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ABSTRACT

We study the problem of computing an (mϵ, δ)-differentially private majority of
K (ϵ,∆)-differentially private algorithms for m < K and δ ≥ ∆ ≥ 0. Standard
methods such as subsampling or randomized response are widely used, but do they
provide optimal privacy-utility tradeoffs? Surprisingly, we show that an (mϵ, δ)-
private majority algorithm with maximal utility can be computed tractably for any
m < K. Specifically, we introduce Data-dependent Randomized Response Major-
ity (DaRRM), a general privacy framework characterized by a data-dependent noise
function γ that allows for efficient utility optimization over the class of all private
algorithms subject to privacy constraints. By deriving a structural understanding of
DaRRM, our novel learning approach is made tractable by reducing infinitely many
privacy constraints into a polynomial set. Theoretically, we show that DaRRM en-
joys a privacy gain of a factor of 2 over common baselines under i.i.d. teachers and
δ = 0. Lastly, we demonstrate the empirical effectiveness of our first-of-its-kind
privacy-constrained utility optimization for ensembling labels and gradients from
private teachers through applications of private semi-supervised knowledge transfer
and private distributed Sign-SGD, highlighting the outstanding performance of our
DaRRM framework with an optimized γ against several baselines.

1 INTRODUCTION

Figure 1: An illustration of the problem setting. The inputs
are the dataset D and K (ϵ,∆)-differentially private (DP)
mechanisms M1, . . . ,MK . One draws samples Si ∼Mi(D)
and computes an aggregated output g(S1, . . . , SK) based
on all samples seen. Our goal is to design a randomized
algorithm A that approximately computes g and is (mϵ, δ)-
differentially private for 0 < m < K and δ ≥ ∆ ≥ 0. In
this work, we focus on the majority function g.

Differential privacy (DP) is a widely
applied framework for formally rea-
soning about privacy leakage when
releasing statistics on a sensitive
database Erlingsson et al. (2014); Cor-
mode et al. (2018). Differential pri-
vacy protects data privacy by obfuscat-
ing algorithmic output, ensuring that
query responses look similar on ad-
jacent datasets while preserving util-
ity as much as possible Dwork et al.
(2006).

Privacy in practice often requires ag-
gregating or composing multiple pri-
vate procedures. For example, it is
common to aggregate multiple private
algorithmic or model outputs in meth-
ods such as boosting or calibration (Sagi & Rokach, 2018). In federated learning, model training
is distributed across multiple edge devices that send locally private training information, such as
labels or gradients Konečnỳ et al. (2016) to an aggregating server. When translating from a local
privacy guarantee to a centralized one, one needs to reason about the composition of the local privacy
leakage Naseri et al. (2020). Thus, we focus on the following ubiquitous setting: Given K (ϵ,∆)
-differentially private mechanisms, M1, . . . ,MK , one seeks to compute some aggregation function g
applied to the outputs of the mechanisms, releasing g(M1(D), . . . ,MK(D)), while ensuring that the
output is (mϵ, δ)-differentially private for some private budget m < K and δ ≥ ∆ ≥ 0 (Figure 1).
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For g being the private majority function, it has a wide range of applications in aggregating predictions
from a set of models, where each of the models is trained on a private dataset. For example, this occurs
in semi-supervised knowledge transfer with private aggregated teacher ensembles (PATE) Papernot
et al. (2017; 2018), in ensemble learning algorithms Jia & Qiu (2020); Xiang et al. (2018), and in
ensemble feature selection Liu et al. (2018). In the federated setting, the majority aggregation of
distributed gradients for private learning is used in algorithms such as Stochastic Sign-SGD Xiang &
Su (2023a).

However, some of these works heavily rely on the sensitivity assumption of g for improved privacy
bounds and generally provide limited utility guarantees. However, the bounded sensitivity of g can be
too pessimistic in practice, as observed in the problem of private hyperparameter optimization (Liu &
Talwar, 2019). On the other hand, a naive way to bound privacy loss without restrictive assumptions is
to apply simple composition (Theorem B.2) or advanced composition (Theorem B.3) to reason about
the final privacy loss after aggregation. A black-box application of the simple composition theorem
to compute g(M1(D), . . . ,MK(D)) would incur a Kϵ privacy cost in the pure differential privacy
setting, that is, δ = 0, or if one is willing to tolerate some failure probability δ, advanced composition
would yield a O(

√
Kϵ) privacy cost Dwork et al. (2014). Thus, a natural baseline algorithm A that is

(mϵ,m∆)-differentially private applies privacy amplification by subsampling and randomly chooses
m of the K mechanisms to aggregate and returns the majority of the subsampled mechanisms. This
technique is reminiscent of the subsampling procedure used for the maximization function g (Liu
& Talwar, 2019) or some general techniques for privacy amplification in the federated setting via
shuffling (Erlingsson et al., 2019).

However, standard composition analysis and privacy amplication techniques can be suboptimal for
computing a private majority, in terms of both utility and privacy. Observe that if there is a clear
majority among the outputs of M1(D), . . . ,MK(D), one can add less noise, since the majority
outcome is unlikely to change based on single isolated changes in D. Furthermore, composition
theorems make two pessimistic assumptions: 1) the worst-case function g and the dataset D are
considered, and 2) all intermediate mechanism outputs M1(D), . . . ,MK(D) are released, rather than
just the final aggregate g(M1(D), . . . ,MK(D)). Therefore, we formally ask the following:

Problem 1.1 (Private Majority Ensembling (Illustrated in Figure 1)). Consider K ≥ 1 (ϵ,∆)-
differentially private mechanisms M1, . . . ,MK for K odd. Given a dataset D, each mechanism
outputs a binary answer — that is, Mi : D → {0, 1}, ∀i ∈ [K]. Given a privacy allowance
0 < m < K and a failure probability δ ≥ ∆ ≥ 0, how can one find the optimal utility of an
(mϵ, δ)-differentially private mechanism A to compute the majority function g(S1, S2, . . . , SK),
where Si ∼Mi(D)?

1.1 OUR CONTRIBUTIONS

We give a (perhaps surprising) affirmative answer to this question: we can provably achieve a constant
factor improvement in utility over simple subsampling by applying data-dependent noise injection
when Mi’s are i.i.d. and δ = 0. For general cases, by using our novel data-dependent randomized
response framework (DaRRM), which captures all private majority algorithms, we introduce an
efficient noise optimization procedure that computes the best possible privacy-utility tradeoffs. To
our knowledge, this is the first of its work of its kind that gives a tractable utility optimization over
the possibly infinite set of privacy constraints. We detail how our work in the new setting compares
to related prior works in Appendix A.

To define utility for evaluating the output of a private majority algorithm A, we will use the error
metric E as the Total Variation (TV) distance between the output distribution ofA and the non-private
distribution of g, where the randomness is induced by the mechanisms. The utility is then defined as
1− E and, for optimization purposes, we will consider an average utility over a distribution of the
parameters of the underlying mechanisms. The TV distance naturally captures one’s intuition that a
good private mechanism should have an output close to the true majority.

Data-dependent Randomized Response Majority (DaRRM). To motivate our framework, note that
a naïve constant γ = O(mK ) or γ = O( m√

K
) (aka. Randomized Response (RR)) ensures DaRRM to

be mϵ- or (mϵ, δ)-differentially private, respectively, but the amount of noise added by this approach,
which is determined by the worst case privacy loss, can be too large. The critical observation is that
when there is high consensus in the mechanisms’ output distributions, we can do exponentially better.
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Thus, we propose a general randomized response framework DaRRM (see Algorithm 1) and show
that it actually captures all algorithms computing the majority whose outputs are at least as good as a
random guess (see Lemma 3.2), including random subsampling (see Lemma 3.1). DaRRM draws a
sample Si from each one of Mi(D),∀i ∈ [K], and faithfully outputs the true majority based on all
the samples, i.e. I{ 1

K

∑K
i=1 Si ≥ 1

2} with probability γ, while outputting randomly otherwise.

Designing γ with Provable Privacy Amplification. Our choice of γ therefore allows us to explicitly
control noise while trading off privacy and utility. As it is data-dependent, we can design γ(L) to
depend on the observed sum of all mechanisms L =

∑K
i=1 Si and is symmetric around K

2 , and still
ensure privacy in all regimes as long as γ does not vary drastically. Using this observation, we show
privacy amplification by a factor of 2 in computing the majority of i.i.d mechanisms when δ = 0
through a tighter analysis instead of simply applying simple composition. Specifically, as long as
m ≥ K

2 , we can always output the true majority of K mechanisms without any noise addition, and
when m < K

2 , we can provably improve utility, compared to the natural subsampling approach, by a
factor of 2 by deriving analytical expressions for tighter privacy-utility tradeoffs (see Theorem 4.1).

Finding the Best γ through Dimension-Reduced Optimization. Carefully designing γ leads to
theoretically improved utility, but it is still likely non-optimal. Instead, we exploit the generality
of DaRRM by applying a novel optimization-based approach that applies constrained optimization
to find the optimal data-dependent γ that maximizes some measure of utility; however there are
infinitely many privacy constraints. Surprisingly, we show that we can reformulate the privacy
constraints, which are infinite dimensional, to a finite polynomial-sized constraint set, allowing us to
efficiently constrain the optimization problem to find the best γ, even for approximate differential
privacy (see Lemma 5.1). Empirically, we show that with a small m and ϵ, the optimized γ (see
Optimized DaRRMγ in Figure 2) achieves the best utility among all γ functions, even compared to
the subsampling and the data-independent baseline. To our knowledge, this is the first optimal utility
guarantee over all private algorithms by constrained optimization with dimension reduction.

In downstream tasks, such as semi-supervised knowledge transfer, we compare our DaRRM with an
optimized γ to compute the private label majority against PATE Papernot et al. (2018), which indeed
has a lower utility as it does not exploit that each mechanism/teacher is (ϵ,∆)-differentially private.
Furthermore, for collaborative model training using private distributed Sign-SGD on the MNIST
and CIFAR10 dataset, we show an improved performance of our optimized DaRRM by > 8% and
> 3.5% test accuracy on the two datasets, against several baselines with the same privacy guarantee.

2 BACKGROUND

Blackbox privacy composition analysis often leads to pessimistic utility guarantees Dwork et al.
(2014); Kairouz et al. (2015). Thus, for specific applications, previous work has turned to white-box
privacy composition analysis for improved utility. This includes, for example, moment accountant
for private SGD Abadi et al. (2016) and the application of contractive maps in stochastic convex
optimization Feldman et al. (2018). For the specific case of model ensembles, Papernot et al. (2018)
shows a data-dependent privacy bound that vanishes as the probability of disagreement goes to
0. Their method provides no utility analysis but they empirically observed less privacy loss when
there is greater ensemble agreement. When g is the maximization function in aggregating private
mechanisms, previous work shows that an approximately maximum value can be outputted with high
probability while incurring O(ϵ) privacy loss, independently of K Liu & Talwar (2019); Papernot &
Steinke (2022). Most of these works only claim improved utility and there is no optimality guarantee.

There have been limited works, including Mireshghallah et al. (2020) and Geng & Viswanath
(2015),that attempt to derive or learn the best noise distribution. Although our intuition in designing
DaRRM also relies on the stability of the mode function g, previous usage of stability to improve
privacy-utility tradeoffs, e.g., propose-test-release Vadhan (2017); Dwork et al. (2014), requires the
testing of such stability, based on which one adds a larger (constant) noise γ. This can still lead to
adding redundant noise in our case. For more related works on this, see a full survey in Appendix A.

2.1 PRELIMINARIES

We include formal definitions of differential privacy, simple composition and advanced composition
theories in Appendix B. We formalize the error and utility metric as follows:

3



Under review as a conference paper at ICLR 2024

Definition 2.1 (Error Metric and Utility Metric). For the problem setting in Definition 1.1, let the
observed (random) outcomes set be S = {S1, .., Sk}, where Si ∼Mi(D). For a fixed D, we define
the error of an algorithm A in computing the majority function g as the Total Variation (TV) distance
between g(S) and A(S). Specifically, E(A) = ES [DTV (g(S) ∥ A(S))] = ES [|Pr[A(S) =
1]− Pr[g(S) = 1]|]. And the utility is defined as 1− E(A).

Notation. Throughout the paper, we use the same notations defined in Problem 1.1 and Definition 2.1.
Furthermore, let D and D′ to denote a pair of adjacent datasets with one entry being different. Also,
let pi = Pr[Mi(D) = 1] and p′i = Pr[Mi(D′) = 1], ∀i ∈ [K]. We omit the subscript i when all pi’s
or p′i’s are equal. I{·} denotes the indicator function and [K] = {1, 2, . . . ,K}. For the purpose of
analysis, let L(D) =

∑K
i=1 Si =

∑K
i=1 Mi(D), i.e. the sum of all observed outcomes on dataset

D. Unless specified, we use the function γ : {0, 1, . . . ,K} → [0, 1] as input to our algorithms to
calibrate the probabilistic noise injection.

3 PRIVATE MAJORITY ALGORITHMS

Algorithm 1 DaRRM(·): Randomized Response
Majority

1: Input: K (ϵ,∆)-DP mechanisms {Mi}Ki=1, γ
noise function on support {0, . . . ,K}, dataset
D, target privacy cost m · ϵ for m < K, target
failure probability δ ≥ ∆ ≥ 0.

2: S = {S1, .., Sk}, where Si ∼Mi(D)
3: Set probability pγ ← γ(

∑K
i=1 Si)

4: Flip the pγ- biased coin
5: if Head (with probability γ) then
6: Output I{ 1

K

∑
i Si ≥ 1

2}
7: else
8: Output 0/1 with equal probability
9: end if

To address the problem of private majority en-
sembling (see Problem 1.1), since the output is
discrete, the very first approach to consider is
the classical Randomized Response (RR) mech-
anism Dwork et al. (2014), where one flips a
biased coin with a constant probability func-
tion γ(l)= pγ ,∀l ∈ {0, 1, . . . ,K}. If the coin
is head, we output the true majority base on K
samples; if not, then simply output a noisy ran-
dom answer. However, to make the output mϵ-
differential private, the success probability pγ
can be at most O(mK ) (or O( m√

K
)) when δ = 0

(or δ > 0) (see Appendix C.1), which is too
small for any reasonable utility.

The key observation for improved utility is that the probability of success should not be a constant,
but should depend on the unpublished set of observed outcomes from the mechanisms S . If we see
many 1’s or 0’s in S, then there should be a clear majority even on adjacent datasets. On the other
hand, if we see about half 1’s and half 0’s, this means the majority is highly volatile to data changes,
which implies we need more noise to ensure privacy. In summary, if we can calibrate the success
probability based on S to smoothly increase when there is a clear majority, we can improve the utility
without affecting privacy.

Subsampling. While it seems daunting to design γ that is both private and varying, we show that
this is indeed possible. One natural baseline is subsampling and outputting the majority of m out
of K mechanisms for some m. Suppose δ ≥ m∆, the privacy loss of the aggregated output can be
reasoned through simple composition or advanced composition 1. Interestingly, we show subsampling
m out of K mechanisms corresponds to a non-constant polynomial γ, which we term “γSubsampling”,
in Lemma 3.1 (see a full proof in Appendix C.2). Intuitively, subsampling may be seen as implicitly
adding noise by outputting based only a random choice of subset of the mechanism outputs; therefore
this implicit noise is inherently data-dependent on L.
Lemma 3.1. Consider Problem 1.1, and the sum of observed outcomes of the mechanisms, l =∑K

i=1 Si ∈ {0, 1, . . . ,K}. For m ∈ Z+, m ≤ K, if one sets a success probability γSubsampling,
dependent on the value of l, by

γSubsampling(l) =


γSubsampling(K − l) = 1− 2

∑m
j=m+1

2

(lj)(
K−l
m−j)

(Km)
for odd m

γSubsampling(K − l) = 1− 2
∑m

j=m
2 +1

(lj)(
K−l
m−j)

(Km)
−

( l
m
2
)(K−l

m
2
)

(Km)
for even m

(1)
1Deciding on which composition theorem to apply depends on m and δ. When δ = 0, only simple

composition applies. When moderate δ > 0, for small m, the simple composition indicates less privacy loss;
and for larger m or larger δ, the advanced composition is clearly better.
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then outputting the majority of m out of K subsampled mechanisms without replacement and
DaRRMγSubsampling

have the same output distribution.

Data-dependent Randomized Response (DaRRM). Does subsampling give optimal utility? In-
spired by the connection between RR and subsampling, we propose Data-dependent Randomized
Response Majority (DaRRM) in Algorithm 1, to study the optimal privacy-utility tradeoffs in private
majority ensembling. In particular, DaRRM has a parameterized success probability pγ that depends
on the set of observed outcomes S = {S1, . . . , SK}. In fact, we can show that DaRRM is general:
any reasonable algorithm A, name one whose output is at least as good as a random guess, can
be captured by the DaRRM framework in Lemma 3.2 (see a full proof in Appendix C.3). We call
DaRRM instantiated with a specific noise function γ DaRRMγ . Note the γ function stated in Lemma
3.2 is more general than what we need.
Lemma 3.2 (Generality of DaRRM). Let A be any randomized algorithm to compute the majority
function g on S such that for all S , Pr[A(S) = g(S)] ≥ 1/2 (i.e. A is at least as good as a random
guess). Then, there exists a a general γ: {0, 1}K+1 → [0, 1] such that if one sets pγ by γ(S) in
DaRRM, the output distribution of DaRRMγ is the same as the output distribution of A.

Designing the γ function. With the DaRRM framework, we ask how to design a good γ function
that maximizes the utility? First, to characterize the privacy cost constraint, we introduce two
characteristics of γ that do not affect the utility, while simplifying the analysis and the empirical
optimization. Note that γSubsampling satisfies both characteristics. (a) A function of the sum of
observed samples: Since the observed samples set S is a permutation-invariant set, a sufficient
statistic that captures the full state of S is L =

∑
i Si, the mean vote. This allows us to reduce

γ(S) = γ(L), and hence, in the rest of the paper, we only consider γ : {0, 1, . . . ,K} → [0, 1].
(b) Symmetric around K

2 : If γ is asymmetric, we can symmetrize by reflecting one region about K
2

and achieve better or equal expected utility, where the utility is summed over symmetric distributions
of pi. Let L(D) and L(D′) denote the sum of observed outcomes on adjacent datasetsD andD′. Also,
recall pi = Pr[Mi(D) = 1] and p′i = Pr[Mi(D′) = 1] are the output probabilities of the mechanisms
on D,D′. Now, we derive conditions for a γ function such that DaRRMγ is (mϵ, δ)-differentially
private in Lemma 3.3 (see a full proof in Appendix C.4).
Lemma 3.3 (γ privacy condition and privacy cost objective). Consider using DaRRM to solve
Problem 1.1. Let αl = Pr[L(D) = l] and α′

l = Pr[L(D′) = l], for l in support {0, . . . ,K} and
adjacent datasets D,D′. For γ : {0, 1, . . . ,K} → [0, 1] such that γ(l) = γ(K − l),∀l, DaRRMγ is
(mϵ, δ)-differentially private if and only if for all αl, α

′
l,

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ):=

K−1
2∑

l=0

(emϵα′
l − αl) · γ(l) +

K∑
l=K+1

2

(αl − emϵα′
l) · γ(l) ≤ emϵ − 1 + 2δ

(2)

We call f the privacy cost objective.

4 PROVABLE PRIVACY AMPLIFICATION

We theoretically demonstrate that privacy is provably amplified under improved design of γ in our
DaRRM framework. Specifically, we show when the mechanisms are i.i.d. and δ = 0, we gain
privacy amplification by a factor of 2 by carefully designing γ. Recall pi = Pr[Mi(D) = 1] and
p′i = Pr[Mi(D′) = 1] are the output probabilities of the mechanisms on adjacent datasets D,D′.
Theorem 4.1 (Provable Privacy Amplification by 2). Consider using DaRRM to solve Problem 1.1
when the mechanisms are i.i.d., i.e., pi = p, p′i = p′, ∀i ∈ [K] and ∆ = 0. Given a privacy
allowance m ∈ [K], if m ≥ K+1

2 , one sets γ(l) = 1,∀l ∈ {0, 1, . . . ,K}; and if m ≤ K−1
2 ,

one sets γ(l) =

{
1− 2h(l) ∀l ≤ K−1

2

2h(l)− 1 ∀l ≥ K+1
2

, where h(l) =
∑2m−1

i=m
(li)(

K−l
2m−1−i)

( K
2m−1)

, then DaRRMγ is

mϵ-differentially private.

Interpretation. First, when m ≤ K−1
2 is small, the γ(l) in Theorem 4.1 corresponds to outputting

the majority based on 2m− 1 outcomes. However, simple composition would have indicated that
one can only output the majority based on m outcomes, therefore implying a 2x utility gain. When
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m ≥ K+1
2 , the above theorem indicates that we can set a constant γ = 1, which implies we are

optimally outputting the true majority with no noise while still surprisingly ensuring mϵ privacy.

This 2x gain is intuitively possible because the majority is only dependent on half of the mechanisms’
outputs, therefore the privacy leakage is also halved. To see this, we start by analyzing the privacy
cost objective in Eq. 37, where with a careful analysis of its gradient, we show that the maximum
indeed occurs (p∗, p′∗) = (0, 0) under this assumption. Now, when (p∗, p′∗) → 0, note that the
probability ratio of outputting 1 with 2m − 1 outcomes is approximately emϵ, where dependence
on m follows because the probability of outputting 1 is dominated by the probability that exactly m
mechanisms output 1. To rigorize this, we derive sufficient conditions for γ functions that satisfy
f(0, 0; γ) ≤ emϵ − 1 as indicated by Lemma 3.3, to ensure DaRRM to be mϵ-differentially private
and a more detailed overview and the full proof can be found in Appendix D.

5 OPTIMIZING THE FUNCTION γ IN DARRM

Theoretically designing γ and extending privacy amplification results to the δ > 0 case is difficult
and it is likely that our crafted γ is not even optimal. On the other hand, one can to optimize for
such γ∗ but this involves solving a “Semi-infinite Programming” problem, due to the infinitely many
privacy constraints. We show that this is in fact tractable, proposing a novel learning approach based
on DaRRM that can efficiently optimize the best noise distribution to achieve maximal utility. To the
best of our knowledge, such optimization is the first of its kind and is the following:

min
γ∈[0,1]K+1

Ep1,p2,...,pK∼T [E(DaRRMγ)] (3)

s.t. max
{(pi,p′

i)∈F}K
i=1

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ) ≤ emϵ − 1 + 2δ

γ(l) = γ(K − l),∀l ∈ {0, 1, . . . ,K}
where f is the privacy cost objective defined in Lemma 3.3. F is the feasible region where (pi, p

′
i)

lies. Since γ is symmetric around K
2 , we only need to optimize K+1

2 variables. When we have no
prior knowledge about p1, . . . , pK , T is set to be the uniform distribution 2.

Optimizing Over All Algorithms. We want to stress that while it is in general hard to optimize
for all algorithms, since we show in Lemma 3.2 DaRRM that captures all reasonable algorithms
computing a private majority, we are indeed optimizing over all algorithms for maximal utility.
Perhaps surprisingly, it turns out that optimizing for γ∗ is a Linear Programming (LP) problem!

Linear Optimization Objective. Indeed, after expanding the objective by the utility
definition (see Definition 2.1), optimizing the above objective is essentially same as op-
timizing the following objective linear in γ (see a full derivation in Appendix E.1):
minγ∈[0,1]K+1 − 1

2

∑K
l=K+1

2
Ep1,p2,...,pK∼T [(αl − αK−l)] γ(l).

Although taking the expectation over p1, . . . , pK involves integrating over K variables and this can
be computationally expensive, we discuss how to formulate a computationally efficient approximation
of the objective in Appendix E.2 and demonstrate the effectiveness of optimization over γ with the
practical version of the objective in the experiments. Note that the objective only minimizes the utility
and hence approximating the objective does not affect the privacy guarantee.

Reducing Infinitely Many Constraints to A Polynomial Set. From Eq. 37 the constraint of the
optimization problem is linear in γ. Though it appears we need to solve for infinitely many constraints,
we show that through a structural understanding of DaRRM, we can surprisingly reduce the number
of privacy constraints from infinitely many to an exponential set, and further to a polynomial set.
First, we observe the privacy cost objective f is linear in each independent pair of (pi, p′i), hence
finding the worst case probability (p∗i , p

′∗
i ) = argmax(pi,p′

i)
f that causes the maximum privacy loss

is a linear programming (LP) problem. Furthermore, since pi and p′i are the probability of outputting
1 from the i-th (ϵ,∆)-differentially private mechanism Mi, by definition, they are close and lie in
a feasible region F , which we show has 8 corners when δ > 0 (and only 4 corners when δ = 0).
This implies (p∗i , p

′∗
i ) only happens at one of the corners of F , and hence the number of constraints

reduces to K8 (and K4 when δ = 0). Second, observe that αl in the privacy cost objective f is the
2Note one also has the flexibility of incorporating prior knowledge about the mechanisms by choosing some

prior distribution T to further improve the utility, if one has any.
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pmf of a Poison Binomial (PB) distribution at l ∈ {0, . . . ,K}. Notice that PB is invariant under the
permutation of its parameters, i.e. PB(p1, . . . , pK) has the same distribution as PB(π(p1, . . . , pK)),
under some permutation π. Based on this observation, we show the number of constraints can be
further reduced to O(K7) (and this is O(K3) when δ = 0). We formalize the two-step reduction of
the number of privacy constraints in Lemma 5.1 (see a full proof in Appendix E.3) as follows 3.

Lemma 5.1. Consider using DaRRM to solve Problem 1.1. Given an arbitrary γ, let the global worst
case probabilities be (p∗1, . . . , p

∗
K , p′∗1 , . . . , p

′∗
K) = argmax{(pi,p′

i)}K
i=1

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ),

where f is the privacy cost objective defined in Lemma 3.3. Each pair (p∗i , p
′∗
i ) satisfies

(p∗i , p
′∗
i ) ∈ {(0, 0), (1, 1), (0,∆), (∆, 0), (1 − ∆, 1), (1, 1 − ∆), ( e

ϵ+∆
eϵ+1 ,

1−∆
eϵ+1 ), (

1−∆
eϵ+1 ,

eϵ+∆
eϵ+1 )},

∀i ∈ [K]. Furthermore, there exists a set P of size O(K7) such that (p∗1, . . . , p
∗
K , p′∗1 , . . . , p

′∗
K) =

argmax{(pi,p′
i)}K

i=1∈P f(p1, . . . , pK , p′1, . . . , p
′
K ; γ) if δ > 0 and a set P of size O(K3) if δ = 0.

6 EXPERIMENTS

We empirically solve4 the above optimization problem (Eq. 3) using the Gurobi5 solver and first
present the shape of the optimized γ function and its utility in Section 6.1. Then, we demonstrate
the compelling effectiveness of DaRRM with an optimized γ function, which we call optimized
DaRRMγ , in aggregating private mechanisms through two applications: private distributed Sign-SGD
in Section 6.2 and private semi-supervised knowledge transfer in Section 6.3.

6.1 OPTIMAL γ IN SIMULATIONS

We compare the shape and E(DaRRMγ) of an optimized γ, γsubsampling (see Lemma 3.1) and the
constant data-independent γ in randomized response (see Lemma C.1) with K = 11, ϵ = 0.1,∆ =
10−5 and m ∈ {1, 3, 5, 7}. Note when K,m are small as in this case, simple composition indeed
indicates a smaller privacy loss than advanced composition. Hence, the subsampling baseline we
compare here subsamples m votes from the private mechanisms. Since the failure probability of
privacy composition composes linearly, to ensure a fair comparison against the subsampling baseline,
we set δ = m ·∆. That is, for all baselines and our optimized DaRRMγ , the output is required to
be (mϵ, δ)-differentially private. We plot each γ functions over the support {0, 1, . . . ,K} and the
corresponding error of each algorithm in Figure 2.

In summary, the optimized γ has a larger magnitude over the support than the baselines. This implies
the optimized γ has lower error, which is verified on the right set of plots. More results on comparing
the optimized DaRRMγ against the subsampling baseline by advanced composition and comparison
under pure differential privacy settings (i.e.∆ = δ = 0) for large K can be found in Appendix F.1.

6.2 APPLICATION 1: PRIVATE DISTRIBUTED SIGN-SGD

Distributed Sign-SGD. We now demonstrate the performance of our optimized DaRRMγ in aggre-
gating private sign gradients with distributed Sign-SGD, a Byzantine resilient optimization algorithm.
Consider a central server and K distributed clients. At each communication round, each client sends
the sign of each coordinate of its gradient to the server, and the server wants to aggregate the clients’
sign gradients by taking a majority vote of the signs for each coordinate. The server then uses the
aggregated sign gradient to update its model and sends the new model back to the clients.

We consider an “honest-but-curious” server which wants to infer clients’ information through their
sign gradients. And so the clients add noises to each coordinate of their gradients before sending them
to the server. We adopt β Stochastic Sign-SGD Xiang & Su (2023a;b), a variant of distributed Sign-
SGD that ensures coordinate-wise ϵ-differential privacy of the client’s gradients. For completeness,
we include the algorithm and its privacy guarantees in Appendix F.2.

3Practical Limitation. Although the number of constraints is polynomial in K and optimizing γ in DaRRM
is an LP, O(K7) can still make the number of constraints intractably large when K is large. In practice, we
observe with the Gurobi optimizer, one can optimize γ for K ≤ 41 when δ > 0. But when δ = 0, since the
number of privacy constraints is O(K3), one can optimize for K over 100.

4All code for the experiments can be found at https://anonymous.4open.science/r/
optimized_private_majority-E469

5https://www.gurobi.com/
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randomized response and the error in TV distance of the majority ensembling output of DaRRM with
different γ functions, when K = 11,m ∈ {1, 3, 5, 7}, ∆ = 1e− 5 and δ = m∆.
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Figure 3: Test accuracy of the aggregated model by private
clients trained using β Sotchastic SignSGD on MNIST and
CIFAR10. Each solid line represents the mean test accuracy
across five random runs, and the shaded region represents 1 std.
There are K = 11 clients, whose sign gradients are ϵ = 0.1-
differentially private coordinate-wise at each communication
round. We aggregate client sign gradients using different pri-
vate majority ensembling methods, ensuring that each coordi-
nate of the aggregated sign gradient is 0.3-differentially private.
With the same privacy loss, it is clear that the proposed op-
timized DaRRMγ achieves the fastest convergence rate and
the highest test accuracy within 100 and 300 communication
rounds on the two datasets, respectively, compared to the other
two baselines.

We further consider a user who
wants to obtain a trained model at
the server and we want to ensure
privacy of the final model w.r.t. all
clients’ training data. This requires
the server to provide privacy guar-
antees of the aggregated sign gradi-
ent vector at each communication
round, which by simple composi-
tion, is Kϵ per coordinate. To limit
the per-coordinate privacy loss, we
set a per-round privacy allowance
of m such that each coordinate of
the aggregated signed gradient vec-
tor using majority voting is mϵ-
differentially private at the server.

Baselines. “Laplacian” Papernot
et al. (2017): the most naive base-
line to aggregate ϵ-differentially pri-
vate clients is to add Laplacian noise
to the counts of ±1 and pick the
sign with the noisy maximum count.
However, this method does not con-
sider the gradient vectors being pri-
vate themselves and hence adds redundent noises, as we show in the results. An improved baseline is
“Subsampling”, which subsamples and aggregates m client’ gradient vectors.

Experiment Setup and Results. We collaboratively train a model with K = 11 clients on the
MNIST and CIFAR10 datasets. The training set for each dataset is divided equally among the
clients and each client has 5454 local training samples. Each dataset has 10000 test samples. At
each communication round, each client sends a sign gradient vector, with each coordinate being
ϵ = 0.1-differentially private, to the server and we set the privacy allowance m = 3. We perform
private distributed Sign-SGD for a total of 100 and 300 communication rounds on MNIST and
CIFAR10, respectively6, and report the test accuracy per communication round. We report the mean
test accuracy across five random runs and one std. in Figure 3.

6Note the total privacy loss of the final model obtained from the server after T communication rounds can be
empirically computed using a tight moment accountant method for private majority ensembling from Papernot
et al. (2017). The overall privacy loss of the model does scale with the number of parameters d. And to further
reduce this privacy cost, Jin et al. (2021); Xiang & Su (2023b) proposes to sparsify the gradient vector so that
only a subset of the coordinates is sent from each client to the server at each communication round. Note our
private aggregation framework DaRRM can also be combined with any sparsification techinque.
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6.3 APPLICATION 2: PRIVATE SEMI-SUPERVISED KNOWLEDGE TRANSFER

Semi-supervised Knowledge Transfer. We apply our DaRRM framework to aggregate labels from
private teachers in the application of semi-supervised knowledge transfer. We follow a similar
setup as in PATE Papernot et al. (2017; 2018), where K teachers are trained on different sensitive
datasets and one uses majority voting to aggregate the teachers’ votes at inference time. Each time
a label is queried from the teachers, one suffers certain privacy loss. To limit the total privacy
loss over all queries, a student model is trained on a public dataset without labels. The student
model queries labels of a small portion of the training samples from the teachers and is then trained
using semi-supervised learning algorithms on both labeled and unlabeled samples. Different from
PATE which aggregates non-private teachers while ensuring the aggregated vote from the teachers
is private, we aggregate (ϵ,∆)-differentially private teachers and ensure the aggregated vote to be
(mϵ, δ)-differentially private for m < K. The motivation is that the aggregator is not guaranteed to
be trustworthy in practice, and so each teacher privatizes their votes before informing the aggregator.
This semi-supervised knowledge transfer setting is illustrated in Figure 11 in Appendix F.3, where
we highlight the difference between our setting and PATE’s setting.

Baselines. “GNMax” Papernot et al. (2018), which adds Gaussian noise with parameter σ 7 to
the number of votes from each class, and report the vote with the noisy maximum count. Again,
this approach does not consider each teacher being private and leads to adding redundant noise.
“Subsampling”, which outputs the majority vote from m subsampled votes. The overall privacy loss
of the aggregated vote is reasoned by simple composition. Note in our setting with a small m, simple
composition indeed indicates less privacy loss than advanced composition.

Experiment Setup and Results. We use the MNIST dataset from two randomly chosen classes:
class 5 and 8, resulting in a total of 11272 training samples and 1866 testing samples. We train
K = 11 private teachers, each for 10 epochs, using DP-SGD Abadi et al. (2016), with zero-mean
Guassian noises having std. σSGD = 10 and the gradient norm clipping threshold C = 1; this
leads to each teacher being (ϵ,∆) = (0.2825, 10−8)-differentially private after training. The privacy
allowance is m = 3 so that each aggregated vote from the teachers is (mϵ,m∆)-differentially private.

After training the teachers, we treat the test dataset as the public dataset for training a student model.
We query the teachers for Q randomly chosen samples from the test dataset. Papernot et al. (2018)
empirically shows querying Q = 1%N , where N is the size of the public dataset, suffices to train
a student model with a good performance. Therefore, we pick Q = {20, 50, 100}. We repeat the
selection of Q samples 10 times and report the mean test accuracy with one std. in parentheses in
Table 1. Note that the Q queried samples serve as the labeled samples in training the student model.
The higher the accuracy of the queried labels, the better the performance of the student model8.

# Queries
Majority Ensembling Algorithm GNMax Optimized DaRRMγ (Ours) Subsampling

Q = 20 0.5950 (0.11) 0.9150 (0.04) 0.8550 (0.07)
Q = 50 0.5480 (0.05) 0.9120 (0.02) 0.8560 (0.06)
Q = 100 0.5970 (0.03) 0.9130 (0.02) 0.8520 (0.04)

Table 1: Accuracy of Q query samples randomly chosen from the public test datast. The output label
of each query sample is aggregated using different private majority ensembling algorithms. With the
same output privacy guarantee, our optimized DaRRMγ achieves the highest accuracy on the queried
samples. A higher accuracy of the queried samples indicates a higher performance of the student
model trained with labels from those queried samples.

7 CONCLUSION

In computing a private majority from K private mechanisms, we propose the DaRRM framework with
a customizable γ function that is provably general. We show a privacy amplification by a factor of 2
in the i.i.d. mechanisms and a pure differential privacy setting. For the general setting, we propose an
efficient optimization algorithm that maximizes utility while ensuring privacy guarantees. We hope
that this work inspires more research on the intersection of privacy frameworks and optimization.

7We discuss how to choose this σ parameter to ensure the aggregated teachers’ vote being (ϵ, δ)-differentially
private and other details about GNMax in Appendix F.3.

8We skip the actual training of the student model with semi-supervised learning algorithms here.
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A RELATED WORK

Private Composition. In the blackbox composition setting, one can do no better than the O(Kϵ)
privacy analysis for pure differential privacy Dwork et al. (2014). For approximate differential privacy,
previous work has found optimal constants for advanced composition by reducing to the binary case
of hypothesis testing with randomized response; and optimal tradeoffs between ϵ, δ for black box
composition are given in Kairouz et al. (2015), where there could be a modest improvement 20%.

Thus, for specific applications, some work has turned to white-box composition analysis for improved
utility analysis. Abadi et al. (2016) applied a technique called moment accountant for private SGD
to reduce the log(1/δ) dependence in the ϵ term and linear dependence on k in the δ term. For
general private stochastic convex optimization, one can avoid the linear dependence on k in ϵ by
using iterative application of contractive maps Feldman et al. (2018). For the specific case of model
ensembles, Papernot et al. (2018) uses student model learning to privately aggregate a ensemble of
teacher models trained on disjoint datasets and shows a data-dependent privacy bound that vanishes
as the probability of disagreement goes to 0. Their method provides no utility analysis but they
empirically observed less privacy loss when there is greater ensemble agreement.

When g is the maximization function, some previous work shows that an approximately maximum
value can be outputted with high probability while incurring O(ϵ) privacy loss, independently of K.
They proposed a random stopping mechanism for m = 1 that draws samples uniformly at random
from Mi(D) at each iteration. In any given iteration, the sampling halts with probability γ and the
final output is computed based on the samples collected until that time. This leads to a final privacy
cost of only 3ϵ for the maximization function g, which can be improved to 2ϵ (Papernot & Steinke,
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2022). In addition to the aforementioned works, composing top-k and exponential mechanisms also
enjoy slightly improved composition analysis via a bounded-range analysis Durfee & Rogers (2019);
Dong et al. (2020).

Bypassing the Global Sensitivity. To ensure differential privacy, it is usually assumed the query
function g has bounded global sensitivity — that is, the output of g does not change much on any
adjacent input datasets differing in one entry. The noise added to the output is then proportional to
the global sensitivity of g. If the sensitivity is large, the output utility will thus be terrible due to a
large amount of noises added. However, the worst case global sensitivity can be rare in practice, and
this observation has inspired a line of works on designing private algorithms with data-dependent
sensitivity bound to reduce the amount of noises added.

Instead of using the maximum global sensitivity of g on any dataset, the classical Propose-Test-
Release framework of Dwork Dwork & Lei (2009) uses a local sensitivity value for robust queries
that is tested privately and if the sensitivity value is too large, the mechanism is halted before the
query release. The halting mechanism incurs some failure probability but deals with the worst-case
sensitivity situations, while allowing for lower noise injection in most average-case cases.

One popular way to estimate average-case sensitivity is to use the Subsample-and-Aggregate frame-
work by introducing the notion of perturbation stability, also known as local sensitivity of a function
g on a dataset D Thakurta & Smith (2013); Dwork et al. (2014), which represents the minimum
number of entries inD needs to be changed to change g(D). One related concept is smooth sensitivity,
a measure of variability of g in the neighborhood of each dataset instance. To apply the framework
under smooth sensitivity, one needs to privately estimate a function’s local sensitivity Ls and adapt
noise injection to be order of O(Ls

ϵ ), where Ls can often be as small as O(e−n), where n = |D|, the
total dataset size Nissim et al. (2007). Generally, the private computation of the smooth sensitivity of
a blackbox function is nontrivial but is aided by the Subsample and Aggregate approach for certain
functions.

These techniques hinge on the observation that a function with higher stability on D requires less
noise to ensure worst case privacy. Such techniques are also applied to answer multiple online
functions/queries in model-agnostic learning Bassily et al. (2018). However, we highlight two
key differences in our setting with a weaker stability assumption. First, in order to estimate the
perturbation stability of g on D, one needs to downsample or split D into multiple blocks Thakurta &
Smith (2013); Dwork et al. (2014); Bassily et al. (2018), D̂1, . . . , D̂B , and estimate the perturbation
stability based on the mode of g(D̂1), . . . , g(D̂B). This essentially reduces the amount of change in
the output of g due to a single entry in D, with high probability and replaces the hard-to-estimate
perturbation stability of g with an easy-to-compute perturbation stability of the mode. Such a
notion of stability has also been successfully applied, along with the sparse vector technique, for
model-agnostic private learning to handle exponentially number of queries to a model Bassily et al.
(2018). Note that in these cases, since a private stochastic test is applied, one cannot achieve pure
differential privacy Dwork et al. (2014). In practice, e.g. federated learning, however, one does not
have direct access to D, and thus it is impractical to draw samples from or to split D. Second, to
ensure good utility, one relies on a key assumption, i.e. the subsampling stability of g, which requires
g(D̂) = g(D) with high probability over the draw of subsamples D̂.

Learning the Optimal Noise Distribution. Most of these works only claim improved utility and
there is no optimality guarantee. There have been limited works that attempt to derive or learn the
best noise distribution. For deep neural networks inference, Mireshghallah et al. (2020) attempts to
learn the best noise distribution to maximizing utility subject to an entropy Lagragian, but no formal
privacy guarantees were derived. For queries with bounded sensitivity, Geng & Viswanath (2015)
demonstrate that the optimal noise distribution is in fact a staircase distribution that approaches the
Laplacian distribution as ϵ→ 0.

B PRELIMINARIES: DIFFERENTIAL PRIVACY

Definition B.1 (Differential Privacy (DP) Dwork et al. (2014)). A randomized mechanism M :
D → R with a domain D and range R satisfies (ϵ, δ)-differential privacy for ϵ, δ ≥ 0 if for any
two adjacent datasets D,D′ and for any subset of outputs S ⊆ R it holds that Pr[M(D) ∈ S] ≤
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eϵ Pr[M(D′) ∈ S] + δ. δ = 0 is often called pure differential privacy; while δ > 0 is often called
approximate differential privacy.
Theorem B.2 (Simple Composition Dwork et al. (2014)). LetM1 : D → R1 be an ϵ1-differentially
privacy mechanism and M2 : D → R2 be an ϵ2-differentially privacy mechanism, then their
combinationM1,2(x) = (M1(x),M2(x)) is (ϵ1 + ϵ2)-differentially private.
Theorem B.3 (Advanced Composition Dwork et al. (2014)). For all ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-
differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential privacy under k-fold adaptive
composition for

ϵ′ =
√
2k ln(1/δ′)ϵ+ kϵ(eϵ − 1) (4)

C DETAILS OF SECTION 3: PRIVATE MAJORITY ALGORITHMS

C.1 RANDOMIZED RESPONSE WITH CONSTANT γ

Recall the classical Randomized Response (RR) algorithm that provides a binary output algorithm
with differential privacy guarantee proceeds as follows: With probability pγ , one returns the true
output of the algorithm; otherwise, one returns a random answer. In this section, we show the
magnitude of the constant probability pγ in RR to use RR to solve Problem 1.1 and to ensure RR is
(mϵ, δ)-differentially private. We can view the pγ probability in RR as a constant γ : {0, 1, . . . ,K} →
[0, 1] function such that γ(l) = pγ ,∀l ∈ [K].
Lemma C.1 (Randomized Response (constant) γ). Consider Problem 1.1 with privacy allowance
m > 0 and failure probability δ ≥ 0. Let pγ be the probability of outputting the true majority
based on K samples in Randomized Response (RR). Let the majority of K (ϵ,∆) mechanisms be
(τϵ, λ)-differentially private, reasoned by simple composition or advanced composition for some
0 < τ ≤ K, 0 ≤ λ < 1. If one sets

pγ =
emϵ − 1 + 2δ

2(eτϵ−emϵ+2λ)
eτϵ+1 + emϵ − 1

(5)

then RR is (mϵ, δ)-differentially private.

Proof. For convenience, let x ∈ {0, 1} denote the output majority, and qx, q
′
x denote the probability

the aggregated majority from K samples is x on dataset adjacent D and D′ respectively. Recall each
mechanism we aggregate is (ϵ,∆)-differentially private. The output of the aggregated majority from
K samples is (τϵ, λ)-differentially private, for some τ ≤ K. When ∆ = 0, τ = K and λ = 0 can
be reasoned through simple composition. When ∆ > 0, τ ≈

√
K and λ ≈ K∆ can be reasoned

through advanced composition. And so simultaneously the following four constraints on qx, q
′
x apply:

qx ≤ eτϵq′x + λ, and 1− q′x ≤ eτϵ(1− qx) + λ (6)

q′x ≤ eτϵqx + λ, and 1− qx ≤ eτϵ(1− q′x) + λ (7)

To ensure RR is (mϵ, δ)-differentially private, one needs γ such that for all possible qx, q
′
x,

Pr[RR(D) = x] ≤ emϵ Pr[RR(D′) = x] + δ (8)

γ · qx +
1

2
(1− γ) ≤ emϵ(γ · q′x +

1

2
(1− γ)) + δ (9)

(qx − emϵq′x +
1

2
emϵ − 1

2
) · γ ≤ 1

2
emϵ − 1

2
+ δ (10)

To maximize the utility, one wants to maximize γ while conforming to the above privacy constraints.
Hence, we solve solve the following Linear Programming (LP) problem:

Objective: max
qx,q′x

f(qx, q
′
x) = qx − emϵq′x +

1

2
emϵ − 1

2
(11)

Subject to: 0 ≤ qx ≤ 1, 0 ≤ q′x ≤ 1 (12)

qx ≤ eτϵq′x + λ, 1− q′x ≤ eτϵ(1− qx) + λ (13)

14
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q′x ≤ eτϵqx + λ, 1− qx ≤ eτϵ(1− q′x) + λ (14)

Figure 4: A visualization of the LP problem.

The optimum of any LP problem is at the corners of the feasible region. Here, the fea-
sible region F is shown in Figure 4. This means (q∗x, q

′∗
x ) = argmaxqx,q′x f(qx, q

′
x) ∈

{(0, 0), (1, 1), (0, λ), (λ, 0), (1 − λ, 1), (1, 1 − λ), ( 1−λ
eτϵ+1 ,

eτϵ+λ
eτϵ+1 ), (

eτϵ+λ
eτϵ+1 ,

1−λ
eτϵ+1 )}. The optimum

of the above LP problem is at

qx
∗ =

eτϵ + λ

eτϵ + 1
, q′x

∗ =
1− λ

eτϵ + 1
(15)

We need to set γ according to the following upper bound to ensure privacy while maximizing γ to
maximize utility,

γ ·max
qx,q′x

f(qx, q
′
x) ≤

1

2
(emϵ − 1) + δ (16)

Hence, we want γ that

γ ·
(eτϵ + λ

eτϵ + 1
− emϵ 1− λ

eτϵ + 1
+

1

2
emϵ − 1

2

)
=

1

2
(emϵ − 1) + δ (17)

γ ·
(eτϵ − emϵ + 2λ

eτϵ + 1
+

1

2
(emϵ − 1)

)
=

1

2
(emϵ − 1) + δ (18)

γ =
emϵ − 1 + 2δ

2(eτϵ−emϵ+2λ)
eτϵ+1 + emϵ − 1

(19)

For small m, ϵ,K, using the approximation ey ≈ 1 + y,

γ ≈ mϵ+ 2δ
2(τϵ−mϵ+2λ)

τϵ+2 +mϵ
=

m+ 2δ/ϵ
2(τ−m+2λ/ϵ)

τϵ+2 +m
(20)

C.2 PROOF OF LEMMA 3.1: THE SUBSAMPLING γ FUNCTION

Lemma 3.1. Consider Problem 1.1, and the sum of observed outcomes of the mechanisms, l =∑K
i=1 Si ∈ {0, 1, . . . ,K}. For m ∈ Z+, m ≤ K, if one sets a success probability γSubsampling,

15
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dependent on the value of l, by

γSubsampling(l) =


γSubsampling(K − l) = 1− 2

∑m
j=m+1

2

(lj)(
K−l
m−j)

(Km)
for odd m

γSubsampling(K − l) = 1− 2
∑m

j=m
2 +1

(lj)(
K−l
m−j)

(Km)
−

( l
m
2
)(K−l

m
2
)

(Km)
for even m

(21)
then outputting the majority of m out of K subsampled mechanisms without replacement and
DaRRMγSubsampling

have the same output distribution.

Proof. Let algorithm SS denote outputting the majority based on m out of K subsampled mechanisms
without replacement. Note the output of SS is the same as drawing one sample per mechanism
S = {Si}Ki=1, where Si ∼Mi(D), subsample m of the observed samples without replacement and
outputs the majority based on the m subsamples. Let L =

∑K
i=1 Si be the sum of observed outcomes

from K mechanisms, and conditioned on L, notice the output follows a hypergeometric distribution.
Hence, the output probability of SS can be written as

Pr[SS(D) = 1] =
K∑
l=0

Pr[SS(D) = 1 | L = l] · Pr[L = l] (22)

=

K∑
l=0

Pr[

m∑
j=1

Sj ≥
m

2
| L = l] · Pr[L = l] (23)

=


∑K

l=0(
∑m

j=m+1
2

(lj)(
K−l
m−j)

(Km)
) · Pr[L = l] if m is odd∑K

l=0(
∑m

j=m
2 +1

(lj)(
K−l
m−j)

(Km)
+ 1

2

( l
m
2
)(K−l

m
2
)

(Km)
) · Pr[L = l] if m is even

(24)

Recall γ : {0, 1, . . . ,K} → [0, 1] is the noise function in DaRRM. The output probability of
DaRRMγ is:

Pr[DaRRMγ(D) = 1] =

K∑
l=0

Pr[DaRRMγ(D) = 1 | L = l] · Pr[L = l] (25)

=

K∑
l=0

(γ(l) · I{l ≥ K + 1

2
}+ 1

2
(1− γ(l))) · Pr[L = l] (26)

To let Pr[DaRRMγ(D) = 1] = Pr[SS(D) = 1], if m is odd, for l ≤ K−1
2 ,

1

2
(1− γ(l)) =

m∑
j=m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) ⇒ γ(l) = 1− 2

m∑
j=m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) (27)

and for l ≥ K+1
2 ,

1

2
+

1

2
γ(l) =

m∑
j=m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) ⇒ γ(l) = 2

m∑
j=m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) − 1 (28)

Similarly, if m is even, for l ≤ K−1
2 ,

1

2
(1− γ(l)) =

m∑
j=m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) +
1

2

(
l
m
2

)(
K−l
m
2

)(
K
m

) ⇒ γ(l) = 1− 2

m∑
j=m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) −

(
l
m
2

)(
K−l
m
2

)(
K
m

)
(29)

and for l ≥ K+1
2 ,

1

2
+

1

2
γ(l) =

m∑
j=m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) +
1

2

(
l
m
2

)(
K−l
m
2

)(
K
m

) ⇒ γ(l) = 2

m∑
j=m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) +

(
l
m
2

)(
K−l
m
2

)(
K
m

) − 1

(30)

16
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Note that this γ(l) is symmetric around K
2 , since for l ≤ K−1

2 (and so K − l ≥ K+1
2 ), if m is odd,

γ(K − l) = 2

m∑
j=m+1

2

(
K−l
j

)(
l

m−j

)(
K
m

) − 1 = 2
(
1−

m−1
2∑

j=1

(
K−l
j

)(
l

m−j

)(
K
m

) )
− 1 (31)

= 1− 2

m−1
2∑

j=1

(
K−l
j

)(
l

m−j

)(
K
m

) = 1− 2

m∑
j=m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) (32)

= γ(l) (33)

Similarly, if m is even,

γ(K − l) = 2

m∑
j=m

2 +1

(
K−l
j

)(
l

m−j

)(
K
m

) +

(
l
m
2

)(
K−l
m
2

)(
K
m

) − 1 = 2
(
1−

m
2 −1∑
j=1

(
K−l
j

)(
l

m−j

)(
K
m

) − 1

2

(
l
m
2

)(
K−l
m
2

)(
K
m

) )
− 1

(34)

= 1− 2

m
2 −1∑
j=1

(
K−l
j

)(
l

m−j

)(
K
m

) −

(
l
m
2

)(
K−l
m
2

)(
K
m

) = 1− 2

m∑
j=m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) −

(
l
m
2

)(
K−l
m
2

)(
K
m

)
(35)

= γ(l) (36)

Therefore, setting γ as in Eq. 27 if m is odd, and as in Eq. 29 if m is even makes DaRRMγ have the
same output distribution as SS. We hence call this γ function γSubsampling .

C.3 PROOF OF LEMMA 3.2: GENERALITY OF DARRM

Lemma 3.2 (Generality of DaRRM). Let A be any randomized algorithm to compute the majority
function g on S such that for all S , Pr[A(S) = g(S)] ≥ 1/2 (i.e. A is at least as good as a random
guess). Then, there exists a a general γ: {0, 1}K+1 → [0, 1] such that if one sets pγ by γ(S) in
DaRRM, the output distribution of DaRRMγ is the same as the output distribution of A.

Proof. For some D and conditioned on S, we see that by definition Pr[DaRRMγ(S) = g(S)] =
γ(S)+ (1/2)(1− γ(S)). We want to set γ such that Pr[DaRRMγ(S) = g(S)] = Pr[A(S) = g(S)].
Therefore, we set γ(S) = 2Pr[A(S) = g(S)]− 1.

Lastly, we need to justify that γ ∈ [0, 1]. Clearly, γ(S) ≤ 2 − 1 ≤ 1 since Pr[A(S) = g(S)] ≤ 1.
Note that the non-negativity follows from assumption.

C.4 PROOF OF LEMMA 3.3: γ PRIVACY CONDITION

Lemma 3.3 (γ privacy condition and privacy cost objective). Consider using DaRRM to solve
Problem 1.1. Let αl = Pr[L(D) = l] and α′

l = Pr[L(D′) = l], for l in support {0, . . . ,K} and
adjacent datasets D,D′. For γ : {0, 1, . . . ,K} → [0, 1] such that γ(l) = γ(K − l),∀l, DaRRMγ is
(mϵ, δ)-differentially private if and only if for all αl, α

′
l,

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ):=

K−1
2∑

l=0

(emϵα′
l − αl) · γ(l) +

K∑
l=K+1

2

(αl − emϵα′
l) · γ(l) ≤ emϵ − 1 + 2δ

(37)

We call f the privacy cost objective.

Proof. By the definition of differential privacy,

DaRRMγ is (mϵ, δ)-differentially private
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⇐⇒ Pr[DaRRMγ(D) = 1] ≤ emϵ Pr[DaRRMγ(D′) = 1] + δ, (38)

and Pr[DaRRMγ(D) = 0] ≤ emϵ Pr[DaRRMγ(D′) = 0] + δ, ∀ adjacent D,D′ (39)

Consider random variables L(D) =
∑K

i=1 S(D) and L(D′) =
∑K

i=1 S(D′), based on which one
sets γ. Note, when the output is 1,

Pr[DaRRMγ(D) = 1] ≤ emϵ Pr[DaRRMγ(D′) = 1] + δ (40)

⇐⇒
K∑
l=0

Pr[DaRRMγ(D) = 1 | L(D) = 1] · Pr[L(D) = l] (41)

≤ emϵ
( K∑

l=0

Pr[DaRRMγ(D′) = 1 | L(D′) = 1] · Pr[L(D′) = l]
)
+ δ

⇐⇒
K∑
l=0

(
γ(l) · I{l ≥ K

2
}+ 1

2
(1− γ(l))

)
· Pr[L(D) = l] (42)

≤ emϵ
( K∑

l=0

(
γ(l) · I{l ≥ K

2
}+ 1

2
(1− γ(l))}

)
· Pr[L(D′) = l]

)
+ δ

⇐⇒
K∑

l=K+1
2

(
γ(l) +

1

2
(1− γ(l))

)
· Pr[L(D) = l] +

K−1
2∑

l=0

1

2
(1− γ(l)) · Pr[L(D) = l] (43)

≤ emϵ
( K∑

l=K+1
2

(
γ(l) +

1

2
(1− γ(l))

)
· Pr[L(D) = l]

)
+ emϵ

( K−1
2∑

l=0

1

2
(1− γ(l)) · Pr[L(D′) = l]

)
+ δ

⇐⇒
K∑

l=K+1
2

1

2
γ(l)αl −

K−1
2∑

l=0

1

2
γ(l)αl +

1

2
(44)

≤ emϵ
K∑

l=K+1
2

1

2
γ(l)α′

l − emϵ

K−1
2∑

l=0

1

2
γ(l)α′

l +
1

2
emϵ + δ

⇐⇒
K∑

l=K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (45)

where αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . ,K}.

Similarly, when the output is 0,
Pr[DaRRMγ(D) = 0] ≤ emϵ Pr[DaRRMγ(D′) = 0] + δ (46)

⇐⇒
K∑
l=0

Pr[DaRRMγ(D) = 0 | L(D) = 0] · Pr[L(D) = 0] (47)

≤ emϵ
( K∑

l=0

Pr[DaRRMγ(D′) = 0 | L(D′) = 0] · Pr[L(D′) = 0]
)
+ δ

⇐⇒
K∑
l=0

(
γ(l) · I{l < K

2
}+ 1

2
(1− γ(l))

)
· Pr[L(D) = l] (48)

≤ emϵ
( K∑

l=0

γ(l) · I{l < K

2
}+ 1

2
(1− γ(l))

)
· Pr[L(D′) = l] + δ
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⇐⇒

K−1
2∑

l=0

(
γ(l) +

1

2
(1− γ(l))

)
· Pr[L(D) = l] +

K∑
l=K+1

2

1

2
(1− γ(l)) · Pr[L(D) = l] (49)

≤ emϵ
( K−1

2∑
l=0

(
γ(l) +

1

2
(1− γ(l))

)
· Pr[L(D′) = l] +

K∑
l=K+1

2

1

2
(1− γ(l)) · Pr[L(D′) = l]

)
+ δ

⇐⇒

K−1
2∑

l=0

1

2
γ(l)αl −

K∑
l=K+1

2

1

2
γ(l)αl +

1

2
(50)

≤ emϵ

K−1
2∑

l=0

1

2
γ(l)α′

l − emϵ
K∑

l=K+1
2

1

2
γ(l)α′

l +
1

2
emϵ + δ

⇐⇒

K−1
2∑

l=0

(αl − emϵα′
l)γ(l)−

K∑
l=K+1

2

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (51)

Therefore,

DaRRMγ is (mϵ, δ)-differentially private

⇐⇒
K∑

l=K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (52)

and

K−1
2∑

l=0

(αl − emϵα′
l)γ(l)−

K∑
l=K+1

2

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (53)

where αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . ,K} and D,D′ are any adjacent

datasets.

If γ is symmetric around K
2 , i.e. γ(l) = γ(K − l), we show as follows satisfying either one of

Eq. 52 or Eq. 53 implies satisfying the other one. The intuition is that there is nothing special about
outputting 0 or 1.

K∑
l=K+1

2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (54)

⇐⇒

K−1
2∑

l=0

(αK−l − emϵα′
K−l) · γ(K − l)−

K∑
l=K−1

2

(αK−l − emϵα′
K−l) · γ(K − l) ≤ emϵ − 1 + 2δ

(55)

⇐⇒

K−1
2∑

l=0

(αK−l − emϵα′
K−l) · γ(l)−

K∑
l=K−1

2

(αK−l − emϵα′
K−l) · γ(l) ≤ emϵ − 1 + 2δ (56)

Since γ(l) = γ(K − l)

⇐⇒

K−1
2∑

l=0

(αl − emϵα′
l) · γ(l)−

K∑
l=K−1

2

(αl − emϵα′
l) · γ(l) ≤ emϵ − 1 + 2δ (57)

Since the above holds for all possible αl, α
′
l, one can consider another distribution such that the pmf

of L(D) is βl = αK−l and the pmf of L(D′) is β′
l = α′

K−l. Then, we rename βl as αl and β′
l as α′

l.
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The above implies Eq. 52 and Eq. 53 are equivalent. Therefore,

DaRRMγ is (mϵ, δ)-differentially private

⇐⇒
K∑

l=K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (58)
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D PROVABLE PRIVACY AMPLIFICATION IN I.I.D. SETTING UNDER PURE DP

Recall in the i.i.d. mechanisms setting, Pr[Mi(D) = 1] = p and Pr[Mi(D′) = 1] = p′, for all
mechanisms Mi. Under pure differential privacy setting, each mechanisms Mi is ϵ-differentially
private, and we want the aggregated majority voting output by DaRRMγ with a certain choice of γ to
be mϵ-differentially private for m < K.

For analysis, we restrict our search for a γ function with good utility to the class with a mild
monotonicity assumption: γ(l) ≥ γ(l+1),∀l ≤ K−1

2 and γ(l) ≤ γ(l+1),∀l ≥ K+1
2 . This matches

our intuition that as L, i.e., the number of mechanisms outputting 1, approaches 0 or K, there is a
clearer majority and so not much noise is needed to ensure privacy, which implies a larger value of γ.

Figure 5: The feasible region F is plotted as the
blue area. The four boundaries are implied by p, p′

satisfying ϵ-differential privacy.

Worst case probabilities. We call (p∗, p′∗) =
argmaxp,p′ f(p∗, p′∗; γ) the worst case proba-
bilities since they incur the largest privacy loss,
where f is the simplified privacy cost objec-
tive defined in Eq. 37 with δ = ∆ = 0. If
we can show f(p∗, p′∗; γ) ≤ eϵ − 1 for some
γ, then DaRRMγ is is mϵ-differentially private
by Lemma 3.3. To find the worst case prob-
abilities, first note (p∗, p′∗) are close to each
other and lie in a feasible region F , due to each
mechanism being ϵ-differentially private in our
setting. The feasible region is illustrated in Fig-
ure 5, and the four boundaries of which, i.e.
(a) p′ ≤ eϵp (b) p ≤ eϵp′ (c) 1−p′ ≤ eϵ(1−p),
and (d) 1− p ≤ eϵ(1− p′), are derived from the
definition of differential privacy.

D.1 CHARACTERIZING
WORST CASE PROBABILITIES

We first show a key lemma, later used in the
proof of our main privacy amplification result, that allows us to further refine the search region for
(p∗, p′∗) under γ: {0, 1, . . . ,K} → [0, 1] functions that are symmetric around K

2 and that satisfy the
above mild monotonicity assumption. We call such γ functions well-behaved.
Lemma D.1 (Characteristics of worst case probabilities). Consider well-behaved γ functions such
that γ(K−1

2 ) > 0 and γ(K+1
2 ) > 0, the worst case probabilities (p∗, p′∗) = argmaxp,p′ f(p, p′; γ)

must satisfy exactly one of the following:

p∗ = eϵp′∗, ∀p ∈ [0,
1

e−ϵ + 1
], p′ ∈ [0,

1

1 + eϵ
] (59)

1− p′∗ = eϵ(1− p∗), ∀p ∈ [
1

1 + e−ϵ
, 1], p′ ∈ [

1

1 + eϵ
, 1] (60)

See the blue line and the orange line in Figure 5, respectively.

To show the above Lemma D.1, we show Lemma D.2 and Lemma D.3 as follows, each of which
gives partial characteristics of the worst case probabilities. Lemma D.1 directly follows by combining
the two lemmas.
Lemma D.2. Consider a γ: {0, 1, . . . ,K} → [0, 1] function that is symmetric around K

2 . If γ further
satisfies: 1) γ(l+1) ≤ γ(l), ∀l ≤ K

2 , 2) γ(l+1) ≥ γ(l), ∀l ≥ K
2 , and 3) γ(K−1

2 ) > 0, γ(K+1
2 ) > 0,

then the worst case probabilities (p∗, p′∗) = argmaxp,p′ f(p, p′; γ) must satisfy one of the following
four equalities:

p′∗ = eϵp∗, ∀p ∈ [0,
1

1 + eϵ
], p′ ∈ [0,

1

1 + e−ϵ
] (61)

p∗ = eϵp′∗, ∀p ∈ [0,
1

e−ϵ + 1
], p′ ∈ [0,

1

1 + eϵ
] (62)

1− p∗ = eϵ(1− p′∗), ∀p ∈ [
1

1 + eϵ
, 1], p′ ∈ [

1

1 + e−ϵ
, 1] (63)

21



Under review as a conference paper at ICLR 2024

1− p′∗ = eϵ(1− p∗), ∀p ∈ [
1

1 + e−ϵ
, 1], p′ ∈ [

1

1 + eϵ
, 1] (64)

Proof of Lemma D.2. Consider the privacy cost objective f(p, p′; γ) as in Lemma 3.3, when the
mechanisms are i.i.d. The gradients w.r.t. p and p′ are

∇pf(p, p
′; γ) =

K−1
2∑

l=0

−
(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1) (65)

+

K∑
l=K+1

2

(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1)

and

∇p′f(p, p′; γ) =

K−1
2∑

l=0

emϵ

(
K

l

)
γ(l) · (lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1) (66)

+

K∑
l=K+1

2

−emϵ

(
K

l

)
γ(l) · (lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1)

We show ∀p ∈ (0, 1), ∇pf(p, p
′; γ) > 0 and ∇p′f(p, p′; γ) < 0. This implies there is no local

maximum inside F , and so p∗, p′∗ = argmaxp,p′ f(p, p′; γ) must be on one of the four boundaries
of F .

To show ∇pf(p, p
′; γ) > 0 for p ∈ (0, 1), we first show for p ∈ (0, 1)

K−1
2∑

l=0

γ(l)

(
K

l

)
· (pl(K − l)(1− p)K−l−1 − lpl−1(1− p)K−l) > 0 (67)

⇔

K−1
2∑

l=0

γ(l)

(
K

l

)
· pl(K − l)(1− p)K−l−1 >

K−1
2∑

l=0

γ(l)

(
K

l

)
· lpl−1(1− p)K−l) (68)

⇔

K−1
2∑

l=0

γ(l)

(
K − 1

l

)
K

K − l
· pl(K − l)(1− p)K−l−1 (69)

>

K−1
2∑

l=1

γ(l)

(
K − 1

l − 1

)
K

l
· lpl−1(1− p)K−l

⇔ K

K−1
2∑

l=0

γ(l)

(
K − 1

l

)
pl(1− p)K−l−1 > K

K−1
2∑

l=1

γ(l)

(
K − 1

l − 1

)
pl−1(1− p)K−l (70)

⇔

K−1
2∑

l=0

γ(l)

(
K − 1

l

)
pl(1− p)K−l−1 >

K−1
2 −1∑
l=0

γ(l + 1)

(
K − 1

l

)
pl(1− p)K−l−1 (71)

Note that for l ≤ K−1
2 , γ(l) ≥ γ(l + 1). Since p ∈ (0, 1), this implies for l ∈ {0, . . . , K−1

2 − 1},

γ(l)

(
K − 1

l

)
pl(1− p)K−l−1 ≥ γ(l + 1)

(
K − 1

l

)
pl(1− p)K−l−1 (72)

Furthermore, note the L.H.S. of Eq. 71 has one additional term γ(K−1
2 )

(K−1
K−1

2

)
p

K−1
2 (1 − p)

K−1
2 .

Since γ(K−1
2 ) > 0 and p ∈ (0, 1),

γ(
K − 1

2
)

(
K − 1
K−1
2

)
p

K−1
2 (1− p)

K−1
2 > 0 (73)
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Therefore, combining Eq. 72 and Eq. 73, we conclude Eq. 71 holds.

Next, we show for p ∈ (0, 1),
K∑

l=K+1
2

(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1) > 0 (74)

⇔
K∑

l=K+1
2

(
K

l

)
γ(l) · lpl−1(1− p)K−l >

K∑
l=K+1

2

(
K

l

)
pl(K − l)(1− p)K−l−1 (75)

⇔
K∑

l=K+1
2

γ(l)

(
K − 1

l − 1

)
K

l
· lpl−1(1− p)K−l (76)

>

K−1∑
l=K+1

2

γ(l)

(
K − 1

l

)
K

K − l
· pl(K − l)(1− p)K−l−1

⇔ K

K∑
l=K+1

2

γ(l)

(
K − 1

l − 1

)
· pl−1(1− p)K−l (77)

> K

K−1∑
l=K+1

2

γ(l)

(
K − 1

l

)
· pl(1− p)K−l−1

⇔
K∑

l=K+1
2

γ(l)

(
K − 1

l − 1

)
· pl−1(1− p)K−l >

K∑
l=K+1

2 +1

γ(l − 1)

(
K − 1

l − 1

)
· pl−1(1− p)K−l (78)

Note that for l ≥ K+1
2 +1, γ(l) ≥ γ(l−1). Since p ∈ (0, 1), this implies for l ∈ {K+1

2 +1, . . . ,K},

γ(l)

(
K − 1

l − 1

)
pl−1(1− p)K−l ≥ γ(l − 1)

(
K − 1

l − 1

)
pl−1(1− p)K−l (79)

Furthermore, note the L.H.S. of Eq. 78 has one additional term γ(K+1
2 )

(K−1
K−1

2

)
p

K−1
2 (1 − p)

K−1
2 .

Since γ(K+1
2 ) > 0 and p ∈ (0, 1),

γ(
K + 1

2
)

(
K − 1
K−1
2

)
p

K−1
2 (1− p)

K−1
2 > 0 (80)

Therefore, combining Eq. 79 and Eq. 80, we conclude Eq. 78 holds. Hence, combining Eq. 67 and
Eq. 74, we have for p ∈ (0, 1), if γ satisfies the three conditions,

∇pf(p, p
′; γ) > 0 (81)

Similarly, one can show for p ∈ (0, 1), if γ satisfies the three conditions,

∇p′f(p, p′; γ) < 0 (82)

This implies there is no local minima or local maxima inside the feasible region F . Hence, the worst
case probability (p∗, p′∗) = argmaxp,p′ f(p, p′; γ) is on one of the four boundaries of F , that is,
(p∗, p′∗) satisfy exactly one of the following:

p′∗ = eϵp∗, ∀p ∈ [0,
1

1 + eϵ
], p′ ∈ [0,

1

1 + e−ϵ
]

p∗ = eϵp′∗, ∀p ∈ [0,
1

e−ϵ + 1
], p′ ∈ [0,

1

1 + eϵ
]

1− p∗ = eϵ(1− p′∗), ∀p ∈ [
1

1 + eϵ
, 1], p′ ∈ [

1

1 + e−ϵ
, 1]

1− p′∗ = eϵ(1− p∗), ∀p ∈ [
1

1 + e−ϵ
, 1], p′ ∈ [

1

1 + eϵ
, 1]
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Lemma D.3. Consider a γ: {0, 1, . . . ,K} → [0, 1] function that is symmetric around K
2 . If γ

satisfies: γ(l) ≥ γ(l + 1),∀l ≤ K
2 and γ(l + 1) ≥ γ(l),∀l ≥ K

2 , then the privacy cost objective
f(p,p′; γ) is maximized when p ≥ p′.

Proof of Lemma D.3. WLOG, consider the output of DaRRM to be 1. By Eq. 41, the privacy cost
objective f(p, p′; γ), defined in Lemma 3.3 when δ = 0, when the mechanisms are i.i.d., is equivalent
to

f(p, p′; γ) =
Pr[DaRRMγ(D) = 1]

Pr[DaRRMγ(D′) = 1]
− 1 (83)

Hence, f(p, p′; γ) is maximized when Pr[A(D) = 1] ≥ Pr[A(D′) = 1]. Note that

Pr[DaRRMγ(D) = 1] =
1

2

K∑
l=K+1

2

γ(l)

(
K

l

)
pl(1− p)K−l − 1

2

K−1
2∑

l=0

γ(l)

(
K

l

)
pl(1− p)K−l−1 +

1

2

(84)

Define g(l) =

{
− 1

2γ(l) ∀l ≤ K
2

1
2γ(l) ∀l ≥ K

2

. Since γ(l) ≥ γ(l + 1),∀l ≤ K
2 and γ(l + 1) ≥ γ(l),∀l ≥ K

2 ,

there is g(l + 1) ≥ g(l),∀l ∈ {0, . . . ,K}. And replacing γ(l) with g(l),

Pr[DaRRMγ(D) = 1] =

K∑
l=0

g(l)

(
K

l

)
pl(1− p)K−l (85)

The gradient of the above probability w.r.t. p is

∇p Pr[DaRRMγ(D) = 1] (86)

=

K∑
l=0

g(l)

(
K

l

)(
lpl−1(1− p)K−l − (K − l)pl(1− p)K−l−1

)
(87)

=

K∑
l=1

g(l)

(
K − 1

l − 1

)
K

l
lpl−1(1− p)K−l −

K−1∑
l=0

(
K − 1

l

)
K

K − l
(K − l)pl(1− p)K−l−1 (88)

= K

K∑
l=1

(
K − 1

l − 1

)
pl−1(1− p)K−l −K

K−1∑
l=0

(
K − 1

l

)
pl(1− p)K−l−1 (89)

= K

K−1∑
l=0

g(l + 1)

(
K − 1

l

)
pl(1− p)K−l−1 −K

K−1∑
l=0

g(l)

(
K − 1

l

)
pl(1− p)K−l−1 (90)

= K

K−1∑
l=0

(
g(l + 1)− g(l)

)(K − 1

l

)
pl(1− p)K−l−1 (91)

Since g(l + 1) ≥ g(l) and the binomial probability is always ≥ 0, ∇p Pr[DaRRMγ(D) = 1] ≥ 0.
This implies whenever p ≥ p′, Pr[DaRRMγ(D) = 1] ≥ Pr[DaRRMγ(D′) = 1]. Hence, the privacy
cost objective f(p, p′) is maximized when p ≥ p′.

D.2 PROOF OF MAIN RESULTS ON PRIVACY AMPLIFICATION (THEOREM 4.1)

Roadmap. To show Theorem 4.1, we show two parts separately: in section D.2.1, we show if the
privacy allowance m ≥ K+1

2 , one can set γ = 1 (see Lemma D.4), and in section D.2.2 we show
if m ≤ K−1

2 , one can set γ to be the one such that DaRRMγ has the same output distribution as
outputting the majority based on 2m− 1 subsampled mechanisms and DaRRMγ still satisfies the
privacy guarantee. We call this γ function γDouble Subsampling (see Lemma D.8).

Showing Lemma D.4 is relatively straightforward (see Section D.2.1). To show Lemma D.8, we first
introduce a class of well-behaved γ functions called the “symmetric-form” family, and derive two
clean sufficient conditions for γ functions from the “symmetric-form” family such that DaRRMγ
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is mϵ-differentially private. After that, we show setting γDouble Subsampling as in Lemma D.8 satisfies
the two conditions, and hence, DaRRMγDouble Subsampling is mϵ-differentially private. Details are in
Section D.2.2.

Finally, Theorem 4.1 follows directly from combining Lemma D.4 and Lemma D.8.

D.2.1 PRIVACY AMPLIFICATION UNDER LARGE PRIVACY ALLOWANCE

We show the following lemma by showing that if one sets γ(l) = 1,∀l ∈ {0, 1, . . . ,K}, then
m ≥ K+1

2 suffices to ensure the worst case probabilities (p∗i , pi) = argmaxpi,p′
i
f(p, p′; γ) satisfy

Eq. 37 in Lemma 3.3, and hence if m ≥ K+1
2 , DaRRMγ=1 is mϵ-differentially private.

Lemma D.4 (Privacy amplification under large privacy allowance m ≥ K+1
2 ). Consider using

DaRRM to solve Problem 1.1 with pi = p, p′i = p′, ∀i ∈ [K] and δ = ∆ = 0. If the privacy
allowance is m ≥ K+1

2 , one can set γ(l) = 1,∀l ∈ {0, . . . ,K} in DaRRMγ and DaRRMγ is mϵ
differentially private.

Proof of Lemma D.4. Consider γ(l) = 1,∀l ∈ {0, 1, . . . ,K}. Since γ(l) ≥ γ(l + 1),∀l ≤ K−1
2 ,

γ(l + 1) ≥ γ(l),∀l ≥ K+1
2 and γ(K−1

2 ) = γ(K+1
2 ) = 1 > 0, by Lemma D.1, the worst case

probabilities (p∗, p′∗) = argmaxp,p′ f(p, p′) are on one of the two boundaries of F , that is, they
satisfy either p = eϵp′ , ∀p ∈ [0, 1

1+eϵ ], p
′ ∈ [0, 1

1+eϵ ] or 1− p′ = eϵ(1− p) , ∀p ∈ [ 1
1+e−ϵ , 1], p

′ ∈
[ 1
1+eϵ , 1]. We now find the local maximums on the boundary p = eϵp′ and 1 − p′ = eϵ(1 − p)

separately and then find the global maximum (p∗, p′∗) = argmaxp,p′ f(p, p′; γ).

Part I: Finding the local worse case probabilities on the boundary p = eϵp′.

The privacy cost objective f(p, p′; γ) on the boundary p = eϵp′ , ∀p ∈ [0, 1
e−ϵ+1 ], p

′ ∈ [0, 1
1+eϵ ],

can be written as the following by substituting p with p′ (and omitting γ for convenience):

f(p′) =

K−1
2∑

l=0

(emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
(eϵp′)l(1− eϵp′)K−l) · γ(l) (92)

+

K∑
l=K+1

2

(

(
K

l

)
(eϵp′)l(1− eϵp′)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l) · γ(l)

And the gradient w.r.t. p′ is

∇p′f(p′) =

K−1
2∑

l=0

(
emϵ

(
K

l

)
(lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1) (93)

− eϵ
(
K

l

)
(l(eϵp′)l−1(1− eϵp′)K−l − eϵlp′l(K − l)(1− eϵp′)K−l−1)

)
· γ(l)

+

K∑
l=K+1

2

(
eϵ
(
K

l

)
(l(eϵp′)l−1(1− eϵp′)K−l − eϵlp′l(K − l)(1− eϵp′)K−l−1)

− emϵ

(
K

l

)
(lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1)

)
· γ(l)

∇p′f(p′) (94)

= −K

K−1
2∑

l=0

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1γ(l) +K

K−1∑
l=K+1

2

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1γ(l)

+K

K−1
2∑

l=0

eϵ
(
K − 1

l

)
(ϵp′)ϵ(1− eϵp′)K−l−1γ(l)−K

K−1∑
l=K+1

2

eϵ
(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1γ(l)
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+K

K−1
2 −1∑
l=0

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1γ(l + 1)−K

K−1∑
l=K−1

2

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1γ(l + 1)

−K

K−1
2 −1∑
l=0

eϵ
(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1γ(l + 1) +K

K−1∑
l=K−1

2

eϵ
(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1γ(l + 1)

That is,
∇p′f(p′)

K
(95)

= emϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l + 1)− γ(l)

)
− 2emϵ

(
K − 1
K−1
2

)
p′

K−1
2 (1− p′)

K−1
2 γ(

K − 1

2
)

+ emϵ
K−1∑

l=K+1
2

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l)− γ(l + 1)

)

+ eϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l)− γ(l + 1)

)
+ 2eϵ

(
K − 1
K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 γ(

K − 1

2
)

+ eϵ
K−1∑

l=K+1
2

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l + 1)− γ(l)

)
When γ(l) = 1, the above gradient is then
∇p′f(p′)

K
= −2emϵ

(
K − 1
K−1
2

)
p′

K−1
2 (1− p′)

K−1
2 + 2eϵ

(
K − 1
K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 (96)

If p′ = 0, then p = 0, and the original privacy cost objective is f(0, 0′; γ = 1) = emϵ − 1, which
satisfies Eq. 37 in Lemma 3.3 (i.e. DaRRMγ=1 is mϵ-differentially private at (p, p′) = (0, 0)).

For p′ > 0, if ∇p′f(p′) ≤ 0, then we know f(p′) ≤ f(0), i.e. the worst case probabilities on the
boundary p = eϵp′ is (p, p′) = (0, 0). To ensure∇p′f(p′) ≤ 0,

∇p′f(p′) ≤ 0 (97)

⇔ −2emϵ

(
K − 1
K−1
2

)
p′

K−1
2 (1− p′)

K−1
2 ≤ −2eϵ

(
K − 1
K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 (98)

⇔ emϵ

(
K − 1
K−1
2

)
p′

K−1
2 (1− p′)

K−1
2 ≥ eϵ

(
K − 1
K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 (99)

Let

R :=
L.H.S.
R.H.S.

=
emϵ

(K−1
K−1

2

)
p′

K−1
2 (1− p′)

K−1
2

eϵ
(K−1

K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2

=
emϵ

e
K+1

2 ϵ
· ( 1− p′

1− eϵp′
)

K−1
2 (100)

andR ≥ 1⇔ ∇p′f(p′) ≤ 0. Since 1−p′

1−eϵp′ ≥ 1,R ≥ e(m−K+1
2 )·ϵ.

Hence, to make sureR ≥ 1 (and so ∇p′f(p′) ≤ 0), m ≥ K+1
2 suffices.

Part II: Finding the local worst case probabilities on the boundary 1− p′ = eϵ(1− p).

Now consider the maximum point on the other boundary 1− p′ = eϵ(1− p) for p′ ∈ [ 1
1+eϵ , 1] and

p ∈ [ 1
1+e−ϵ , 1]. Following the privacy cost objective f(p, p′; γ) and let q = 1− p and p′ = 1− q′,

the objective is

f(q, q′; γ) =

K−1
2∑

l=0

(
emϵ

(
K

l

)
(1− q′)lq′K−l −

(
K

l

)
(1− q)lqK−l

)
· γ(l) (101)
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+

K∑
l=K+1

2

((K
l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− q′)lq′K−l

)
· γ(l)

Substituting 1 − p′ = eϵ(1 − p) ⇔ q′ = eϵq (and omitting γ for convenience), the privacy cost
objective can be written as

f(q) =

K−1
2∑

l=0

(
emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l −

(
K

l

)
(1− q)lqK−l

)
· γ(l) (102)

+

K∑
l=K+1

2

((K
l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l

)
· γ(l)

And the gradient w.r.t. q is

∇qf(q) =

K−1
2∑

l=0

(
emϵ

(
K

l

)(
(−eϵ)l(1− eϵq)l−1(eϵq)K−l + eϵ(K − l)(1− eϵq)l(eϵq)K−l−1

)
(103)

−
(
K

l

)(
− l(1− q)l−1qK−l + (K − l)(1− q)lqK−l−1

))
· γ(l)

+

K∑
l=K+1

2

((K
l

)(
− l(1− q)l−1qK−l + (K − l)(1− q)lqK−l−1

)

− emϵ

(
K

l

)(
(−eϵ)l(1− eϵq)l−1(eϵq)K−l + eϵ(K − l)(1− eϵq)l(eϵq)K−l−1

))
· γ(l)

∇qf(q) = −

K−1
2∑

l=1

e(m+1)ϵ

(
K − 1

l − 1

)
K

l
l(1− eϵq)l−1(eϵq)K−l · γ(l) (104)

+

K−1
2∑

l=0

e(m+1)ϵ

(
K − 1

l

)
K

K − l
(K − l)(1− eϵq)l(eϵq)K−l−1 · γ(l)

+

K−1
2∑

l=1

(
K − 1

l − 1

)
K

l
l(1− q)l−1qK−l · γ(l)−

K−1
2∑

l=0

(
K − 1

l

)
K

K − l
(K − l)(1− q)lqK−l−1 · γ(l)

−
K∑

l=K+1
2

(
K − 1

l − 1

)
K

l
l(1− q)l−1qK−l · γ(l) +

K−1∑
l=K+1

2

(
K − 1

l

)
K

K − l
(K − l)(1− q)lqK−l−1 · γ(l)

+

K∑
l=K+1

2

e(m+1)ϵ

(
K − 1

l − 1

)
K

l
l(1− eϵq)l−1(eϵq)K−l · γ(l)

−
K−1∑

l=K+1
2

e(m+1)ϵ

(
K − 1

l

)
K

K − l
(K − l)(1− eϵq)l(eϵq)K−l−1 · γ(l)

∇qf(q) = −K

K−1
2∑

l=1

e(m+1)ϵ

(
K − 1

l − 1

)
(1− eϵq)l−1(eϵq)K−l · γ(l) (105)

+K

K−1
2∑

l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l)
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+K

K−1
2∑

l=1

(
K − 1

l − 1

)
(1− q)l−1qK−l · γ(l)−K

K−1
2∑

l=0

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l)

−K

K∑
l=K+1

2

(
K − 1

l − 1

)
(1− q)l−1qK−l · γ(l) +K

K−1∑
l=K+1

2

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l)

+K

K∑
l=K+1

2

e(m+1)ϵ

(
K − 1

l − 1

)
(1− eϵq)l−1(eϵq)K−l · γ(l)

−K

K−1∑
l=K+1

2

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l)

The above is

∇qf(q)

K

= −

K−1
2 −1∑
l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l + 1) (106)

+

K−1
2∑

l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l)

+

K−1
2 −1∑
l=0

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l + 1)−

K−1
2∑

l=0

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l)

−
K−1∑

l=K−1
2

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l + 1) +

K−1∑
l=K+1

2

(
K − 1

l

)
(1− q)lqK−l−1 · γ(l)

+

K−1∑
l=K−1

2

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l + 1)

−
K−1∑

l=K+1
2

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 · γ(l)

=

K−1
2 −1∑
l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l)− γ(l + 1)

)
(107)

+

K−1∑
l=K+1

2

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l + 1)− γ(l)

)

+ 2e(m+1)ϵ

(
K − 1
K−1
2

)
(1− eϵq)

K−1
2 (eϵq)

K−1
2 · γ(K − 1

2
) Since γ(

K + 1

2
) = γ(

K − 1

2
)

+

K−1
2 −1∑
l=0

(
K − 1

l

)
(1− q)lqK−l−1 ·

(
γ(l + 1)− γ(l)

)
+

K−1∑
l=K+1

2

(1− q)lqK−l−1 ·
(
γ(l)− γ(l + 1)

)

− 2

(
K − 1
K−1
2

)
(1− q)

K−1
2 q

K−1
2 · γ(K − 1

2
) Since γ(

K − 1

2
) = γ(

K + 1

2
)
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When γ(l) = 1, then the above gradient is then

∇qf(q)

K
= 2e(m+1)ϵ

(
K − 1
K−1
2

)
(1− eϵq)

K−1
2 (eϵq)

K−1
2 − 2

(
K − 1
K−1
2

)
(1− q)

K−1
2 q

K−1
2 (108)

Since p ∈ [ 1
1+e−ϵ , 1], and q = 1 − p ∈ [0, 1

1+eϵ ], (1 − eϵq)(eϵq) ≥ (1 − q)q. Furthermore,
since e(m+1)ϵ ≥ 1, ∇qf(q) ≥ 0. Hence, f(q) achieves the maximum at q = 1

1+eϵ — that is, at
p = 1− 1

1+eϵ = 1
1+e−ϵ . Since 1−p′ = eϵ(1−p), f(q) achieves the maximum at p′ = 1−eϵ(1−p) =

1− eϵ(1− 1
1+e−ϵ ) =

1
1+eϵ . Notice that p, p′ = ( 1

1+e−ϵ ,
1

1+eϵ )= argminp,p′ f(p, p′; γ) on the other
boundary p = eϵp′, ∀p ∈ [0, 1

e−ϵ+1 ]. Hence, the global worst case probabilities (p∗, p′∗) are not on
the boundary 1− p′ = eϵ(1− p).

Part III: Global maximum point (p, p′)

The above implies the global maximum points (aka. global worst case probabilities) (p∗, p′∗) =
argmaxp,p′ f(p, p′) = (0, 0) if m ≥ K+1

2 , and f(0, 0) = emϵ − 1.

Therefore, by Lemma 3.3, if m ≥ K+1
2 , setting γ(l) = 1,∀l ∈ {0, . . . ,K} ensures DaRRMγ is

mϵ-differentially private.

D.2.2 PRIVACY AMPLIFICATION UNDER SMALL PRIVACY ALLOWANCE

Roadmap. To show the privacy amplification under a small privacy allowance m ≤ K−1
2 in

Lemma D.8, we first observe that the γ function corresponding to natural subsampling as shown in
Lemma 3.1 falls into a special family of γ functions, which we call the “symmetric form family”,
that are a combination of two functions of a specific form on support {0, . . . , K

2 } and {K2 , . . . ,K}

and are symmetric around K
2 — that is, γ(l) =

{
1− 2h(l) l ≤ K

2

2h(l)− 1 l ≥ K
2

and h(l) + h(K − 1) = 1,

where h(l) is monotonically increasing on the support. It is not hard to see these functions are
well-behaved, and so we can apply Lemma D.1 in such cases to limit the region to search for the
worst case probabilities. For a γ function that falls under this “symmetric form family”, we show two
clean sufficient conditions for DaRRMγ to be mϵ-differentially private in terms of the expectation of
the γ function applied to some Binomial random variables, as in Lemma D.5.

To show the privacy amplification results under a small privacy allowance m, we further need
two building blocks on recurrence relationships in expectation of Binomial random variables and
Hypergeometric random variables in Lemma D.6 and Lemma D.7.

Finally, based on Lemma D.6 and Lemma D.7, we show in Lemma D.8 that γDouble Subsampling , i.e.,
the γ function that enables DaRRM to have the same distribution as outputting the majority of
2m− 1 subsampled mechanisms, belongs to the “symmetric form family”, and satisfies the sufficient
conditions as stated in Lemma D.5. Hence DaRRMγDouble Subsampling is mϵ-differentially private.

Lemma D.5 (Privacy conditions of “symmetric form family”). Consider a γ : {0, 1, . . . ,K} → [0, 1]
function that is of the form

γ(l) =

{
1− 2h(l) l ∈ {0, 1, . . . , K−1

2 }
2h(l)− 1 l ∈ {K+1

2 , . . . ,K} (109)

where h(l) is a monotonically increasing function on l ∈ {0, . . . ,K} and h(l) + h(K − l) = 1.
Let random variables X ∼ Binom(K − 1, p) and Y ∼ Binom(K − 1, eϵp). Let random variables
X̂ ∼ Binom(K − 1, 1 − eϵ(1 − p)) and Ŷ ∼ Binom(K − 1, p). If this γ function further satisfies
the following two conditions:

emϵEX [h(X + 1)− h(X)] ≥ eϵEY [h(Y + 1)− h(Y )], ∀p ∈ [0,
1

1 + eϵ
] (110)

e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)] ≥ EŶ [h(Ŷ + 1)− h(Ŷ )], ∀p ∈ [
1

1 + e−ϵ
, 1] (111)

then Algorithm DaRRMγ is mϵ-differentially private.
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Proof of Lemma D.5. Since h(l + 1) ≥ h(l) on l ∈ {0, . . . ,K}, there is γ(l) ≥ γ(l + 1),∀l ≤ K
2

and γ(l+1) ≥ γ(l),∀l ≥ K
2 . Furthermore, since h(l)+h(K − l) = 1, γ(K−1

2 ) = 1− 2h(K−1
2 ) =

1− 2(1−h(K+1
2 )) = 2h(K+1

2 )− 1. And so by Lemma D.1, the worst case probabilities (p∗, p′∗) =
argmaxp,p′ f(p, p′; γ) satisfy one of the two following: p = eϵp′ , ∀p ∈ [0, 1

1+e−ϵ ], p
′ ∈ [0, 1

1+eϵ ],
or 1− p′ = eϵ(1− p), ∀p ∈ [ 1

1+e−ϵ , 1], p
′ ∈ [ 1

1+eϵ , 1].

On the boundary p = eϵp′, where p′ ∈ [0, 1
1+eϵ ], the privacy cost objective can be re-written as

f(p, p′) = f(p′) =

K−1
2∑

l=0

(emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
(eϵp′)l(1− eϵp′)K−l) · γ(l) (112)

+

K∑
l=K+1

2

(

(
K

l

)
(eϵp′)l(1− eϵp′)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l) · γ(l)

as in Eq. 92, and as in Eq. 95, the gradient w.r.t. p′ is

∇p′f(p′)

K
= emϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l + 1)− γ(l)

)
− 2emϵ

(
K − 1
K−1
2

)
p′

K−1
2 (1− p′)

K−1
2 γ(

K − 1

2
)

(113)

+ emϵ
K−1∑

l=K+1
2

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l)− γ(l + 1)

)

+ eϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l)− γ(l + 1)

)
+ 2eϵ

(
K − 1
K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 γ(

K − 1

2
)

+ eϵ
K−1∑

l=K+1
2

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l + 1)− γ(l)

)
With this family of γ function,

1. When l ≤ K
2 , γ(l)− γ(l + 1) = (1− 2h(l))− (1− 2h(l + 1)) = 2h(l + 1)− 2h(l)

2. When l ≥ K
2 , γ(l + 1)− γ(l) = (2h(l + 1)− 1)− (2h(l)− 1) = 2h(l + 1)− 2h(l)

3. Since γ(K−1
2 ) = γ(K+1

2 ),

2γ(
K − 1

2
) =

(
γ(

K − 1

2
) + γ(

K + 1

2
)
)

(114)

=
(
1− 2h(

K − 1

2
) + 2h(

K + 1

2
)− 1

)
(115)

= 2h(
K + 1

2
)− 2h(

K − 1

2
) (116)

and so the gradient is equivalent to

∇p′f(p′)

K
= −emϵ

K−1∑
l=0

(
K − 1

l

)
p′l(1− p′)K−l

(
2h(l + 1)− 2h(l)

)
(117)

+ eϵ
K−1∑
l=0

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
2h(l + 1)− 2h(l)

)
= −2emϵEX [h(X + 1)− h(X)] + 2eϵEY [h(Y + 1)− h(Y )] (118)

where X ∼ Binom(K − 1, p′) and Y ∼ Binom(K − 1, eϵp′). Hence,

∇p′f(p′) ≤ 0⇔ eϵEY [h(Y + 1)− h(Y )] ≤ emϵEX [h(X + 1)− h(X)] (119)
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On the boundary 1 − p′ = eϵ(1 − p), where p ∈ [ 1
1+e−ϵ , 1]. Let q = 1 − p and q′ = 1 − p′ for

q ∈ [0, 1
1+eϵ ], the privacy cost objective can be re-written as

f(q) =

K−1
2∑

l=0

(
emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l −

(
K

l

)
(1− q)lqK−l

)
· γ(l) (120)

+

K∑
l=K+1

2

((K
l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l

)
· γ(l)

as in Eq. 102, and as in Eq. 103, the gradient w.r.t. q is

∇qf(q)

K
=

K−1
2 −1∑
l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l)− γ(l + 1)

)
(121)

+

K−1∑
l=K+1

2

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l + 1)− γ(l)

)

+ 2e(m+1)ϵ

(
K − 1
K−1
2

)
(1− eϵq)

K−1
2 (eϵq)

K−1
2 · γ(K − 1

2
)

+

K−1
2 −1∑
l=0

(
K − 1

l

)
(1− q)lqK−l−1 ·

(
γ(l + 1)− γ(l)

)
+

K−1∑
l=K+1

2

(1− q)lqK−l−1 ·
(
γ(l)− γ(l + 1)

)

− 2

(
K − 1
K−1
2

)
(1− q)

K−1
2 q

K−1
2 · γ(K − 1

2
)

With this family of γ function, the gradient above is equivalent to

∇qf(q)

K
= e(m+1)ϵ

K−1∑
l=0

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
2h(l + 1)− 2h(l)

)
(122)

−
K∑
l=0

(
K − 1

l

)
(1− q)lqK−l−1 ·

(
2h(l + 1)− 2h(l)

)
= 2e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)]− 2EŶ [h(Ŷ + 1)− h(Ŷ )] (123)

where X̂ ∼ Binom(K − 1, 1− eϵ(1− p)) and Ŷ ∼ Binom(K − 1, p).

∇qf(q) ≥ 0⇔ e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)] ≥ EŶ [h(Ŷ + 1)− h(Ŷ )] (124)

Recall q ∈ [0, 1
1+eϵ ]. The above implies the maximum on this boundary is at point q = 1

1+eϵ —
that is, at point (p, p′) = ( 1

1+e−ϵ ,
1

1+eϵ ). Notice this is the minimum on the first boundary p = eϵp′.
Hence, the global maximum of the cost objective is at (p, p′) = (0, 0), and since the maximum
f(0, 0) = emϵ − 1 ≤ emϵ − 1, this further implies the algorithm is mϵ differentially private.

Lemma D.6 (Binomial Expectation Recurrence Relationship (Theorem 2.1 of Zhang et al. (2019))).
Let X(K−1) ∼ Binom(K − 1, p) and X(K) ∼ Binom(K, p). Let g(x) be a function with −∞ <
E[g(X(K−1))] <∞ and −∞ < g(−1) <∞, then

KpEX(K−1)
[g(X(K−1))] = EX(K)

[X(K)g(X(K) − 1)] (125)

Lemma D.7. Given i,m,K ∈ Z, K ≥ 1, 0 ≤ i ≤ m ≤ K, let X(K) ∼ Binom(K, p) for some
p ∈ [0, 1], there is

1(
K
m

)EX(K)

[(
X

i

)(
K −X

m− i

)]
=

(
m

i

)
pi(1− p)m−i (126)
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Proof of Lemma D.7. We show the above statement by induction on K and m.

Base Case: K = 1.

1. If m = 0, then i = 0. 1

(10)
EX(1)

[
(
X
0

)(
1−X
0

)
] = EX(1)

[1] = 1, and
(
0
0

)
p0(1− p)0 = 1.

2. If m = 1,

(a) i = 0, 1

(11)
EX(1)

[
(
X
0

)(
1−X
1

)
] = EX(1)

[1−X] = 1− p, and
(
1
0

)
p0(1− p)1 = 1− p

(b) i = 1, 1

(11)
EX(1)

[
(
X
1

)(
1−X
0

)
] = EX(1)

[X] = p, and
(
1
1

)
p1(1− p)0 = p.

Hence, the statement holds for the base case.

Induction Hypothesis: Suppose the statement holds for some K ≥ 1 and 0 ≤ i ≤ m ≤ K. Consider
1 ≤ i ≤ m ≤ K + 1,

1(
K+1
m

)EX(K+1)

[(
X

i

)(
K + 1−X

m− i

)]
(127)

=
1(

K+1
m

)EX(K+1)
[

X!

i!(X − i)!

(K + 1−X)!

(m− i)!(K + 1−X − (m− i))!
] (128)

=
1(

K+1
m

)
i!(m− i)!

EX(K+1)
[X

(X − 1)!

((X − 1)− (i− 1))!

(K − (X − 1))!

(K − (X − 1)− ((m− 1)− (i− 1)))!
]

(129)

=
1(

K+1
m

)
i!(m− i)!

EX(K)
[

X!

(X − (i− 1))!

(K −X)!

(K −X − ((m− 1)− (i− 1)))!
] (130)

(By Lemma D.6)

=
(i− 1)!(m− i)!(
K+1
m

)
i!(m− i)!

EX(K)
[

(
X

i− 1

)(
K −X

(m− 1)− (i− 1)

)
] (131)

=
(i− 1)!(
K+1
m

)
i!
(K + 1)p

(
K

m− 1

)(
m− 1

i− 1

)
pi−1(1− p)m−i (132)

(By Induction Hypothesis)

=
m!(K + 1−m)!

(K + 1)!i

K!

(m− 1)!(K −m+ 1)!

(m− 1)!

(i− 1)!(m− i)!
(K + 1)pi(1− p)m−i (133)

=
m!

i!(m− i)!
pi(1− p)m−i =

(
m

i

)
pi(1− p)m−i (134)

Now we consider the edge cases when 0 = i ≤ m.

If i = 0 and m = 0,

1(
K+1
0

)EX(K+1)
[

(
X

0

)(
K + 1−X

0

)
] = 1 · EX(K+1)

[1] = 1 =

(
0

0

)
p0(1− p)0 (135)

If i = 0 and m > 0,

1(
K+1
m

)EX(K+1)
[

(
K + 1−X

m

)
] (136)

=
1(

K+1
m

) K+1∑
x=0

(
K + 1− x

m

)(
K + 1

x

)
px(1− p)K+1−x (137)

=
1(

K+1
m

) K+1∑
x=0

(
K + 1− x

m

)((K
x

)
+

(
K

x− 1

)
I{x ≥ 1}

)
px(1− p)K+1−x (138)
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=
1(

K+1
m

) K∑
x=0

(
K + 1− x

m

)(
K

x

)
px(1− p)K+1−x +

1(
K+1
m

) K+1∑
x=1

(
K + 1− x

m

)(
K

x− 1

)
px(1− p)K+1−x

(139)

(Since when x = K + 1 and m > 0,
(
K + 1− x

m

)
= 0)

=
1(

K+1
m

)( K∑
x=0

(
K − x

m

)(
K

x

)
px(1− p)K+1−x +

K∑
x=0

(
K − x

m− 1

)(
K

x

)
px(1− p)K+1−x

)
(140)

+
1(

K+1
m

) K∑
x=0

(
K − x

m

)(
K

x

)
px+1(1− p)K−x

(Since
(
K + 1− x

m

)
=

(
K − x

m

)
+

(
K − x

m− 1

)
)

=
1(

K+1
m

)((1− p)EX(K)
[

(
K −X

m

)
] + (1− p)EX(k)

[

(
K −X

m− 1

)
]
)
+

1(
K+1
m

)pEX(K)
[

(
K −X

m

)
]

(141)

=
1(

K+1
m

)(EX(K)
[

(
K −X

m

)
] + (1− p)EX(K)

[

(
K −X

m− 1

)
]
)

(142)

=
1(

K+1
m

)((K
m

)
(1− p)m + (1− p)

(
K

m− 1

)
(1− p)m−1

)
(143)

(By Induction Hypothesis) (144)

=
1(

K+1
m

)(K + 1

m

)
(1− p)m (145)

= (1− p)m (146)

Based on Lemma D.6 and Lemma D.7 and using the sufficient conditions in Lemma D.5, we are now
ready to present the privacy amplification results under a small privacy allowance m as follows.

Lemma D.8 (Privacy amplification under small privacy allowance m ≤ K−1
2 ). Consider using

DaRRM to solve Problem 1.1 with pi = p, p′i = p′, ∀i ∈ [K] and δ = ∆ = 0. If the pri-

vacy allowance is m ≤ K−1
2 , one can set γ(l) =

{
1− 2h(l) ∀l∈ {0, 1, . . . , K−1

2 }
2h(l)− 1 ∀l∈ {K+1

2 , . . . ,K} , where

h : {0, 1, . . . ,K} → [0, 1] and h(l) =
∑2m−1

i=m
(li)(

K−l
2m−1−i)

( K
2m−1)

, and Algorithm DaRRMγ is mϵ-

differentially private.

Proof of Lemma D.8. Let X(K−1) ∼ Binom(K − 1, p) and Y(K−1) ∼ Binom(K − 1, eϵp).

EX(K−1)
[h(X + 1)] =

1(
K

2m−1

) 2m−1∑
i=m

EX(K−1)
[

(
X + 1

i

)(
K −X − 1

2m− 1− i

)
] (147)

=
1(
K

2m−1

) 2m−1∑
i=m

EX(K−1)
[

(
X

i

)(
K −X − 1

2m− 1− i

)
+

(
X

i− 1

)(
K −X − 1

2m− 1− i

)
]

(148)

(Since
(
X + 1

i

)
=

(
X

i

)
+

(
X

i− 1

)
I{i ≥ 1})
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=
1(
K

2m−1

) 2m−1∑
i=m

(
EX(K−1)

[

(
X

i

)(
K − 1−X

2m− 1− i

)
] + EX(K−1)

[

(
X

i− 1

)(
K − 1−X

(2m− 2)− (i− 1)

)
]
)

(149)

=
1(
K

2m−1

) 2m−1∑
i=m

((K − 1

2m− 1

)(
2m− 1

i

)
pi(1− p)2m−1−i (150)

+

(
K − 1

2m− 2

)(
2m− 2

i− 1

)
pi−1(1− p)2m−1−i

)
(By Lemma D.7)

EX(K−1)
[h(X)] =

1(
K

2m−1

) 2m−1∑
i=m

EX(K−1)
[

(
X

i

)(
K −X

2m− 1− i

)
] (151)

(Since
(

K −X

2m− 1− i

)
=

(
K − 1−X

2m− 1− i

)
+

(
K − 1−X

2m− 2− i

)
)

=
1(
K

2m−1

) 2m−1∑
i=m

(
EX(K−1)

[

(
X

i

)(
K − 1−X

2m− 1− i

)
] + EX(K−1)

[

(
X

i

)(
K − 1−X

2m− 2− i

)
]I{i ≤ 2m− 2}

)
(152)

=
1(
K

2m−1

) 2m−1∑
i=m

((K − 1

2m− 1

)(
2m− 1

i

)
pi(1− p)2m−1−i (153)

+

(
K − 1

2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−iI{i ≤ 2m− 2}

)
(By Lemma D.7)

Hence,

EX(K−1)
[h(X + 1)− h(X)] (154)

=
1(
K

2m−1

)( 2m−1∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i− 1

)
pi−1(1− p)2m−1−i −

2m−2∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i

)
(155)

=
1(
K

2m−1

)( 2m−2∑
i=m−1

(
K − 1

2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i −

2m−2∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i

)
(156)

=
2m− 1

K

(
2m− 2

m− 1

)
pm−1(1− p)m−1 (157)

Similarly,

EY(K−1)
[h(Y + 1)− h(Y )] =

2m− 1

K

(
2m− 2

m− 1

)
(eϵp)m−1(1− eϵp)m−1 (158)

Since p(1− p) ≥ e−ϵeϵp(1− eϵp) for p ∈ [0, 1
1+eϵ ],

e(m−1)ϵEX(K−1)
[h(X + 1)− h(X)] =

2m− 1

K

(
2m− 2

m− 1

)
e(m−1)ϵpm−1(1− p)m−1 (159)

≥ 2m− 1

K

(
2m− 2

m− 1

)
e(m−1)ϵ(e−ϵeϵp(1− eϵp))m−1 (160)

=
2m− 1

K

(
2m− 2

m− 1

)
(eϵp)m−1(1− eϵp)m−1 (161)
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= EY(K−1)
[h(Y + 1)− h(Y )] (162)

and so
emϵEX(K−1)

[h(X + 1)− h(X)] ≥ eϵEY(K−1)
[h(Y + 1)− h(Y )] (163)

The above shows γ(l) =
{
1− 2h(l) l∈ {0, 1, . . . , K−1

2 }
2h(l)− 1 l∈ {K+1

2 , . . . ,K} , where h =
∑2m−1

i=m
(li)(

K−1
2m−1−i)

( K
2m−1)

, satis-

fies the first condition in Eq. 110 of Lemma D.5. To ensure the Algorithm is mϵ differentially private,
we next show this γ also satisfies the second condition in Eq. 111 of Lemma D.5.

Let X̂(K−1) ∼ Binom(K−1, 1−eϵ(1−p)) and Ŷ(K−1) ∼ Binom(K−1, p). By Eq. 149, we know

EX̂(K−1)
[h(X + 1)] =

1(
K

2m−1

) 2m−1∑
i=m

(
EX̂(K−1)

[

(
X̂

i

)(
K − 1− X̂

2m− 1− i

)
] + EX̂(K−1)

[

(
X̂

i− 1

)(
K − 1− X̂

(2m− 2)− (i− 1)

)
]
)

(164)

=
1(
K

2m−1

) 2m−1∑
i=m

((K − 1

2m− 1

)(
2m− 1

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−1−i

(165)

+

(
K − 1

2m− 2

)(
2m− 2

i− 1

)
(1− eϵ(1− p))i−1(eϵ(1− p))2m−1−i

)
By Lemma D.7

and by Eq. 152, we know

EX̂(K−1)
[h(X̂)] =

1(
K

2m−1

) 2m−1∑
i=m

(
EX̂(K−1)

[

(
X̂

i

)(
K − 1− X̂

2m− 1− i

)
] + EX̂(K−1)

[

(
X̂

i

)(
K − 1− X̂

2m− 2− i

)
]I{i ≤ 2m− 2}

)
(166)

=
1(
K

2m−1

) 2m−1∑
i=m

((K − 1

2m− 1

)(
2m− 1

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−1−i

(167)

+

(
K − 1

2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−iI{i ≤ 2m− 2}

)
By Lemma D.7

Hence,
EX̂(K−1)

[h(X̂ + 1)− h(X̂)] (168)

=
1(
K

2m−1

)( 2m−1∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i− 1

)
(1− eϵ(1− p))i−1(eϵ(1− p))2m−1−i (169)

−
2m−2∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i

)
=

1(
K

2m−1

)( 2m−2∑
i=m−1

(
K − 1

2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i (170)

−
2m−2∑
i=m

(
K − 1

2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i

)
=

2m− 1

K

(
2m− 2

m− 1

)
(1− eϵ(1− p))m−1(eϵ(1− p))m−1 (171)

Similarly,

EŶ(K−1)
[h(Ŷ + 1)− h(Ŷ )] =

2m− 1

K

(
2m− 2

m− 1

)
pm−1(1− p)m−1 (172)
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Hence,

e(m+1)ϵEX̂(K−1)
[h(X̂ + 1)− h(X̂)] = e(m+1)ϵ 2m− 1

K

(
2m− 2

m− 1

)
(1− eϵ(1− p))m−1(eϵ(1− p))m−1

(173)

≥ 2m− 1

K

(
2m− 2

m− 1

)
(1− eϵ(1− p))m−1e(m−1)ϵ(1− p)m−1

(174)

=
2m− 1

K

(
2m− 2

m− 1

)
(eϵ − e2ϵ(1− p))m−1(1− p)m−1

(175)

Note that

eϵ − e2ϵ(1− p) = eϵ − e2ϵ + e2ϵp ≥ p (176)
⇔ (eϵ + 1)(eϵ − 1)p ≥ eϵ(eϵ − 1) (177)

⇔ p ≥ eϵ

eϵ + 1
=

1

1 + e−ϵ
(178)

and the second condition in Eq. 111 of Lemma D.5 is on p ∈ [ 1
1+e−ϵ , 1].

Therefore, following Eq. 175,

e(m+1)ϵEX̂(K−1)
[h(X̂ + 1)− h(X̂)] ≥ 2m− 1

K

(
2m− 2

m− 1

)
pm−1(1− p)m−1 (179)

= EŶ(K−1)
[h(Ŷ + 1)− h(Ŷ )] (180)

which means the second condition in Eq. 111 of Lemma D.5 is also satisfied.

Therefore, by Lemma D.5, DaRRMγ with this specific choice of γ is mϵ-differentially private.

Now, Theorem 4.1 follows from combining Lemma D.4 and Lemma D.8.
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E DETAILS OF OPTIMIZING γ IN DARRM

E.1 DERIVING THE OPTIMIZATION OBJECTIVE

For γ that is symmetric around K
2 , we can write the objective as

Ep1,p2,...,pK∼T [E(DaRRMγ)] (181)
= Ep1,p2,...,pK∼T [DTV (DaRRMγ(S) ∥ f(S))] (182)
= Ep1,p2,...,pK∼T [|Pr[DaRRMγ(S) = 1]− Pr[f(S) = 1]|] (183)

= Ep1,p2,...,pK∼T

| K∑
l=K+1

2

(
αl · (γ(l) +

1

2
(1− γ(l)))− αl

)
+

K−1
2∑

l=0

αl ·
1

2
(1− γ(l))|

 (184)

= Ep1,p2,...,pK∼T

∣∣∣ K−1
2∑

l=0

αl(
1

2
γ(l)− 1

2
) +

K∑
l=K+1

2

αl(
1

2
− 1

2
γ(l))

∣∣∣
 (185)

The above follows by conditioning on L = {0, 1, . . . ,K}, i.e. the sum of observed outcomes in S

= Ep1,p2,...,pK∼T

∣∣∣1
2

K∑
l=K+1

2

(αl − αK−l) (1− γ(l))
∣∣∣
 (186)

The above follows by symmetry of γ

Furthermore, notice the objective is symmetric around 0, and can be written as

Ep1,p2,...,pK∼T

1

2

K∑
l=K+1

2

(αl − αK−l) (1− γ(l))

 (187)

=
1

2
Ep1,p2,...,pK∼T

 K∑
l=K+1

2

(
(αl − αK−l)− (αl − αK−l)γ(l)

) (188)

=
1

2
Ep1,p2,...,pK∼T

 K∑
l=K+1

2

(αl − αK−l)

− 1

2
Ep1,p2,...,pK∼T

 K∑
l=K+1

2

(αl − αK−l)γ(l)

 (189)

and this is the same as optimizing

−1

2
Ep1,p2,...,pK∼T

 K∑
l=K+1

2

(αl − αK−l)γ(l)

 = −1

2

K∑
l=K+1

2

Ep1,p2,...,pK∼T [(αl − αK−l)] γ(l)

(190)

which is linear in γ.

E.2 PRACTICAL APPROXIMATION OF THE OBJECTIVE

Since the optimization objective in Eq. 190 requires taking an expectation over p1, . . . , pK , and
this invovles integrating over K variables, which can be slow in practice, we propose the following
approximation to efficiently compute the objective. We start with a simple idea to compute the
objective, by sampling pi’s from [0, 1] and take an empirical average of the objective value over all
subsampled sets of p1, . . . , pK as the approximation of the expectation in Section E.2.1. However, we
found this approach is less numerically stable. We then propose the second approach to approximate
the objective in Section E.2.2, which approximates the integration over pi’s instead of directly
approximating the objective value. We use the second approximation approach in our experiments
and empirically demonstrates its effectiveness. Note approximation the optimization objective has no
affect on the privacy guarantee.
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E.2.1 APPROXIMATION VIA DIRECT SAMPLING OF pi’S

We start with a straightforward way of approximating the objective:

1. Step 1: Sample p1, p2, . . . , pK ∼ T
2. Step 2: Compute the sampled objective value g = − 1

2

∑K
l=K+1

2
(αl − αK−l)γ(l)) based on

the sampled pi’s.
3. Repeat Step 1 and Step 2 for T = 10000 times. Let gt denotes the objective value in t-th

trial. Use 1
T

∑T
t=1 gt as an unbiased estimation of the true objective.

However, we found this approximation is less numerically stable in the experiments and so we
propose and adpot the second approach as follows.

E.2.2 APPROXIMATING THE INTEGRATION OVER pi’S

Consider the following surrogate objective:

−1

2

K∑
l=K+1

2

∫ 1

0.5

∫ 1

0.5

· · ·
∫ 1

0.5

(αl − αK−l)dp1dp2 . . . dpK · γ(l) (191)

where we approximate the integration instead of directly approximating the objective value. The
approximation of the integration is based on the rectangular rule and that the Poison Binomial (PB)
distribution is invariant to the order of its probability parameters.

First, we discretize the integration over pi’s: pick τ = 50 points representing probabilities between
[0.5, 1) with equal distance θ. Denote this set of points asW . We pick only τ = 50 samples to ensure
the distance between each sample, i.e., θ, is not too small; or this can cause numerical instability.
For each l ∈ {K+1

2 , K+1
2 + 1, . . . ,K}, we want to compute an approximated coefficient for γ(l) as

follows:∫ 1

0.5

∫ 1

0.5

· · ·
∫ 1

0.5

(αl − αK−l)dp1dp2 . . . dpK ≈
∑

p1∈W

∑
p2∈W

· · ·
∑

pK∈W
(αl − αK−l) (192)

which approximates integration over a K-dimensional gridWK .

The idea is then to sample points from this K-dimensional gridWK and compute an empirical mean
of the integration based on the sample probabilities for p1, . . . , pK fromWK as the approximation
of the integration in the objective.

Let (s1, s2, . . . , sK) be randomly sampled probability values fromWK and we want to compute
(αl − αK−l) for all l based on (p1, . . . , pK) = (s1, . . . , sK). To apply the rectangular rule, since the
grid of probabilities is K-dimensional, the weight of (αl − αK−l) in the approximate integration
is θK . Furthermore, observe that αl is the pmf at l from a Poison Binomial (PB) distribution in
our case, and PB(p1, . . . , pK) ∼ PB(π(p1, . . . , pK)), where π denotes a permutation of p1, . . . , pK
and ∼ denotes “the same distribution”. Hence, with a single probability sample (s1, . . . , sK), we
can indeed compute αl − αK−l for each l at K! points from the gridWK , since they all have the
same value. Therefore, we should set the weight of αl − αK−l in the approximate integration as
w = θK ·K!. Furthermore, since the order of (p1, . . . , pK) does not affect the objective value, there
is a total of (τ choose K with replacement) =

(
τ+K−1

K

)
:= P different points in the gridWK .

In summary, our approximation of the integration proceeds as follows: let w = θK · K! and
P =

(
τ+K−1

K

)
.

1. Step 1: Generate a setW with 50 values of equal distance between 0.5 and 1.
2. Step 2: Randomly sample (s1, s2, . . . , sK) ∼ WK . Compute w · (αl − αK−l) based on

(p1, p2, . . . , pK) = (s1, s2, . . . , sK).
3. Step 3: repeat Step 2 for N = 10000 times.

4. Step 4: Let gt =
∑K

l=K+1
2

w · (αl − αK−l) denotes the approximate integration value in
t-th trial.
Form an unbiased estimation of the integration as P

N

∑N
t=1 gt.
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E.3 REDUCING # CONSTRAINTS FROM∞ TO A POLYNOMIAL SET

Lemma 5.1. Consider using DaRRM to solve Problem 1.1. Given an arbitrary γ, let the global worst
case probabilities be (p∗1, . . . , p

∗
K , p′∗1 , . . . , p

′∗
K) = argmax{(pi,p′

i)}K
i=1

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ),

where f is the privacy cost objective defined in Lemma 3.3. Each pair (p∗i , p
′∗
i ) satisfies

(p∗i , p
′∗
i ) ∈ {(0, 0), (1, 1), (0,∆), (∆, 0), (1 − ∆, 1), (1, 1 − ∆), ( e

ϵ+∆
eϵ+1 ,

1−∆
eϵ+1 ), (

1−∆
eϵ+1 ,

eϵ+∆
eϵ+1 )},

∀i ∈ [K]. Furthermore, there exists a set P of size O(K7) such that (p∗1, . . . , p
∗
K , p′∗1 , . . . , p

′∗
K) =

argmax{(pi,p′
i)}K

i=1∈P f(p1, . . . , pK , p′1, . . . , p
′
K ; γ) if δ > 0 and a set P of size O(K3) if δ = 0.

Figure 6: An illustration of the feasible region Fi.

Proof. Part I: Reducing # privacy constraints from∞ to exponential. Consider (pi, p′i) for an ar-
bitrary i ∈ [K] and fixing (pj , p

′
j),∀j ̸= i. The privacy cost objective f(p1, . . . , pK , p′1, . . . , p

′
K ; γ),

as defined in Lemma 3.3, is then linear in (pi, p
′
i). To ensure DaRRMγ is differentially private with a

target privacy loss mϵ, we need to consider the worst case probabilities (p∗i , p
′∗
i )= argmax(pi,p′

i)
f ,

given(pj , p′j),∀j ̸= i. Since mechanism Mi is (ϵ,∆)-differentially private, by definition, the follow-
ing constraints on (pi, p

′
i) apply simultaneously,

pi ≤ eϵp′i +∆, p′i ≤ eϵp+∆

1− pi ≤ eϵ(1− p′i) + ∆, 1− p′i ≤ eϵ(1− pi) + ∆

This implies (pi, p′i) lies in a feasible region Fi (see Figure 6). Notice the constraints on (pi, p
′
i), that

is, the boundaries of Fi, are linear in pi and p′i, max(pi,p′
i)
f(p1, . . . , pK , p′1, . . . , p

′
K ; γ) is hence

a Linear Programming (LP) problem in (pi, p
′
i) for i ∈ [K]. Hence, the (p∗i , p

′∗
i ) has to be on one

of the eight corners of Fi — that is (p∗i , p
′∗
i ) ∈ {(0, 0), (1, 1), (0,∆), (∆, 0), (1 − ∆, 1), (1, 1 −

∆), ( e
ϵ+∆
eϵ+1 ,

1−∆
eϵ+1 ), (

1−∆
eϵ+1 ,

eϵ+∆
eϵ+1 )} := C. Therefore, the infinitely many privacy constraints are now

reduced to only 8K in optimizing for the best γ function in DaRRM.

Part II: Reducing # privacy constraints from exponential to polynomial. To further reduce the
number of privacy constraints in optimization, recall by Lemma 3.3 we need γ such that

f(p1, . . . , pK , p′1, . . . , p
′
K ; γ) =

K−1
2∑

l=0

(emϵα′
l − αl) · γ(l) +

K∑
l=K+1

2

(αl − emϵα′
l) · γ(l) ≤ emϵ − 1 + 2δ

(193)

where αl = Pr[L =
∑K

i=1 Mi(D) = l] and α′
l = Pr[L′ =

∑K
i=1 Mi(D′) = l]. Note L follows a

Poisson Binomial (PB) distribution parameterized by p1, . . . , pK , and L′ follows a PB distribution
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parameterized by p′1, . . . , p
′
K . Observe that PB distribution9 is invariant under the permutation

of parameters. That is, PB(p1, . . . , pK) has the same distribution as PB(π(p1, . . . , pK)), where π
denotes permutation; and similarly, PB(p′1, . . . , p

′
K) has the same distribution as PB(π(p′1, . . . , p

′
K)).

Consider a set P of privacy constraints as Eq. 193, where each constraint in P is constructed
by setting (p1, p

′
1), (p2, p

′
2), . . . , (pK , p′K) = (v1, v2, . . . , vK), where vi ∈ C,∀i ∈ [K], such

that constraints constructed by (p1, p
′
1), (p2, p

′
2), . . . , (pK , p′K) = π(v1, v2, . . . , vK) is not in P

— that is, P has size (8 chooses K with replacement) =
(
K+8−1

K

)
= O(K7). Then, the global

worst case probabilities (p∗1, . . . , p
∗
K , p′∗1 , . . . , p

′∗
K) must satisfy one of the constraints in P , i.e.

(p∗1, . . . , p
∗
K , p′∗1 , . . . , p

′∗
K) = max{(pi,p′

i)}K
i=1∈P f(p1, . . . , pK , p′1, . . . , p

′
K ; γ). This implies we only

need O(K7) privacy constraints in optimizing for the best noise function γ in DaRRM.

Note when ∆ = 0, i.e., under pure differential privacy setting, the feasible region Fi has only 4
corners instead of 8, that is, (p∗i , p

′∗
i ) ∈ C = {(0, 0), (1, 1), ( eϵ

eϵ+1 ,
1

eϵ+1 ), (
1

eϵ+1 ,
eϵ

eϵ+1 )}. Hence,
when ∆ = 0, P has size (4 choose K with replacement) =

(
K+4−1

K

)
= O(K3), implying we only

need O(K3) privacy constrants in optimizing for the best noise function γ.

F FULL EXPERIMENT RESULTS

F.1 OPTIMAL γ IN SIMULATIONS

F.1.1 COMPARISON AGAINST ADVANCED COMPOSITION

Advanced composition indiates less privacy loss than simple composition when the number of
compositions, m, is large, or when the failure probability δ is large. To enable meaningful comparison
against advanced composition, we consider a larger K and a larger failure probability.

Consider K = 35, ϵ = 0.1,∆ = 10−5. By advanced composition, if one outputs the majority of M
subsampled mechanisms for some M < K, the majority output is (

√
2M log(1/δ′)ϵ +Mϵ(eϵ −

1),M∆+δ′)-differentially private for some δ′ > 0. We set this as the privacy guarantee of all majority
ensembling algorithms. That is, if we want the majority output to be (mϵ, δ)-differentially private, we
set m =

√
2M log(1/δ′)+M(eϵ−1) and δ = M∆+δ′ accordingly. The parameters τ and λ for the

constant γ in randomized response (see Lemma C.1) are set to be τ =
√

2K log(1/δ′) +K(eϵ − 1)
and λ = K∆+ δ′.

In the experiments, we consider M = {10, 13, 15, 20} and δ′ = 0.1.

All values of the parameters of the private ensembling algorithms are computed and listed in the
table:

# Subsampled mechanisms M 10 13 15 20
Privacy allowance m 7.8378 9.1046 9.8888 11.7005

Parameter of constant γ τ 16.3766 16.3767 16.3767 16.3767
Parameter of constant γ λ 0.10035 0.10035 0.10035 0.10035

Overall privacy loss mϵ 0.7837 0.9104 0.9889 1.1700
Overall failure probability δ 0.10010 0.10013 0.10015 0.1002

Table 2: Parameters of all algorithms. Note all the private ensembling algorithms for comparison
in the experiment is required to be (mϵ, δ)-differentially private. K = 35, ϵ = 0.1, δ = 10−5 and
δ′ = 0.1.

9See, e.g. https://en.wikipedia.org/wiki/Poisson_binomial_distribution, for the
pmf of Poisson Binomial (PB) distribution.
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Figure 7: Plots of γ functions corresponding to optimized, subsampling (whose privacy guarantee is
reasoned through advanced composition), the data-independent γ in randomized response and the
error in TV distance of the majority ensembling output of DaRRM with different γ functions, when
K = 35, the number of subsamples M ∈ {10, 20, 30, 40}, ∆ = 10−5, and δ′ = 0.1.

F.1.2 COMPARISON UNDER PURE DP SETTINGS

Consider the pure differential privacy setting, where ∆ = δ = 0. Note in such pure differential
privacy case, simple composition is tight. The subsampling baseline here outputs the majority of
m out of K subsampeld mechansisms (without replacement). The majority output of different
ensembling algorithms for comparison is required to be mϵ-differentially private. Furthermore, since
the number of constraints in our optimization framework is O(K3) under pure differential privacy
(see Lemma 5.1), we can optimize DaRRMγ for aggregating a larger number K of mechanisms. In
this section, we present the simulation results for K ∈ {11, 101} and compare the utility of three
majority ensembling algorithms: optimized DaRRM, subsampling and randomizied response, under
the same privacy loss.

Setting 1. K = 11, m ∈ {1, 3, 5, 7}.
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Figure 8: Plots of γ functions corresponding to optimized, subsampling, the data-independent γ in
randomized response and the error in TV distance of the majority ensembling output of DaRRM with
different γ functions, when K = 11,m ∈ {1, 3, 5, 7}, ∆ = δ = 0.

Setting 2. K = 101,m ∈ {10, 20, 30, 40}.
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Figure 9: Plots of γ functions corresponding to optimized, subsampling, the data-independent γ in
randomized response and the error in TV distance of the majority ensembling output of DaRRM with
different γ functions, when K = 101,m ∈ {10, 20, 30, 40}, ∆ = δ = 0.

F.1.3 COMPARISON UNDER DIFFERENT PRIOR DISTRIBUTIONS OF pi’S

Recall pi = Pr[Mi(D) = 1],∀i ∈ [K]. We stress that our optimization procedure applies to any
prior distribution of pi’s. Let U denote the distribution Uniform([0, 1]). We present results when
pi ∼ U , ∀i ∈ [K], in the previous sections to show the performance of optimized DaRRMγ in the
most general case when we do not have any prior knowledge of the mechanisms Mi’s output, i.e., pi.
It is possible to consider a different prior distribution T of pi’s. If the true distribution of pi’s is closer
to T than U , than we get improved utility with the same privacy guarantee by optimizing γ under T
than under U ; otherwise, if the true distribution of pi is very different from T , we suffer utility loss.

To illustrate this point, consider the following experiment setting. Suppose our prior belief is that
each mechanism Mi has a clear tendency towards voting 0 or 1, i.e., pi is far from 0.5. Let the new
distribution T be Uniform([0, 0.3] ∪ [0.7, 1]).

To optimize γ under T , we change the approximate objective in Eq. 191, which optimizes γ assuming
pi ∼ U , to be the following, which optimizes γ assuming pi ∼ T ,∀i ∈ [K],

−1

2

K∑
l=K+1

2

∫ 1

0.7

∫ 1

0.7

· · ·
∫ 1

0.7

(αl − αK−l)dp1dp2 . . . dpK · γ(l) (194)

Setting. K = 11,m ∈ {3, 5}, δ = ∆ = 0.

We compute the error of the optimized DaRRMγ in three different settings with three different actual
pi distributions:

1. “Actual: Uniform([0, 1])”, which means we take pi ∼ U ,∀i ∈ [K] when computing the
error

2. “Actual: Uniform([0, 0.1])”, which means we take pi ∼ Uniform([0, 0.1]),∀i ∈ [K] when
computing the error
This setting implies the mechanisms have a clear majority (of 0)

3. “Actual: pi = 0.5”, which means we take pi = 0.5,∀i ∈ [K] when computing the error
This setting implies the mechanisms have no clear majority

Note since T is closer to the distribution in the second setting, we would expect DaRRMγ has a
lower error when γ is optimized under T than under U in this setting. Also, since T is very different
from the distribution in the third setting, we would expect DaRRMγ has a lower error when γ is
optimized under U than under T .

42



Under review as a conference paper at ICLR 2024

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

 v
al

ue
s

 functions

Optimized DaRRM  w/  prior
Optimized DaRRM  w/ prior
Subsampling
Randomized Response

(a) γ function (m = 3)

0.04
0.06
0.08
0.10
0.12
0.14

TV
 D

ist
an

ce

Actual: pi  Uniform([0, 1])

Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(b) Uniform pi’s (m = 3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

TV
 D

ist
an

ce

Actual: pi  Uniform([0, 0.1])
Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(c) Clear majority (m = 3)

0.02
0.03
0.04
0.05
0.06
0.07
0.08

TV
 D

ist
an

ce

Actual: pi = 0.5
Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(d) No clear majority (m = 3)

0 2 4 6 8 10
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 v
al

ue
s

 functions

Optimized DaRRM  w/  prior
Optimized DaRRM  w/ prior
Subsampling
Randomized Response

(e) γ function (m = 5)

0.00

0.02

0.04

0.06

0.08

0.10

TV
 D

ist
an

ce

Actual: pi  Uniform([0, 1])
Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(f) Uniform pi’s (m = 5)

0.00

0.05

0.10

0.15

0.20

0.25

TV
 D

ist
an

ce

Actual: pi  Uniform([0, 0.1])
Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(g) Clear majority (m = 5)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

TV
 D

ist
an

ce

Actual: pi = 0.5
Optimized DaRRM_  w/  prior
Optimized DaRRM_  w/ prior
Subsampling
Randomized Response

(h) No clear majority (m = 5)

Figure 10: Comparison of the error of DaRRMγ with optimized γ under two different prior distri-
butions of pi, i.e., U and T , in the setting where m ∈ {3, 5},K = 11. Observe that if the prior
distribution of pi we use when optimizing γ is closer to the actual distribution, we have additional
utility gain (i.e., decreased error); otherwise, we suffer utility loss (i.e., increased error), compared to
optimize γ under the uniform distribution U of pi over [0, 1]. Furthermore, regardless of the choice of
the prior distribution of pi, optimized DaRRMγ achieves a lower error compared to the two baselines:
Subsampling and Randomized Response.

43



Under review as a conference paper at ICLR 2024

F.2 PRIVATE DISTRIBUED SIGN-SGD

Notation. w(t) denotes the parameter of the model at the t-th communication round.

Additional Experiment Details. In our experiments, each client computes its gradient based on the
entire local dataset at each communication around. Also for simplicity, all clients are participated in
training at each round.

Algorithm 2 β-Stochastic Sign SGD (Algorithm 2 of Xiang & Su (2023b)) without client subsampling

1: Input: K clients, T communication rounds, batch size n, hyperparameters B, β,
2: Output: w(T )
3: Initialization: w(0)← µ for each i ∈ [K]
4: for communication round t = 1, 2, . . . , T do
5: Client:
6: for Client i ∈ [K] do
7: Each client i ∈ [K] computes n stochastic gradients g1

i (t), . . . ,g
(n)
i (t)

8: for coordinate j = 1, 2, . . . , d do

9: ĝi,j(t)← 1 with probability
B+β+clip{ 1

n

∑n
i=1 g

(i)
m,j(t)}

2B+2β ; ĝ(t)i,j ← −1 otherwise
10: end for
11: Report ĝi(t) to the server.
12: end for
13: Server:
14: On receiving one-bit encoded gradients ĝ1(t), . . . , ĝK(t) from the clients, compute g̃(t)←

Aggregate({ĝi(t)}Ki=1)
15: Send g̃(t) to all clients
16: Upon receiving g̃(t): w(t+ 1)← w(t)− ηg̃(t)
17: end for

Coordinate wise pure DP guarantee:

Theorem F.1 (Theorem 4 of Xiang & Su (2023b)). 0-StoSign is not differentially private. When β > 0,
β-StoSign is coordinate-wise log( 2B+β

β )-differentially private. That is, β-StoSign is d · log( 2B+β
β )-

differentially private.

F.3 PRIVATE SEMI-SUPERVISED KNOLWEDGE TRANSFER

Figure 11: Semi supervised knowledge transfer setting. This figure is adapted from Figure 1 of
PATE Papernot et al. (2017). Unlike PATE, we consider an untrustworthy aggregator and aggregate
private teachers through private majority ensembling.
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More Details About the Baseline GNMax Papernot et al. (2018)

The GNMax aggregation mechanism proceeds as follows (Section 4.1 of Papernot et al. (2018)): on
input x,

Mσ(x) = argmax
i
{ni(x) +N (0, σ2)} (195)

where ni(x) is # teachers who vote for class i.

Note GNMax works perfectly in aggregating non-private teachers, in our setting, it does not exploit
the fact that each teacher is (ϵ,∆)-differentially private. Hence, GNMax can add more noise than
necessary to ensure the final aggregated output is (mϵ, δ)-differentially private, especially when ϵ is
small.

The privacy analysis Papernot et al. (2018) mainly focuses on computing the overall privacy loss
of multiple private majority ensembling queries, while our analysis focuses on the privacy loss of a
single-step aggregation from “prviate” teachers. Note the privacy composition analysis in Papernot
et al. (2018) also applies to our setting to reason about the privacy loss through multiple queries.

How to set σ in GNMax?

Section 4.1 of Papernot et al. (2018) states the GNMax mechanism is (λ, λ/σ2)-Renyi differentially
private (RDP), for all λ ≥ 1.

Although there is a data-dependent bound for GNMax that is tighter than the above mentioned
RDP bound in Section 4.1 and in Appendix A of Papernot et al. (2018), according to Corollary 11
of Papernot et al. (2018), this analysis applies to majority voting when the number of output classes
is ≥ 3, which does not directly apply to our binary-output case. Hence, we use the data-independent
RDP bound for GNMax.

The following theorem shows the relationship between RDP and differential privacy (DP):
Theorem F.2 (RDP to DP (Theorem 5 of Papernot et al. (2018))). If a mechanism M guarantees
(λ, ϵ)-RDP, then M guarantees (ϵ+ log 1/δ

λ−1 , δ)-differential privacy for δ ∈ (0, 1).

Therefore, GNMax with parameter σ2 guarantees ( λ
σ2 +

log 1/δ
λ−1 , δ)-differential privacy, ∀λ ≥ 1. Now,

if we want the aggregated output to be (mϵ, δ)-differentially private, the σ2 in GNMax can be set as
follows: 1) Since the above holds for all λ ≥ 1, we first pick a proper λ that does not cause numerical
instability and that ensures σ2 > 0 by setting λ = log 1/δ

ϵ + 5. 2) Now set σ2 = λ/(ϵ− log 1/δ
λ−1 ) by

the above theorem.
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