
Dynamic Aggregated Network for Gait Recognition

Kang Ma1, Ying Fu1*, Dezhi Zheng1*, Chunshui Cao2, Xuecai Hu2, Yongzhen Huang2,3

1Beijing Institute of Technology, 2WATRIX.AI, 3Beijing Normal University
kangx.ma@gmail.com, {fuying, zhengdezhi}@bit.edu.cn, {chunshui.cao, xuecai.hu}@watrix.ai,

huangyongzhen@bnu.edu.cn

Abstract

Gait recognition is beneficial for a variety of applica-
tions, including video surveillance, crime scene investi-
gation, and social security, to mention a few. However,
gait recognition often suffers from multiple exterior fac-
tors in real scenes, such as carrying conditions, wear-
ing overcoats, and diverse viewing angles. Recently, var-
ious deep learning-based gait recognition methods have
achieved promising results, but they tend to extract one of
the salient features using fixed-weighted convolutional net-
works, do not well consider the relationship within gait fea-
tures in key regions, and ignore the aggregation of complete
motion patterns. In this paper, we propose a new perspec-
tive that actual gait features include global motion patterns
in multiple key regions, and each global motion pattern is
composed of a series of local motion patterns. To this end,
we propose a Dynamic Aggregation Network (DANet) to
learn more discriminative gait features. Specifically, we
create a dynamic attention mechanism between the features
of neighboring pixels that not only adaptively focuses on
key regions but also generates more expressive local motion
patterns. In addition, we develop a self-attention mecha-
nism to select representative local motion patterns and fur-
ther learn robust global motion patterns. Extensive exper-
iments on three popular public gait datasets, i.e., CASIA-
B, OUMVLP, and Gait3D, demonstrate that the proposed
method can provide substantial improvements over the cur-
rent state-of-the-art methods.1

1. Introduction

Gait recognition aims to retrieve the same identity at a
long distance, and has been widely used throughout social
security [28], video surveillance [4, 15, 49], crime investi-
gation [25], and so on. Compared with action recognition
[17, 53, 54] and person re-identification [2, 55, 60, 61], the
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w11 w12 w13

w21 w22 w23

w31 w32 w33

w11 w12 w13

w21 w22 w23

w31 w32 w33

w22 w23

w32 w33

w11 w12 w13

w21 w22 w23

w31 w32 w33

Vectors

Dynamic Attention 

Focusing on the
Key Regions 

i i

i

i

i

i i i

i

i i

i

i

i

i i i

i

i i

i

i

i

i i i

i

Magnitude

Phase

Mix

Figure 1. The features of each pixel are mapped as a vector with
both magnitude and phase components. The magnitude represents
contextual information, while the phase direction is used to con-
struct dynamic attention models for the key regions. The convo-
lution operation is denoted by “∗”, and the blue circles in the dia-
grams represent the key regions learned by the dynamic attention.

gait recognition task is one of the most challenging fine-
grained label classification problems. On the one hand, sil-
houette data is a binary image of a person suffering from
the limitations of the segmentation algorithm [26, 62, 63],
with occasional holes and broken edges. On the other hand,
gait recognition is also impacted by various exterior factors
in real scenes, such as carrying conditions, wearing coats,
and diverse viewing angles. Different angles and clothing
conditions will greatly change the silhouette appearance of
the same person, resulting in the intra-class variance being
much greater than inter-class. We ask: How to learn more
robust features adaptively for each person under the influ-
ence of various external factors? We attempt to answer this
question from the following perspectives:

(i) Local Motion Patterns. Gait, or the act of walking,
is essentially the coordinated movement of body parts. In a
gait sequence, we observe that each part has a unique rep-
resentative motion pattern, and each motion pattern is com-
posed of a set of localized sub-movements. Therefore, it
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Figure 2. Comparison of the actual motion pattern with the Max-
based method, Mean-based method, and Global Motion Pattern
Aggregator (GMPA) module. The black curve represents a single
periodic action that is affected by disturbances, whereas the green
curve represents a synthesized periodic action consisting of dis-
tinct local motion patterns selected by the GMPA.

is critical to accurately locate the discriminative parts and
obtain representative local motion patterns under the inter-
ference of various external factors. However, previous gait-
based approaches [7, 8, 13, 14, 20, 24, 33] simply use con-
volutional networks with non-linear activation to model the
dynamic movements. Once the network has been trained,
the parameters and the non-linear function can only focus
on the fixed patterns. To this end, we propose to encode the
features of each pixel as a vector with magnitude and phase,
as shown in Fig. 1, which allows learning the dynamic at-
tention mapping functions among the neighboring pixel of
focusing. By modeling the relationship, the network can
further focus on local motion patterns in key regions.

(ii) Global Motion Patterns. Gait is a periodic move-
ment. We assume that the actual motion pattern is a one-
dimensional signal, as shown in Fig. 2, whereby the local
motion patterns are the points on the signal. Therefore, it is
essential to use a series of local motion patterns to further
fit the actual motion patterns for obtaining discriminative
gait features. However, recent gait-based methods [8,20,33]
only use Max- or Mean-based methods to extract one of the
significant local features. These methods are susceptible to
disturbances and can not fit the actual motion patterns. Ac-
cording to the Nyquist-Shannon sampling theorem [37, 39]
in signal processing theory, when a continuous signal is
sampled at a frequency greater than twice the frequency of
the signal, the information of the original signal is retained
intact. In this regard, we propose to construct a global at-
tention model and use it to dynamically select a preset num-
ber of distinguishable local motion patterns (green arrows),
while excluding the effect of noise (red arrows). By se-
lecting sufficient discriminative local motion patterns, the
network can further obtain robust global motion patterns.

Driven by this analysis, we propose a novel and ef-
fective Dynamic Aggregated Network (DANet) for gait
recognition. As shown in Fig. 3, DANet consists of two

well-designed components, i.e., Local Conv-Mixing Block
(LCMB) and Global Motion Patterns Aggregator (GMPA).
Firstly, we encode the features of each pixel into the com-
plex domain including magnitude and phase, where the
magnitude term represents the contextual information and
the phase term is used to establish the relationship between
each vector. The local motion pattern is generated by ag-
gregating the magnitude and phase of the vectors in the
neighboring regions of focus. Secondly, we use the self-
attentive mechanism in the GMPA model to dynamically se-
lect sufficient discriminative local motion patterns and fur-
ther learn to fit the actual gait patterns. Finally, with our
proposed modules, we obtain the most representative sta-
ble gait features for each person and outperform the state-
of-the-art (SOTA) methods, especially under the most chal-
lenging condition of cross-dressing.

Our main contributions can be summarized as follows:

• We propose a novel LCMB to extract the represen-
tative local motion patterns, which can dynamically
model the relationships among the features of neigh-
boring pixels and then accurately locate key regions.

• We design an effective GMPA to select the discrimi-
native local motion patterns and then aggregate them
to obtain a robust global representation. To the best
of our knowledge, it is the first attempt to explore the
potential of self-attention model in this task.

• Experimental results are illustrated to demonstrate the
effectiveness of the proposed method, outperforming
the SOTA method on CASIA-B [56], OUMVLP [41]
and Gait3D [59] datasets. In addition, many rigorous
ablation experiments on CASIA-B [56] further vali-
dated the effectiveness of each component in DANet.

2. Related Works
In this section, we provide a brief overview of relevant

research in the fields of gait recognition, local action mod-
eling, and global action modeling.
Gait Architectures. Gait recognition approaches mainly
fall into two typical categories, i.e., model-based ap-
proaches and appearance-based approaches. Model-based
approaches [1, 3, 27, 29–31, 44] attempt to explicitly fit hu-
man pose structures [10] to images. However, the prede-
fined points are empirically designed and limited by the
inaccuracy of estimation results for low-quality images.
Therefore, the model-based methods are generally inferior
to appearance-based methods in performance. Appearance-
based approaches [7, 8, 13, 18, 20, 21, 24, 32, 33, 43, 47, 51,
52, 58] are the mainstream frameworks for gait and have
benefited from the quick growth of deep learning. It can be
roughly divided into three classes, namely template-based
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Figure 3. The overview of the proposed DANet. Each stage contains the Local Conv-Mixing Block (LCMB), which utilizes a dynamic
attention model to establish relationships among neighboring pixels of interest. The HP denotes Horizontal Pooling, GMPA represents
Global Motion Pattern Aggregator, and l indicates the number of last stages. In particular, the GMPAj module is responsible for aggre-
gating the local motion patterns of the j-th part and producing the final global motion patterns vi for recognition.

methods, set-based methods, and sequence-based methods.
The template-based approaches [18, 36, 43, 47, 52, 57] ex-
tracted gait spatio-temporal features by compressing a se-
quence of gait silhouettes, e.g., Gait Energy Image (GEI),
which inevitably destroyed the representation of discrim-
inative local motion patterns in gait sequences. The set-
based approaches [8,20,21,23] assumed that the appearance
of a silhouette contained its position information, which
could not construct local motion patterns using continuous
frames. Recently some advanced sequence-based meth-
ods [7, 24, 32, 33, 51] used 3D convolutional (C3D) neu-
ral networks to extract gait features from the gait sequence
and achieve SOTA results. Our approach belongs to the
sequence-based method, in contrast to other methods, we
propose to use variable-length frames as the input.

Local Action Modeling. Local action modeling [14,24,32,
33] aims at building short-range spatio-temporal features,
which have been shown to be beneficial for gait recognition
in various literature. GaitPart [14] proposed a micro-motion
capture module to model the short-range spatio-temporal
features. MT3D [32] proposed multiple temporal-scale 3D
convolutional layers to extract the small and large temporal-
scale motion features. GaitGL [33] utilized a local tempo-
ral aggregation module to extract the local temporal infor-
mation. 3DLocal [24] proposed a localization module to
adaptively sample the local action features. In contrast to
these strategies, we propose to map each pixel of the gait
sequence to the complex-valued domain, using the phase
term to encode the relationship between gait features. By
fully exploiting the phase term, we construct a dynamic at-
tention model among each pixel of the feature to extract
local motion patterns in key regions.

Global Action Modeling. Global action modeling, aim-
ing at capturing long-range dependencies, has been demon-
strated to be advantageous to a wide range of recognition
tasks such as action recognition [6, 45, 48, 54] and person
re-identification [9,16,19,35,40,61]. Many attention-based
approaches [12,34,46] built global relationships in the spa-
tial dimension [5, 50] or channel dimension [22] with re-

markable results. However, current state-of-the-art works
[7, 8, 32, 33] in gait recognition still directly use Max- or
Mean-based methods to extract global temporal features,
which only focus on the most salient features. Different
from these methods, we design an efficient global self-
attention model to obtain a robust representation for each
person, which can select discriminative local motion pat-
terns, and further map them to global motion patterns.

3. Methodology
In this section, we first describe the overall architecture

of our method in Sec. 3.1, and then introduce the proposed
two novel well-designed modules, i.e., Local Conv-Mixing
Block (LCMB) in Sec. 3.2 and Global Motion Pattern Ag-
gregator (GMPA) in Sec. 3.3. Finally, we will discuss the
joint loss functions in Sec. 3.4.

3.1. Formulation and Motivation

Gait recognition aims to identify the same person under
the influence of various external factors. Let X ∈ RT×H×W

denote silhouette data containing consecutive T frames,
where T, H, and W represent the temporal, height, and width
dimensions of input frames. In our implementation, we
sample variable-length frames T ∈ [20, 40] from a contin-
uous sequence as the input. The extraction of gait features
can be expressed as

f = G(L(X)), (1)

where f ∈ RP×C is the output features, P is the number of
horizontally sliced parts, C is the feature channels, L repre-
sents the local motion pattern extraction, and G denotes the
global motion pattern aggregation.

To learn distinctive representation for each person, the
previous C2D-based methods [8, 20] and C3D-based meth-
ods [32, 33] only use convolutional layers and non-linear
functions to learn gait features. However, the trained net-
work can only recognize certain movement patterns that
are vulnerable to noise. In this work, we propose a novel
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LCMB in the backbone of DANet, which enables the
network to focus on the key regions and extract the lo-
cal motion patterns by dynamically building the relation-
ships among pixels. Furthermore, inspired by the Nyquist-
Shannon sampling theorem [37,39], we propose a new per-
spective that a complete gait pattern should contain many
distinguishable local motion patterns. To this end, we devel-
oped an effective GMPA to select sufficient distinguishable
local motion patterns while effectively excluding the inter-
ference of noise. The selected local motion patterns are then
aggregated to generate a robust global motion pattern.

3.2. Local Conv-Mixing Block

In this section, we provide a detailed description of the
vector representation and vector aggregation in the Local
Conv-Mixing Block (LCMB) module.
Vector Representation. In the LCMB module, the input
features are denoted as V = [v1, v2, ..., vN ] ∈ RN×Ci ,
where N is the number of pixels in the gait sequence, Ci

is the dimension of input features. As shown in Fig. 4, we
obtain the magnitude |vj | and phase θj of each vector by
multiply with the learnable parameters Wm ∈ RCi×Cl and
W t ∈ RCi×Cl , separately, i.e.,

|vj | = Wmvj , j = 1, 2, · · · , N, (2)

θj = max(0,W tvj), j = 1, 2, · · · , N, (3)

where the subscript j is the feature of the j-th pixel. The
content of each vector is a real-value feature modeled by
the magnitude term |vj |, while the relationship of each vec-
tor is modulated by the phase term θj , using grouped con-
volutional layers with rectified linear activation ReLU. The
complex vectors ṽj ∈ CCl modulated by the magnitude and
phase terms using Euler’s formula, i.e.,

ṽj =

real part︷ ︸︸ ︷
|vj | ⊙ cos θj +

imaginary part︷ ︸︸ ︷
i |vj | ⊙ sin θj , j = 1, 2, · · · , N, (4)

where i is the imaginary unit satisfying i2 = −1, and ⊙ is
element-wise multiplication.
Vector Aggregation. After representing the features of
each pixel as a vector, we further aggregate the local spatio-
temporal domain of each vector as shown in Fig. 4. In
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Figure 5. The architecture of GMPA and the feature maps are
shown by their dimensions, where “⊗” is matrix multiplication.

particular, the complex-value representation of the output
õj ∈ CCi that aggregated by learnable convolution kernels
K ∈ RCi×Cl×Kt×Ks×Ks , i.e.,

õj =
∑

m∈N (j)

K[j −m]ṽm + vj , j = 1, 2, · · · , N, (5)

where N (j) denotes the neighboring pixels set of j, and ṽm
represents the vector belong to the neighboring pixels of
ṽj . Following [42], we obtain the real-value output feature
oj ∈ RCi by summing the real and imaginary parts of ṽj
for convenient computation, i.e.,

oj =
∑

m∈N (j)

(
K[j −m] |vm| ⊙ cos θm+

K[j −m] |vm| ⊙ sin θm
)
+ vj , j = 1, 2, · · · , N,

(6)

where (cos θm + sin θm) denotes the dynamic attention
among the neighboring pixels of j. To further comprehend
the dynamic aggregation model, heatmaps showcasing the
phase values are visualized in Fig. 6.

3.3. Global Motion Patterns Aggregator

In this part, we propose a new instantiation of the global
action modeling framework for gait recognition named the
global motion patterns aggregator (GMPA), which selects a
preset number of distinguished local motion patterns and
then utilizes an attention mechanism to aggregate query-
specific global motion patterns of each query location. The
GMPA adopts separate parameters for each part and models
the global movement patterns of the corresponding part.
Lower-order Global Motion Patterns. Gait data is af-
fected by a number of variable factors, such as segmen-
tation holes or broken edges, further impairing the ac-
tual movement pattern. To this end, we first propose to
squeeze variable local motion patterns into a preset number
of channel descriptors. Then, we utilize softmax to con-
struct an attention map in the temporal dimension, and mul-
tiply the squeezed attention maps with the reshaped local
motion pattern features to obtain the global low-order mo-
tion patterns. Formally, the global low-order motion pat-
terns G̃ ∈ RP×C×M are generated by local motion patterns
L ∈ RP×T×C and attention maps M ∈ RP×T×M , and can
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be expressed as

M =
exp(W1Li)∑T
i=1 exp(W1Li)

, (7)

G̃ = M ⊗ L, (8)

where W1 ∈ RP×C×M is the weight of Separate FC1, i is
the index of frame, and ⊗ denotes matrix multiplication.
Higher-order Global Motion Patterns. To take advantage
of the information aggregated in the low-order global mo-
tion patterns, we perform a further mapping aiming at fully
capturing the high-order global motion patterns. In addi-
tion, we also introduce residual learning into GMPA to ease
the training. Concretely, we further map the preset num-
ber of low-order global motion patterns G̃ into a high-order
global feature G, i.e.,

G = δ(W2G̃)⊕ L, (9)

where W2 ∈ RP×M×1 is the weight of Separate FC2, δ
represents the LeakyReLU activation function, and ⊕ de-
notes the broadcast element-wise addition.

3.4. Joint Loss

In this work, there are two types of loss functions in-
volved, i.e., triplet loss Ltp and cross-entropy loss Lce,
which constrain the features of each part separately. For-
mally, triplet loss Ltp [11] can be expressed as:

Ltp =
1

Ntp

parts︷︸︸︷
P∑

p=1

anchors︷ ︸︸ ︷
S∑

i=1

K∑
a=1

pos.︷︸︸︷
K∑
s=1

neg.︷ ︸︸ ︷
S∑

j=1
j ̸=i

K∑
n=1

max
(
0,m+

D(F(xp
a,i),F(xp

s,i))−D(F(xp
a,i),F(xp

n,j))
)
,

(10)

where P is the number of sliced parts horizontally on the
gait features, Ntp is a positive integer obtained by multiply-
ing the non-zero terms in triplets with the number of parts,
(S,K) denotes the number of subjects with different identi-
ties and the number of samples per person, m is the margin
value, D(f1, f2) represents the euclidean distance between
two features, F denotes the feature extraction model, and
x represents the input sequence. We retain the case where
the anchor and positive labels are the same, in other words,
our triplet loss function requires the distance between each
anchor sample and the negative sample is greater than the
margin, which is an important trick for gait recognition.

Here, we propose to use the cross entropy loss Lce to
constrain each part with the label smoothing. Formally,

Lce = − 1

Nce

parts︷︸︸︷
P∑

p=1

mini-batch︷ ︸︸ ︷
S∑

i=1

K∑
j=1

subjects︷︸︸︷
B∑

b=1

qp,bi,j log pp,bi,j , (11)

where Nce is a positive integer obtained by multiplying the
mini-batch with the number of parts, p is the distribution of
predicted probabilities, and q is the label of the mini-batch.
In our experiments, the combined loss function Lc can be
expressed as:

Lc = Ltp + βLce, (12)

where β is the hyper-parameter to balance the two terms
and is set to 0.2 through the experiments.

4. Experiments

In this section, we evaluate our network on three typi-
cal gait datasets, i.e., CASIA-B [56], OUMVLP [41], and
Gait3D [59], and provide the implementation details. Then,
we compare our approach with the current state-of-the-art
methods. Finally, we conduct comprehensive ablation stud-
ies to verify the effectiveness of the proposed method.

4.1. Datasets and Implementation Details

CASIA-B [56] is a widely used dataset for gait recogni-
tion. It contains 124 subjects, 3 different walking condi-
tions, and 11 different camera viewpoints uniformly dis-
tributed in [0◦, 180◦]. The different walking conditions in-
clude normal walking (NM), walking with bags (BG), and
walking wearing a coat (CL). In summary, there are 110
sequences for each person, and each sequence has an uncer-
tain length of frames. We take the first 74 subjects as the
training set and the rest 50 subjects for the test. In the test
phase, the first 4 normal walking conditions are taken as the
gallery, and the rest are taken as the probe.
OUMVLP [41] has the largest number of sequences in
the public gait dataset. It consists of 10,307 subjects, 2
different walking sequences (“00-01”), and 14 different
camera viewpoints uniformly distributed in [0◦, 90◦] and
[180◦, 270◦]. In general, each subject contains up to 28 se-
quences. According to the official split way, we take 5153
subjects as the training set and the rest of 5154 as the test
set. In the test phase, the sequences of “01” are taken as the
gallery, and the rest of “00” is taken as the probe.
Gait3D [59] is a large-scale comprehensive dataset for
gait recognition, containing silhouettes, 2D/3D human body
pose, and 3D Mesh. Compared with the above datasets,
Gait3D collected from more complex scenes in the wild is
more challenging for the gait recognition task. It contains
4000 subjects, 25309 sequences, and 39 different camera
viewpoints. Following the official splitting approach, we
take 3000 subjects as the training set and the remaining
1000 subjects as the test set. In the testing phase, we cal-
culate the similarity of one sequence of query set to all se-
quences in gallery set, and then report the average rank-1
and rank-5 recognition rates for all query sequences.
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Table 1. The performance comparisons on CASIA-B are reported with rank-1 accuracy (%), excluding the identical-view cases. The
defaults input silhouette size is 64× 44 and “(*)” indicates that the input size is 128× 88.

Method Probe View Mean
0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 134◦ 162◦ 180◦

NM

CNN-LB [52] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
GaitSet [8] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [14] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GLN(*) [20] 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9
MT3D [32] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
GaitGL [33] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
LagrangeGait [7] 95.7 98.1 99.1 98.3 96.4 95.2 97.5 99.0 99.3 98.9 94.9 97.5
DANet(ours) 96.4 99.1 99.2 98.2 96.6 95.5 97.6 99.4 99.5 99.3 96.9 98.0

BG

CNN-LB [52] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet [8] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [14] 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5
GLN(*) [20] 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96.0 97.5 95.0 88.1 94.0
MT3D [32] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
GaitGL [33] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
LagrangeGait [7] 94.2 96.2 96.8 95.8 94.3 89.5 91.7 96.8 98.0 97.0 90.9 94.6
DANet(ours) 95.0 97.3 98.3 97.4 94.7 91.0 93.9 97.4 98.2 97.6 94.2 95.9

CL

CNN-LB [52] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet [8] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [14] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GLN(*) [20] 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5
MT3D [32] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
GaitGL [33] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
LagrangeGait [7] 77.4 90.6 93.2 90.2 84.7 80.3 85.2 87.7 89.3 86.6 71.0 85.1
DANet(ours) 82.8 94.8 96.9 94.3 89.0 83.9 87.9 92.3 95.1 92.0 80.3 89.9

Implementation Details. We implement our network in
PyTorch [38] for all experiments. Following the pre-
processing method mentioned in [8], we align and resize
the input silhouettes to 64× 44. During the training phase,
the sampling module randomly selects [20, 40] sequences
as the inputs. In the test phase, we utilize all silhouettes to
obtain the gait feature. We train the model in an end-to-end
manner with an optimizer of SGD and an initial learning
rate of 0.1, which is reduced by a factor of 10 until conver-
gence. The parameter l in Fig. 3 indicates the number of
stages, where l = 0 for CASIA-B and l = 1 for OUMVLP
and Gait3D. (1) In CASIA-B, the model is trained for a total
of 40K iterations with the step size set every 10K iterations,
using a mini-batch size of (8, 16). The convolutional chan-
nels are set to (64, 128, 256), and the stride of the temporal
pooling and spatial pooling modules are set to m=3 and n=1,
respectively. (2) In the case of OUMVLP and Gait3D, we
consider that the number of sequences in OUMVLP is 20
times greater than that in CASIA-B, and the sequences in
Gait3D are collected in the wild with more views. To ac-
count for these differences, we set the number of channels
in four stages to (64, 128, 256, 512) and the training mini-

batch size to (32, 16). The model is trained for a total of
200K iterations, with the step size set every 50K iterations.
Additionally, the stride of spatial pooling is set to n=2.

4.2. Comparison with State-of-the-art Methods

To verify the effectiveness of our method, several lat-
est gait recognition methods are introduced for compari-
son, including CNN-LB [52], GaitSet [8], GaitPart [14],
GLN [20], MT3D [32], GaitGL [33], and LagrangeGait [7].
Evaluation on CASIA-B. The performance comparison on
CASIA-B is provided in Tab. 1, where the probe sequence
is divided into three subsets according to the walking con-
ditions. (1) Comparing with the template-based approach,
i.e., CNN-LB [52], our method achieves significantly bet-
ter results in all walking conditions and viewpoints. The
possible reason is that the template-based approach directly
compressing the gait sequence into a gait energy map would
greatly compromise the temporal information in gait se-
quence. Once the temporal features are neglected, the mo-
tion pattern of the gait can not be adequately represented.
(2) In contrast to the set-based methods, i.e., GaitSet [8]
and GLN [20], the proposed method achieves higher recog-
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Table 2. Rank-1 accuracy (%) on OUMVLP under all view angles, excluding the identical-views cases.

Method Probe View Mean
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GaitSet [8] 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart [14] 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7

GLN [20] 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2
GaitGL [33] 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7

LagrangeGait [7] 85.9 90.6 91.3 91.5 91.2 91.0 90.6 88.9 89.2 90.5 90.6 89.9 89.8 89.2 90.0
CSTL [23] 87.1 91.0 91.5 91.8 90.6 90.8 90.6 89.4 90.2 90.5 90.7 89.8 90.0 89.4 90.2

DANet(ours) 87.7 91.3 91.6 91.8 91.7 91.4 91.1 90.4 90.3 90.7 90.9 90.5 90.3 89.9 90.7

nition accuracy. This may be due to the fact that the set-
based approach assumes that each silhouette contains posi-
tional information but ignores the motion patterns between
sequences. We believe that motion patterns are the essential
features of each person, and adequately expressing them is
the key to identifying cross-views and cross-dressing con-
ditions. (3) Compared to the sequence-based methods, i.e.,
GaitPart [14], MT3D [32], GaitGL [33], and LagrangeGait
[7] our method exceeds GaitPart by 11.2%, MT3D by 8.4%,
GaitGL by 6.3%, and LagrangeGait by 4.8% under the most
challenging cross-dressing condition. The experimental re-
sults prove the effectiveness of our method and also confirm
that the combination of LCMB and GMPA modules can ex-
tract more discriminating gait features.
Evaluation on OUMVLP. To further demonstrate the ef-
fectiveness of our proposed method, as shown in Tab. 2,
DANet is also evaluated on the largest gait datasets, i.e.,
OUMVLP. (1) Compared with other methods, the proposed
method achieves the state-of-the-art performance under all
cross-view conditions. The comparison results also demon-
strate that the proposed method can also effectively ob-
tain representative and stable global motion patterns on the
large-scale dataset. (2) It is worth noting that some subjects
had no sequences corresponding to the probes in the gallery
because of missing sequences, therefore the recognition ac-
curacy in the Tab. 2 is lower than the actual performance.
Evaluation on Gait3D. The effectiveness of our method
was further validated on a wild dataset, i.e., Gait3D. (1) We
observe a significant degradation in rank-1 performance of
all methods, i.e., GaitPart [14], GLN [20], and GaitGL [33],
on the Gait3D dataset. The possible reason is that Gait3D
contains more complex conditions, such as misaligned and
occlusions in the silhouette data. (2) The experimental com-
parison results are illustrated in Tab. 3, which confirms that
our proposed method is effective in extracting robust global
motion patterns on the wild dataset.

4.3. Ablation Study

In this section, we provide an ablation study in DANet to
gain a better understanding of the effect of different config-
urations on the LCMB and GMPA. All experiments in the

Table 3. The performance comparisons on Gait3D are reported
with rank-1 accuracy(%) and rank-5 accuracy(%).

Methods Publication R-1(%) R-5(%)

GaitSet [8] AAAI 2019 36.7 58.3
GaitPart [14] CVPR 2020 28.2 47.6

GLN [20] ECCV 2020 31.4 52.9
GaitGL [33] ICCV 2021 29.7 48.5

SMPLGait [59] CVPR 2022 46.3 64.5

DANet Ours 48.0 69.7

Table 4. The ablation study of the proposed modules on CASIA-B
with rank-1 accuracy (%). Where the Conv. represents the convo-
lutional layer, and the Aggr. denotes the aggregator.

Method Conv. Aggr. NM BG CL

GaitSet [8] C2D Max 95.0 87.2 70.4
GaitPart [14] C2D MCM 96.2 91.5 78.7
GaitGL [33] C3D GeM 97.4 94.5 83.6

DANet(C2D) C2D GMPA 97.8 94.5 84.3
DANet(C3D) C3D GMPA 97.8 95.4 87.7

DANet(Max) LCMB Max 97.8 95.6 86.9
DANet(Mean) LCMB Mean 97.4 95.0 87.1
DANet(Gem) LCMB GeM 97.1 95.0 85.3

DANet(MCM) LCMB MCM 97.5 94.8 85.4

DANet LCMB GMPA 97.9 96.2 89.9

ablation study are performed on CASIA-B, excluding the
identical-views cases.
The Effectiveness of Local Conv-Mixing Block. As men-
tioned in Sec. 3.2, we design a novel Local Conv-Mixing
Block (LCMB) module to effectively aggregate local mo-
tion patterns. (1) As shown in Tab. 4, compared with the
benchmark approach, i.e., GaitSet [8], GaitPart [14], and
GaitGL [33], the LCMB-based method achieves higher ac-
curacy under the same conditions. (2) With other conditions
remaining the same, we directly replace our LCMB with
C2D or C3D convolutional layers. As shown in Tab. 4, our
LCMB is significantly higher than the C2D or C3D convo-
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Figure 6. Visualization of attention maps (dash boxes) for phase values and corresponding positions (solid points) in the silhouettes of the
same person, where “J” represents the face, “H” represents the hand, “L” represents the leg, and “F” represents the foot.

lutional methods, which demonstrates that the LCMB can
effectively extract the local motion patterns of gait.
The Effectiveness of Global Motion Patterns Aggrega-
tor. To demonstrate the effectiveness of GMPA, as shown
in Tab. 4, we fully compare it with other aggregators, i.e.,
Max [8], MCM [14], GeM [33]. (1) The C2D and C3D
convolutional layers combined with our GMPA module can
significantly improve the performance. (2) In contrast to
MCM, our GMPA focus on establishing a complete global
motion pattern, which we believe is the essence of the actual
motion of the gait. (3) Compared to Max- or Mean-based
methods, the experimental results show that GMPA can ef-
fectively aggregate robust global motion patterns.
Analysis of the Number of Lower-order Global Motion
Patterns. The number of low-order global motion patterns
Npatt (M in GMPA module) selected in the GMPA module
will directly affect the final feature representation. (1) As
shown in Tab. 5, when Npatt=1 or 8, the network cannot fit
actual movement patterns due to insufficiently sampled low-
order motion patterns. (2) The experimental results show
that when Npatt = 32, the network over-fits real motion pat-
tern when the number of samples is excessive. Therefore,
we adopt Npatt=16 as the default parameter of DANet.
Analysis of the Number of Horizontal Slice Parts. As
shown in Tab. 5, we further analyze the effect of the number
spatial parts Npart (P in the Horizontal Pooling module).
(1) In DANet, the experimental results rise as the number of
Npart increases. (2) The possible reason is that the LCMB
and GMPA modules can effectively select the key regions
and aggregate robust global motion patterns. As a result, the
network expresses more sufficient global motion patterns
when the number of Npart increases.

4.4. Visualization

To gain further insight into the local motion patterns of
salient parts established by the phase term of the vector, as
shown in Fig. 6, we visualize the heatmaps for the phase
values and corresponding silhouettes of the same person.
(1) In terms of the spatial dimension, the phase term of the
vector can be effectively located in the key regions. (2) In
terms of the temporal dimension, the phase terms of the vec-
tors in the sequence move with the motion of the body parts,

Table 5. Comparison of the number of spatial bins Npart in HP
and low-order global motion patterns Npatt in GMPA.

Npatt Npart NM BG CL Mean

16 16 97.5 94.4 85.7 92.5
16 32 97.7 95.6 89.3 94.2

1 64 97.8 95.6 86.9 93.4
8 64 97.4 95.0 87.1 93.1
32 64 97.5 94.7 88.5 93.6

16 64 97.9 96.2 89.9 94.6

precisely localizing the disappearance and appearance of
hand movements and the alternate walking of the legs. (3)
The visualization results show that, in contrast to the fixed
parameters in the CNN, the phase term of the vector can
dynamically distinguish the key regions.

5. Conclusion

In this paper, we propose a novel Dynamic Aggregated
(DANet) for gait recognition, which consists of a serial of
Local Conv-Mixing Block (LCMB) and Global Motion Pat-
tern Aggregator (GMPA) to adaptively aggregate the ro-
bust discriminative global motion patterns. The proposed
method can dynamically locate the key regions and extract
the local motion patterns, and then adaptively select the dis-
tinguishing local motion patterns to further construct ro-
bust global motion patterns. The experimental results on
three popular gait datasets, i.e., CASIA-B, OUMVLP, and
Gait3D, verify the effectiveness of the proposed method and
show great potential for practical applications. In the future,
we will further investigate adaptive learning of the local and
global motion patterns in the complex-valued domain to ag-
gregate more representative gait features.
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fan Hörmann, and Gerhard Rigoll. Gaitgraph: graph con-
volutional network for skeleton-based gait recognition. In
ICIP, 2021. 2

[45] Thanh-Dat Truong, Quoc-Huy Bui, Chi Nhan Duong, Han-
Seok Seo, Son Lam Phung, Xin Li, and Khoa Luu. Direc-
former: A directed attention in transformer approach to ro-
bust action recognition. In CVPR, 2022. 3

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 3

[47] Chen Wang, Junping Zhang, Liang Wang, Jian Pu, and Xi-
aoru Yuan. Human identification using temporal information
preserving gait template. IEEE TPAMI, 2012. 2, 3

[48] Jue Wang and Lorenzo Torresani. Deformable video trans-
former. In CVPR, 2022. 3

[49] Liang Wang, Tieniu Tan, Huazhong Ning, and Weiming Hu.
Silhouette analysis-based gait recognition for human identi-
fication. IEEE TPAMI, 2003. 1

[50] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, 2018. 3

[51] Thomas Wolf, Mohammadreza Babaee, and Gerhard Rigoll.
Multi-view gait recognition using 3d convolutional neural
networks. In ICIP, 2016. 2, 3

[52] Zifeng Wu, Yongzhen Huang, Liang Wang, Xiaogang Wang,
and Tieniu Tan. A comprehensive study on cross-view gait
based human identification with deep cnns. IEEE TPAMI,
2016. 2, 3, 6

[53] Junfei Xiao, Longlong Jing, Lin Zhang, Ju He, Qi She, Zong-
wei Zhou, Alan Yuille, and Yingwei Li. Learning from tem-
poral gradient for semi-supervised action recognition. In
CVPR, 2022. 1

[54] Jiewen Yang, Xingbo Dong, Liujun Liu, Chao Zhang, Jiajun
Shen, and Dahai Yu. Recurring the transformer for video
action recognition. In CVPR, 2022. 1, 3

[55] Hantao Yao, Shiliang Zhang, Richang Hong, Yongdong
Zhang, Changsheng Xu, and Qi Tian. Deep representation
learning with part loss for person re-identification. IEEE TIP,
2019. 1

[56] Shiqi Yu, Daoliang Tan, and Tieniu Tan. A framework for
evaluating the effect of view angle, clothing and carrying
condition on gait recognition. In ICPR, 2006. 2, 5

[57] Kaihao Zhang, Wenhan Luo, Lin Ma, Wei Liu, and Hong-
dong Li. Learning joint gait representation via quintuplet
loss minimization. In CVPR, 2019. 3

[58] Ziyuan Zhang, Luan Tran, Xi Yin, Yousef Atoum, Xiaom-
ing Liu, Jian Wan, and Nanxin Wang. Gait recognition via
disentangled representation learning. In CVPR, 2019. 2

[59] Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Cheng-
gang Yan, and Tao Mei. Gait recognition in the wild with
dense 3d representations and a benchmark. In CVPR, 2022.
2, 5, 7

[60] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-
ranking person re-identification with k-reciprocal encoding.
In CVPR, 2017. 1

[61] Haowei Zhu, Wenjing Ke, Dong Li, Ji Liu, Lu Tian, and Yi
Shan. Dual cross-attention learning for fine-grained visual
categorization and object re-identification. In CVPR, June
2022. 1, 3

[62] Zoran Zivkovic. Improved adaptive gaussian mixture model
for background subtraction. In ICPR, 2004. 1

[63] Zoran Zivkovic and Ferdinand Van Der Heijden. Efficient
adaptive density estimation per image pixel for the task of
background subtraction. Pattern recognition letters, 2006. 1

22085


