Decoupling Regularization in CsRSSM
	Overall Objective for CsRSSM
	Policy Learning in CsDreamer

	Experiments
	Experiment Setup
	Performance in Visual Inputs with Complex Noisy Distractors
	Ablation Study
	Visualization of The Latent Variables

	Conclusion and Future Work
	Detailed Derivations
	Derivation of ELBO Loss in CsRSSM
	Derivation of the upper bound for conditional mutual information

	Pseudo Code
	Details about the Benchmark
	Implementation Details
	Base Method
	Key Component Implementation
	Module Ablation Implementation
	Hyperparameters and Time Cost

	Additional Experiment Results
	Performance Scores
	Performance on Atari 100K Benchmark
	Performance on Standard DMC
	Performance on DMC + GB Using Train-Eval Split
	Additional Ablation Results
	Correlation analysis
	Additional Results Using Transformer-Based Framework
	Additional Reconstruction Visualization


