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ABSTRACT

Structural biology has long been dominated by the one sequence, one struc-
ture, one function paradigm, yet many critical biological processes—from en-
zyme catalysis to membrane transport—depend on proteins that adopt multiple
conformational states. Existing multi-state design approaches rely on post-hoc
aggregation of single-state predictions, achieving poor experimental success rates
compared to single-state design. We introduce DynamicMPNN, an inverse fold-
ing model explicitly trained to generate sequences compatible with multiple con-
formations through joint learning across conformational ensembles. Trained on
46,033 conformational pairs covering 75% of CATH superfamilies and evaluated
using Alphafold 3, DynamicMPNN outperforms ProteinMPNN by up to 25% on
decoy-normalized RMSD and by 12% on sequence recovery across our challeng-
ing multi-state protein benchmark.

1 INTRODUCTION

A commonly derived assumption from Anfinsen’s experiment is that proteins adopt only one native
3D structure, leading to the “one sequence, one structure, one function” canon. This view has
been indirectly reinforced by the predominant use of X-Ray crystallography in experimental protein
structure determination, which requires that proteins form a homogenous, diffractible crystal to be
characterised (Dishman & Volkman, 2018). The large collection of static protein structures in the
PDB has enabled the development of high-accuracy machine learning models for tasks such as
structure prediction (Jumper et al., 2021; Kryshtafovych et al., 2019) and inverse folding (Dauparas
et al., 2022; Hsu et al., 2022a). Amongst contemporary inverse folding models, ProteinMPNN has
been particularly widely adopted in applied protein design projects due to its low inference costs and
robust experimental success rates (Dauparas et al., 2022; Watson et al., 2023; Goverde et al., 2024),
outperforming traditional physics-based design methods on both fronts (Liu & Kuhlman, 2006).

Although direct experimental characterisation of protein dynamics remains a challenge, the con-
formational diversity of proteins underlies crucial biological functions such as enzyme catalysis,
protein-protein interactions, allostery, and human disease (Monzon et al., 2016). In applied protein
design, bio-switches - proteins that switch between two structural states - are of particular impor-
tance, with key applications in engineering artificial bio-motors, signalling pathways, biosensors,
or drug delivery systems (Stein & Alexandrov, 2015; Praetorius et al., 2023). While most known
switches undergo rearrangements in the context of a single fold (Ambroggio & Kuhlman, 2006a),
the class of metamorphic proteins undergo changes in both their secondary structure and fold (Fig.
1a) and have been predicted to represent up to 4% of the PDB chains (Porter & Looger, 2018).
These proteins typically adopt two main functional states (Dishman & Volkman, 2018) and a finite
number of conformations (see Discussion). Beyond the world of switches, other dynamic proteins
are characterised by continuous conformational landscapes (e.g. intrinsically disordered proteins
(Tompa & Fuxreiter, 2008)).

Multi-state protein design was first achieved through rational design and physics-based methods
such as RosettaDesign (Liu & Kuhlman, 2006). Previous campaigns leveraging these methods have
attempted to design metamorphic metal-binding peptides (Ambroggio & Kuhlman, 2006b; Cerasoli
et al., 2005), closely related sequences that adopt diverging folds (Wei et al., 2020), and hinge pro-
teins with binder-regulated thermodynamic equilibria, allowing the relative populations of different
structural states to be modulated by exogenous proteins (Zhang et al., 2022; Quijano-Rubio et al.,
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Figure 1: DynamicMPNN for multi-state protein design. (a) Examples of proteins with multiple
conformational states: transporters in closed and open states (PDB: 6NC7, 6NC9), metamorphic
protein with alternative folds (PDB: 4QHH, 4QHF) and hinges showing domain movement (PDB:
5D0W, 1CFC). (b) Schematic of DynamicMPNN, an inverse folding model trained to generate pro-
tein sequences with multiple conformational states. Conformations are encoded with their respective
chemical environments (i.e. interaction partners shown in gray). Solid lines show the flow of in-
formation in the model, while dashed lines show the evaluation pipeline using AlphaFold 3 (AF3);
employing target structures as templates during inference and measuring the deviations between
predicted and target structures, with decoy structures serving as negative controls.

2021; Praetorius et al., 2023). More recently, Praetorius et al. (2023) (2023) developed Protein-
MPNN Multi-state Design (ProteinMPNN-MSD) (Dauparas et al., 2022): an inference strategy for
extending ProteinMPNN inverse folding to multiple structural states by averaging the logits of two
independent single-state ProteinMPNN embeddings during the decoding step. In a similar vein, Pro-
teinGenerator (Lisanza et al., 2024) applies a sequence diffusion process conditioned on structural
predictions by RosettaFold (Baek et al., 2021), and attempts to design sequences that adopt multiple
states by averaging the sequence logits predicted by the model across distinct target structures.

Still, significant limitations in current multi-state design pipelines remain. Designs generated from
ProteinMPNN-MSD report low overall experimental success rates: only 46 2-state hinge sequences,
corresponding to roughly 0.002% of all designs, were successfully expressed in solution, out of
which only nine showed binding to the corresponding target peptide. Likewise, the authors of Pro-
teinGenerator reported a significantly lower in silico design success rate of 0.05% for their multi-
state design task compared to rates of 2-10% observed for various single-state sequence design
objectives using their framework. These observations - combined with the relative scarcity of pub-
lished data on ML-driven multi-state de novo design campaigns - suggest that current ML methods
for multi-state protein design have been significantly less successful than their single-state counter-
parts (Appendix ??). We propose that this gap can be attributed to limited multi-conformational
datasets, weak benchmarks, and the poor performance of folding models in predicting alternative
states (Chakravarty et al., 2024) (which adversely affects their efficacy as self-consistency filters in
protein design workflows).
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Our contributions. This paper introduces DynamicMPNN (Fig. 1b), a novel geometric deep
learning-based pipeline for multi-state protein sequence design.

• DynamicMPNN is the first explicit multi-state inverse folding model for protein design. To
train DynamicMPNN, we create a new ML-ready dataset of proteins with multiple con-
formations using the PDB and CoDNaS (Monzon et al., 2016) databases, and evaluate the
method on 96 biologically relevant metamorphic, hinge, and transporter proteins.

• We introduce a novel data processing pipeline and architecture able to handle sequence-
aligned structure pairs with heterogeneous sequences, enabling us to leverage the confor-
mational diversity across non-identical protein states.

• We propose a multi-state self-consistency metric and benchmark based on Alphafold3
(AF3) (Abramson et al., 2024) using target structures as templates.

• DynamicMPNN improves performance over ProteinMPNN (Dauparas et al., 2022) on AF3
by up to 25% on RMSD and 8% on pLDDT decoy normalized self-consistency values.

2 THE DYNAMICMPNN PIPELINE

2.1 PROTEIN MULTI-CONFORMATIONAL DATASET

While over 900,000 individual protein chains (sequence-structure pairs) are available in the PDB,
multi-conformational data is at a first glance far more scarce with only roughly 12,000 NMR-derived
protein ensembles covering just 21% of CATH superfamilies. To overcome this limitation, we ex-
ploit the sequence redundancy in the PDB: following Monzon et al. (2016) and Hrabe et al. (2015),
we cluster all protein chain sequences with a very high sequence similarity threshold (≥95%) to
build a multi-conformational dataset of 46,033 conformational clusters with at least 2 members -
expanding coverage to 75% of CATH superfamilies (Fig. 2a). The 95% similarity threshold ac-
counts for soluble tags or point mutations/alterations performed in different experiments which are
unlikely to affect the overall fold. Clusters contain highly unbalanced conformational populations
(Fig. 2c): a relatively small number of clusters contain thousands of sequences, while the majority
contain only a few. This contributes to the relatively small intra-cluster RMSD in the majority of the
clusters (Fig. 2b), since many alternative protein states live in low populations.

To maximise the conformational signal and minimize alignment artifacts, we built our dataset using
only pairs of chains from one or two PDB entries that have the largest RMSD from each cluster
(Fig. 2c). Critically, this selection emphasizes our focus on proteins exploring a finite number
of functional states, with most switching between just two conformations (Dishman & Volkman,
2018; Leaver-Fay et al., 2011; Alberstein et al., 2022). While we hope to explore design of more
continuous conformational spaces in future work, we focus presently on training DynamicMPNN
to design two-state proteins. Furthermore, molecular dynamics datasets were opted against due to
the poor training signal given by limited sequence variability and scarcity of trajectories showing
large conformational changes (Vander Meersche et al., 2023; Mirarchi et al., 2024), which normally
happen across long biological timescales. At the other end of the spectrum, single-chain disordered
protein simulations (Tesei et al., 2024) expose continuous conformational landscapes which are hard
to discretize and have a high degree of stochasticity with a low signal-to-noise ratio rather than the
ordered topologies of globular multi-state proteins (Tompa & Fuxreiter, 2008).

For dataset splitting, we first curate a benchmark composed of five previous studies of proteins with
large 2-state conformational changes: (1) 92 metamorphic proteins (Porter & Looger, 2018), (2) 91
apo-holo proteins (Saldaño et al., 2022), (3) the OC23 and OC85 open-closed datasets (Kalakoti &
Wallner, 2025), and (4) 20 transporter proteins (Kalakoti & Wallner, 2025). The proteins with the
highest inter-state RMSD were assigned to the test set (96 samples), while the rest were assigned to
the validation set (100 samples). Training clusters were filtered to exclude any with TM-score> 0.4
(Zhang & Skolnick, 2004) and > 30% sequence similarity to test/validation structures, preventing
structural similarity leakage and yielding a final training set of 44,243 conformer pairs.

We additionally curate a set of single-state sequence-structure pairs from the 30% sequence sim-
ilarity clusters not represented in our multi-conformational training dataset (n = 27, 394). This
augmentation strategy maximizes coverage of protein fold space while preserving the multi-
conformational learning signal.
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See Appendix C for further details on dataset composition.

2.2 DYNAMICMPNN FOR MULTI-STATE INVERSE FOLDING

Single-state inverse folding methods seek to model the conditional distribution p(Y |X) where
X ∈ Rn×3×3 represents a protein backbone with n residues, and Y = (y1, . . . , yn) is the amino acid
sequence. Extensions of these methods to multi-state design have thus far been limited to post-hoc
aggregation of independent single-state predictions. We believe such methods favour logits which
are highly biased towards one conformation, whose average over the 2 states is higher than the
one of logits which are moderately valued across both states (Joshi et al., 2025). Instead, Dynam-
icMPNN learns the joint conditional distribution of p(Y |X1, . . . , Xm) directly through autoregres-
sive sequence generation, where {X1, . . . , Xm} represent distinct protein conformations encoded
into a shared latent space; thus learning a sequence distribution that simultaneously satisfies multi-
ple structural constraints. We decompose this joint conditional probability using the autoregressive
factorization:

p(Y |X1 , ...,Xm) =
n∏

i=1

p(yi |yi−1 , ..., y1 ;X1 , ...,Xm) (1)

where each factor represents the probability of selecting residue yi given the sequence prefix and the
complete structural ensemble.

Overall architecture. DynamicMPNN independently encodes each of the functional states of a
protein, together with their binding partners, into a shared latent feature space (Fig. 1b). Embed-
dings of the chains-to-be-designed chains are then pooled across conformations to obtain a single
embedding from which a sequence is auto-regressively generated.

Our architecture is built upon gRNAde (Joshi et al., 2025), a multi-state GNN for RNA inverse
folding. For both encoder and decoder, we employ SE(3)-equivariant Geometric Vector Perceptron
(Jing et al., 2021) layers which maintain computational efficiency through edge sparsity (k-NN edges
with k=32). Within the GVP, the scalar features si ∈ Rk×f and vector features v⃗i ∈ Rk×f ′×3 for
each node i (Duval et al., 2024):

mi, m⃗i :=
∑
j∈Ni

MSG
(
(si, v⃗i) , (sj , v⃗j) ,eij

)
, (2)

s′i, v⃗
′
i := UPD

(
(si, v⃗i) , (mi, m⃗i)

)
, (3)

where MSG,UPD are Geometric Vector Perceptrons, a generalization of MLPs to take tuples of
scalar and vector features as input and apply O(3)-equivariant non-linear updates. The overall GNN
encoder is SO(3)-equivariant due to the use of reflection-sensitive input features (dihedral angles)
combined with O(3)-equivariant GVP-GNN layers. Both encoder and decoder are assigned 8 GVP
layers, following findings in Hsu et al. (2022b) (2022). See Appendix D for further details.

We present two different encoder architectures:

• DynamicMPNN: Independent encoder channels for each conformation, followed by Deep
Set pooling (Zaheer et al., 2017) - it is invariant to conformation order and does not add
extra parameters to our model. We note that while some more expressive pooling strategies
have been shown to provide marginal performance improvements, they usually come at a
great cost in efficiency (Joshi et al., 2025). Only node features are updated.

• DynamicMPNN + DSS: We implement cross-attention between the encoder channels after
each layer using a Deep Symmetric Set (DSS) (Maron et al., 2020) module, which allows
for richer inter-conformation interactions at the cost of increased computational complex-
ity. In the scatter/gather DSS strategy, node embeddings of all design chains are averaged,
passed through GVP layers, and added back to the residual features of each channel. Both
node and edge features are updated.
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Figure 2: Multi-state protein dataset. (a) Data processing pipeline used to construct sequence-
aligned structure pairs. (b) Distribution of the number of conformations per CoDNaS cluster. (c)
Distribution of the maximum Cα-RMSD between pairs of structures in each CoDNaS cluster.

A major distinction from gRNAde is that DynamicMPNN models multi-chain complexes and can
thus condition conformational changes on protein binders and oligomeric states. It may be possible
to use this principle to engineer controllable protein conformational switches by tuning the free
energy difference between folds and their binding interactions (Alberstein et al., 2022). However,
this also introduces challenges in dealing with nonidentical sequences and missing residues across
conformations, which we address as follows.

Alignment and pooling. To deal with nonidentical sequences and missing residues during training,
structure pairs are featurized and encoded independently, and subsequently aggregated based on
pairwise sequence alignments (i.e. only nongap residues are taken into account when pooling).

Multi-chain encoding and masking. Given that conformational shifts often depend on interac-
tions, DynamicMPNN encodes the chemical environment for each conformational state (currently
limited to proteins). During training, we expose the sequence information of binding partners in the
encoding, only masking chains with >70% sequence similarity to the ground truth sequence of the
chains of interest.

2.3 MULTI-STATE DESIGN EVALUATION

Following previous work Wang et al. (2023), we evaluate the refoldability of generated sequences
rather than sequence recovery (Appendix B). Existing refoldability methods compare target struc-
tures to single conformations predicted by folding models (e.g., AlphaFold2 Jumper et al. (2021)).
We argue that this approach is unsuitable for multi-state design since folding models typically pre-
dict one dominant state or interpolate between conformations rather than sampling the full confor-
mational ensemble Lane (2023); Chakravarty et al. (2024); Saldaño et al. (2022). Furthermore, as
mentioned in Section 2.1, recent DL-based protein folding models have been shown not to learn
protein folding physics, but rather to compress the protein space information while preserving lower
complexity motifs such as sequence segment pairing (Outeiral et al., 2022; Zhang et al., 2024;
Chakravarty et al., 2024).

We propose using a template-based Alphafold 3 (AF3) framework Abramson et al. (2024): for each
de novo sequence, we perform 2 AF3 runs, one with each conformational state given as template
to moderately bias the model towards the target conformation. The similarity - Cα-RMSD or TM-
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Figure 3: Sequence recovery performance across DynamicMPNN model variants and ProteinMPNN
baseline on multi-state protein benchmark (n = 96). Combined training approaches achieve highest
performance, with models that only incorporate multi or single state training data performing poorly.

score (Zhang & Skolnick, 2004) - between predicted structures and the templates, along with AF3
confidence scores, serve as a proxy for the likelihood that the designed sequence will fold into
the target structure. This framework naturally enables evaluation of refoldability across multiple
conformations.

Formally, for a protein with conformational states X = {X1, X2, . . . , Xm} and designed sequence
Y , we define the AF3 RMSD for each target conformation Xk as:

AF3template(Y,Xk) = RMSD(AF3(Y,Xk), Xk) (4)

where AF3template(Y,Xk) is the structure predicted by AlphaFold3 for sequence Y when a tem-
plate of Xk is provided. To account for the structural bias induced by the template, we define a
normalization strategy to contextualize observed deviations:

Decoy normalization (Decoy Norm): We provide AF3 structurally dissimilar decoy structures as
templates (TM-score < 0.4) using the same sequences designed and measure the resulting devia-
tions. This control assesses whether sequences fold specifically into their targets or may fold equally
well into arbitrary structures:

RMSDdecoy(Y,Xk;D) =
AF3template(Y,Xk)

AF3template(Y,D)
(5)

where D is a decoy that is structurally dissimilar to Xk. Additionally, we measure pLDDT confi-
dence scores to evaluate AF3 fold uncertainty. High RMSD with low pLDDT indicates poor tem-
plate matching, while low RMSD with high pLDDT suggests a successful design.

3 RESULTS AND DISCUSSION

Setup. We evaluate several training strategies and model architectures to assess the impact on multi-
state learning. Single Training models follow the standard single state inverse folding approach,
learning exclusively from single-state sequence structure pairs, similarly to ProteinMPNN Dauparas

6
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Table 1: Refoldability performance comparison of DynamicMPNN model variants on multi-state
protein design benchmark (n = 96). Raw metrics show absolute performance values, while normal-
ized metrics show performance relative to random decoy structures.

Raw Metrics Decoy-Normalized Metrics

Model Variant pLDDT ↑ RMSD (Å) ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑
Combined Training 79.28 (9.28) 4.37 (4.76) 0.774 (0.246) 1.513 (0.503) 0.200 (0.183) 7.396 (2.192)
Combined Training + DSS 78.87 (8.82) 4.38 (4.47) 0.769 (0.239) 1.532 (0.524) 0.200 (0.164) 7.384 (2.304)
Single Training 62.59 (16.84) 13.48 (13.02) 0.503 (0.350) 1.466 (0.537) 0.479 (0.339) 5.014 (3.068)

Table 2: Sequence recovery performance comparison across DynamicMPNN model variants and
ProteinMPNN baseline on multi-state protein design benchmark.

Model Variant Sequence Recovery (%) ↑
Combined Pretraining + Multi Finetuning 42.7 (8.8)
Single Pretraining + Multi Finetuning 42.1 (8.3)
Combined Pretraining + Multi Finetuning + DSS 41.9 (8.6)
Combined Training 41.0 (8.5)
Single Pretraining + Multi Finetuning + DSS 40.3 (8.2)
Combined Training + DSS 38.8 (7.8)
ProteinMPNN MSD* 38.0 (11.0)
Multi Training 28.7 (7.3)
Single Training 27.1 (9.4)
Single Training + DSS 26.2 (8.5)

Table 3: Performance comparison of DynamicMPNN variants and ProteinMPNN baseline on subset
(n = 61) of multi-state protein design benchmark. Standard deviations shown in parentheses. Note
that ProteinMPNN MSD’s handling of gap tokens and missing residues (i.e., X tokens) limited the
number of designs that could be refolded using AF3, necessitating separate comparison.

Raw Metrics Decoy-Normalized Metrics

Model pLDDT ↑ RMSD (Å) ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑
Combined Training 79.23 (7.79) 4.30 (3.50) 0.748 (0.233) 1.401 (0.411) 0.206 (0.170) 7.093 (2.034)
Combined Training + DSS 78.90 (7.68) 4.56 (3.52) 0.737 (0.225) 1.404 (0.425) 0.217 (0.170) 7.090 (2.384)
Single Training 63.10 (15.65) 13.21 (12.18) 0.477 (0.331) 1.364 (0.458) 0.508 (0.337) 4.527 (2.777)
ProteinMPNN MSD* 74.29 (11.37) 5.84 (4.56) 0.689 (0.244) 1.416 (0.389) 0.275 (0.219) 6.533 (2.325)

et al. (2022). In Combined Training, models are presented with both single and multi-state training
samples. We also explore training over multiple stages, where single-state data is provided during
pretraining to teach general principles of protein geometry from abundant single-state structures
before specializing on multi-state conformational pairs (Multi Finetuning). For each model, the
training checkpoint with the highest sequence recovery on the multi-state validation set was selected
for evaluation.

All DynamicMPNN versions were trained on either 8 A100-80GB or 8 H100-80GB GPUs using a
batch size of 32 and Adam (Kingma, 2014) optimizer with learning rate 10−3. Training for each
stage was run until the respective validation sequence recovery (on single-state validation dataset
for single training runs and multi-state for multi-state runs) plateaued or began to decline, typically
after 20-50 epochs. Then, DynamicMPNN and ProteinMPNN (using Multi-state Design inference
strategy) were used to sample 16 sequences for the benchmark test set of 96 paired conformations,
which were each run through the AF3 pipeline separately against both target states.

Refoldability was evaluated for designed sequences of the model checkpoints with the highest se-
quence recovery scores by predicting the structure using AF3 with target and decoy structures as
templates. Aggregated evaluation metrics were computed by averaging across all 16 sequences and
both states.
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DynamicMPNN outperforms existing benchmarks across multiple evaluation metrics. Our
best-performing model achieves substantial improvements over baseline methods: a 25% reduction
in decoy-normalized RMSD (Tab. 3) and a 12% improvement in sequence recovery (Fig.3; Tab.
2) compared to ProteinMPNN Multi-State Design (MSD). This performance gain is particularly
noteworthy considering that ProteinMPNN’s training dataset contains proteins within 30% sequence
similarity clusters of 91 out of 96 benchmark proteins, making our improvement on this established
baseline significant. We leave the retraining of ProteinMPNN on a rigorous train-test split for future
work.

However, a more rigorous comparison involves our single-state trained model, which adheres to
the same training-test split and thus eliminates potential data leakage concerns. Against this base-
line, DynamicMPNN demonstrates substantial improvements across all evaluation metrics, provid-
ing clear evidence that explicit multi-state training is superior to single-state approaches for multi-
conformational protein design tasks (Tab. 2). Our single-state trained model performs considerably
worse than both DynamicMPNN variants and ProteinMPNN MSD, achieving only 63.10 pLDDT
compared to 79.23 for our best model, and showing nearly three-fold higher RMSD values (13.21 Å
vs 4.30 Å; Tab. 1). Some likely reasons to explain the under performance of our model checkpoint
trained exclusively on single-state data is the aforementioned unfair train splitting of ProteinMPNN.
Furthermore, the aggregation of different protein embeddings in the latent space prior to decoding
likely creates incoherent latent representations that cannot be properly interpreted by the decoder
which has only seen single-state proteins in training.

While DynamicMPNN’s absolute AF3 RMSD values fall outside typical thresholds used for design
screening, these results should be contextualized within our deliberately challenging benchmark data
set. Our test set specifically comprises proteins exhibiting the largest documented conformational
changes in the known proteome, representing an extrapolation task that extends beyond the typically
modest conformational variations observed in most PDB structures and consequently in our training
data. The high RMSD values reflect the inherent difficulty of designing sequences that must satisfy
multiple different structural constraints simultaneously.

Combined training strategies prove most effective. Models trained exclusively on multi-state
data (Multi Training) show poor performance across all metrics, highlighting the importance of
leveraging abundant single-state structural data to cover a larger portion of the protein space during
training. Conversely, models trained only on single-state data (Single Training) perform poorly
on multi-state design as they are unable to create and decode a meaningful latent representation
of the conformational changes. The Combined Training approach, which exposes models to both
single-state and multi-state examples during training, achieves the optimal balance and consistently
outperforms other training strategies.

The Deep Symmetric Set (DSS, 5M parameters) architecture shows little to no improvement across
metrics over the simple pooling strategy (4.2 mil. parameters), suggesting that communication be-
tween conformational channels before pooling is not necessary for the model to learn meaningful
multi-state embeddings and fit the data. This is in agreement with the findings of Hsu et al. (2022b),
who show that even on single state inverse folding when a 1M parameter model outperforms a model
20 times larger when trained on CATH.

4 CONCLUSION

We present DynamicMPNN, the first explicit multi-state inverse folding model, achieving up to 25%
improvement over ProteinMPNN on our multi-state benchmark. By jointly learning across con-
formational ensembles rather than aggregating single-state predictions, DynamicMPNN captures
sequence constraints required for multiple functional conformations. This opens possibilities for
engineering synthetic bioswitches, allosteric regulators, and molecular machines. It is unclear if the
presented one-size-fits-all approach to multi-state design will be effective experimentally, or if spe-
cialized models for different classes of conformational changes depending on their thermodynamic
complexity will be beneficial.
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B SUPPLEMENTARY RESULTS

B.1 DYNAMICMPNN PRELIMINARY DESIGNS

Figure 4: Switch Arc protein case study. (a, b) ProteinMPNN and (c,d) DynamicMPNN best design
structure prediction (pink and salmon, respectively) against both Arc states from PDB ID: 1BDT
and 1QTG respectively (grey). The DynamicMPNN design recapitulates the beta sheet fold (c), but
the ProteinMPNN design does not (a).

C DATASET DETAILS

To construct the dataset, we obtained 46,033 Multiple Sequence Alignment (MSA) clusters at
≥ 95% local sequence similarity from the latest version of CoDNaS (v2025) (Monzon et al., 2016),
including NMR model structures. Importantly, the CoDNaS dataset prevents potential errors created
by mixing different homologues in the same cluster by enforcing the same UniProt ID for all custer
members. All available conformations of a protein are included - as different experimental condi-
tions and sequence variations can reveal distinct thermodynamic states of the same protein (Best
et al., 2006). While clusters contain varying numbers of conformations (Fig. 2b) we constructed
our dataset using only pairs of chains from one or two PDB entries that have the largest RMSD
from each cluster (Fig. 2c). Chosen pairs represent the most distinct conformational states. We will
include conformational information of the whole cluster in future work.

While other inverse folding models (Hsu et al., 2022b) saw improved performance when trained on
orders of magnitude of more protein structures from AFDB, previous studies have found that the
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majority of high-confidence structures in AFDB map to known CATH superfamilies (Bordin et al.,
2023), and that AlphaFold struggles in predicting alternative states (Chakravarty et al., 2024). We
therefore decided against including AFDB structures in our training set.

D MODEL DETAILS

D.1 FEATURISATION SCHEME

We use a similar featurisation scheme as in (Jamasb et al., 2024). Node scalar features
are transformer-like positional encoding in a 16-dimensional array; backbone dihedral angles
ϕ, ψ, ω ∈ R6 ; the virtual torsion and virtual bond angle κ, α ∈ R4 . Node vector features are po-
sition vectors of Cα, x̃i ∈ R3 . Edge scalar features are established via k-NN (k=16) and the edge
length expressed in 32 Radial Basis Functions, eRBF ∈ R32 , as well as the length of the edge itself.
Edge vector features are edge directional unit vectors for both directions ˜veij = x̃i − x̃j . To further
prevent overfitting on crystallisation artifacts, random Gaussian noise (x̄ = 0, σ = 0.1Å) was added
to the coordinates (Dauparas et al., 2022).

D.2 MULTI-STATE GNN

DynamicMPNN processes one or multiple protein backbone graphs via a multi-state GNN encoder
(Joshi et al., 2025). Overall, DynamicMPNN’s encoder is equivariant to 3D roto-translation of
coordinates as well as ordering of the states in its input. Encoding is followed by pooling node
features across states, which is invariant to the ordering of the states, and autoregressive sequence
decoding.

When representing conformational ensembles as a multi-graph, each node feature tensor contains
three axes: (#nodes, #conformations, feature channels). Multi-state GNN’s encode multi-graphs
by performing message passing on the multi-graph adjacency to independently process each con-
former, while maintaining permutation equivariance of the updated feature tensors along both the
first (#nodes) and second (#conformations) axes.

D.3 GEOMETRIC VECTOR PERCEPTRON LAYERS

Geometric Vector Perceptrons (GVPs) (Jing et al., 2021) are a generalization of MLPs to take tuples
of scalar and vector features as input and apply O(3)-equivariant non-linear updates. GVP GNN
layers process scalar and vector features on separate channels to maintain equivariance. The node
scalars si ∈ Rk×m, node vectors ṽi ∈ Rk×m′×3, and edge scalars eij and vectors ẽij communicate
through a message passing operation:

mi, m̃i :=
∑
j∈Ni

GVP ((si, ṽi), (sj , ṽj), eij , ẽij) , (Message & aggregate steps) (6)

s′i, ṽ′
i := GVP ((si, ṽi), (mi, m̃i)) . (Update step) (7)

The overall GNN encoder is SO(3)-equivariant due to the use of reflection-sensitive input features
(dihedral angles) combined with O(3)-equivariant GVP-GNN layers.

D.4 CONFORMATION ORDER-INVARIANT POOLING

After using message passing layers that are conformation order-equivariant, we add a conformation
order-invariant head, which performs average pooling across the conformation channel of the scalar
and vector feature tensors, similar to Joshi et al. (2025) (2025): S ∈ Rn×k×m and Ṽ ∈ Rn×k×m′×3

to S ∈ Rn×m and Ṽ ∈ Rn×m′×3 , where n is the sequence length, k is the number of backbones, m
is the number of scalar features, and m ′ is the number of vector features. The only pooling strategy
used in this work is the pooling of the maximum RMSD pair of chains - therefore k = 2 - although
more pooling strategies for homo-oligomers can be used, such as equal averaging of all chains to be
inverse folded in the selected PDB entries.
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