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ABSTRACT

We consider the problem of quickly recovering the structure of a latent graph
by navigating in it, when the agent can only perform stochastic actions and —
crucially— different nodes may emit the same observation. This corresponds to
learning the transition function of a partially observable Markov decision process
(POMDP) in which observations are deterministic. This is highly relevant for par-
tially observed reinforcement learning, where the agent needs to swiftly learn how
to navigate new environments from sensory observations. The challenge involves
solving two related problems: exploring the graph as fast as possible, and learn-
ing it from the obtained aliased observations, where the learning helps to explore
faster. Our approach leverages a recently proposed model, the Clone Structured
Cognitive Graph (CSCG), which can handle aliasing, and guide exploration. We
provide empirical evidence that our model-based algorithm can recover graphs
from a wide range of challenging topologies, and shows linear scaling with graph
size even for severely aliased and loopy graph structures where model-free meth-
ods require an exponential number of steps.

1 INTRODUCTION

Graphs serve as a general representation for relational modeling (Battaglia et al., 2018). In this role,
they provide a good substrate for Markov decision processes (MDPs) (Guestrin et al., 2011), with
graph nodes corresponding to MDP states and graph edges representing the action-driven transitions
between them. In addition to representing a generative model of the environment that is useful for
downstream tasks such as planning (towards a variety of different goals), having such an explicit
correspondence helps ground the model in the environment, and also adapt it to changes as the
environment evolves.

The representational suitability of graphs extends from MDPs to the partially observable case
(POMDPs) where distinct nodes in the graph may be perceptually aliased to the same observa-
tions. Perceptual aliasing is a key property of many interesting problems; examples abound in a
variety of domains (Rosvall & Bergstrom, 2008; Xu et al., 2016; Lambiotte et al., 2019; George
et al., 2021) from reinforcement learning (Whitehead & Ballard, 1991; Chrisman, 1992; Shani &
Brafman, 2004) to simultaneous localization and mapping (Lajoie et al., 2019).

To build high-fidelity models (especially large graphs) with limited sample complexity, in settings
where interactive access to the environment becomes a bottleneck, it is crucial that exploration be
directed and efficient. Dechter et al. (2013) proposed an active exploration strategy: the Explore-
Compress framework, where an agent alternates between building a model of the environment it has
already explored, and using that to plan further exploration; we follow a similar approach.

Such an active exploration strategy requires a model-building approach powerful enough to resolve
aliased nodes in a graph; while challenging, there exist methods (Xu et al., 2016; Lambiotte et al.,
2019; George et al., 2021) which exploit the higher-order structure in the sequences to accomplish
the same. In what follows, we choose to work with Clone-Structured Cognitive Graphs (CSCGs)
introduced in George et al. (2021) because they allow for planning exploration through inference.
However our focus in this work is on active exploration, and the proposed strategy might be com-
bined with other model-building approaches. Previous work using the CSCG model was restricted
to learning relatively small graphs (on the order of a hundred nodes or fewer), and used on a random
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exploration of the environment. As we demonstrate in Section 4, random exploration scales poorly
to larger and more intricately structured environments, and we provide a better exploration strategy.

In what follows, we elaborate on the problem setting and our proposal in the next section. In Sec-
tion 3 we contextualize our approach against related work. Following that, we evaluate the per-
formance of our proposal on a variety of challenging environments in Section 4, and conclude in
Section 5 with some closing thoughts.

2 THE PROBLEM SETUP, AND OUR PROPOSAL

2.1 PROBLEM SETUP

Consider an environment E characterized by the tuple (S,A, T ,Ω, O) where S represents the finite
set of states, A represents the finite set of possible actions at each state (which we will assume to
be the same, without loss of generality), T : S × A → S represents the set of possible transitions,
Ω represents the finite set of possible observations (also referred to as emissions), O : S → Ω
represents the emission function mapping states to observations. We further assume O to be deter-
ministic, such that each state produces a unique observation, and are interested in the “perceptually
aliased” case where O : S → Ω might be many-to-one. The case of stochastic transition dynamics
is described by a probability distribution pT (s

′|s, a) on the next state s′, given action a from state s.
The agent starts with observation x1 (at its starting position), then on performing action ai receives
observation xi+1, until it has performed the sequence of actions a1 . . . aN−1 (with discrete ai ∈ A},
and received observations x1 . . . xN (with discrete xi ∈ Ω). The goal is to recover the set of states S
and the action-conditioned transitions T (which respectively form the nodes and edges1 of the graph
G representing E), from such a sequence of actions and observations.

Note that much of the information characterizing this problem is similar to partially observable
Markov decision processes (POMDPs) except it lacks any reward function; the goal here is to effi-
ciently explore the environment and build a graph describing it.

2.2 MODEL LEARNING

We use CSCGs (George et al., 2021) to build models of perceptually aliased environments. A
CSCG corresponds to a hidden Markov model (HMM) (Rabiner, 1989) with the emission matrix
constrained such that each state corresponds to a unique observation, but each observation x may be
emitted by several states C(x) – referred to as “clones” of x.

The conditional probability distribution for a sequence of observations x1, . . . , xN given actions
a1 . . . aN−1 is described by the following factorized formulation

P (x1, . . . , xN | a1, . . . , aN−1) =
∑

{zn ∈ C(xn)}N
n=1

P (z1)

N−1∏
n=1

P (zn+1|zn, an).

As an action-conditional HMM with a frozen emission matrix O, we can use the expectation-
maximization (EM) algorithm to learn the action-conditioned transition matrix T , where Tijk =
P (zn+1 = k|zn = j, an = i). Refer to George et al. (2021) for the mathematical details. We assign
a pseudocount to all possible transitions in the model, as smoothing to enable the model to general-
ize more robustly to transitions not seen in the training data. This is particularly important in cases
where the agent has explored only a part of the environment, or when the dynamics are stochastic
– requiring the model to generalize beyond the specific realizations of noisy transitions seen in the
training data.

We restrict ourselves to the EM algorithm, since our focus here is primarily on model-driven ex-
ploration. However, the proposed exploration strategy is easily amenable to other learning algo-
rithms for the same sequence model, and particularly suited to online variants such as online EM, or
Memorize-Generalize introduced in Rikhye et al. (2019).

1Consistency demands that the probabilities associated with all the outgoing graph edges at a certain node,
corresponding to a certain action, sum to one.

2



Under review as a conference paper at ICLR 2023

2.3 PLANNING AND EXPLORATION

The default (passive) approach to exploration involves the agent performing a random sequence of
actions and building a model based on the received observations. We elaborate below our proposal
for efficient (active) exploration (abbreviated as “eFeX”) using the learned model.

In line with the compression phase in the Explore-Compress framework, we learn a model for the
sequence of observations, as described in the previous section. Once EM has converged, we use the
Viterbi algorithm (Viterbi, 1967; Forney et al., 2017) to get the maximum a posteriori assignment of
latent states s1 . . . sN corresponding to the aforementioned sequence of actions and observations.

The agent now needs to determine a state to explore next (which we term the “frontier state”) and
the best action to execute at that state (which we term the “frontier action”). In what follows, we
explain how the agent plans for these.

The decoded sequence of states enables the agent to assign counts to action state pairs, constructing
Cai. We describe below how these counts may serve as a functional notion of exploration utility;
the agent can actively seek to explore state-action pairs which have not previously been explored.
A measure of utility for states reachable from the current state sN is described by the number of
unexplored actions, computed as follows

U{i|i reachable from N} = |A| −
∑

a|Cai>0

1.

The simplest measure of reachability for state si from sN is the existence of a finite length path
going from the latter to the former. It might often be advantageous (especially in stochastic settings)
to choose not just the shortest length path, but the path with the highest likelihood of success (or the
shortest path subject to a threshold probability pth for successfully taking the agent from sN to si).

With the above scheme describing the choice of path from sN to si, let DNi parametrize the length
of the path, defined by the number of actions to reach si (infinite if not reachable). Then, the most
easily accessible state among those with optimal exploration utility would be given by

sf = argmin
{i|Ui=maxi Ui}

DNi.

For this frontier state, the agent also chooses the least explored action as the frontier action
af = argmin

a
Ca sf .

In case of ties, the argmin chooses one of the tied choices randomly. The agent then executes
the planned path to the frontier node in a closed-loop manner, estimating its location on the graph
after each step, and re-planning a path to the frontier. On reaching the frontier, the agent executes
the frontier action, and then performs a random walk. Failing to reach the frontier in twice the
number of steps as originally planned (due to a combination of stochasticity in the environment, and
a partially learned model), the agent aborts and performs a round of random exploration. This whole
process is iterated till the exploration budget is exhausted.

The overall algorithm, including the model learning and active exploration, is summarized in Algo-
rithm 1. The main parameter choice in this algorithm corresponds to the length of (short) random
walks L after which the agent will re-plan for a frontier. The optimal choice for this parameter
will depend on the problem setting. The longer the agent walks before building models, the better
its chance of disambiguating aliased nodes, traded off against shorter walks helping it target unex-
plored nodes & actions more often. Depending on the needs of the application, this parameter could
also be tuned adaptively if necessary. In graphs where every node has a unique emission, even L = 1
would be sufficient.

In addition, the algorithm uses two ancilliary parameters: the probability threshold pth for planning
paths to the frontier, and the pseudocount for the transition matrix learning.

3 RELATED WORK

The question of exploratory coverage on graphs has a colorful history, going back to the “white
screen problem”, where Wilf (1989) observed that an animation coloring pixels on a screen based
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Algorithm 1 Effective model-based exploration of aliased graphs (eFeX)

Initialize: s ▷ Starting state
Initialize: D ← [] ▷ Experience buffer
repeat

for i in 1 . . . L do ▷ Random Exploration
ai ∼ Categorical(A)
s ∼ pT (s

′|s, ai) ▷ Take one step
xi ← E(s) ▷ Receive observation after action
Di ← [Di−1, (xi, ai)] ▷ Append to experience

Estimate S, T from D by performing Expectation-Maximization
Decode experience D into a sequence of latent model states s1 . . . sτ
Populate Cas with counts for (action, state) pairs from a1 . . . aτ−1 and s1 . . . sN
a1 . . . aM ← Planned action sequence to reach frontier state, followed by frontier action
repeat ▷ Directed Exploration

s ∼ pT (s
′|s, a1) ▷ Take one step

xi ← E(s) ▷ Receive observation after action
Di ← [Di−1, (xi, ai)] ▷ Append to experience
Decode experience D into a sequence of latent model states s1 . . . sN
a1 . . . aM ← Planned action sequence to reach frontier state, followed by frontier action

until Executed frontier action at frontier state, or up to 2M steps of directed exploration
until exploration budget exhausted

on the coverage of a random walk on the underlying grid tends to cover most of the screen area quite
quickly, but takes a long time to cover the few uncolored pixels remaining at the end. While there is
a rich and substantive literature studying the cover times of random walks on graphs, classical graph
exploration approaches (Motwani & Raghavan, 1995) tend to typically assume distinctly identifiable
nodes (i.e. full observability), or a mechanism for the agent to mark nodes as visited (thereby
externalizing cognition). Greedy exploration and graph learning approaches which work in that
setting (with depth-first search being a classic example) perform poorly in the aliased setting which
requires subsequent (future) observations to disambiguate an agent’s location in the graph structure
at any given time.

Research on latent graph learning (see Dong et al. (2019) and references therein) tends to focus on
discovering edges among given nodes, given a signal defined on each node; this is also the setting
most obvious with graph neural networks. We are interested in a different setting where the signal
is a sequence of observations corresponding to one node per exploration step, from which we seek
to construct the graph.

While Dai et al. (2019) propose an interesting graph exploration approach, it avoids the challenge
of actually learning the graph structure, instead being provided access to the true graph connectivity
between visited locations.

As hinted by the connection with POMDPs, the setting we consider is quite relevant in reinforcement
learning (RL). However, RL algorithms usually operate with a task-specific reward which the agent
is learning to exploit, while also trying to explore actively (Thrun, 1992; Kearns & Singh, 2002),
which leads to the exploration-exploitation trade-off (Sutton & Barto, 1998). One way to avoid this
is to focus purely on exploration2 driven by “intrinsic curiosity” (Schmidhuber, 1991; Oudeyer &
Kaplan, 2007) or “novelty” (Lehman & Stanley, 2011). Our approach can be interpreted along these
lines, since our algorithm proposes frontier states based on unexplored actions. As emphasized in
Groth et al. (2021), even after thorough exploration, curiosity-driven RL approaches might still be
plagued by the problem of forgetting previously learned regions of state space. Learning the graph,
as we do, ensures that discovered states remain accessible as part of the model. Further, with the
ability to efficiently plan a path to the frontier state by performing inference using the learned graph,
we also avoid thorny issues of sparse rewards when the potential frontier states for exploration form
a set of low measure.

2Refer Amin et al. (2021) for a review of exploration approaches in reinforcement learning, including par-
ticularly the pure exploration setting.
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More specifically, our proposal is closely related to count-based exploration approaches in RL
(Strehl & Littman, 2005; 2008; Kolter & Ng, 2009). Given our focus on learning graphs, our ex-
periments are situated in the discrete setting. However, as demonstrated in Bellemare et al. (2016);
Tang et al. (2017), count-based approaches generalize nicely to high-dimensional and/or continuous
RL benchmarks.

Epistemic partially observable MDPs, introduced in Ghosh et al. (2021) provide an example of how
perceptual aliasing might manifest itself in the RL setting. As they explain, instead of sticking to a
fixed policy, an agent should ideally use any received test-time feedback to disambiguate between
states that were a priori perceived as same, leveraging that to update its response strategy.

With their emphasis on ideas from classical planning (the notion of a frontier, and expanding a node
with exploration, etc.), Ecoffet et al. (2021) propose the Go-Explore algorithm, which is close in
spirit to our approach. While it is interesting to note that Go-Explore was able to perform much
better than other RL algorithms, their setting has almost no perceptual aliasing – even in Atari
games where the viewport only sees a part of the world, the actions that need to be taken need not
vary drastically depending on the unobserved latent variables (in contrast with the aliased setting).

While Sharma et al. (2021) also consider the problem of efficiently mapping a novel environment,
exploiting the structure of repeating map fragments which can be used to inductively compose a
larger map. We focus on the more general problem of exploration without assuming that the same
fragments recur, thereby being able to handle unstructured environments.

4 EXPERIMENTS

4.1 EXPLORING “RIVER SWIM” INSPIRED ONE-DIMENSIONAL CHAIN

We consider the same one-dimensional chain environment studied in Shyam et al. (2019), and posed
originally in Osband et al. (2016) (as a simplified version of the “River Swim” problem posed in
Strehl & Littman (2008)). The environment consists of a chain of L uniquely-identifiable states
{0 . . . L − 1}. Each state has two actions – respectively linking to the state on either side – except
for the two end states which each have one action (“self-loop”) keeping the agent in the same state.
The correspondence between the two outgoing links {left, right} and the two local actions available
to the agent are assigned randomly at each state. The exploration is broken into episodes of length
L+9, at the end of each of which the agent position is reset to the second state from the left end (i.e.
state 1). A variant of the problem incorporates a “stochastic trap” at state 0, such that both actions at
state 0 have stochastic consequences, each transitioning to state 0 or 1 with 0.5 probability. Figure 1a
illustrates the environment for the L = 5 case, without a stochastic trap.
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(a) Chain env. with 5 states

(b) Episodes to full coverage, with increasing
chain length, for our approach

(c) Frac. transitions explored, for L = 50.
Note that the red & blue curves overlap i.e. the
stochastic trap barely affects the performance of
our method.

Figure 1: 1D chain experiment (shaded bands span 25th to 75th percentile, estimated from five runs)

Proactive model-based exploration is crucial in this setting, as random exploration will explore states
and transitions very slowly. Resets at the start of each episode make the setting more challenging,
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(a) Scaling with env. size of steps to
complete exploration. Note the differ-
ent scales on the respective Y-axes

(b) Example graph
with 17 states

(c) Recovered graph

Figure 2: Comparing the scaling behavior of random walks against our model-based exploration
approach. Sub-figures (b) and (c) show an example aliased environment and its recovered graph
structure.

as the agent has to use the learned model to make a beeline for the exploration frontier, to manage
sufficient exploration in an episode before its position is reset again.

This problem therefore serves as a great test of our proposed active exploration approach. Specifi-
cally, in this example, we re-train the model after each step, and plan for the frontier. With the same
setup, Shyam et al. (2019) demonstrated that their method MAX significantly outperformed several
prior exploration proposals in RL, needing only eighteen episodes (including the three episodes of
“warmup time”) for exploring all the transitions in a 50-state chain. Figure 1c demonstrates that our
approach performs exploration much faster than even MAX, rapidly exploring all the transitions in
only five episodes. As shown in the same figure, our method can also handle the “stochastic trap” at
the left-most node with hardly any degradation3 in performance.

Figures 6a & 6b in the appendix show example traces for the two cases. Apart from getting stuck
at the stochastic trap for a few extra steps (due to the impossibility of planning a way out when
the transitions are completely stochastic), the algorithm is able to perform exploration just fine.
In both cases, the algorithm clearly appears to be following what we (as humans) would expect
to be the sensible exploration strategy; after the reset at the start of each episode, it aims straight
for the exploration frontier and continues systematically performing local exploration around there,
repeating this process until all transitions have been explored. As shown in Figure 1b, the exploration
time for our method also scales much better with increasing chain length compared with MAX.

4.2 SCALING PROPERTIES OF MODEL-BASED EXPLORATION

Here we study the scaling behavior of our model-based exploration algorithm contrasted with a
model-free alternative in the random walk. We consider intricately structured maze-like graphs of
various sizes, where a small fraction (10% in this case) of transitions where the agent hits the wall
(and would have stayed in place) are modified into non-local jumps taking the agent back to its
starting location. The loopy topology resulting from such long range transitions is a challenging
setting reminiscent of one-way exits, or the video game setting where the agent encounters some
harm and has to start over.

To explore this environment efficiently, it is crucial that an algorithm judiciously avoid the non-local
jumps after they have been explored some minimal number of times (ideally once). Figure 2a shows
the mean number of steps to complete full exploration of the environment, with the shaded bands
representing one standard deviation for estimates of the mean. This experiment shows that the time
taken by our algorithm to explore all transitions scales linearly with the number of states, whereas
random walks take exponentially long in the same setting4.

Figure 2c shows an example graph learned by our algorithm. We have drawn a graph with the dis-
covered states (along with their respective emissions) registered to the locations they represent on a

3In fact, episodes prove to be too coarse a measure of sample complexity to distinguish performance degra-
dation from the stochastic trap, for our approach. The retardation is usually only by a few steps, and the
exploration curves for both cases therefore largely overlap.

4Note the logarithmic Y-axis for the random walk, compared with the linear Y-axis for eFeX.
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(a) 2d grid (b) Inter-Connected Grid (c) Dense maze (d) Sparse maze

Figure 3: Exploration environments (3d room not visualized here). Colored locations are accessible,
and white regions are inaccessible. The colors at each location represent the (categorical) observa-
tion the agent receives when there, including the pattern of aliasing.

map of the room (as seen in Figure 2b). We see clearly that the algorithm has managed to success-
fully discover the latent graph modeling the states and transitions in the environment – including the
non-local jumps.

4.3 EXPLORING MAZES AND HIGHER-DIMENSIONAL ROOMS

Following the one-dimensional chain environment, we evaluate our proposal on more challenging
higher-dimensional room and maze environments, visualized in Figure 3 as two dimensional images.
The figure for each room shows the accessible (colored) and inaccessible (white) regions. The colors
at each location indicate an example pattern of perceptual aliasing, representing the (categorical)
observation received by the agent when at that location.

The transition matrix is determined from the layout, such that each cell is connected to its immediate
neighbors on the lattice (six for the three-dimensional room, and four for the other rooms) on the
respective lattices. On “hitting a wall” (encountering an inaccessible state), the agent stays at the
same location. The actions corresponding to the respective transitions are shuffled at each site,
preventing persistent walks unless the agent builds a model of the environment. The environment
has stochastic walk dynamics (of a local form). To perform successful active exploration in this
setting, the agent needs to be able to navigate to frontier nodes under stochastic walk dynamics –
by calibrating its actual location based on (possibly aliased) observations, and then re-planning a
path to the desired frontier node. For each room, we consider examples with three different levels
of perceptual aliasing. Section A.1 of the Appendix elaborates on details about the room layouts,
aliasing and stochasticity.

To study the performance of our proposed method, we use L = 210, pth = 0.8 and a pseudocount of
2× 10−4 for all the experiments, allowing us to compare plots across different amounts of aliasing,
even though the optimal values of L might vary with environmental characteristics such as the
amount of perceptual aliasing or stochasticity in actions.

To understand the efficiency of exploration, we measure the scaling of the fraction of explored
environment transitions with the number of steps of the exploratory walk, graphed in Figure 4, with
a 95% confidence interval on the estimate of the mean. To emphasize a different perspective on
the same measure, Table 1 presents the mean number of steps needed to explore all the transitions
in the environment (along with standard deviations of the underlying distributions). Note that the
random walk is not just slower in exploration, but its time to completion tends to also have a very
high variance.

We start with the relatively “open” environments corresponding respectively to three-dimensional
and two-dimensional rooms. The rapidly increasing transition coverage (first two columns of Fig-
ure 4) for both methods indicate that at early times, random actions lead to exploring new transitions
with a high probability. However, at late times, once most of the transitions in the room have been
explored, the undirected exploration of random walks takes a long time to explore the straggling
transitions, whereas our exploration method manages to use the learned model to explore leftover
transitions more efficiently (even at challenging levels of aliasing). This is confirmed in the corre-
sponding rows of Table 1, which measures steps to complete exploration.
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Figure 4: Fraction of transitions explored versus the number of exploration steps, for different
amounts of aliasing: 100% (first row) & 30% (second row) unique emissions; eFeX in red, and
random walk in blue. Bands indicate 95% confidence intervals on the estimated means. Curves stop
when the respective method has explored all transitions in the environment.

Figure 5: Negative log-likelihoods (bits per symbol) for learned models, evaluated on test sequences
for different amounts of aliasing: 100% (first row) & 30% (second row) unique emissions; eFeX in
red, and random walk in blue. Bands indicate 95% confidence intervals on the estimated means.

Next, we consider the “Inter-Connected Grid” (ICG), which is meant to evoke5 a common pattern
in many real-world problems where clusters of highly-connected states are then bridged by long
narrow chains. Here we note that random walk tends to plateau coverage for substantial periods –
getting stuck in the rooms and failing to move through the narrow corridors and explore new rooms.
Our model-based active exploration approach manages to maintain the rapid exploration throughout,
driving towards completion faster than random walks, again with much lower variance.

The latter two environments are mazes: the dense maze provides some room for undirected local
exploration, but with a very constrained global structure and the sparse maze6 demands that the
agent perform long sequences of suitably correlated actions (necessitating accurate graph learning)
to effective explore the whole environment. The environments therefore demand a highly deliberate
exploration strategy, and provide a stringent test of active exploration capability. The plots (and
tabular results) for these environments show that random exploration struggles miserably in these
environments, while our active exploration approach is very effective in rapidly exploring all the
transitions.

Since just exploring all transitions might not be sufficient to fully construct the graph (especially in
the aliased setting), we need an appropriate measure to evaluate the quality of the learned graph. To
this end, we evaluate the negative log-likelihood (in bits per symbol) of test sequences drawn from
the ground truth graph, under a model (graph) learned from the exploratory walk. For an intuition
for the meaning of this metric, it is worth noting that in the unaliased setting (with all unique states),
validating the high likelihood of all one-step walks is akin to checking that all the edges in the graph
have been learned correctly. This is insufficient in the aliased case, and longer walks are needed to

5They are also reminiscent of “lollipop graphs” which happen to be hard for random walks to cover effi-
ciently (Chandra et al., 1989).

6It could be considered a far more challenging version of the one-dimensional chain, because, in addition
to states being perceptually aliased, each state provides four actions, some of which (a priori unknown) move
the agent forwards/backwards along the long chains, and others which keep the agent in place.
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Room shape
Random Walk eFeX

(indep. of aliasing) u.f. 1.0 rooms u.f. 0.3 rooms

3D grid 103800 ± 17330 56476 ± 1214 88461 ± 6584
2D grid 106200 ± 17816 42358 ± 949 74909 ± 13269
ICG 197266 ± 50705 47023 ± 1256 79518 ± 10603
Dense Maze 233800 ± 109030 40879 ± 982 69621 ± 8862
Sparse Maze 179925 ± 69494 22966 ± 3515 29980 ± 6161

Table 1: Number of steps taken by each method to explore all possible transitions, in each environ-
ment, with statistically significant winners bolded (comparing eFeX to random walk in each case).
Note that these are variances in the underlying distribution, not variances in the estimate of the mean.
The table indicates that our method performs substantially better, and has a much smaller variance
in the number of steps taken for complete exploration.

disambiguate the higher-order context surrounding each node. A single long random walk carries the
risk of over-emphasizing certain regions of the graph and under-emphasizing other regions, unless
it mixes well. Therefore, a suitable scheme would be to consider the negative log-likelihood of long
sequences drawn from the ground truth graph, averaged over many walks initialized randomly in
different parts of the graph, which is the quantity we graph in Figure 5. Section A.2 of the Appendix
elaborates on the precise setup of this computation.

The likelihood graphs in Figure 5 indicate that the algorithm is not just exploring all the transitions,
but also learning the graph structure effectively

Taken together, these demonstrate that the proposed method is able to quickly learn good models of
the underlying environments, and explore effectively using that. We also note that the variance in
the number of exploration steps needed is highly controlled for our method, in sharp contrast with
random walks, especially in intricate environments.

5 CONCLUSION

In this paper, we proposed an approach for efficiently learning large latent graphs with aliased ob-
servations. This setting is challenging because the graph states (in relation to the environment) are
not known directly from observations, but must be discovered based on the long range context in
observational sequences generated by exploration.

It is impractical to build models of large environments without efficient exploration, and building
a model enables identifying already visited regions and efficiently directing exploration away from
them. Using a strategy that thus interleaves model-building and exploration, our algorithm suc-
cessfully learns graphs in a variety of topologies with perceptual aliasing and stochasticity, without
making any assumptions about the geometry of the environment. We also demonstrated that random
exploration can have a sample complexity that scales exponentially with the size of the environment,
whereas our approach maintains a linear sample complexity in the same case.

We leveraged CSCG to learn a model that allows planning through inference, coupled with a count-
based notion of exploration utility. The modular nature of our approach, however, lends itself nicely
to several potentially interesting variants: reusing locally built models for further exploration, a non
count-based notion of exploration utility, alternative approaches to planning that avoid re-planning
each time from scratch, etc. We leave this exploration for future work.
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A APPENDIX

A.1 ROOM DETAILS

The layouts for each of the room types are as follows:

• The 2d and 3d rooms are grids of respective dimensions, of size 41× 41 and 12× 12× 12
respectively.

• The ICG contains 16 room-like blocks of size 10× 10 arranged in a square grid, connected
by corridors of length 3.

• Dense mazes were generated by running depth-first search on a 2d room, and then blown
up by a factor of five to make the corridors five times as thick as the walls, ultimately to a
room size of 41× 41.

• Sparse mazes were generated on a background of size 41× 41 using the open source “lab-
maze” library introduced in Beattie et al. (2016).

Each room has colors (categorical emissions) randomly assigned to each lattice position accessible to
the agent. The provided numbers for aliasing (“unique fraction”) correspond to the ratio of unique
perceptions to the number of states in the room. For example, in a 10 × 10 2d room, a unique
fraction of 0.8 implies 80 unique observations, which means 20 nodes would share emissions with
a randomly sampled subset of 20 nodes (without repetition) from the 80 nodes with unique colors.

The dynamics are stochastic in a local manner, such that when the agent tries to take one step, the
actual number of steps executed in the environment are sampled from a geometric distribution on
k ≥ 1 described by:

p{k|k≥1,k∈N} = p (1− p)
k−1

with a slippage rate pslip = 0.01.

A.2 LIKELIHOODS OF LEARNED MODELS

To verify that the agent is not just exploring all possible transitions, but also effectively learning the
appropriate models (transition graphs) for each room, we evaluate the likelihood of a bunch of test
sequences (generated from the ground truth room graph) using the agent’s model; see Figure 5. The
computed likelihoods are averaged over random walk sequences (each of length 100) initialized in
1000 different locations in each room. Averaging over a large number of independent walks should
ensure that these walks don’t get stuck in some sub-region of the graph, and lengths of 100 on each
one should ensure that we are evaluating that the agent also correctly learns the long-range context.

A.3 EXAMPLE TRACES FOR THE ONE-DIMENSIONAL CHAIN ENVIRONMENT

(a) Exploration trace for one-dimensional chain
of length 50 -vs- number of steps. Actual states
in brown, and fraction of transitions explored in
green.

(b) Exploration trace for one-dimensional chain
of length 50 (with stochastic trap) -vs- number of
steps. Actual states in brown, and fraction of tran-
sitions explored in green.

Figure 6: Example traces for the one-dimensional chain experiment.
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