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Abstract

Segmentation of the pancreas in CT images
is crucial in multiple pancreatic diagnostic
tasks, such as the detection, classification, and
prognosis of pancreatic cancer. We present a
segmentation model to find pancreatic tissue
accurately in abdominal CT images. We utilize
the Segment-Anything Model (SAM), a prompt-
based 2D segmentation transformer model, and
adapt it to 3D CT images to build a model that
can segment the pancreas automatically without
any prompts. To our knowledge, this is the first
prompt-free work to segment the pancreas on
a CT image based on the generalizable SAM
model. We achieve a DICE score of 87.01% and
a Jaccard score of 81.42% on the NIH dataset.
We also performed zero-shot segmentation on
the Abdominal-1K dataset. We achieved a DICE
score of 83.20%, which shows the generalizability
and applicability of our method to new unseen
samples. Our study put together the zero-shot
performance of SAM and the 3D nature of CT
images to provide an automatic, real-time model
that provides consistent segmentation throughout
CT slices without the need for expert intervention.
Our code is available at:
https://github.com/teimuri/
PSDDSAM

1. Introduction
The pancreas is a crucial organ in the human body, and its
segmentation represents one of the most challenging tasks
in medical image segmentation (Roth et al., 2015). In ad-
dition, the soft tissue low contrast problem in CT scans
amplifies the challenges with the pancreas (Zheng & Luo,
2023). Our work introduces PanSAM, a novel prompt-free
model based on SAM for pancreas segmentation in CT
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images that demonstrates superior performance even on out-
of-domain data samples (Kirillov et al., 2023). We design a
novel point prompt generator that extracts prompts from the
output of an arbitrary segmentation model. This is the first
study to evaluate zero-shot learning capabilities in pancre-
atic segmentation from out-of-domain CT images. The high
zero-shot performance of our model, which is discussed and
experimentally shown in B.4, indicates the generalizability
of our method. This is because of the choice of SAM as our
backbone, which shows exceptional zero-shot performance.
Keeping the encoder part of SAM unchanged prevents over-
fitting to noise in the dataset and allows rich pre-trained
features to participate in solving the segmentation task.

2. Related Work
Significant progress has been made recently in developing
deep learning methods to enhance pancreatic segmentation
in medical imaging. These advances are vital to improving
the diagnostic accuracy in this field. Pancreas segmentation
techniques are broadly categorized into two approaches:
single-stage methods and coarse-to-fine methods.

Single-stage: These methods directly utilize full-
resolution images to define the pancreas mask as the output.
Fu et al. (2018) developed a model that leverages Richer
Convolutional Features (RCF) to enhance the utilization
of textures of various sizes, significantly improving
segmentation accuracy with a DICE score of 76.36%.
Nishio et al. (2020) employed the widely recognized U-net
architecture, optimized with data augmentation strategies
to handle segmentation directly, bypassing the need for
image cropping. Also, Fang et al. (2019) presents a 3D
method for pancreas segmentation, utilizing a Progressive
Fusion Network that merges local 3D contextual details
with a Global Guidance Branch. This approach achieves
an 85.5% DICE score. However, a significant challenge
persists across these methodologies: the imbalance learning
problem. Given that the pancreas typically accounts for
less than 5% of the image slices and occupies only a tiny
portion of each slice, models frequently face challenges
with accuracy and consistency (Deng et al., 2023). This
significant data imbalance poses a critical challenge for
single-stage segmentation techniques, complicating the
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achievement of reliable segmentation results.

Coarse-to-Fine: Conversely, the coarse-to-fine methods
employ a two-stage approach, initially identifying a broader
region likely containing the pancreas and refining this de-
tection to delineate a detailed mask. (Man et al., 2019)
combine reinforcement learning with a deformable U-Net
for precise localization and segmentation, achieving a DICE
score of 86.9%. (Zhao et al., 2019) use a U-Net model
for initial coarse segmentation of down-sampled volumes,
followed by a refined analysis of localized regions. (Zhang
et al., 2021) start with a multi-atlas 3D diffeomorphic reg-
istration for coarse segmentation, then apply 2D and 3D
CNNs for fine details, and a 3D level-set method for final
refinement, achieving an 84.61% DICE score . (Qiu et al.,
2023b) develop CMFCUNet, which identifies the pancreas
area and then applies detailed segmentation enhanced by a
Dual Enhancement Module for effective multi-scale feature
calibration. This hierarchical strategy can be implemented
with varying degrees of human involvement, from man-
ual interventions to fully automated processes. It requires
substantial effort and expertise, making it less scalable. Au-
tomatic preliminary stages like (Zhou et al., 2016), although
less labor intensive, introduce the risk of cascade errors,
where inaccuracies in the first stage spread and adversely af-
fect the precision of detailed segmentation in the subsequent
stage.

3. Method
One of the primary challenges many models encounter is
generalizability. Previous models were trained and evalu-
ated on a single dataset, often failing to achieve satisfactory
results on out-of-domain data, which is a critical issue for
real-world applications. To address this problem, we use
the Segment-Anything Model (SAM) (Kirillov et al., 2023)
as our base architecture, a vision transformer that can pro-
vide a wide range of image segmentation based on given
prompts in the form of a bounding box, point, and mask.
SAM comprises an image encoder, a prompt encoder, and a
mask decoder.

Although the SAM model offers generalizability and robust
results, it faces significant limitations for our task. SAM is
designed for 2D images, whereas each CT image consists of
multiple slices that form a 3D structure. This mismatch in
dimensionality poses a significant challenge. SAM is also
a prompt-based model optimized for RGB images, which
excels with appropriate prompts. However, its performance
significantly diminishes in a prompt-free setup, and locating
the pancreas in non-contrast CT images as a prompt is time-
consuming. These challenges underscore the need for a new,
more tailored solution for pancreas segmentation.

To address these challenges, we present the PanSAM model,

a novel approach to pancreas segmentation. PanSAM is a
coarse-to-fine model that comprises three key components:
a prompt generator, a prompt-based segmentor, and a 3D
aggregator. The process begins with the prompt generator,
which identifies the pancreatic area within the image and
then generates point prompts from this initial estimate. The
prompt-based model then uses these prompts to conduct de-
tailed per-slice pancreas segmentation, offering a unique and
innovative solution to the pancreas segmentation problem.

In the final stage, the segmentations of each slice are pro-
cessed by the 3D aggregator. This component enhances
the model’s accuracy by applying corrections across slices,
mainly focusing on slices where the pancreas is difficult
to detect individually but can be inferred from neighboring
slices. The architecture of our model is illustrated in Figure
1.

The prompt generator and the prompt-based segmentor use
a shared encoder in our model. Since most parameters are
in the SAM encoder, using a single encoder significantly
reduces the computational overhead compared to two sep-
arate SAM models. The image is encoded once using the
shared SAM encoder, and encoded features are used in both
the prompt generator and the prompt-based model.

The training procedure is as follows. First, the prompt gen-
erator is trained. Then, the prompt-based model is trained
with the prompt generator’s parameters frozen. In the last
step of the training, the 3D aggregator is trained while the
other two models’ parameters are frozen.

These parameters freeze during training, making our model
more generalizable. The model is less biased toward the
noise in the training dataset, and high-level visual fea-
tures learned from the large-scale dataset on which SAM is
trained are kept. In the rest of this section, we explain each
of these modules in more detail.

We train the PanSAM model using a combination of focal
loss (Lin et al., 2018) and DICE loss (Sudre et al., 2017).
The final loss function is as follows.

L =

n∑
i=1

Lf (f(xi), yi) + βLD(f(xi), yi) (1)

where Lf is the focal loss between the model’s output and
ground truth segmentation mask and LD is the DICE loss.

3.1. Mask Prompt Generation

To create point prompts, the input image and the predicted
mask from the trained prompt-free model are fed into the
prompt generator model, which samples points based on the
output probabilities generated by its operation. The prompt
generator is designed to produce two prompts: foreground
and background.
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Figure 1. The architecture of PanSAM, which consists of a prompt-generator model, a prompt-based per-slice segmentor, and a 3D
convolutional aggregator.

For foreground prompts, the process begins by selecting
the regions in which the previous model was more certain.
Then, to enhance the reliability of these prompts, a series
of morphological operations is applied to the binary mask.
This step helps reduce noise and eliminate the boundaries
of the segmented regions, thereby ensuring that the prompts
are extracted from the core of the estimated pancreatic area
with greater confidence.

For background prompts, our goal is to find difficult but
confident points in the image. As there are many candidate
points for the background, and most of them are trivial, an
algorithm is needed to find more informative background
prompts. To achieve this, we create two different masks and
sample background prompts from their intersection. The
first mask is designed to closely approximate the borders
of the pancreas, capturing maximal information from these
critical transitional areas. The second mask selectively in-
cludes points where the model demonstrates high confidence
in its predictions, ensuring the relevance and reliability of
the prompts. Section 3.4 provides more details on these
operations and the methodologies employed.

3.2. Prompt-based Segmentation

To create pancreas segmentation on CT images, we rely
on the prompts generated in the prompt-creation phase and
input them into the prompt-based segmentation model. This
model efficiently estimates the pancreas segmentation by
utilizing the pre-computed image embedding as encoded
features and the generated prompts. By the end of this stage,
the model can estimate the pancreas region by processing
each slice of the CT image separately without the need
for any manual prompt. Figure 2 clearly illustrates the
efficiency of the prompt-based model compared to the SAM
model, which operates without any estimated prompt. More
comparisons can be found in Figure 5 in the appendix.

Figure 2. The image illustrates the label delineated by a red line,
while the output from the prompt-based module is highlighted in
glowing green, and the darker parts indicate the results from the
prompt-generator module. Blue arrows demonstrate the impact of
the prompt-based segmentor module, which significantly enhances
the accuracy of corrections and segmentations, as evident in the
image.

3.3. 3D Aggregation

After creating per-slice segmentations, we give the pixel-
wise scores of the prompt-based model as input to the 3D
aggregator model. The 3D aggregator aims to merge the per-
slice predictions and improve the final result. It consists of
several 3D convolution layers that use nearby slice informa-
tion to predict a specific slice. The effect of 3D aggregation
is illustrated in Figure 3. Our results demonstrate that 3D
aggregation has several benefits. One is smooth, continuous
predictions as we move through the slices. Another benefit
is the correction in the starting and ending slices where the
pancreas begins to appear and disappears in the per-slice
view. The output of the 3D aggregator will be the final
prediction of our model. More results show these effects
can be found in Figure 3. In the appendix, more pairs can
be found in Figure 8.
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3.4. Details of Point Prompt Generation

For foreground prompts, after thresholding with 0.5 (which
is used to create the model output’s binary mask), in order
to create more confident prompts and remove noisy segmen-
tation and the border of the segmented region, we apply
these operations on the output mask of a without prompt
trained SAM. To extract prompts from inside the estimated
pancreas area, we apply this operation:

Mf = dilate(erode(th(O, 0.5), (10, 10)), (5, 5)),

where O is the output probabilities of the prompt generator
model, th is the thresholding function, and erode and dilate
apply the operations given an input image and a tuple of
size 2 as kernel size. We uniformly sampled from this new
mask to create foreground prompts. We also choose two
points from the border of the thresholded mask as additional
foreground prompts.
For background prompts, our goal is to find difficult but
confident points in the image. As there are many candidate
points for the background, and most of them are trivial, an
algorithm is needed to find more informative background
prompts. To achieve this, we create two different masks and
sample background prompts from their intersection. The
first mask is the complement of a dilated version of the
model’s prediction of the pancreas region:

M1
b = 1− dilate(th(O, 0.5), (5, 5)).

This mask indicates pixels that are not in the region of the de-
tected pancreas. The second mask is created by thresholding
the model’s prediction by a lower value:

M2
b = 1− th(O, 0.4),

which indicates the areas where the model is fairly confi-
dent that they do not contain the pancreas tissue. The final
background mask is formed by the intersection of the above-
mentioned masks. We sample from Mb with probabilities
proportional to the model’s output probabilities:

P (x, y) =
(Mb ×O)xy∑

x′,y′(Mb ×O)x′y′
(2)

Our prompt sampler tries to avoid finding incorrect back-
ground or foreground points, caused by the prompt-
generator’s incorrect detections while trying to sample from
the points that are hard to detect. We also add two random
points from the background of the 0.5-thresholded mask as
trivial background prompts.

4. Experiments
In our research, we utilized the ViT-B version of the
Segment-Anything Model (SAM) for efficient pancreas seg-
mentation in CT images, applying two innovative methods

Figure 3. In the image, the label is outlined with a red line, while
the output from the 3D aggregator module is displayed in glowing
green. The results of the segmentator model appear in the darker
areas, highlighted with blue arrows for clearer visibility. The
effectiveness of the 3D aggregator module is particularly notable
in regions where the pancreas is bifurcated or at the initial and
terminal segments, areas that are typically challenging to identify.

to prove its clinical utility. Initially, we fine-tuned SAM’s
mask decoder without prompts, reaching a score of 83.75%
for the DICE value. Then, use our full approach to refine
segmentation, achieving an improved DICE coefficient of
87.01% on NIH Pancreas-CT dataset (Roth et al., 2016)
seen in table 1. This result shows an increase in the accu-
racy and stability of our model. Furthermore, to improve
the robustness of our model in diverse conditions, we im-
plemented various augmentations; These augmentations
bolstered our model’s strength and resilience, ensuring its
efficacy across a spectrum of scenarios. Additionally, the
incorporation of these enhancements further underscores the
versatility and reliability of our segmentation approach. To
find further experiments in different setups, ablation study of
our approach, zero-shot benchmarking on AbdomenCT-1K
dataset and computational cost, check the appendix B. Our
segmentation model demonstrated superior performance,
particularly in challenging areas such as where the pancreas
is divided into distinct regions, at the organ’s extremities, or
at the initial or terminal slices of the pancreas, as illustrated
in Figure 8 in Appendix A.

4.1. Experiment Details

Dataset We analyzed the pancreas in abdominal CT scans
using two datasets: NIH Pancreas-CT (Roth et al., 2016) and
AbdomenCT-1K (Ma et al., 2021). The NIH Pancreas-CT
dataset contains 82 contrast-enhanced abdominal CT vol-
umes, each presenting a variety of longitudinal slices. This
dataset is particularly designed for in-depth pancreatic stud-
ies. In contrast, the AbdomenCT-1K dataset broadens our
scope to multi-organ segmentation, containing over 1000
CT scans sourced from 12 medical centers. These scans
cover a variety of phases, equipment vendors and diseases,
with annotations for the liver, kidney, spleen, and pancreas
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Table 1. Comparison of PanSAM with Single-Stage and Coarse-to-Fine Models
Dimension Name DICE Recall Jaccard Precision F1-Score

Si
ng

le
-S

ta
ge

2D Fu et al (Fu et al., 2018) 76.36±14.34 79.12±16.27 63.72±17.05 77.36±17.96 78.23
2D Nishio (Nishio et al., 2020) 78.90±8.60 76.00±12.00 65.00±10.00 100 86.36
2D Jinzheng Cai (Cai et al., 2017) 82.40±6.70 – 70.60±9.00 – –
2D Huang et al(Huang & Wu, 2022) 82.87±1.00 77.37±1.41 70.97 ± 1.39 89.29 ± 0.98 82.90
2D Oktay et al (Oktay et al., 2018) 82.25±4.33 82.81±6.42 – 82.41±7.01 82.60
3D Zhang et al (Zhang & Bagci, 2022) 85.50±3.70 88.20±4.00 – 84.00±8.30 86.05
3D Fang et al. (Fang et al., 2019) 85.50±4.80 – – – –

C
oa

rs
e-

to
-F

in
e

2D BRIEFnet (Heinrich & Oktay, 2017) 64.00±4.00 – – – –
2D Deng et al (Deng et al., 2023) 81.70±9.41 87.10±8.47 – 75.52±6.45 80.90
2D Li et al. (Li et al., 2022) 82.80±6.30 – – 82.51±1.03 –
2D Zhou et al(Zhou et al., 2017) 83.20±4.80 – – – –
2D RTUNet (Qiu et al., 2023a) 86.25±4.52 – – – –
2D CKS (Tang et al., 2023) 85.42±4.39 – – – –
2D CMFCUNet (Qiu et al., 2023b) 86.30±4.03 86.85±5.23 76.26±5.01 85.91±3.97 86.38
2D Man et al (Man et al., 2019) 86.93±4.92 86.91±4.85 – – –

2.5D Yan et al (Yan & Zhang, 2021) 86.61±3.47 – – – –
2.5D PBR-UNet (Li et al., 2021) 85.35±4.13 – – – –
3D Zhao et al (Zhao et al., 2019) 85.90±4.51 – – – –
3D Zhang et al (Zhang et al., 2021) 84.61±5.21 – – – –
3D ECTN (Zheng & Luo, 2023) 85.58±3.98 85.11±5.96 74.99±5.86 86.59±6.14 85.84
3D PanSAM 87.01±1.93 89.38±0.73 81.42±2.29 89.86±2.54 89.45

(Ma et al., 2021). We used the NIH dataset both to train
our model and to compare our work with other related stud-
ies. In contrast, the AbdomenCT-1K dataset was used for
external validation.

Preprocessing

The preprocessing of abdominal CT images plays a pivotal
role in enhancing model performance. To achieve optimal
results, we employ Contrast-limited Adaptive Histogram
Equalization (CLAHE) (Mishra, 2021). CLAHE works by
normalizing the image pixel values based on their local
histogram, effectively improving the contrast of the images.

Our preprocessing pipeline involves several key steps. First,
each slice of the CT image is normalized to a range between
[0, 1]. Next, we apply CLAHE to adjust the contrast. Fi-
nally, we normalize each slice once again to ensure that the
pixel values remain within the range of [0, 1]. This dual
normalization process, as shown in Figure 4, significantly
enhances the clarity and quality of the CT images, thus
improving the overall performance of the model.

We also improved the robustness of PanSAM by using the
Albummentations library for image enhancement, which
simulates a variety of medical imaging conditions (Buslaev
et al., 2020). In this experiment, we introduced rotational
variation with a rotation of 30 degrees and a 50% chance of
applying it. The brightness and contrast of each image were
perturbed by up to 30%. By randomly scaling the image
size to 90-110% of the original images and then resizing
them to 1024x1024 pixels, we maintain the required size
while also introducing further enhancement. We also use

CLAHE as an augmentation with a clipping threshold of
2 and a tile grid size of 8 × 8. CLAHE was applied with
a probability of 0.5 to each image during training. With
a 50% chance, up to 8 random square mask regions with
height and width in the range of [8, 16] pixels were applied
to simulate artifacts. Also, with a probability of 0.5, the
images were randomly scaled with a limit of 10%. The
diversity of augmentations exposed the model to various
clinically relevant image changes.

5. Conclusion
In this study, we proposed PanSAM, a prompt-free model
that utilizes the strong Segment-Anything transformer
model to extract the pancreas from 3D CT images. During
training, we applied extensive data augmentation to ensure
our model’s robustness across different imaging sources and
conditions. This strategy significantly enhances the model’s
ability to generalize and perform well on various datasets.
To evaluate its generalizability, we tested the trained model
on a different dataset without any additional training. The
zero-shot performance of the model in segmenting pancre-
atic tissue was impressive, demonstrating its applicability
in situations where the model must be used in data from
other sites or hospitals. The success of our model in exter-
nal validation (Abdominal-1K dataset) further underscores
its potential as a versatile and effective tool for clinical
application in various imaging conditions. This provides
confidence in its deployment in real-world diagnostic set-
tings, where the model must perform accurately on data it
has not been explicitly trained on.
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A. Image Results

Figure 4. The first row displays the original abdominal CT images prior to applying the preprocessing pipeline, showcasing lower
contrast and clarity. The second row demonstrates the same CT images after preprocessing, where Contrast-limited Adaptive Histogram
Equalization (CLAHE) has been applied. This preprocessing significantly enhances image contrast and detail, making anatomical
structures more discernible

Figure 5. Comparison of the fine-tuned SAM without prompts and the PanSAM model for estimating the pancreatic region. Each image
pair displays the output of the fine-tuned SAM at the top and the PanSAM model’s output below. Although the PanSAM model leverages
outputs from the fine-tuned SAM to generate its prompts, it effectively amends errors from the initial SAM model, resulting in more
precise pancreas segmentation. In the visualizations, red signifies model predictions, green represents the ground truth labels, and yellow
illustrates the overlap between the predictions and the ground truth.

Figure 6. Model efficacy with challenging and complex samples. In the images, red signifies model predictions, green represents ground
truth labels, and yellow marks their intersection.
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Figure 7. Performance of the model across various samples. In the images, red signifies model predictions, green represents ground truth
labels, and yellow marks their intersection.

Figure 8. Comparison between the PanSAM(2D) and PanSAM(3D) models, demonstrating the impact of the 3D aggregator in enhancing
pancreatic segmentation. The PanSAM(3D) model uniquely incorporates a 3D aggregator that utilizes information from neighboring
slices to improve accuracy. This addition allows the PanSAM(3D) to achieve more precise segmentation, particularly in challenging areas
such as where the pancreas is divided into distinct regions, at the organ’s extremities, or at the initial parts of the organ. In contrast, the
PanSAM(2D) model does not include this feature. In each pair of images, the top one shows the output from the PanSAM(2D) model,
while the bottom one illustrates the output from the PanSAM(3D) model, highlighting the enhanced segmentation capabilities provided by
the 3D aggregator. Each color signifies the same meaning mentioned in Figure 5.

B. Further Experiments
B.1. Experiments Setup

In our experiments, we used an Adam optimizer with a learning rate of 5× 10−4 and weight decay of 5× 10−5. We also set
β = 0.05, the weight of the DICE loss. We used a batch size of 8 for training. Additionally, a OneCycleLR scheduler was
implemented for fast convergence and to avoid overfitting, ensuring accuracy and efficiency(Smith & Topin, 2019).

B.2. Ablation Study

In this section, we present an ablation study to assess the contribution of individual modules within our architecture. Table 2
delineates the impact of each module, illustrating how they influence the overall performance of the system. The results
clearly demonstrate that each component plays a significant role in improving the efficacy of the final model.

Table 2. Ablation Study on PanSAM Model
Approaches DICE Recall Jaccard Precision F1-Score
SAM 17.57±7.31 68.43±6.19 11.00±6.72 55.36±8.25 60.88
fine-tuned SAM 83.31±1.27 88.32±1.66 78.51±1.59 85.84±1.8 87.11
fine-tuned SAM + 3D aggregator 83.75±1.12 88.74±1.46 79.41±1.22 86.58±1.53 87.66
fine-tuned SAM + prompt generator 84.62±1.18 88.50±1.45 80.25±1.61 88.42±1.47 88.51
PanSAM 87.01±1.93 89.38±0.73 81.42±2.29 89.86±2.54 89.45

B.3. Discussion

In this section, we discuss the performance of the PanSAM model in a comprehensive way. As detailed in the ablation study
section B.2, each component of PanSAM plays a crucial role in enhancing the model’s overall effectiveness, with the final
PanSAM demonstrating superior results compared to its individual modules. Here, we specifically focus on evaluating the
performance of our prompt generator.
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Ideally, the most accurate method to generate prompts would involve an expert manually selecting both interior and exterior
points with a high degree of confidence. However, this approach is not feasible due to the high costs associated with
expert time, the time-consuming nature of the task, and the necessity for ongoing expert involvement with each model run.
Consequently, we have opted to exclude human experts from the loop, aiming instead for full automation of the prompt
generation process.

To assess the quality of the automatically generated prompts, we compare them against a baseline where points are directly
derived from the ground truth. This comparison is quantitatively presented in Table 3, where we measure the impact of
using ground truth points versus points from our automated prompt generator module. This evaluation helps us understand
the efficacy of the prompt generator and its contribution to the overall performance of the PanSAM model.

Table 3. Comparison of DICE Scores between Ground Truth and Automatically Generated Prompts in PanSAM model. The GroundTruth
extensions choose point prompts from real mask instead of getting it from the prompt generator.

Dimension Name Prompt DICE

2D SAM (Kirillov et al., 2023) 5 points 17.57±7.31
2D SAM MED2D (Cheng et al., 2023) 5 points 60.43±5.42
3D 3DSAM-adapter (Gong et al., 2023) 10 points 53.12±5.11
2D PanSAM-GroundTruth 4 points 87.24±1.93
3D PanSAM-GroundTruth 4 points 89.15±1.07
3D PanSAM 4 points 87.01±1.93

Table 3 illustrates that while our prompt generator does not achieve the same level of accuracy as expert-provided ground
truth points, the difference in performance is relatively minimal, resulting in only a 2-point decrease in the DICE score.
Despite this, the PanSAM model still outperforms all other state-of-the-art (SOTA) models currently available. This outcome
underscores the effectiveness of our model, although it also highlights potential areas for improvement.

B.4. Zero-shot Benchmark

The robustness of PanSAM was further evaluated through a zero-shot generalization on the Abdomen1K dataset, which
consists of multiorgan CT scans. For external validation purposes, we exclusively analyzed the model’s ability to segment
the pancreas. Interestingly, PanSAM achieved a DICE score of 83.20%, which is indicative of its powerful generalization
capabilities when applied to unseen conditions.

This high level of zero-shot performance is a testament to two pivotal strategies implemented during model training. First,
we used diverse data augmentation techniques to foster model adaptability to new datasets. Second, by freezing the encoder,
we preserved the learned features from the initial training phase, enabling the model to maintain its learned generalization
without additional training or fine-tuning.

The success of PanSAM in external validation, particularly in zero-shot scenarios, demonstrates its potential as a versatile
and effective tool for clinical application across various imaging conditions, providing confidence in its deployment in
real-world diagnostic settings where the model must perform accurately on data it has not explicitly been trained on.

B.5. Computational Cost

As our proposed model is multistage, the computation time of the complete pipeline can become undesirably high. In this
section, we compare the size and inference time of our model with other SAM integrations. The image encoder of SAM
ViT-H, which is used in our experiments, has 637M parameters, and the mask decoder has 4M parameters. In the first stage,
a single pass from the image encoder and the first mask decoder takes place, with a total of 641M parameters. In the second
stage, the already calculated features of the image encoder are passed to the second mask decoders, with 4M parameters. In
the end, the outputs are fed into the 3D aggregator which has 14K parameters. The total number of parameters of our model
is less than 646M. Using the SAM model in its original form, with manually-fed prompts, the number of parameters would
be 641M. Hence, with an only additional 0.78% number of parameters compared to SAM, we omitted the requirement for
manual prompts. The runtime of our model is 0.145s per slice on an RTX 3090 GPU, estimated over 10 runtimes of the
model.
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