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ABSTRACT

Structural biology has long been dominated by the one sequence, one struc-
ture, one function paradigm, yet many critical biological processes—from en-
zyme catalysis to membrane transport—depend on proteins that adopt multiple
conformational states. Existing multi-state design approaches rely on post-hoc
aggregation of single-state predictions, achieving poor experimental success rates
compared to single-state design. We introduce DynamicMPNN, an inverse fold-
ing model explicitly trained to generate sequences compatible with multiple con-
formations through joint learning across conformational ensembles. Trained on
46,033 conformational pairs covering 75% of CATH superfamilies and evaluated
using Alphafold 3, DynamicMPNN outperforms ProteinMPNN by up to 25% on
decoy-normalized RMSD and by 12% on sequence recovery across our challeng-
ing multi-state protein benchmark.

1 INTRODUCTION

A commonly derived assumption from Anfinsen’s experiment is that proteins adopt only one native
3D structure, leading to the “one sequence, one structure, one function” canon. This view has
been indirectly reinforced by the predominant use of X-Ray crystallography in experimental protein
structure determination, which requires that proteins form a homogenous, diffractible crystal to be
characterised (Dishman & Volkman, 2018). The large collection of static protein structures in the
PDB has enabled the development of high-accuracy machine learning models for tasks such as
structure prediction (Jumper et al., 2021; Kryshtafovych et al., 2019) and inverse folding (Dauparas
et al., 2022; Hsu et al., 2022). Amongst contemporary inverse folding models, ProteinMPNN has
been particularly widely adopted in applied protein design projects due to its low inference costs and
robust experimental success rates (Dauparas et al., 2022; Watson et al., 2023; Goverde et al., 2024),
outperforming traditional physics-based design methods on both fronts (Liu & Kuhlman, 2006).

Although direct experimental characterisation of protein dynamics remains a challenge, the con-
formational diversity of proteins underlies crucial biological functions such as enzyme catalysis,
protein-protein interactions, allostery, and human disease (Monzon et al., 2016). In applied protein
design, bio-switches - proteins that switch between two structural states - are of particular impor-
tance, with key applications in engineering artificial bio-motors, signalling pathways, biosensors,
or drug delivery systems (Stein & Alexandrov, 2015; Praetorius et al., 2023). While most known
switches undergo rearrangements in the context of a single fold (Ambroggio & Kuhlman, 2006a),
the class of metamorphic proteins undergo changes in both their secondary structure and fold (Fig.
1a) and have been predicted to represent up to 4% of the PDB chains (Porter & Looger, 2018).
These proteins typically adopt two main functional states (Dishman & Volkman, 2018) and a finite
number of conformations (see Discussion). Beyond the world of switches, other dynamic proteins
are characterised by continuous conformational landscapes (e.g. intrinsically disordered proteins
(Tompa & Fuxreiter, 2008)).

Multi-state protein design was first achieved through rational design and physics-based methods
such as RosettaDesign (Liu & Kuhlman, 2006; Vucinic et al., 2020; Karimi & Shen, 2018). Previous
campaigns leveraging these methods have attempted to design metamorphic metal-binding peptides
(Ambroggio & Kuhlman, 2006b; Cerasoli et al., 2005), closely related sequences that adopt di-
verging folds (Wei et al., 2020), and hinge proteins with binder-regulated thermodynamic equilibria,
allowing the relative populations of different structural states to be modulated by exogenous proteins
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Figure 1: DynamicMPNN for multi-state protein design. (a) Examples of proteins with multiple
conformational states: transporters in closed and open states (PDB: 6NC7, 6NC9), metamorphic
protein with alternative folds (PDB: 4QHH, 4QHF) and hinges showing domain movement (PDB:
5D0W, 1CFC). (b) Schematic of DynamicMPNN, an inverse folding model trained to generate pro-
tein sequences with multiple conformational states. Conformations are encoded with their respective
chemical environments (i.e. interaction partners shown in gray). Solid lines show the flow of in-
formation in the model, while dashed lines show the evaluation pipeline using AlphaFold 3 (AF3);
employing target structures as templates during inference and measuring the deviations between
predicted and target structures, with decoy structures serving as negative controls.

(Zhang et al., 2022b; Quijano-Rubio et al., 2021). More recently, Praetorius et al. (2023) leveraged
ProteinMPNN Multi-state Design (ProteinMPNN-MSD) (Dauparas et al., 2022) to link independent
backbone states via step-wise logit averaging with shared autoregressive context. Multi-state ESM-
IF (Hsu et al., 2022) employs an analogous strategy, differing primarily in aggregating probabilities
(geometric mean) rather than logits (see Appendix A.3). ProteinGenerator (Lisanza et al., 2024)
extends this principle to sequence diffusion, averaging logits across distinct structural conditioning
inputs at each denoising step.

Despite these advances, current multi-state design pipelines have shown limited success. In Hsu
et al. (2022), sequences designed with the dual-state strategy only showed marginally lower per-
plexity compared to sequences inverse-folded from one of the states and refoldability was not ex-
plored. Praetorius et al. (2023) used ProteinMPNN-MSD to design a de novo hinge protein with
one sequence binding to a peptide: From an initial pool of over 2M computational designs condi-
tioned on 28K similar de novo backbone pairs, a rigorous set of computational filters yielded only
9K sequences as likely candidates; experimental validation of a few sampled candidates showed a
high success rate (Appendix A.3). Likewise, the authors of ProteinGenerator Lisanza et al. (2024)
reported a significantly lower in silico design success rate of 0.05% for their multi-state backbone
design task compared to rates of 2-10% observed for various single-state sequence design objec-
tives using their framework (Lisanza et al., 2024). These observations - combined with the relative
scarcity of published data on ML-driven multi-state de novo design campaigns - suggest that cur-
rent ML methods for multi-state protein design have been significantly less successful than their
single-state counterparts. We propose that this gap can be attributed to limited multi-conformational
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datasets, weak benchmarks, and the poor performance of folding models in predicting alternative
states (Chakravarty et al., 2024), which adversely affects their efficacy as self-consistency filters in
protein design workflows.

Our contributions. This paper introduces DynamicMPNN (Fig. 1b), a novel geometric deep
learning-based pipeline for multi-state protein sequence design.

• DynamicMPNN is the first explicit multi-state inverse folding model for protein design. To
train DynamicMPNN, we create a new ML-ready dataset of proteins with multiple con-
formations using the PDB and CoDNaS (Monzon et al., 2016) databases, and evaluate the
method on 96 biologically relevant metamorphic, hinge, and transporter proteins.

• We introduce a novel data processing pipeline and architecture able to handle sequence-
aligned structural ensembles with heterogeneous sequences, enabling us to leverage the
conformational diversity across proteins with high sequence similarity.

• We propose a multi-state self-consistency metric and benchmark based on Alphafold3
(AF3) (Abramson et al., 2024b) using target structures as templates.

• DynamicMPNN improves performance over ProteinMPNN (Dauparas et al., 2022) on AF3
by up to 25% on RMSD and 8% on TM-score decoy normalized self-consistency values.

2 THE DYNAMICMPNN PIPELINE

2.1 PROTEIN MULTI-CONFORMATIONAL DATASET

While over 900K individual protein chains (sequence-structure pairs) are available in the PDB,
multi-conformational data is far more scarce with only roughly 12,000 NMR-derived protein en-
sembles covering just 21% of CATH superfamilies. To overcome this limitation, we exploit the
sequence redundancy across the PDB to create build two multi-conformational datasets:

• CoDNaS We use the CoDNaS dataset (Monzon et al., 2016), which clusters PDB chains
at ≥95% sequence similarity with unique UniProt IDs per cluster to prevent homologue
leakage, yielding 46,033 clusters with varying numbers of conformations and covering
75% of CATH superfamilies (Fig. 2a,b).

• PDB80 To capture greater conformational diversity within training ensembles, we also
employ ≥80% sequence similarity clusters available from the Protein Data Bank (Berman
et al., 2000), yielding 46,924 clusters with at least two conformations.

Training-time data sampling. From CoDNaS, we select the maximum-RMSD chain pair from each
cluster to maximize conformational signal and reduce alignment artifacts1 (Fig. 2a). For PDB80,
pairs are sampled with probability proportional to their structural dissimilarity (1 − TMscore), bi-
asing training toward larger conformational changes (Appendix A.4). We also explore extending
the latter approach to 3 and 5 states (Section 2.2.2), though most known multi-state proteins switch
between just two functional conformations (Dishman & Volkman, 2018; Leaver-Fay et al., 2011; Al-
berstein et al., 2022), and validating designs beyond two states remains experimentally challenging
(Niazi, 2025). While our architecture supports arbitrary numbers of states, for the aforementioned
reasons, we focus primarily on two-state design. Molecular dynamics datasets were not used due
to limited sequence variability and scarcity of trajectories capturing large conformational changes
(Vander Meersche et al., 2023; Mirarchi et al., 2024); disordered protein simulations (Tesei et al.,
2024) were similarly excluded given their continuous conformational landscapes and low structural
signal-to-noise ratio compared to globular multi-state proteins (Tompa & Fuxreiter, 2008).

Dataset splitting. We curate a benchmark composed of four previous studies of proteins with large
2-state conformational changes: (1) 92 metamorphic proteins (Porter & Looger, 2018), (2) 91 apo-
holo proteins (Saldaño et al., 2022), (3) the OC23 and OC85 open-closed datasets (Kalakoti &
Wallner, 2025), and (4) 20 transporter proteins (Kalakoti & Wallner, 2025). The proteins with the
highest inter-state RMSD were assigned to the test set (96 samples), while the rest were assigned to
the validation set (100 samples). Training clusters were filtered to exclude any with TM-score> 0.4

1Note that aligning more sequences introduces additional gap tokens (i.e. reducing sequence-structure over-
lap) diluting the conformational signal.
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(Zhang & Skolnick, 2004; Xu & Zhang, 2010) and > 30% sequence similarity to test/validation
structures, preventing structural similarity leakage and yielding a final training set of 44,243 con-
former pairs. To evaluate designs beyond two states, we additionally curate a set of six proteins with
well-characterized intermediate or flexible conformations: MBP (Wang et al., 2012), α-hemolysin
(Chatterjee et al., 2025), and Selecase (López-Pelegrı́n et al., 2013) (stable intermediates; 3-states),
and Calmodulin, α-synuclein (Chen et al., 2021), and Aβ-42 (flexible/disordered; 5-states).

We additionally curate a set of single-state sequence-structure pairs from the 30% sequence sim-
ilarity clusters not represented in our multi-conformational training dataset (n = 27, 394). This
augmentation strategy maximizes coverage of protein fold space while preserving the multi-
conformational learning signal. See Appendix A.4 for further details on dataset composition.

2.2 DYNAMICMPNN FOR MULTI-STATE INVERSE FOLDING

Single-state inverse folding methods seek to model the conditional distribution p(Y |X) where
X ∈ Rn×3×3 represents a protein backbone with n residues, and Y = (y1, . . . , yn) is the amino
acid sequence. Extensions of these methods to multi-state design have thus far been limited to post-
hoc/decoder-level aggregation (A.3) of independent single-state predictions. We believe such meth-
ods favour logits highly biased towards one conformation, whose average over the states is higher
than the one of moderately valued logits across both states (Joshi et al., 2025). Instead, Dynam-
icMPNN learns the joint conditional distribution of p(Y |X1, . . . , Xm) directly through autoregres-
sive sequence generation, where {X1, . . . , Xm} represent distinct protein conformations encoded
into a shared latent space; thus learning a sequence distribution that simultaneously satisfies multi-
ple structural constraints. We decompose this joint conditional probability using the autoregressive
factorization:

p(Y |X1 , ...,Xm) =

n∏
i=1

p(yi |yi−1 , ..., y1 ;X1 , ...,Xm) (1)

where each factor represents the probability of selecting residue yi given the sequence prefix and the
complete structural ensemble.

Overall architecture. DynamicMPNN independently encodes each of the functional states of a
protein, together with their binding partners, into a shared latent feature space (Fig. 1b). Embeddings
of the chains-to-be-designed are then pooled across conformations to obtain a single embedding
from which a sequence is auto-regressively generated.

Our architecture builds upon gRNAde (Joshi et al., 2025), a multi-state GNN model for RNA inverse
folding. For both encoder and decoder, we employ SE(3)-equivariant Geometric Vector Perceptron
(Jing et al., 2021) layers which maintain computational efficiency through edge sparsity (k-NN
edges with k=32). Within the GVP, scalar features si ∈ Rk×f and vector features v⃗i ∈ Rk×f ′×3

are defined for each node i (Duval et al., 2024):

mi, m⃗i :=
∑
j∈Ni

MSG
(
(si, v⃗i) , (sj , v⃗j) ,eij

)
(2)

s′i, v⃗
′
i := UPD

(
(si, v⃗i) , (mi, m⃗i)

)
(3)

where MSG,UPD are Geometric Vector Perceptrons - a generalization of Multi Layer Perceptrons
that takes as input and updates scalar and vector features along separate channels in order to achieve
O(3)-equivariant message passing. The overall GNN encoder is SO(3)-equivariant due to the use
of reflection-sensitive input features (dihedral angles) combined with O(3)-equivariant GVP-GNN
layers Joshi et al. (2025). Both the encoder and decoder are assigned 8 GVP-GNN layers, following
findings in Hsu et al. (2022) (2022). See Appendix A.5 for further details.

We present two different encoder architectures:

• DynamicMPNN uses independent encoder channels for each conformation, followed by
Deep Set pooling (Zaheer et al., 2017) - it is invariant to conformation order and does
not add extra parameters to the model. We note that while some more expressive pooling
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strategies have been shown to provide marginal performance improvements, they usually
come at a great cost in efficiency (Joshi et al., 2025). Only node features are updated.

• DynamicMPNN + DSS implements cross-attention between the encoder channels after
each layer using a Deep Symmetric Set (DSS) (Maron et al., 2020) module, which allows
for richer inter-conformation interactions at the cost of increased computational cost. In
the scatter/gather DSS strategy, node embeddings of all design chains are averaged, passed
through GVP layers, and added back to features of each channel through a residual con-
nection. Both node and edge features are updated.

Heterogeneous sequence processing. A key architectural contribution is our handling of non-
identical sequences across conformations, necessary for exploiting the full conformational diversity
in the PDB. Aligning non-identical sequences introduces gap tokens, and X-ray structures often con-
tain unresolved residues; together resulting in ensembles of heterogeneous composition (i.e. varying
lengths, missing residues, alignment gaps). We address this with the following protocol: (1) cluster
chain members are sequence-aligned prior to featurization; (2) paired PDB complexes are featurized
and encoded independently; (3) gap positions are masked and excluded from message passing; (4)
during pooling, embeddings from all cluster members are extracted, stacked, and pooled, with gap-
node embeddings zeroed out. This preserves all available structural information while incorporating
the context of the surrounding chemical environment (i.e. binding partners). To prevent leakage,
during training we mask sequence information only for chains with > 70% similarity to the ground
truth.

2.2.1 MULTI-CHAIN STRATEGY

Unlike previous work (Joshi et al., 2025), DynamicMPNN processes full PDB entries containing
sampled cluster chains, enabling the model to condition conformational changes on binding part-
ners and oligomeric states. This opens possibilities for engineering controllable conformational
switches by tuning free energy differences between folds and their binding interactions (Alberstein
et al., 2022). Note that while explicitly a 2-state approach, multi-chain training implicitly exposes
the model to additional states when PDB entries contain multiple cluster conformations (Fig. 6). As
discussed in Section 2.1, most multi-state proteins switch between only two conformations (Dish-
man & Volkman, 2018; Leaver-Fay et al., 2011; Alberstein et al., 2022), making 2-state design the
most biologically relevant regime.

2.2.2 SINGLE-CHAIN STRATEGY

To efficiently run ablations for k > 2 states—training time and memory scale linearly with the num-
ber of encoded states—we implement a single-chain strategy encoding only cluster chains without
binding partners. Single-chain training is performed on PDB80, which provides sufficient cluster
diversity for sampling k ∈ {2, 3, 5} states via TM-score weighted sampling. We evaluate these
models on 6 proteins with well-characterized multi-state behavior (Tables 6, 7) and directly com-
pare k=2 single-chain versus multi-chain performance (Table 3). Extending multi-chain training to
k > 2 states is straightforward and left for future work.

2.3 MULTI-STATE DESIGN EVALUATION

Given the high degeneracy of the sequence-to-structure mapping, where divergent sequences can
adopt identical folds (Rost, 1999; Sander & Schneider, 1991), sequence recovery is often an insuf-
ficient metric for design success. Therefore, following previous work Wang et al. (2023), we also
evaluate the refoldability of generated sequences (Appendix A.2). Existing refoldability methods
compare target structures to single conformations predicted by folding models such as AlphaFold2
(Jumper et al., 2021). We argue that this unconstrained approach is unsuitable for multi-state de-
sign since folding models typically predict one dominant state or an unphysical interpolation, failing
to sample the full conformational ensemble Lane (2023); Chakravarty et al. (2024); Saldaño et al.
(2022).

Template-based Alphafold 3 refoldability. To address these sampling limitations, we propose a
template-based AlphaFold 3 (AF3) framework Abramson et al. (2024b) to explicitly verify struc-
tural compatibility - we adapt the findings of Roney & Ovchinnikov (2022) to our multi-state setting
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Figure 2: Multi-state protein dataset. (a) Data processing pipeline used to construct sequence-
aligned structure pairs. (b) Distribution of the maximum Cα-RMSD between pairs of structures in
each CoDNaS cluster. (c) Distribution of the number of conformations per CoDNaS cluster.

(see Appendix A.6). While unconstrained DL models may fail to spontaneously find alternative
states, we leverage AF3’s template mechanism to moderately bias the model towards specific target
conformations. For each de novo sequence, we perform 2 AF3 runs, one with each conformational
state provided as template, shifting the evaluation from structural prediction to compatibility as-
sessment. The similarity - Cα-RMSD or TM-score (Zhang & Skolnick, 2004) - between predicted
structures and the ground-truth templates, along with AF3 confidence scores, serve as a proxy for
the likelihood that the designed sequence can adopt the target states.

Formally, for a protein with conformational states X = {X1, X2, . . . , Xm} and designed sequence
Y , we define the AF3 RMSD for each target conformation Xk as:

AF3template(Y,Xk) = RMSD(AF3(Y,Xk), Xk) (4)
where AF3template(Y,Xk) is the structure predicted by AlphaFold3 for sequence Y when a tem-
plate of Xk is provided. To account for the structural bias induced by the template, we define a
normalization strategy to contextualize observed deviations:

Decoy normalization (Decoy Norm): We provide AF3 structurally dissimilar decoy structures as
templates (TM-score < 0.4) using the same sequences designed and measure the resulting devia-
tions. This control assesses whether sequences fold specifically into their targets or may fold equally
well into arbitrary structures:

RMSDdecoy(Y,Xk;D) =
AF3template(Y,Xk)

AF3template(Y,D)
(5)

where D is a decoy that is structurally dissimilar to Xk. Additionally, we measure pLDDT confi-
dence scores to evaluate AF3 fold uncertainty. High RMSD with low pLDDT indicates poor tem-
plate matching, while low RMSD with high pLDDT suggests a successful design. The same decoy
normalization strategy is also applied to TM-score and pLDDT metrics.

Template-free baseline. To quantify the impact of template conditioning, we additionally evalu-
ate refoldability without structural guidance by omitting the template input in AF3 (i.e. standard
AF3 pipeline). Comparing these predictions against both target conformations reveals: (1) whether
templates overly bias predictions toward target conformations, and (2) whether AF3 can recover
alternative states or collapses to a single dominant structure.

Generative ensemble evaluation. As an orthogonal evaluation approach, we employ BioEmu
(Lewis et al., 2025), a generative model trained to sample from protein conformational equilib-
rium distributions. BioEmu represents a class of emerging generative models specifically trained
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to approximate conformational ensembles. We selected BioEmu over alternative ensemble gener-
ators such as AlphaFlow (Jing et al., 2024) or PepFlow (Abdin & Kim, 2023) as it represents the
current state-of-the-art (Jing et al., 2025), trained on orders of magnitude more data than competing
methods, including molecular dynamics equilibrium distributions and conformational clusters from
AFDB (Varadi et al., 2024). However, current ensemble generation methods like BioEmu and Al-
phaFlow are restricted to single protein chains, precluding evaluation of refoldability in the presence
of binding partners that often drive conformational changes and likely underestimating our designs’
true multi-state capacity. For each designed sequence, we sample 50 structures (Fig. 5) and measure
the maximum TM-score and minimum RMSD achieved against each target conformation.

Table 1: Refoldability performance comparison of DynamicMPNN model variants on multi-state
protein design benchmark (n = 96). Raw metrics show absolute performance values, while normal-
ized metrics show performance relative to random decoy structures.

Raw Metrics Decoy-Normalized Metrics

Model Variant pLDDT ↑ RMSD (Å) ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑
Combined Training 82.08 (7.62) 2.35 (2.51) 0.870 (0.162) 1.354 (0.410) 0.124 (0.130) 6.684 (1.485)
Combined Training + DSS 81.61 (7.23) 2.56 (2.36) 0.862 (0.158) 1.398 (0.442) 0.131 (0.125) 6.627 (1.514)
Single Training 68.35 (15.46) 8.16 (9.96) 0.652 (0.322) 1.383 (0.467) 0.348 (0.336) 4.830 (2.285)
Sampled Pair Training 82.26 (7.61) 2.29 (1.92) 0.872 (0.161) 1.470 (0.466) 0.125 (0.129) 6.630 (1.506)
Sampled Pair Training + DSS 81.88 (7.85) 2.45 (2.33) 0.865 (0.158) 1.436 (0.470) 0.127 (0.121) 6.668 (1.466)

Table 2: Refoldability performance comparison of DynamicMPNN model variants on template-less
multi-state protein design benchmark (n = 96).

Template-less both states Template-less worst state With Template worst state

Model Variant pLDDT ↑ RMSD (Å) ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑
Combined Training 81.87 (7.99) 4.38 (4.05) 0.78 (0.20) 79.72 (9.89) 6.18 (5.92) 0.69 (0.27) 80.43 (9.50) 3.05 (3.41) 0.82 (0.22)
Single Training 70.11 (12.41) 10.87 (10.48) 0.54 (0.31) 67.65 (13.67) 12.56 (11.30) 0.47 (0.32) 66.49 (16.09) 9.34 (10.52) 0.59 (0.35)

3 RESULTS AND DISCUSSION

Table 3: Sequence recovery performance comparison across DynamicMPNN model variants and
ProteinMPNN baseline on multi-state protein design benchmark.

Model Variant Sequence Recovery (%) ↑
Combined Pretraining + Multi Finetuning 42.7 (8.8)
Single Pretraining + Multi Finetuning 42.1 (8.3)
Combined Pretraining + Multi Finetuning + DSS 41.9 (8.6)
Combined Training 41.0 (8.5)
Single Pretraining + Multi Finetuning + DSS 40.3 (8.2)
Combined Training + DSS 38.8 (7.8)
ProteinMPNN MSD* 38.0 (11.0)
Single chain 2-state 37.35 (9.04)
Single Training 27.1 (9.4)
Single Training + DSS 26.2 (8.5)

Setup. We evaluate how exposure to multi-state training data affects design performance. Our pri-
mary comparison is between Single Training (single-state pairs only, analogous to standard inverse-
folding models) and Combined Training (mixing single-state and multi-state samples). We addi-
tionally explore multi-staged training where single-state pretraining precedes multi-state finetuning
(Multi-Finetuning.

We train on two multi-conformational datasets and explore several architectural variations:

• CoDNaS: Multi-chain models encoding full PDB complexes including binding partners.
Maximum RMSD conformer pairs are pre-selected per cluster prior to training.
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Table 4: Performance comparison of DynamicMPNN variants and ProteinMPNN baseline on subset
(n = 61) of multi-state protein design benchmark. Standard deviations shown in parentheses. Note
that ProteinMPNN MSD’s handling of gap tokens and missing residues (i.e., X tokens) limited the
number of designs that could be refolded using AF3, necessitating separate comparison.

Raw Metrics Decoy-Normalized Metrics

Model pLDDT ↑ RMSD (Å) ↓ TM-score ↑ pLDDT ↑ RMSD ↓ TM-score ↑
Combined Training 82.22 (6.76) 2.27 (1.59) 0.849 (0.166) 1.266 (0.332) 0.129 (0.109) 6.482 (1.340)
Combined Training + DSS 82.00 (6.66) 2.65 (2.40) 0.836 (0.176) 1.286 (0.336) 0.144 (0.126) 6.513 (1.586)
Single Training 69.35 (14.45) 8.00 (9.44) 0.623 (0.324) 1.286 (0.396) 0.376 (0.338) 4.455 (2.186)
Sampled Pair Training 81.89 (7.36) 2.28 (1.75) 0.850 (0.179) 1.370 (0.405) 0.134 (0.127) 6.449 (1.521)
Sampled Pair Training + DSS 82.45 (6.96) 2.58 (2.47) 0.839 (0.177) 1.341 (0.431) 0.139 (0.120) 6.529 (1.570)
ProteinMPNN MSD* 79.55 (9.75) 3.31 (2.88) 0.806 (0.207) 1.326 (0.348) 0.187 (0.191) 6.054 (1.771)

(a) Combined Training vs Protein-
MPNN MSD (n=61)

(b) Sampled Pair Training vs Pro-
teinMPNN MSD (n=61)

Figure 3: Comparison between 2 DynamicMPNN versions and ProteinMPNN MSD on protein
class-stratified TM-score AF3 refoldability. The classes are Fold-switches (yellow), Hinge proteins
(blue; combining the APO-HOLO, OC23, and OC85 datasets), and Transporters (purple).

Table 5: BioEmu refoldability comparison of DynamicMPNN model variants on test set (n = 96).
Standard deviations in parentheses.

Performance Metrics Success Rate (%)

Model Variant TM-score ↑ RMSD (Å) ↓ TMS0.7 ↑ TMS0.8 ↑ TMS0.9 ↑
Combined Training 0.623 (0.230) 5.66 (4.82) 37.5 22.9 11.5
Single Training 0.394 (0.252) 13.28 (10.27) 17.7 7.3 3.1

Table 6: Comparison between 2-state and 3-state single chain models with average pooling or DSS
for 3 curated 3-state proteins.

Sequence Recovery (%) ↑ TM-score ↑
Protein 2-state 2-state + DSS 3-state 3-state + DSS 2-state 2-state + DSS 3-state 3-state + DSS
MPD 50.3 (1.01) 62.3 (1.03) 51.3 (0.98) 56.1 (1.07) 0.93 (0.04) 0.90 (0.04) 0.88 (0.02) 0.89 (0.04)
Selecase 42.9 (2.81) 51.3 (2.21) 45.4 (1.22) 45.0 (1.90) 0.77 (0.03) 0.81 (0.01) 0.81 (0.03) 0.81 (0.01)
α-hemolysin 32.3 (0.87) 31.4 (1.24) 33.0 (1.10) 32.4 (0.92) 0.93 (0.03) 0.91 (0.03) 0.94 (0.02) 0.91 (0.03)

• PDB80 (Sampled Pair Training): Multi-chain models with TM-score weighted sampling
to dynamically select conformer pairs during training, capturing greater conformational
diversity.

• Single-chain ablations: To efficiently ablate designs beyond two states, we train single-
chain models (encoding only target chains without binding partners) on PDB80, dynami-
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Table 7: Comparison between 2-state and 5-state single chain models with average pooling or DSS
for 3 curated highly flexible proteins.

Sequence Recovery (%) ↑ TM-score ↑
Protein 2-state 2-state + DSS 5-state 5-state + DSS 2-state 2-state + DSS 5-state 5-state + DSS
Aβ-42 27.8 (2.25) 9.8 (1.21) 17.4 (2.00) 16.8 (1.74) 0.08 (0.05) 0.16 (0.01) 0.08 (0.04) 0.07 (0.05)
α-synuclein 15.7 (1.20) 15.8 (1.47) 17.6 (2.80) 24.2 (1.71) 0.07 (0.02) 0.10 (0.03) 0.15 (0.01) 0.12 (0.08)
Calmodulin 34.2 (1.10) 34.0 (1.48) 43.4 (0.80) 43.0 (1.09) 0.47 (0.15) 0.46 (0.11) 0.51 (0.05) 0.58 (0.05)

cally sampling up to k ∈ {2, 3, 5} conformational states per cluster using the same TM-
score weighted scheme.

We also compare architectures with and without DSS cross-attention modules across these configu-
rations. All models were trained on either 8 A100-80GB or 8 H100-80GB GPUs using a batch size
of 32 and Adam (Kingma, 2014) optimizer with learning rate 10−3. Training for each stage was run
until convergence of performance on the validation set, typically after 20-40 epochs (≈17-34 hours).

Then, DynamicMPNN models and ProteinMPNN (using Multi-state Design inference strategy)
were used to sample 16 sequences for each of the 96 benchmark test proteins (see Table 8 for
DynamicMPNN inference costs and model size).

Evaluation protocol. For each designed sequence, we evaluate refoldability using the template-
based pipeline described above, sampling 5 structures per sequence. For each target conformation,
we select the best-performing sample (i.e., lowest RMSD, highest TM-score, highest pLDDT), then
aggregate metrics by averaging across the 16 designed sequences. The same protocol is applied with
decoy templates for normalization.

Additionally, for sequences designed using Combined Training and Single Training models, we con-
duct refoldability evaluations with BioEmu and template-free AF3. For BioEmu (Lewis et al., 2025),
we sample 50 structures per sequence and report the best-performing sample per target conforma-
tion averaged across designs. We define success rates (TMSτ ) as the percentage of targets for which
at least one designed sequence has both conformational states recovered with maximum TM-score
(across the sampled ensemble) exceeding threshold τ ∈ {0.7, 0.8, 0.9}.

For template-free AF3, we apply the same evaluation protocol as template-based AF3. To assess
whether designs consistently recover both states, we additionally report worst-state metrics—the
performance on whichever conformational state is harder to recover for each design—for both
template-based and template-free evaluations (Table 2).

DynamicMPNN outperforms existing benchmarks across multiple evaluation metrics. Our
best-performing model achieves substantial improvements over baseline methods: a 25% reduction
in decoy-normalized RMSD (Tab. 4) and a 12% improvement in sequence recovery (Fig.4; Tab.
3) compared to ProteinMPNN Multi-State Design (MSD). This performance gain is particularly
noteworthy considering that ProteinMPNN’s training dataset contains proteins within 30% sequence
similarity clusters of 91 out of 96 benchmark proteins, making our improvement on this established
baseline significant. We leave the retraining of ProteinMPNN on a rigorous train-test split for future
work.

Combined and multi-state finetuning training strategies far outperform the single-state only
training. A more rigorous comparison involves our single-state trained model, which adheres to
the same training-test split and thus eliminates potential data leakage concerns. Models trained only
on single-state data (Single Training) perform poorly on multi-state design as they are unable to
create and decode a meaningful latent representation of the conformational changes. The Combined
Training and approaches, which exposes models to multi-state examples during training, achieve
the optimal balance and consistently outperform Single Training as well as other models across all
metrics. (Tab. 3, 1). Some likely reasons to explain the under performance of our Single Training
checkpoint with respect to ProteinMPNN is the aforementioned unfair train splitting of Protein-
MPNN as well as the multi-state latent space embeddings being out-of-distribution for the decoder
parameters that have only been trained on single state data. Additionally, versions trained on PDB80
(Sampled Pair Training) with TM-weighted sampling slightly outperform those trained on CoDNaS
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with MAX TM-score sampling, likely due to the increased diversity of conformational pairs seen
during training 1.

Fold-switch designs show best improvements over ProteinMPNN. Analyzing performance strat-
ified by the protein class in the test set (i.e. metamorphic, hinge, and transporter), (Fig. 3a, b), we
observe that DynamicMPNN’s advantage over ProteinMPNN is most pronounced in fold-switching
proteins (metamorphic). This shows that DynamicMPNN can effectively fit the most complex con-
formational changes that undergo complex rearrangements of both tertiary and secondary structure
(Dishman & Volkman, 2018). The distributions of AF3-predicted TM-scores over the inter-state
TM-scores are plotted in Fig. 7.

Template-free AF3 is not suitable for evaluating multi-state designs. As has been previously
shown for AlphaFold 2 (AF2) Chakravarty & Porter (2022), without structural guidance, AF3
collapses to a single dominant conformation, with worst-state TM-scores degrading from 0.82
(template-based) to 0.69 for Combined Training designs (Table 2). This inability to recover al-
ternative states motivates our template-based evaluation framework. Notably, Combined Training
outperforms Single Training across all conditions—template-free average (0.78 vs 0.54), worst-state
(0.69 vs 0.47), and template-based (0.82 vs 0.59)—confirming multi-state training benefits persist
regardless of evaluation protocol.

BioEMU mirrors AF3-template results. Both AF3 and BioEmu evaluation frameworks demon-
strate consistent model rankings and highly correlated refoldability scores (Pearson r = 0.71 for
TM-score, r = 0.79 for RMSD; decoy-normalized r = 0.58, r = 0.61), with Combined Training
consistently outperforming Single Training. This further emphasizes that regardless of the in silico
evaluation metric that we is used, models trained with multi-state data consistently outperform those
without.

The optimal number of states is highly dependent on the protein system. While 2-state mod-
elling is the most biologically relevant approach for most multi-state proteins, a question worth
exploring is whether DynamicMPNN can be generalised to proteins with metastable states, interme-
diates or even proteins with flatter energy landscapes. We compared the performance of the 2-state
single chain model to the 3-state and 5-state respectively on 3 proteins each: (1) 3 proteins with 2
main states with a stable intermediate (MPD, α-hemolysin, Selecase - Table 6); (2) 3 highly flexible
proteins, either with disordered linkers (calmodulin) or fully disordered and which fold upon bind-
ing (α-synuclein, Aβ-42) - Table 7. Results show how including extra states can be both beneficial
(calmodulin) as well as detrimental (MPD), as the model has to learn to reconcile more diverse struc-
tural information. The inclusion of DSS is equally inconclusive. This is probably due to the lack of
such proteins in the training set. To assess whether the single chain nature of these models impacts
the metrics, we also compare the 2-state single chain to the 2-state multi chain model, observing a
moderate albeit expected drop in performance (Table 3).

4 CONCLUSION

We present DynamicMPNN, the first explicit multi-state inverse folding model, achieving up to 25%
improvement over ProteinMPNN on our multi-state benchmark. By jointly learning across confor-
mational ensembles rather than aggregating single-state predictions, DynamicMPNN captures se-
quence constraints required for multiple functional conformations. Critically, models trained with
multi-state data consistently outperform single-state trained models across all evaluation metrics
(template guided AF3, AF3 template-free, and BioEmu) demonstrating robust benefits of explicit
multi-state training regardless of evaluation framework. This opens possibilities for engineering
synthetic bioswitches, allosteric regulators, and molecular machines. It is unclear if the presented
one-size-fits-all approach to multi-state design will be effective experimentally, or if specialized
models for different classes of conformational changes depending on their thermodynamic com-
plexity will be beneficial.
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Table 8: Inference cost for sampling 16 sequences using one NVIDIA A100-80GB GPU and 32
AMD EPYC 7763 CPU cores. Residue count includes target and binding partner chains. Dynam-
icMPPN model sizes: 4.86M parameters (+DSS) and 4.23M parameters (no DSS).

Time (s) Peak GPU Memory (MB)
Total Residues +DSS No DSS +DSS No DSS
250 22.5 13.8 755 373
500 34.1 20.8 1012 514
1000 51.5 31.3 1358 710
2000 77.9 47.2 1824 984
4000 117.7 71.1 2453 1365
8000 177.9 107.0 3302 1896

Figure 4: Sequence recovery performance across DynamicMPNN model variants and ProteinMPNN
baseline on multi-state protein benchmark (n = 96). Combined training approaches achieve highest
performance, with models that only incorporate single state training data performing poorly.

A.3 DETAILS ON PREVIOUS WORK

A.3.1 COMPARISON OF MULTI-STATE INFERENCE STRATEGIES

Both ProteinMPNN-MSD (Dauparas et al., 2022; Praetorius et al., 2023) and Multi-state ESM-IF
(Hsu et al., 2022) extend single-state inverse folding models to multi-state design tasks using an
identical underlying mathematical strategy: step-wise logit aggregation with shared autoregressive
context.

Hsu et al. (2022) formulate the objective as maximizing the geometric average of the conditional
likelihoods for two states A and B. Since sampling only depends on relative logit values (softmax
normalizes), averaging logits before sampling yields equivalent results to the geometric mean of
probabilities: √

P (yt|XA) · P (yt|XB)︸ ︷︷ ︸
Geometric Mean (ESM-IF)

∝ exp

(
Logits(yt|XA) + Logits(yt|XB)

2

)
︸ ︷︷ ︸

Arithmetic Mean of Logits (ProteinMPNN-MSD)

(6)
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Figure 5: Convergence of cumulative maximum TM-score for BioEmu samples of Combined Train-
ing (left) and Single Training (right) model sequences. The cumulative maximum across 16 se-
quence designs is averaged over all test set targets.

Figure 6: Distribution of cluster sizes in the PDB80 multi-conformational dataset. The histogram
shows bins of cluster population sizes, illustrating the unbalanced nature of the dataset with most
clusters containing few conformations while a small number of clusters contain thousands of chains.

Consequently, both methods perform the same operation: averaging the logits from independent
structural encoders at step t, sampling a token, and feeding that single consensus token back into the
autoregressive context for all states at step t+ 1.

Weighted aggregation. While Hsu et al. (2022) used unweighted logit averaging, Praetorius et al.
(2023) applied in their hinge protein design a 40%-60% weighting scheme to bias designs towards
the effector-bound (holo) state.

A.3.2 EXPERIMENTAL VALIDATION OF HINGE PROTEIN DESIGNS BY PRAETORIUS ET AL.
(2023)

Out of the 9K designed sequences using ProteinMPNN-MSD and Rosetta (Liu & Kuhlman, 2006),
76 were randomly selected for experimental validation based on RosettaDesign (Liu & Kuhlman,
2006) and AlphaFold2 (pLDDT ¿ 92, RMSD ¡ 1.5, PAE ¡ 5) (Jumper et al., 2021) filters. 46 out of 79
designs were expressed solubly and predominantly monomeric. Because many of the corresponding
effector peptides were insoluble, only 20 out the 46 designs were tested for binding. 9 out of 20
designs showed binding via SEC experiments; advanced structural characterization with DEER and
FRET confirmed the presence of the desired conformational change and peptide binding for all 8
and 3 respectively tested designs. in 3 out of these 9 designs.
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(a) ProteinMPNN (n=61) (b) Combined Training (n=96)
(c) Combined Training + DSS
(n=96)

(d) Sample Pair Training + DSS
(n=96) (e) Sample Pair Training (n=96) (f) Single Training (n=96)

Figure 7: Distribution of Predicted template-AF3 TM-score of samples against the inter-state
ground-truth TM-score. All multi-state trained model prediction accuracy correlate well with the
inter-state TM-scores.

A.4 DATASET DETAILS

To construct the dataset, we obtained 46,033 Multiple Sequence Alignment (MSA) clusters at
≥ 95% local sequence similarity from the latest version of CoDNaS (v2025) (Monzon et al., 2016),
including NMR model structures. Importantly, the CoDNaS dataset prevents potential errors created
by mixing different homologues in the same cluster by enforcing the same UniProt ID for all custer
members. All available conformations of a protein are included - as different experimental condi-
tions and sequence variations can reveal distinct thermodynamic states of the same protein (Best
et al., 2006). While clusters contain varying numbers of conformations (Fig. 2b) we constructed our
dataset using only pairs of chains from one or two PDB entries that have the largest RMSD from
each cluster (Fig. 2c). Chosen pairs represent the most distinct conformational states.

While other inverse folding models (Hsu et al., 2022) saw improved performance when trained on
orders of magnitude of more protein structures from AFDB, previous studies have found that the
majority of high-confidence structures in AFDB map to known CATH superfamilies (Bordin et al.,
2023), and that AlphaFold struggles in predicting alternative states (Chakravarty et al., 2024). We
therefore decided against including AFDB structures in our training set.

PDB80 dataset, on the other hand, is meant to include more structural redundancy via its lower
sequence similarity threshold (80%) at the expense of homology leakage and introduction of muta-
tional fold-switches.

To calculate the pairwise TM-scores between the cluster members, we use the TM-align algorithm
(Zhang & Skolnick, 2005). To reduce the computational cost, for clusters larger than 10 members,
we perform structural clustering within each sequence cluster with a threshold of TM-score=0.9
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Figure 8: Switch Arc protein case study. (a, b) ProteinMPNN and (c,d) DynamicMPNN best design
structure prediction (pink and salmon, respectively) against both Arc states from PDB ID: 1BDT
and 1QTG respectively (grey). The DynamicMPNN design recapitulates the beta sheet fold (c), but
the ProteinMPNN design0 does not (a).

using qTMclust (part of USalign suite - Zhang et al. (2022a)). We select one representative from
each cluster, if the number of clusters is less than 10, extra representatives are randomly sampled
to top up the selections to 10 members, and only then the pairwise TM-scores are computed as
described before.

During pair sampling in Sample Pair Training, a pair is selected with a probability as a function of
the TM-score: for sequential selection of k conformations, we sample each structure with probability
proportional to its dissimilarity from already-selected structures:

P (ci) =
exp

(
1−TMi

τ

)
∑

j∈C exp
(

1−TMj

τ

) (7)

where TMi = 1
|S|

∑
s∈S TM(ci, s) is the average TM-score between candidate ci and the set of

already-selected structures S, C is the set of remaining candidates, and τ = 2.0 is a temperature
parameter.
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A.5 MODEL DETAILS

A.5.1 FEATURISATION SCHEME

We use a similar featurisation scheme as in (Jamasb et al., 2024). Node scalar features
are transformer-like positional encoding in a 16-dimensional array; backbone dihedral angles
ϕ, ψ, ω ∈ R6 ; the virtual torsion and virtual bond angle κ, α ∈ R4 . Node vector features are po-
sition vectors of Cα, x̃i ∈ R3 . Edge scalar features are established via k-NN (k=16) and the edge
length expressed in 32 Radial Basis Functions, eRBF ∈ R32 , as well as the length of the edge itself.
Edge vector features are edge directional unit vectors for both directions ˜veij = x̃i − x̃j . To further
prevent overfitting on crystallisation artifacts, random Gaussian noise (x̄ = 0, σ = 0.1Å) was added
to the coordinates (Dauparas et al., 2022).

A.5.2 MULTI-STATE GNN

DynamicMPNN processes one or multiple protein backbone graphs via a multi-state GNN encoder
(Joshi et al., 2025). Overall, DynamicMPNN’s encoder is equivariant to 3D roto-translation of
coordinates as well as ordering of the states in its input. Encoding is followed by pooling node
features across states, which is invariant to the ordering of the states, and autoregressive sequence
decoding.

When representing conformational ensembles as a multi-graph, each node feature tensor contains
three axes: (#nodes, #conformations, feature channels). Multi-state GNN’s encode multi-graphs
by performing message passing on the multi-graph adjacency to independently process each con-
former, while maintaining permutation equivariance of the updated feature tensors along both the
first (#nodes) and second (#conformations) axes.

A.5.3 GEOMETRIC VECTOR PERCEPTRON LAYERS

Geometric Vector Perceptrons (GVPs) (Jing et al., 2021) are a generalization of MLPs to take tuples
of scalar and vector features as input and apply O(3)-equivariant non-linear updates. GVP GNN
layers process scalar and vector features on separate channels to maintain equivariance. The node
scalars si ∈ Rk×m, node vectors ṽi ∈ Rk×m′×3, and edge scalars eij and vectors ẽij communicate
through a message passing operation:

mi, m̃i :=
∑
j∈Ni

GVP ((si, ṽi), (sj , ṽj), eij , ẽij) , (Message & aggregate steps) (8)

s′i, ṽ′
i := GVP ((si, ṽi), (mi, m̃i)) . (Update step) (9)

The overall GNN encoder is SO(3)-equivariant due to the use of reflection-sensitive input features
(dihedral angles) combined with O(3)-equivariant GVP-GNN layers.

A.5.4 CONFORMATION ORDER-INVARIANT POOLING

After using message passing layers that are conformation order-equivariant, we add a conformation
order-invariant head, which performs average pooling across the conformation channel of the scalar
and vector feature tensors, similar to Joshi et al. (2025) (2025): S ∈ Rn×k×m and Ṽ ∈ Rn×k×m′×3

to S ∈ Rn×m and Ṽ ∈ Rn×m′×3 , where n is the sequence length, k is the number of backbones, m
is the number of scalar features, and m ′ is the number of vector features. The only pooling strategy
used in this work is the pooling of the maximum RMSD pair of chains - therefore k = 2 - although
more pooling strategies for homo-oligomers can be used, such as equal averaging of all chains to be
inverse folded in the selected PDB entries.

A.6 METRICS

A.6.1 DECOY-NORMALISED AF3 SELF-CONSISTENCY EVALUATION

AlphaFold as a Biophysical Energy Function. While AlphaFold (AF) excels at predicting static
structures from evolutionary data, it often struggles to spontaneously sample alternative conforma-
tional states for a single sequence, effectively failing at the global search problem for multi-state
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proteins. However, recent work by Roney & Ovchinnikov (2022) established that AF has learned
a robust, coevolution-independent biophysical energy function that can accurately score sequence-
structure compatibility when the search space is constrained (Roney & Ovchinnikov, 2022). Specif-
ically, they demonstrated that when a candidate structure is provided as a template, AF’s output
confidence metrics (pLDDT, pTM) and structural consistency (TM-score between input template
and output) correlate strongly with the actual accuracy of the model, effectively acting as a state-of-
the-art energy scoring function.

Leveraging this finding, we utilize AlphaFold 3 (AF3) (Abramson et al., 2024a) not as a search en-
gine to find the conformations, but as a scoring function to evaluate the compatibility of our designed
sequences with the specific target geometries. By explicitly providing the target conformational state
Xk as a template, we direct the model to the relevant basin of the energy landscape.

Addressing Template Bias via Decoy Normalization. A critical challenge in template-guided eval-
uation is the potential for “template bias,” where the model might simply copy the input geometry
regardless of the sequence’s actual propensity to fold into that state. To distinguish between true
sequence-structure compatibility and template memorization, we introduce a decoy-normalization
strategy.

We define a set of decoy structures D that are structurally dissimilar to the target (TM-score < 0.4)
but represent valid globular protein folds. For a designed sequence Y and a target conformational
state Xk, we calculate a normalized score that compares the structural self-consistency on the target
against the self-consistency on a decoy:

Normalized Score =
Self-Consistency(Y,Xk)

Self-Consistency(Y,D)
(10)

In the context of RMSD (where lower is better), this is formulated as:

RMSDdecoy(Y,Xk;D) =
RMSD(AF3(Y,Xk), Xk)

RMSD(AF3(Y,D), D)
(11)

Physical Interpretation. This metric serves as a proxy for the specificity gap or energy gap (∆E)
between the target fold and competing misfolded states.

• High Specificity (Successful Design): The sequence is highly compatible with the target
(low RMSD / high pLDDT when prompted withXk) but incompatible with the decoy (high
RMSD / low pLDDT when prompted withD). This results in a favorable normalized score,
indicating the sequence “accepts” the target fold and “rejects” the decoy.

• Low Specificity (Hallucination/Promiscuity): If the sequence creates a low-energy struc-
ture for both the target and the decoy (or high error for both), the normalized score ap-
proaches 1.0. This identifies sequences that are either generically “sticky” or for which the
model is over-relying on template inputs without sequence support.

By requiring our designs to outperform decoys, we extend the “AF-as-energy-function” paradigm
from simple ranking (as proposed by Roney & Ovchinnikov (Roney & Ovchinnikov, 2022)) to a
rigorous specificity filter for de novo multi-state design.
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