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Abstract

Accurate environment dynamics modeling is crucial for obtaining effective state
representations in visual reinforcement learning (RL) applications. However, when
facing multiple input modalities, existing dynamics modeling methods (e.g., Deep-
MDP) usually stumble in addressing the complex and volatile relationship between
different modalities. In this paper, we study the problem of efficient dynamics
modeling for multi-modal visual RL. We find that under the existence of modality
heterogeneity, modality-correlated and distinct features are equally important but
play different roles in reflecting the evolution of environmental dynamics. Mo-
tivated by this fact, we propose Dissected Dynamics Modeling (DDM), a novel
multi-modal dynamics modeling method for visual RL. Unlike existing methods,
DDM explicitly distinguishes consistent and inconsistent information across modal-
ities and treats them separately with a divide-and-conquer strategy. This is done by
dispatching the features carrying different information into distinct dynamics mod-
eling pathways, which naturally form a series of implicit regularizations along the
learning trajectories. In addition, a reward predictive function is further introduced
to filter task-irrelevant information in both modality-consistent and inconsistent
features, ensuring information integrity while avoiding potential distractions. Ex-
tensive experiments show that DDM consistently achieves competitive performance
in challenging multi-modal visual environments. The code is available in this link:
https://github.com/Yara-HYR/DDM

1 Introduction

Recent years have witnessed a growing interest in visual reinforcement learning (RL). By leveraging
raw pixel inputs directly from sensory data, visual RL allows agents to navigate and interpret their
environments with unprecedented precision and adaptability [33, 24, 51]. Since raw pixels are usually
redundant and suffer from expanded data dimensionality, a key aspect of visual RL is to acquire
efficient and compact state representations. A typical approach involves modeling environmental
dynamics in an abstracted state space [1], where the state representations are supposed to mimic the
actual environmental changes but operate on a sufficiently low dimension. One classical solution is
DeepMDP [9], which leverages neural networks to compress high-dimensional input data. Given
consecutive observations, DeepMDP predicts reward and state transitions within the deep latent space,
enabling more effective policy optimization over complex, dynamic environments.
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Figure 1: Motivation of our method and comparison with DeepMDP [9] designed for single modality.
ot, zt, at, and rt represent the observation, latent feature, action, and reward at time t, respectively.
zMi
t and ẑMi

t are the decoupled consistent (Con.) and inconsistent (Incon.) features for i-th modality.

Although methods like DeepMDP have proven effective for environmental dynamics modeling,
research on this subject has been mostly restricted to the single visual modality case (e.g., with only
RGB frame pixels as input). However, under multi-modal scenarios, different modalities may share
correlated scene descriptions but meanwhile preserve their own unique observations. In addition,
such a modality relationship is not stable but constantly evolves with the highly dynamic environment.
An intuitive example is given in Fig. 1 (a), where we show the observations of both RGB frames and
event camera signals [26, 3] on a night-time driving scene. It can be seen that the two modalities
only exhibit partially consistent context. Meanwhile, their inconsistencies include critical visual
clues, such as traffic lights (in RGB frames) and cars hidden in the dark (in event signals). Existing
approaches often overlook this complex and volatile status caused by modality heterogeneity, which
may have detrimental impacts on learning correct environmental dynamics. A straightforward solution
might be to model the dynamics of each modality separately. However, this approach neglects the
complementarity between different data sources, which could reduce its effectiveness.

To achieve efficient dynamics modeling in multi-modal scenarios, decoupling and understanding the
interplay between modalities and environmental dynamics is necessary. Firstly, modality-correlated
features provide a foundational perspective by capturing shared and common information across
different sensory inputs. These commonalities are critical for building a cohesive description of the
environment’s overall behaviour. Secondly, the distinct features in each modality offer inconsistent
side views of the environment. In conventional multi-modal visual tasks, these inconsistencies are
typically deemed less critical and are mitigated through modality alignment [5, 40, 27]. However, in
modeling RL dynamics, the inconsistent features are equally important as they 1) carry critical task-
related clues and 2) are also the key ingredient in deducing the modality-specific state changes. This
importance is also verified by our investigation presented in Sec. 4.4, where we find that incorporating
modality inconsistencies leads to a more accurate mimicry of the environment rewards.

Based on the above analysis, we propose Dissected Dynamics Modeling (DDM), a method that
neatly integrates the decomposition of commonalities and differences across modalities with the
dynamics modeling process. As shown in Fig. 1(b), DDM seeks a mutual predictive property
between modalities to establish an implicit regularization and isolate modality-consistent features.
Furthermore, it extends this consistency across different temporal locations, ensuring that the learned
common information resonates with environmental dynamics. Regarding modality inconsistencies,
unlike standard practice that enforces mutual exclusivity with consistent features of the same modality,
DDM imposes orthogonal constraints between different modalities to highlight their unique contents.
This avoids overly strong regularization, which leads to improved feature quality. The decomposed
inconsistent features are only used to establish the dynamics of each modality itself, which creates
a more complete environment dynamics without causing interference across modalities. Despite
dissecting modality content and model dynamics separately, DDM further introduces a reward
predictive function to ensure that both consistent and inconsistent features focus on task-relevant
information. This approach preserves information integrity while avoiding potential distractions,
which ensures optimized decision-making accuracy and responsiveness.

In summary, our work contributes threefold: 1) We analyze the challenges of modeling multi-modal
environment dynamics for visual RL, offering insights into the key factors that influence modeling
robustness. 2) We present DDM, a novel method that seeks commonality but preserves differences
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between modalities for enhanced dynamics modeling. 3) Our experimental results validate the
effectiveness of our method, demonstrating its strength under complex environmental conditions.

2 Related Work

Visual Reinforcement Learning. Visual reinforcement learning (RL) aims to enable agents to make
decisions based on raw visual inputs. Existing methods typically revolve around strategies such as
data augmentation to enhance input diversity [50, 29, 30, 31], incorporating auxiliary tasks for richer
representation supervision [23, 53, 19, 35, 46], employing world models for behavior prediction [14,
13, 38, 49], or pre-training encoders to improve state representation compression [28, 39, 51]. Despite
these advances, current visual RL methods predominantly rely on the RGB modality, which could
potentially limit the agent’s holistic understanding of the environment.

Multi-modal Reinforcement Learning. Handling multi-modal input is important for various control
tasks [18, 44, 22] but remains as an under-explored research area in the field of RL. Despite the
advancements in multi-modal machine learning methods, applying these techniques to RL faces
several challenges due to the highly dynamic RL environment and heterogeneous modalities. A
few pioneering works have focused explicitly on multi-modal RL [4, 32, 20]. However, these
methods primarily focus on aligning different modalities, using techniques like mutual information
optimization [4] or imposing consistency constraints [32]. Such a strategy overlooks the impact of
modality-inconsistent aspects on decision-making, which may hinder its effectiveness.

Dynamics Modeling in Visual RL. Learning to model the environment dynamics in visual RL is
critical for obtaining efficient state representations and reducing computational complexity. Earlier
works involve reconstructing input observations at the pixel level [48, 45]. Subsequent studies have
focused on dynamics modeling by predicting future latent states [10, 9, 14, 37, 25, 2, 41], showing
promising results. Although these methods have advanced the field, they are not explicitly designed
for multi-modal scenarios and may face challenges under complex modality relationships. Unlike
existing methods, our approach uniquely dissects modality contents based on their relationships,
treating consistent and inconsistent information separately within the dynamics modeling process.

3 Methodology

We consider the standard RL setting where an agent interacts with the environment in consecutive time
steps. At each time step, the agent has access to observations from d distinct modalities, where d > 1.
Fig. 2 illustrates the proposed Dissected Dynamics Modeling (DDM) method. DDM is structured
around two tightly entangled elements: 1) the decomposition of commonalities and differences across
modalities and 2) modeling modality-aware environmental dynamics. Through this modeling process,
the decomposed features of each modality are optimized to retain highly abstract and comprehensive
task-related information. These features are then applied to learn policies, which promote both
decision-making precision and sample efficiency. We now describe our overall approach in detail.

3.1 Preliminaries

Multi-modal Markov Decision Process. The task of multi-modal visual RL can be formulated as a
Markov Decision Process with the tuple (S,A, T ,R, γ), where the state space is S =

∏d
i=1 OMi

represented by the combined observation space comprising d different modalities [20]. A is the
action space, T (st+1|st, at) is the transition function, R(s, a) is the reward function, and γ ∈ [0, 1)
is the discount factor [42]. At every time step t, the agent observes all modality data to take action
according to policy π. The environment then returns a reward to the agent. The goal is to optimize
the policy by maximizing the expected cumulative reward.

Soft Actor Critic. Our approach is based on Soft Actor-Critic (SAC) [11, 12], which iteratively
refines a policy function π and a critic function Q. SAC seeks to maximize the expected cumulative
reward while simultaneously encouraging exploration by an α-discounted maximum entropy:

Lπ = Eat∼π [Q(ot, at)− α log π(at|ot)] , (1)

The parameters of the value function are updated by the Bellman equation:

LQ = E(ot,at)∼D [(Q(ot, at)− (rt + γV (ot+1)]))
2
, (2)
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Figure 2: The proposed Dissected Dynamics Modeling (DDM) method. The input visual modalities
are first passed through separate observation encoders to get partitioned modality-consistent and
inconsistent features. These features then undergo modality-aware dynamics modeling to model
accurate RL dynamics and promote feature quality. Finally, the optimized modality features are
merged as state representations, which are then used for robust policy learning.

where D is the replay buffer, and the soft state value function V (ot+1) is calculated as follows:

V (ot+1) = Eãt+1∼π

[
Q̄(ot+1, ãt+1)− α log π(ãt+1|ot+1)

]
, (3)

where Q̄ is the exponential moving average of the critic network Q, and ãt+1 is the action produced
by the current policy.

3.2 Modality Decomposition

Feature Encoding and Partitioning. Given the significant disparities in low-level information inputs
across different modalities, we utilize d modality-specific encoders to transform high-dimensional
observations into deep latent features. These encoders possess identical network architectures, except
for the initial input layer, which is adjusted to match the channel number of the corresponding input
data shapes. The extracted feature of the i-th modality Mi at time step t is denoted as zMi

t . Since our
method aims to decompose each modality into common and unique components, we further adopt
two separate network branches as information filters for feature partitioning. These two branches
process the extracted modality feature zMi

t , producing two distinct outputs: zMi
t as the modality-

consistent feature, and ẑMi
t as the modality-inconsistent feature. In the subsequent decomposition

phase, these features undergo a series of regularizations to ensure they accurately convey the intended
information. For clarity, we mainly introduce the case involving two modalities. The extension to
multiple modalities will be discussed subsequently.

Extracting Consistencies Between Modalities. Consistent information across modalities provides
foundational knowledge about general environmental behavior. To extract such information, we focus
on enhancing the mutual predictive properties between different modalities. Given two modalities M1

and M2, we first impose a mutual prediction (mp) constraint on the partitioned modality-consistent
features zM1

t and zM2
t at the current time step t:

Lmp = ∥F1(z
M2
t )− zM1

t ∥+ ∥F2(z
M1
t )− zM2

t ∥, (4)

where F1 and F2 are prediction heads implemented as Multi-Layer Perceptrons (MLP). Such a
prediction between modalities triggers a form of content alignment, offering immediate common
environmental insights. However, merely imposing the consistency constraint at a static step t may
not fully leverage the pivotal temporal dynamics of the environment. Intuitively, observations in
adjacent timesteps often preserve similar contexts. For example, in autonomous driving, a car that
exists in one timestep will likely remain in the next. Meanwhile, there may be subtle variations
in details, such as the car’s location, distance, and size. These temporal differences can serve as
augmented views that facilitate the discrimination of modality commonalities. Therefore, we create
an additional transition prediction constraint across different modalities. Given zM1

t , zM2
t and the
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action at taken in time step t, we set up two transition prediction (tp) heads G1, G2 to predict the
consistent features zM1

t+1, zM2
t+1 of the next time step:

Ltp =∥G1(z
M2
t , at)− zM1

t+1∥2 + ∥G2(z
M1
t , at)− zM2

t+1∥2. (5)

This approach creates a synergistic effect on both consistency extraction and dynamics modeling:
on one hand, the expanded view in the subsequent time step offers enhanced guidance for learning
to identify task-relevant common objects. On the other hand, predicting environmental transitions
improves feature quality related to modeling scene dynamics. This interconnection tightly couples
the two tasks, allowing them to reinforce each other effectively.

Identifying Inconsistencies. Extracting inconsistent information between different modalities is a
subtler task than consistency extraction. This subtleness is caused by the absence of clear constraints
on feature content: unlike consistency extraction, which involves pulling features closer with concrete
objective functions, inconsistency extraction lacks such a definitive goal. For initial consideration,
any content that is not consistent across modalities should be deemed as inconsistencies. Therefore, a
common practice is to enforce mutual exclusivity between the consistent and inconsistent features of
the same modality [21]. Taking modalities M1 and M2 as examples, the orthogonality objective can
be applied to impose this mutual exclusivity as follows:

L = (zM1
t · ẑM1

t )2 + (zM2
t · ẑM2

t )2, (6)

where (·) denotes the dot product operation. However, this objective might be overly strong, as Eq. 6
forces the feature pairs [zM1

t , ẑM1
t ] and [zM2

t , ẑM2
t ] to be completely uncorrelated. Since each pair of

features originated from the same modality encoder, they are likely to share similar encoding patterns.
Therefore, enforcing orthogonality may lead to excessively departed features and decrease feature
expressiveness. To alleviate this issue, we take an alternative solution. Given two modalities M1 and
M2, we instead optimize the following objective:

Lorth = (ẑM1
t · ẑM2

t )2. (7)

Eq. 7 directly matches our intention of highlighting different contexts across modalities. During
optimization, the similar contexts in M1 and M2 are gradually excluded in ẑM1

t and ẑM2
t due to the

strict constraint of orthogonality. Meanwhile, this optimization process is less aggressive than Eq. 6
since ẑM1

t and ẑM2
t come from different modality encoders and minimizing their correlation does not

affect learning effective representations within each encoder.

Extension to Multiple Modalities. So far we have been working on the two-modality case. The
extension to more modalities is also straightforward. For consistency extraction, we modify the
prediction heads Fi and Gi for modality Mi to take all other modalities as input. The objectives in
Eq. 4 and 5 then become:

Lmp =

d∑
i=1

∥Fi({z
Mj

t | j ̸= i})− zMi
t ∥,Ltp =

d∑
i=1

∥Gi({z
Mj

t | j ̸= i}, at)− zMi
t+1∥2, (8)

where d > 2 is the modality number and {zMj

t | j ̸= i} denotes all d−1 modality-consistent features
except for zMi

t . These d− 1 features are concatenated and sent into Fi and Gi for prediction. Eq. 8
is inspired by set calculation, where each feature is regarded as a set of contexts. It states that for
d sets, if the union of any d− 1 sets equals the remaining set, then all d sets must be identical and
consistent. For inconsistency extraction, we simply extend Eq. 7 as:

Lorth =

d−1∑
i=1

d∑
j=i+1

(ẑMi
t · ẑMj

t )2, (9)

which covers all pair-wise modality combinations.

3.3 Modality-aware Dynamics Modeling

After decomposing modalities into consistent and inconsistent contexts, our approach treats them
separately in the overall dynamics modeling process. The consistency features are used to predict
cross-modality future states to ensure they capture common scene dynamics, as formulated by the
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Table 1: Comparison with state-of-the-art methods on CARLA benchmark. S-RL denotes single-
modality RL methods, M-CV denotes multi-modal methods for conventional computer vision tasks,
and M-RL denotes multi-modal RL methods. ER represents the episode return, and D(m) is the
driving distance in meters. The best results are bolded.

Methods Type Normal Midnight Dazzling Rainy Average
ER D(m) ER D(m) ER D(m) ER D(m) ER D(m)

SAC S-RL 204 ± 49 253 ± 35 154 ± 58 207 ± 35 125 ± 57 181 ± 39 174 ± 42 217 ± 34 164.25 214.50
DrQ S-RL 234 ± 43 272 ± 32 195 ± 41 248 ± 25 132 ± 53 179 ± 42 225 ± 56 258 ± 41 196.50 239.25
DeepMDP S-RL 241 ± 39 286 ± 40 210 ± 23 244 ± 29 162 ± 35 223 ± 32 252 ± 42 267 ± 37 216.25 255.00
SPR S-RL 256 ± 45 297 ± 53 205 ± 67 232 ± 48 165 ± 62 220 ± 49 261 ± 53 280 ± 52 221.75 257.25
TransFuser M-CV 249 ± 73 286 ± 60 224 ± 58 267 ± 40 178 ± 58 209 ± 43 248 ± 70 274 ± 57 224.75 259.00
EFNet M-CV 254 ± 67 309 ± 54 239 ± 60 264 ± 43 174 ± 57 212 ± 38 259 ± 66 276 ± 48 231.50 265.25
MuMMI M-RL 233 ± 70 297 ± 58 215 ± 59 258 ± 39 159 ± 65 206 ± 51 228 ± 61 261 ± 49 208.75 255.50
MAIE M-RL 241 ± 58 291 ± 43 217 ± 61 242 ± 41 163 ± 58 210 ± 45 242 ± 52 274 ± 40 215.75 254.25
HAVE M-RL 275 ± 77 315 ± 63 243 ± 75 263 ± 45 189 ± 68 237 ± 52 275 ± 67 286 ± 50 245.50 275.25
Ours-DDM M-RL 289 ± 61 338 ± 52 279 ± 41 300 ± 46 229 ± 42 267 ± 47 294 ± 35 314 ± 42 272.75 304.75

Ltp in Eq. 5 and 8. The inconsistent contents are sent into a different pathway, which is used to
deduce the full modality-specific evolution. In particular, for each modality Mi, we first merge its
consistent and inconsistent features into a unified modality representation:

z̃Mi
t = zMi

t + ẑMi
t , (10)

the merged z̃Mi
t contains a comprehensive description of Mi. Then, we set up a full-state predictive

(fp) head Pi for each Mi, which takes both z̃Mi
t and action at to forecast the next state:

Lfp =

d∑
i=1

∥Pi(z̃
Mi
t , at)− z̃Mi

t+1∥2. (11)

Such a full-state prediction ensures the combination of decomposed modality features faithfully
captures the modality-specific dynamics. To accurately reflect environmental rewards, a reward
predictive function R is further introduced to filter task-irrelevant information, optimized by:

Lr = ∥R(zt, at)− rt+1∥, (12)

where zt =
[
z̃M1
t , z̃M2

t , . . . , z̃Md
t

]
is the ultimate state representation obtained by concatenating

features from all d modalities, and rt+1 is the actual reward returned by the environment.

3.4 Policy-learning with DDM

Given the feature decomposition and dynamics modeling processes, the policy-learning of our
dissected dynamics modeling (DDM) method involves the joint optimization of multiple objectives
that are divided into three groups:

LDDM = LQ + Lπ︸ ︷︷ ︸
SAC

+Lmp + Lorth + L︸ ︷︷ ︸
Feat. Decomposition

tp + Lfp + Lr︸ ︷︷ ︸
Dynamics Modeling

, (13)

where Ltp is used in both feature decomposition and dynamics modeling, and the SAC takes the state
representation zt as input to replace the observation ot. During training, the DDM learns to extract
effective state representations that faithfully reflect the environmental behaviour, yielding improved
policy in various multi-modal visual RL tasks.

4 Experiments

4.1 Experiment Settings

Environments. To evaluate the effectiveness of our approach in complex multi-modal scenarios, we
conducted tests on two widely used RL benchmarks: 1) the CARLA simulator [7] for autonomous
driving, and 2) the DeepMind Control (DMControl) suite [43] for robotic control. For CARLA, we as-
sessed our method under four different environmental conditions: “Normal”, “Midnight”, “Dazzling”,
and “Rainy”. The latter three conditions provide challenging driving scenarios characterized by
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Table 2: Comparing with state-of-the-art methods on DMControl. The best results are bolded.

Methods Type Cartpole Reacher Cheetah Average Cartpole Reacher Quadruped AverageSwingup Easy Run Swingup_sparse Hard Run
SAC S-RL 742 ±60 307 ±79 204 ±94 417.67 711 ±42 45 ±32 204 ±37 320.00
DrQ S-RL 815 ±58 913 ±54 239 ±75 655.67 674 ±67 105 ±45 469 ±46 416.00
DeepMDP S-RL 827 ±66 823 ±89 524 ±40 724.67 713 ±51 128 ±32 453 ±42 431.33
SPR S-RL 845 ±49 905 ±37 581 ±45 777.00 720 ±54 187 ±48 468 ±39 458.33
TransFuser M-CV 845 ±56 906 ±48 518 ±52 756.33 728 ±42 169 ±51 211 ±75 369.33
EFNet M-CV 824 ±43 900 ±35 555 ±34 759.67 769 ±55 125 ±57 183 ±81 359.00
MuMMI M-RL 802 ±59 895 ±57 530 ±54 742.33 712 ±60 152 ±43 328 ±77 397.33
MAIE M-RL 829 ±60 852 ±52 535 ±61 738.67 750 ±37 147 ±58 402 ±69 433.00
HAVE M-RL 835 ±52 867 ±65 560 ±59 754.00 732 ±45 151 ±69 426 ±58 436.33
Ours-DDM M-RL 854 ±46 904 ±42 587 ±32 781.67 813 ±42 224 ±64 489 ±56 508.67

extreme lighting and heavy rainfall, closely mimicking real-world driving scenes. Various modalities
provided by the benchmark are utilized, including RGB frames, event signals, depth images, and
LiDAR images in a bird’s-eye view (BEV) perspective. For DMControl, we conduct evaluations
on six tasks, which are partitioned into two groups based on their difficulty levels. The modalities
used are RGB frames and depth images. However, given the relatively clean backgrounds of tasks
in DMControl and the high consistency between the two modalities, we additionally introduce
inconsistencies by randomly selecting one modality and masking out 20% of its image contents. This
intentional introduction of inconsistencies simulates the occlusion issues commonly encountered
during real-world machine operations, thereby increasing the task difficulty.

Compared Methods. We compare our DDM method with various types of methods, including single-
modal baseline RL algorithms SAC [12] and DrQ [50], two competitive dynamics modeling methods
DeepMDP [9] and SPR [37], conventional multi-modal methods EFNet [40] and TransFuser [5], and
multi-modal RL methods MUMMI [4], MAIE [32], and HAVE [20]. For EFNet and TransFuser,
since they were initially designed for traditional computer vision tasks, we mainly evaluate their core
modality fusion and alignment modules. These modules are integrated with the SAC algorithm for
decision-making, which is the same base RL algorithm used in our method.

Implementation Details. Our approach is implemented with Pytorch. To ensure a fair comparison,
we use the same encoder network architectures and training hyperparameters for all methods being
evaluated. In line with established practices [50, 23], we convert data from each modality into image-
based representations and stack multiple sequential images to capture temporal dynamics. Methods
on the CARLA benchmark and DMControl are trained for 100k and 500k frames, respectively. To
obtain reliable results, we train each task-method pair for 5 runs and report the mean values and
standard deviations after 20 evaluations. More detailed experimental setups are given in the Appendix.

4.2 Comparison with State-of-the-art

Results on CARLA. Table 1 presents the performance of various methods on the CARLA benchmark
using two modalities: RGB frames and event signals. The results demonstrate that our method
outperforms others in all four environmental conditions. The table shows that the performances of
the SAC and DrQ baselines are less satisfactory, especially in complex conditions such as “Dazzling”
and “Midnight”. While conventional dynamics modeling methods like DeepMDP and SPR do
enhance performance, their improvements are modest compared to our DDM method. For example,
DDM obtains an average episode return improvement of approximately 24.4% and 21.3% over
DeepMDP and SPR, respectively. This substantial enhancement is attributed to the explicit modality
decomposition and processing in DDM, which significantly boosts robustness across diverse multi-
modal environments. The table also indicates that existing multi-modal methods achieve decent
performance on CARLA. However, these methods primarily focus on modality alignment and fusion,
neglecting inconsistency contexts critical for decision-making. Consequently, they do not match
the efficiency of our DDM, which effectively leverages both consistent and inconsistent modality
contexts for robust decision-making. The results with all four modalities are given in the Appendix.

Results on DMControl. We further evaluate different methods on the DMControl in Table 2. Similar
to the results on the CARLA benchmark, our method demonstrates significant performance improve-
ments on DMControl. It is apparent that conventional multi-modal methods such as TransFuser and
EFNet exhibit limited performance, likely due to the increased inconsistency brought by random
masking. In contrast, our DDM method consistently enhances the performance of the SAC baseline
by a large margin, further verifying its effectiveness.
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Table 3: Ablation study of different components in DDM on CARLA benchmark.

Methods Normal Midnight Dazzling Rainy Average
ER D(m) ER D(m) ER D(m) ER D(m) ER D(m)

RGB 169 ± 66 213 ± 49 121 ± 54 187 ± 41 84 ± 62 123 ± 53 159 ± 58 194 ± 41 133.25 179.25
Baseline 204 ± 49 253 ± 35 154 ± 58 207 ± 35 125 ± 57 181 ± 39 174 ± 42 217 ± 34 164.25 214.50
+Lfp 234 ± 64 275 ± 52 198 ± 63 232 ± 48 157 ± 52 199 ± 50 241 ± 53 274 ± 45 207.50 245.00
+Lr 249 ± 48 287 ± 54 212 ± 47 248 ± 42 164 ± 66 224 ± 48 254 ± 47 271 ± 39 219.75 257.50
+Lmp 262 ± 51 312 ± 39 227 ± 54 260 ± 59 184 ± 59 243 ± 47 258 ± 54 282 ± 45 232.75 274.25
+Ltp 277 ± 59 324 ± 44 248 ± 58 272 ± 52 208 ± 46 254 ± 43 279 ± 47 298 ± 40 253.00 287.00
+Lorth 289 ± 61 338 ± 52 279 ± 41 300 ± 46 229 ± 42 267 ± 47 294 ± 35 314 ± 42 272.75 304.75
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Figure 3: The reward estimation and state prediction errors of different methods.

4.3 Ablation Study

To systematically verify the effectiveness of each component in DDM, we conduct a series of ablation
experiments on the CARLA benchmark. The experiments are conducted by progressively integrating
different training objectives in DDM into the baseline SAC algorithm. The results are given in
Table 3. Compared with the baseline, incorporating the full-state prediction objective Lfp and reward
prediction objective Lr notably enhances performance. However, this enhancement does not bring a
significant advantage over conventional methods such as DeepMDP and SPR reported in Table 1, since
the modality relationship is not explicitly modeled. Further applying Lmp and Ltp to model modality
consistencies provides additional performance gains, showing the importance of extracting common
contexts in multi-modal RL. Finally, the integration of Lorth to model modality inconsistencies yields
substantial improvement, confirming the effectiveness of our modality decomposition strategy.

4.4 Discussion and Analysis

The Importance of Modality Commonality and Differences. A key finding of our study is the
crucial role of both modality commonality and differences in multi-modal dynamics modeling.
To investigate this, we leverage the bisimulation metrics [8, 9] for MDPs to assess the dynamics
modeling performance of different methods. Specifically, the bisimulation metrics define two states to
be behaviourally similar if they have close rewards along the transition trajectory [9]. Therefore, the
difference between the estimated and true rewards can reflect how closely the learned states mimic the
actual environmental states. In Fig. 3(a), we plot the absolute reward difference |R(zt, at)− rt+1| for
three methods: DeepMDP, DDM without using Lorth (i.e., only modeling modality consistency), and
the full DDM model. The reward difference is plotted for each time step of the same test sequence on
the CARLA benchmark. From the figure, it is clear that compared to DeepMDP, modeling modality
consistency can reduce reward estimation errors. Additionally, incorporating modality inconsistency
further significantly enhances estimation accuracy. These results confirm the importance of both
common and differing modality contexts in accurately learning dynamics.

Besides rewards, we also examine the state prediction accuracy of different methods. In Fig. 3(b),
we plot the normalized latent state prediction error ||z′

t−zt+1||
||zt+1|| for each method. For DDM methods,

z′t is defined as [P1(z̃
M1
t , at), P2(z̃

M2
t , at), . . . , Pd(z̃

Md
t , at)], representing the predicted states from

multiple modalities, for DeepMDP, z′t represents the predicted single latent state. The figure shows
that DeepMDP exhibits significantly higher state prediction errors, highlighting the benefits of
decomposing modality contexts and treating each modality separately. Among the two DDM variants,
the full DDM model with Lorth has less prediction error, again demonstrating the advantages of
incorporating task-related inconsistencies.
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(b) Sample efficiency on CARLA
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Figure 4: Comparison between DeepMDP and DDM on policy robustness and sample efficiency.
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Figure 5: t-SNE visualization of consistent and inconsistent features.

Policy Robustness and Sample Efficiency. The modality decomposition and reward prediction in
DDM efficiently extract task-related contexts and filter out irrelevant content, potentially enhancing
policy robustness against distractions like data noise. To verify this, we evaluate DDM and Deep-
MDP on the CARLA benchmark with random Gaussian noises or random masks added to the input
modality data. The results in Fig. 4(a) show that DDM experiences minimal performance degrada-
tion, highlighting its robustness. In contrast, DeepMDP exhibits a significant performance decline,
particularly when faced with random input noises. Despite policy robustness, we further investigate
the sample efficiency of the two methods. The results in Fig. 4(b) show that DDM converges faster
and achieves better accuracy than DeepMDP in various environmental conditions. These advantages
highlight the superiority of DDM, demonstrating its potential for learning diverse visual control tasks.

Con. ⊥ Incon. (Eq.6) Incon. ⊥ Incon . (Eq.7)
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Figure 7: Comparing different
inconsistency constraints.

Comparison of Different Approaches for Inconsistency Extrac-
tion. In Sec. 3.2, we have discussed two different approaches for in-
consistency extraction, i.e., applying the mutual exclusive constraint
within the same modality (Eq. 6) or across different modalities
(Eq. 7). We conjecture that Eq. 6 might be overly strong, poten-
tially affecting feature expressiveness. To verify this conjecture,
we compare the performance of the two inconsistency extraction
approaches on the CARLA benchmark. The results in Fig. 7 show
that forcing orthogonality within the same modality using Eq. 6
consistently obtains worse performance, indicating that it learns less expressive features compared to
our approach.

Visualization of Decomposed Modality Features. To confirm that the modality features decomposed
by DDM accurately capture the intended contexts, we use t-SNE to visualize both modality-consistent
and inconsistent features for RGB and event signals on the CARLA benchmark. As shown in Fig.5,
DDM successfully aligns the modality-consistent features, resulting in closer feature distances, while
the modality-inconsistent features are distinctly separated. Further visualizations in Fig.6 reveal that
the consistent features primarily focus on common objects (e.g., road fences), whereas the inconsistent
features highlight objects visible in one modality but not in others (e.g., lane lines in RGB frames).
In contrast, DeepMDP tends to indiscriminately focus on all scene objects, lacking contextual
discriminativity. These visualizations demonstrate the efficacy of the modality decomposition in
DDM, facilitating more precise dynamics modeling and efficient state representation.
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Figure 6: Visualization of feature heatmaps in DDM under normal and midnight conditions.

5 Limitations and Future Works

Our current DDM method has two primary limitations. First, while it effectively simulates multi-
modal dynamics and enhances representation learning, it lacks integrated planning mechanisms
similar to those in MuZero [36] and Dreamer [13, 15, 16, 34, 6]. Research has shown that planning
mechanisms can effectively model the impact of various strategies in data-rich scenarios, thus
minimizing trial and error in real-world applications. In future works, we plan to integrate long-term
action consequences into our decision-making processes by developing decomposed multi-modal
world models. Second, our approach focuses primarily on vision-based data inputs. However, recent
studies suggest that integrating diverse modal inputs, such as textual and audio data, can yield
adaptable representations [47]. Therefore, extending our approach to include additional types of
modal inputs represents another promising future direction to enhance its scope and performance.

6 Conclusion

We have studied the impact of modality heterogeneity on dynamics modeling in multi-modal visual
reinforcement learning (RL) tasks. Our investigation reveals that both the commonalities and
differences in each modality are crucial for accurate dynamics modeling, albeit playing distinct roles.
Based on this insight, we have presented Dissected Dynamics Modeling (DDM), a novel method
designed to enhance dynamics modeling and representation learning for multi-modal visual RL. Our
approach represents one of the first explorations of modeling environmental dynamics in multi-modal
scenarios, providing a fresh context decomposition perspective based on modality relationships.
Extensive experiments demonstrate the effectiveness of our approach, which significantly improves
representation quality and decision-making performance in diverse environmental conditions.
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Appendix

The contents of this Appendix are presented as follows:

Section A offers extra experiment findings, including performance on the CARLA benchmark with
more modalities, experiments for visual inputs from multiple camera positions, sample efficiency and
different masking ratios on the DeepMind Control Suite.

Section B describes the experimental setups, including the details of network structures, environment
conditions, training hyper-parameters, and hardware details respectively.

Section C discusses the potential societal impacts of our method.

Table A1: Comparison with state-of-the-art methods on CARLA benchmark with four modalities.

Methods Type Normal Midnight Dazzling Rainy Average
ER D(m) ER D(m) ER D(m) ER D(m) ER D(m)

SAC S-RL 182 ± 74 282 ± 71 198 ± 82 246 ± 74 174 ± 79 211 ± 78 194 ± 75 250 ± 68 187.00 247.25
DrQ S-RL 229 ± 78 329 ± 68 218 ± 76 262 ± 76 206 ± 82 231 ± 80 239 ± 76 287 ± 72 223.00 277.25
DeepMDP S-RL 244 ± 64 327 ± 52 235 ± 67 285 ± 62 215 ± 70 242 ± 68 248 ± 61 272 ± 58 235.50 281.50
SPR S-RL 261 ± 71 362 ± 73 227 ± 83 299 ± 74 200 ± 86 229 ± 75 259 ± 84 302 ± 70 236.75 298.00
TransFuser M-CV 244 ± 80 340 ± 65 249 ± 74 315 ± 69 234 ± 76 255 ± 68 264 ± 72 308 ± 64 247.75 304.50
EFNet M-CV 268 ± 74 356 ± 60 240 ± 69 312 ± 67 225 ± 78 249 ± 64 259 ± 74 301 ± 72 248.00 304.50
MuMMI M-RL 249 ± 74 334 ± 65 223 ± 78 300 ± 66 227 ± 72 239 ± 64 254 ± 80 299 ± 61 238.25 293.00
MAIE M-RL 254 ± 76 341 ± 66 234 ± 88 311 ± 72 238 ± 73 248 ± 78 260 ± 69 300 ± 73 246.50 300.00
HAVE M-RL 295 ± 72 365 ± 70 275 ± 81 334 ± 76 258 ± 81 267 ± 76 307 ± 72 337 ± 75 283.75 325.75
Ours-DDM M-RL 316 ± 67 378 ± 69 296 ± 75 355 ± 67 276 ± 72 282 ± 72 324 ± 76 353 ± 69 303.00 342.00

Table A2: Results on CARLA benchmark with different perspectives RGB+Lidar-BEV.

Methods Normal Midnight Dazzling Rainy Average
ER D(m) ER D(m) ER D(m) ER D(m) ER D(m)

HAVE 241 ± 64 282 ± 67 251 ± 82 285 ± 74 221 ± 73 244 ± 74 272 ± 75 281 ± 67 246.25 273.00
Ours-DDM 268 ± 72 313 ± 55 282 ± 63 308 ± 46 239 ± 64 268 ± 59 284 ± 55 305 ± 60 268.25 298.50

Table A3: Results on DMControl with different perspectives: RGB and depth modality with different
camera perspectives .

Methods Type Cartpole Reacher Cheetah Average Cartpole Reacher Quadruped AverageSwingup Easy Run Swingup_sparse Hard Run
SPR S-RL 792 ±57 839 ±42 542 ±49 724.33 704 ±68 134 ±52 401 ±58 413.00
Ours-DDM M-RL 820 ±40 887 ±47 555 ±61 754.00 776 ±57 182 ±64 452 ±65 470.00

A Additional Experimental Results

Results with More Modalities on CARLA. Table A1 presents the results of various methods
on the CARLA benchmark, utilizing four modalities: RGB frames, event signals, depth images,
and LiDAR BEV images. Compared to the results in Table 1, nearly all methods show improved
performance with the increased number of modalities. Additionally, the trends observed in Table A1
follow those in Table 1, with single-modal methods typically underperforming their multi-modal
counterparts. Among all the multi-modal methods, our DDM method consistently maintains the best
performance due to its modality decomposition and integration. This comprehensive modeling allows
DDM to effectively utilize additional information provided by multiple modalities, leading to robust
decision-making compared to other methods.

Experiments for visual inputs from multiple camera positions. We have further verified the ability
of our model on multiple camera positions. First, we switch the camera view of RGB modality in
DMControl. Second, we test on CARLA with RGB and LiDAR BEV as input modalities. LiDAR
BEV is a bird view map, whose perspective is very different from RGB. For simplicity, we only
compare our method against the most competitive baseline methods on these two environments (i.e.,
HAVE on CARLA and SPR on DMControl). The results and illustrations of different camera views
are presented in Table A2, Table A3 and Fig. A1 respectively. These results show that our method
also works on multiple camera positions.

Sample efficiency on DMControl. In Fig. A2, we evaluate the sample efficiency of different methods
on DMControl. Compared to DeepMDP and EFNet, our method demonstrates the highest sample
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(a) RGB and Depth modalities with 
different camera perspectives.

(b) RGB and Lidar-BEV modalities with 
different perspectives on Carla.

Figure A1: Illustration of visual inputs from multiple camera positions.

efficiency across five tasks, as shown in the figure. This superior performance is attributed to our
method’s ability to capture a more comprehensive representation of the environment. By accurately
modeling the dynamics of each modality and their interactions, our method can make more informed
decisions with fewer samples, enhancing learning efficiency and overall performance.
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Figure A2: Sample efficiency on DMControl. For each task, we provide the task returns of three
methods at 100K and 500K steps, respectively.

Table A4: Different mask ratio on DMControl.

Methods Masking Cartpole Reacher Cheetah Average Cartpole Reacher Quadruped AverageRatio Swingup Easy Run Swingup_sparse Hard Run

SPR

0 870 ±53 956 ±40 662 ±49 829.33 802 ±61 564 ±63 537 ±58 634.33
0.2 845 ±49 905 ±37 581 ±45 777.00 720 ±54 187 ±48 468 ±39 458.33
0.4 832 ±62 844 ±59 563 ±58 746.33 687 ±70 142 ±68 419 ±72 416.00
0.6 813 ±63 824 ±59 525 ±65 720.67 628 ±59 82 ±72 403 ±68 371.00

DDM

0 868 ±42 955 ±37 676 ±62 833.00 829 ±52 597 ±71 552 ±59 659.33
0.2 854 ±46 904 ±42 587 ±32 781.67 813 ±42 224 ±64 489 ±56 508.67
0.4 838 ±50 852 ±42 585 ±70 758.33 795 ±35 211 ±64 437 ±62 481.00
0.6 845 ±75 818 ±68 524 ±72 729.00 761 ±80 185 ±67 446 ±63 464.00

Different masking ratios on DMControl . Our masking operation is performed independently at
each timestamp. Therefore, both the masked modality type and the masking locations vary randomly
across different timestamps, which simulates a challenging occlusion scenario. For other masking
ratios, we further test the ratio of 0%, 40%, 60%, and compare our method with SPR, the most
competitive baseline on DMControl. As shown in Table A4, the results reveal that as the masking ratio
increases, both SPR and our DDM experience performance drops. However, DDM still outperforms
SPR at different ratios.
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Normal Midnight Dazzling Rainy

Figure A3: Demonstration of RGB frames and event signals on the CARLA benchmark.

B Detailed Experimental Setup

In this section, we provide a comprehensive description of the experimental setup, including network
architectures, environment configurations, and hyper-parameter settings.

B.1 Network Architecture

Modality Encoders. Individual feature encoders are employed for each modality to handle the input
data. Each input observation provided to the encoder consists of 3 consecutive frames returned by
the environment. This results in input channel numbers of 9 for RGB frames, 15 for event signals,
3 for LiDAR BEV images, and 3 for depth images. All the feature extractors share a common
network architecture that comprises four convolutional layers, each followed by ReLU activations.
The final layer produces 64× 6× 6 feature maps, which serves as the individual modality features
zMi
t . These features are then passed into two separate network branches to get 50-dimensional

modality-consistent and inconsistent features zMi
t and ẑMi

t , respectively.

Actor and Critic Networks. In our method, the actor network, which is composed of three fully
connected (FC) layers with ReLU activations placed after the first two layers, produces parameters
for a Gaussian distribution over actions. The critic network has a similar structure but outputs an
estimated Q-value for a specific state-action pair.

Prediction Heads and Reward Prediction Network. The prediction heads, as described in [9],
take the input latent vector and the corresponding action as inputs. They generate the inferred latent
vectors through two fully connected (FC) layers, with ReLU activation following the first layer.
Similarly, the reward prediction network uses the same architecture but outputs a single-dimensional
predicted reward. This network estimates the expected reward for a specific state-action pair, offering
critical feedback for dynamics modeling.

B.2 Environment Details

B.2.1 Environmental Conditions in CARLA

The four environmental conditions (Normal, Midnight, Dazzling, and Rainy) employed in our study
are predefined with specific weather hyper-parameters, as detailed in Table A5. These conditions
provide a comprehensive evaluation of the RL algorithms under various situations.
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Table A5: The hyper-parameters of weather conditions on CARLA.
Weather Parameters Normal Midnight Dazzling Rainy
Cloudiness 5 30 0 0
Precipitation 0 0 0 100
Precipitation_deposits 0 0 0 100
wind_intensity 10 0 0 0
fog_density 2 20 0 0
fog_distance 0.75 0 1000 0
wetness 0 0 0 50
sun_azimuth_angle -1 0 270 0
sun_altitude_angle 45 -90 10 5

B.2.2 Modality Settings

Modalities in CARLA. RGB frames are the default input modality in CARLA, which capture rich
texture and color information but may face challenges like motion blur and limited dynamic range
under extreme light conditions. Event signal is a new modality provided in CARLA, mimicking the
output of neuromorphic event cameras [26, 3]. As shown in Fig. A3, event signals focus on changes
in brightness, offering a wider dynamic range, no motion blur, and high temporal resolution, making
them ideal for dynamic scenes. However, they do not generate signals at static regions when no pixel
differences occur. In addition, event signals may experience hot spot noises. We simulate this noise
to replicate real event signal characteristics. Some key parameters related to these two modalities are
provided in Table A6. Besides RGB frames and event signals, the depth images in CARLA provide
distance maps, while LiDAR BEV creates scanning of the vehicle surroundings. Both depth and
LiDAR adopt the default simulation parameters in CARLA.

Modalities in DMControl. In DMControl, the RGB frame modality captures direct visual informa-
tion from the environment, providing detailed texture and color data essential for recognizing objects
and their spatial relationships. Complementing this, the depth modality generates a depth map where
each pixel value represents the distance to the corresponding point in the scene, offering crucial 3D
spatial information. The settings of these two modalities are based on the default parameters.

Table A6: The hyper-parameter settings of the experiments on CARLA.
RGB

Exposure_speed_up 3.0
Exposure_speed_down 1.0
Blur_amount 1.0
Motion_blur_intensity 1.0
Motion_blur_max_distortion 0.8
Motion_blur_min_object_screen_size 0.4
Lens_flare_intensity 0.2
Shutter_speed 100.0

Events
Positive_threshold 0.2 (Midnight)/0.1(Others)
Negative_threshold 0.2 (Midnight)/0.1(Others)
Sigma_positive_threshold 0.2
Sigma_negative_threshold 0.2

Other setting of environment
Num_cars 20
Num_cameras 1

B.2.3 Reward Setting of CARLA

In the CARLA autonomous driving task, the objective of the agent is to travel as far as it can on a
highway without colliding in various weather conditions. Therefore, the reward function is designed
similarly to [52] and [20]:

rt = v⊤egoûhighway ·∆t− λc · collision− λs · |steer| − λb · brake (14)
The first term is devised to motivate the vehicle to cover as much distance as possible along the
highway. v⊤ego indicates the velocity vector of the agent vehicle, ûhighway represents the unit direction
vector of the highway, and ∆t = 0.1 stands for the discretized simulation time. The final three terms
are incorporated to guarantee that the vehicle evades collisions, reduces excessive steering, and avoids
sudden braking, where λc, λs, and λb are assigned values of 0.001, 0.1, and 0.1 respectively.

B.3 The hyper-parameters of RL training

The hyper-parameters of RL training are elaborated in Tables A7 and A8, and they are same to those
in [17] and [20].
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Table A7: RL training hyper-parameters on CARLA.
Hyperparameter Value
Image size 128× 128
Stacked frames 3
Action repeat 1
Batch size 128
Discount factor λ 0.99
Init steps 1,000
Episode length 1,000
Learning algorithm Soft Actor-Critic (SAC)
Number of frames 100,000
Replay buffer size 100,000
Optimizer (encoder, actor, critic) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (transition and reward prediction network) Adam
Learning rate (encoder, actor, critic) 1e-3
Learning rate (transition and reward prediction network) 1e-3
Learning rate (α in SAC) 1e-3
Transition and reward prediction network update frequency 1
Actor update frequency 1
Critic target update frequency 2

Table A8: RL training hyper-parameters on DMControl.
Hyperparameter Value
Image size 84× 84
Stacked frames 3
Action repeat 4
Batch size 128
Discount factor λ 0.99
Init steps 1,000
Episode length 1,000
Learning algorithm Soft Actor-Critic (SAC)
Number of frames 500,000
Replay buffer size 100,000
Optimizer (encoder, actor, critic) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (transition and reward prediction network) Adam
Learning rate (encoder, actor, critic) 1e-3
Learning rate (transition and reward prediction network) 1e-3
Learning rate (α in SAC) 1e-3
Transition and reward prediction network update frequency 1
Actor update frequency 1
Critic target update frequency 2

B.3.1 Hardware Details

Computing Resources. All models are trained using a server that is equipped with 4 NVIDIA
GeForce RTX 3090 GPUs and a 64-core AMD EPYC 7H12 2.6GHz CPU Processor.

C Potential Negative Societal Impacts

While DDM offers significant advancements in reinforcement learning by effectively integrating multi-
modal data, it is essential to consider and address some potential negative societal impacts. DDM
models could be susceptible to adversarial attacks, where malicious inputs are designed to deceive
the system into making incorrect decisions. Such attacks could lead to failures in critical applications,
such as autonomous vehicles or healthcare systems, potentially causing harm to individuals.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations and Future Works section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to the code link in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and the research conducted in
the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve Institutional Review Board (IRB) approvals or
equivalent for research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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