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ABSTRACT

Diffusion large language models (D-LLMs) have recently emerged as a promis-
ing alternative to auto-regressive LLMs (AR-LLMs). However, the hallucination
problem in D-LLMs remains underexplored, limiting their reliability in real-world
applications. Existing hallucination detection methods are designed for AR-LLMs
and rely on signals from single-step generation, making them ill-suited for D-
LLMs where hallucination signals often emerge throughout the multi-step denois-
ing process. To bridge this gap, we propose TraceDet, a novel framework that
explicitly leverages the intermediate denoising steps of D-LLMs for hallucination
detection. TraceDet models the denoising process as an action trace, with each
action defined as the model’s prediction over the cleaned response, conditioned
on the previous intermediate output. By identifying the sub-trace that is maxi-
mally informative to the hallucinated responses, TraceDet leverages the key hallu-
cination signals in the multi-step denoising process of D-LLMs for hallucination
detection. Extensive experiments on various open source D-LLMs demonstrate
that TraceDet consistently improves hallucination detection, achieving an aver-
age gain in AUROC of 15. 2% compared to baselines.

1 INTRODUCTION

The auto-regressive large language models (AR-LLMs) (Achiam et al., 2023; Vaswani et al., 2017)
have demonstrated unprecedented capabilities in content generation (Maleki & Zhao, 2024) and gen-
eral task completion (Yao et al., 2023). Despite their success, AR-LLMs still face challenges related
to generation efficiency and the reversal curse due to the inherent limitation of the next-token pre-
diction paradigm (Bachmann & Nagarajan, 2024). The diffusion large language models (D-LLMs)
have emerged as a promising alternative to AR-LLMs. Unlike AR-LLMs that generate language
sequences from left to right, D-LLMs iteratively denoise the whole language sequences with a bi-
directional attention architecture. Thus, D-LLMs have great potential in efficient computation and
more flexible reasoning. Recent open-sourced works, such as LLaDA and Dream model series (Nie
et al., 2025; Ye et al., 2025), have successfully scaled D-LLMs to 8B parameters, achieving perfor-
mance comparable to leading AR-LLMs (AI, 2024) at the same scale in various tasks.

Although most work focuses on enhancing the capability of D-LLMs (Zhao et al., 2025; Yang et al.,
2025b), less focus is devoted to their hallucination problem. Hallucination refers to generating
linguistically plausible yet factually incorrect contents, which is recognized as a byproduct of the
increasing capability of language models (Manakul et al., 2023; Zhang et al., 2025). The hallucina-
tion issue in D-LLMs undermines user trust and potentially causes severe consequences in critical
domains (Huang et al., 2025), hindering their deployment in safety-critical scenarios.

Existing literature has focused on hallucination detection in AR-LLMs, which can be broadly cate-
gorized into output-based detection (Kossen et al., 2024) and latent-based detection (Du et al., 2024).
Output-based detection leverages hallucination-related signals derived from model outputs, such as
the consistency across multiple sampled responses (Kuhn et al., 2023) or the entropy of token-level
logits. The intuition is that hallucinated responses are typically associated with lower confidence
(Rawte et al., 2023). Latent-based methods instead probe the hidden representations of AR-LLMs
during a single forward pass to distinguish hallucinated from factual responses (Park et al., 2025;
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Question: What is the most common blood type in 
humans? A, B or O?

Answer: O

Step 16: A>A>A blood blood blood blood O O O O 
O O O O O O

Step 20: A>A>A>A>A blood blood blood humans 
humans>A>A>A>A>A>A>A>A>A>A>A>A>A>A>A
>A>A>A>A>A>A>A

Step 44: A>A>A</ O O O>A

Output: A

Step 58: \n<answer>A</answer>\n\n

humansO

Denoising

Question: What is the name of the short actor who 
plays the main role in the BBC2 comedy series "Life's 
too short"?

Answer: Warwick Davis

Step 40: The name of the short actor who plays 
main role in the BBC2 comedy series "Life's too 
short" is Hugh Mack.

Step 43: The name of the short actor who plays 
main role in the BBC2 comedy series \"Life's too 
short\" is Tom F.

Step 64: The name of the short actor who plays 
main role the BBC Two comedy series \"Life's too 
short\" is Tom Hardy.

Output:The name of the short actor who plays 
main role the BBC Two comedy series \"Life's too 
short\" is Tom Hardy.

Denoising

Question: What was the capital of the United States 
between 1785 and 1790?

Answer: New York

Step 8: The capital of the United States between 
1785 and 1790 was Philadelphia.

Step 31: The capital of States between1785 
and1790 was Philadelphia.
.

Step 59: centering\n<answer>The capital of 
States between 785 and 790 was Philadelphia.

Output: The capital of the United States between 
1785 and 1790 was Philadelphia.

Denoising

Interleaving Hallucination Inconsistent Guesses Persistent Error

Figure 1: Illustration of representative D-LLM hallucination patterns extracted by TraceDet. Left:
Interleaving Hallucination, where the model decodes both truthful and hallucinated content. Mid-
dle: Inconsistent Guesses, where multiple contradictory keywords lead to hallucination. Right:
Persistent Error, where the model maintains a hallucinated answer throughout denoising. Halluci-
nations are highlighted with red.

Li et al., 2025). Recent works further introduce new techniques to enhance the separation between
hallucinated and factual responses in the latent space (Liu et al., 2025b; Orgad et al., 2025).

However, existing hallucination detection methods face challenges in detecting hallucinations in
D-LLMs, since they typically exploit hallucination signals in the single-step generation process of
AR-LLMs. Unlike AR-LLMs that produce responses in a single forward pass, D-LLMs iteratively
refine the responses through a multi-step denoising process (Sahoo et al., 2024; Shi et al., 2024).
Our empirical observations show that the hallucinated responses in D-LLMs are associated with an
intriguing denoising process. As shown in Figure 1, some of them oscillate between factual and
hallucinated content or randomly guess among various hallucinated answers, whereas others per-
sistently maintain a single hallucinated answer throughout the denoising trajectory. While the un-
derlying mechanism behind these behaviors remains an open question, these intermediate dynamics
provide valuable signals for hallucination detection in D-LLMs.

Proposed work. We introduce TraceDet, a novel framework that leverages the intermediate de-
noising steps of D-LLMs for hallucination detection. The key insight is to represent the denoising
process as an action trace (Black et al., 2024), where each action corresponds to the model’s pre-
diction of a complete response sequence given the intermediate result at one denoising step. Rather
than relying on the final output, TraceDet aims to identify a sub-trace of the whole action trace that
contributes to the hallucinated responses (Section 3.2). The major difficulty is that the sub-trace
of actions is not known a priori, leading to the absence of explicit action labels for supervision.
Inspired by the information-bottleneck (IB) principle (Tishby et al., 2000), TraceDet identifies the
sub-trace of actions that are maximally informative to the hallucinated response (Section 3.3). This
informative sub-trace is then used to train a classifier for final hallucination detection (Section 3.4).

We extensively evaluate the capability of the proposed TraceDet on the two available open-source D-
LLMs, including LLaDA-8B-Instruct and Dream-7B-Instruct, across three QA datasets
covering multiple-choice, open-ended, and contextual answering tasks. On average, TraceDet deliv-
ers a consistent improvement of 15.2% in hallucination detection accuracy (AUROC), and further
studies also confirm the robustness of the proposed method to varying denoising strategies and hy-
perparameter settings. Our main contributions are threefold:

• We make an initial effort in the study of hallucination behaviors in D-LLMs, uncovering
distinctive multi-step patterns, such as interleaving hallucination, inconsistent guesses, and
persistent errors, that are absent in AR-LLMs.

• We introduce TraceDet, a novel hallucination detection framework that formulates the
D-LLM denoising process as an action trace. By applying the information bottleneck prin-
ciple, TraceDet automatically extracts the most informative sub-trace for detection, without
requiring explicit step-level supervision.
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• We conduct comprehensive experiments on two open-source D-LLMs (LLaDA-8B-
Instruct, Dream-7B-Instruct) across diverse QA benchmarks, where our method shows an
average AUROC improvement of 15.2% over the baselines and demonstrates robustness
across different denoising strategies and hyperparameter choices.

2 RELATED WORK

Hallucination Detection is a central problem in ensuring the safety, truthfulness, and faithfulness of
LLM-based applications (Huang et al., 2025). Existing works have mainly been developed for AR-
LLMs, and can be categorized as: (a) Output-based: calculating measures based on output signals
such as semantic entropy (Kuhn et al., 2023), lexical similarity (Lin et al., 2023) and so on (Ren
et al., 2022; Malinin & Gales, 2020; Xiong et al., 2023; Lin et al., 2022; Kuhn et al., 2023; Manakul
et al., 2023); (b) Latent-based: probing hidden states from one-pass generations (Azaria & Mitchell,
2023; Chen et al., 2024a; Du et al., 2024; Su et al., 2024; Chen et al., 2024b; Li et al., 2023; Kossen
et al., 2024; Marks & Tegmark, 2023; Kim et al., 2024; Chen et al., 2024a). While effective in
AR-LLMs, existing methods face challenges in D-LLMs due to mismatches between final outputs
and the intermediate denoising process, as well as the restricted availability of output token logits.
We discuss the most relevant literature with our work, and defer the details to Appendix B.

Diffusion Large Language Model extends the success of diffusion models (Yang et al., 2023; Lu
et al., 2025) to texts (Li et al., 2022). Nie et al. (2025) adopts an alternative discrete feature unifying
the discrete remasking process, and has successfully scaled the D-LLM up to an 8B parameter level,
achieving performance comparable to leading LLMs such as LLaMA-3 (AI, 2024). In addition,
Dream-7B (Ye et al., 2025) adopts the same configurations as Qwen2.5-7B (Yang et al., 2025a)
trained under a diffusion paradigm. Despite these advances, the hallucination problem in D-LLMs
remains underexplored, hindering their application in real-world scenarios.

Information Bottleneck principle was initially proposed in signal processing to extract the most
informative sub-instances while minimizing irrelevant information, and has gained lots of applica-
tions in deep learning (Alemi et al., 2016; West et al., 2019; Zhu et al., 2024; Luo et al., 2019).
However, its use in hallucination detection remains largely unexplored due to the limited informa-
tion available in a single text generation. The most related work (Bai et al., 2025) integrates IB into
VLLM as a sub-instance extractor for images, mitigating hallucination in VLLM outputs. Our work
builds on the sequential and information-excess nature of stepwise D-LLM generations. We propose
a temporal embedding approach that captures intermediate step signals to detect hallucinations.

3 HALLUCINATION DETECTION IN DIFFUSION LLMS

3.1 PROBLEM FORMULATION

Unlike AR-LLMs, D-LLMs generate responses by iterative refinement through a forward noising
and backward denoising process over T time steps. Let r = (r0, . . . , rT ) denote the sequence of in-
termediate texts, where each rt ∈ Vn is a token sequence of length n and rit ∈ V for i ∈ {1, . . . , n}.
Here, r0 is the clean text sequence and rT the fully masked sequence, with t ∈ {0, . . . , T}. Given a
prompt p0, the forward noising process is defined by a sequence of distributions {q(rt | rt−1)}Tt=1,
and can be written as q(r1:T | r0) =

∏T
t=1 q(rt | rt−1).

The reverse denoising process with discrete remasking is parameterized by the sequence of condi-
tional distributions {Pθ(r0 | rt, p0)}Tt=1. At each timestep t > 0, the model predicts all masked
tokens from rt: r̃t−1 ∼ Pθ(r0 | rt, p0), and then a fraction ρt of tokens in rt are remasked to
form rt−1. As proposed in Nie et al. (2025), current popular remasking strategies often use low-
confidence remasking which retains the most confidential tokens during each remasking step. After
T iterations, the process outputs the final response r0.

Given an input query p0, the hallucination detection can be formulated as binary classification:

min
f∈H

L(Y, h(r0)), s.t. r0 ∼
0∏

t=T−1

Pθ(rt | rt+1, p0), (1)
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……

t = 0

Sydney is the capital of Australia 

M ∈ RT

X

Q: Which city is the capital of Australia?

capital 

is the capital of Australia 

……
capital 

is the capital of Australia 

Sydney is the capital of Australia 

… fφ

TraceDet

gθ

t = T − 1

Figure 2: Illustration of TRACEDET. During denoising, a diffusion LLM generates intermediate
sequences along with token-level entropy traces, where highlighted words indicate the retained to-
kens after remasking (left). The sub-instance extractor gθ produces a temporal mask M to focus on
informative steps, and the predictor fϕ classifies whether the final response is hallucinated (right).

where r0 is the final response from the D-LLM, which can be either a hallucinated or non-
hallucinated (or factual) answer, where Y ∈ {0, 1} is the ground-truth label indicating if r0 is a
hallucinated answer, h is the classifier belonging to some hypothesis space H and L(·) is the cross-
entropy loss, and rT−i is the intermediate sequence produced at the i-th denoising step. Since
hallucination detection directly on generated text is costly and difficult to implement in practice, we
instead rely on auxiliary signals derived from the generation process.

3.2 OVERVIEW OF TRACEDET

Denoising as a Markov Decision Process. The major challenge of hallucination detection in D-
LLMs is the mismatch between the intermediate model generation and the final response. More
specifically, it is challenging to determine how hallucination arises in the final response and uti-
lize this information for detection, as partial information in the generated sequence can be erased
during multi-step denoising and remasking. Essentially, the denoising process of D-LLMs can be
formulated as a Markov Decision Process (MDP) over decoding steps (Black et al., 2024):

• State: We define the t-th state st = (p0, rT−t) in the denoising process as the combination of
the input query p0 and the intermediate sequence rT−t at the t-th denoising step.

• Action: At the t-the state, the D-LLM predicts all masked tokens from st and generates a full
token sequence r̂T−t−1 from distribution Pθ(r0 | rT−t, p0).

• Transition: After generating r̃T−t−1, a fraction of tokens is remasked to form rT−t−1 depend-
ing on the noise schedule and remasking strategy. Then, the d-LLM moves to the next state
st+1 = (p0, rT−t−1) to start another round of denoising.

Hallucination Detection from Action Trace. With the MDP formulation, we can leverage the
entire action trace A = {a0, a1, . . . , aT−1} rather than only the final response r0 to detect halluci-
nations. Each action reveals how the model progressively refines its generation. Our observations in
Figure 1 show that hallucinated outputs are strongly associated with intermediate denoising steps,
especially when the intermediate outputs contains distracting or ambiguous content. Additional
examples are provided in Appendix F. TraceDet exploits this insight by discovering hallucination-
relevant action sub-trace Asub from A, and then trains a classifier f on Asub to distinguish halluci-
nation from factual responses:

min
f,g

L(Y, f(Asub)), s.t. Asub = g(A). (2)

Here g(·) is a neural network that identifies Asub from A. By capturing hallucination signals
throughout the entire action trace, TraceDet provides an interpretable and fine-grained perspective
on how hallucinations emerge during the denoising trajectory. Moreover, TraceDet can be applied
to diverse D-LLMs with different noise schedules and remasking strategies.

4
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3.3 OPTIMIZATION OF TRACEDET VIA INFORMATION-THEORETIC APPROACH

A key challenge of TraceDet lies in the fact that hallucination-relevant actions in the denoising
trajectory of D-LLMs are not known a priori. The hallucination-relevant action may be sparse
and unevenly distributed across the action trace, and not every action contributes equally to the
emergence of hallucination. This necessitates learning to identify such a sub-trace Asub from A
that is informative to the hallucinated response, in the absence of explicitly labeled Asub. Inspired
by the information bottleneck principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015), TraceDet
reformulates the objective in Eq. 2 from an information-theoretic perspective:

min
f :Asub 7→Y
g:A7→Asub

−I(Y ;Asub) + βI(A;Asub), (3)

where I(A;B) =
∫∫

A,B
P (A,B) log P (A,B)

P (A)P (B)dAdB is the mutual information between the ran-
dom variable A and B. The first term I(Y ;Asub) in Eq. 3 encourages the identified Asub is relevant
to the hallucination and the second term I(A;Asub) regularizes the identified Asub only contains
partial information of A to avoid the trivial solution Asub = A. β is the hyperparameter to trade off
between the two terms. By trading off between the two terms in Eq. 3, TraceDet aims to identify the
minimally sufficient sub-trace in the denoising process of d-LLMs for hallucination detection.

Furthermore, as the mutual information related objectives are often intractable and hard to optimize,
we need to resort more practical forms of Eq. 3. We begin by examining the first term in Eq. 3:

−I(Y ;Asub) ≤ EY,Asub [− log qθ(Y | Asub)] := Lcls(f(Asub), Y ). (4)

Here qθ(Y | Asub) is the variational approximation to p(Y | Asub), which corresponds to the classi-
fier f(·) that predicts whether the identified sub-trace is relevant to the hallucination. And Lcls(·) is
the classification loss, and we choose the cross-entropy loss in practice. Then, we proceed to derive
the upper bound of the second term I(A;Asub) in Eq. 3:

I(A;Asub) = EA,Asub

[
log

P (Asub | A)

Q(Asub)

]
−DKL

(
P (Asub) ∥Q(Asub)

)
≤ EA

[
DKL

(
P (Asub | A) ∥Q(Asub)

)]
,

(5)

where DKL(·||·) is the KL-divergence(Kullback & Leibler, 1951). The inequality in Eq. 5 is induced
using the non-negative nature of the KL-divergence. Recall that A = {a0, a1, . . . , aT−1}, the pos-
terior distribution P (Asub | A) can be factorized into Πai∈ABernoulli(pai

) where we assume that
the sub-instance extractions of A are independent. The corresponding prior distribution Q(Asub)
in Eq. 5 is the non-informative distribution Πai∈ABernoulli(τ), where τ restricts the proportion
of traces that will be selected. To this end, we relax Eq. 5 and approximate it by the following
differentiable objective:

Lext =
∑
i

[
pai

log
pai

τ
+ (1− pai

) log
1− pai

1− τ

]
, (6)

where pai is the predicted probability to select trace ai. For consistency and unification, we train the
composed function f ◦ g(A) with the following learning objective:

L = Lcls + βLext, (7)

where β is the same hyperparameter as in Eq. 3, controlling the strength of the regularization term.

3.4 IMPLEMENTATION

For our method, we define the action trace using distributional statistics, specifically the token-wise
entropy trace derived from Pθ. This choice captures the temporal evolution of uncertainty during
generation while yielding a fixed-size representation. Alternatively, one could construct action traces
from the token embeddings of r̃. However, embedding-based traces, particularly when combined
with temporal encodings, make the representation extremely large and often introduce severe nu-
merical instabilities in practice. Our detection model is decomposed into two learnable modules:
the sub-instance extractor gθ and the sub-instance predictor fϕ :

5
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Table 1: AUROC(%) comparison of hallucination detection methods on two D-LLMs across three
QA datasets with 128 and 64 generation step lengths. SS is the short for Single Sampling. The
highest score is bolded and the second highest is underlined.

Model Method SS
TriviaQA HotpotQA CommonsenseQA

Ave128 64 128 64 128 64

LLaDA-8B-Instruct

Output-Based

Perplexity ✗ 50.4 47.6 49.3 51.2 65.6 65.0 54.9
LN-Entropy ✗ 54.6 53.5 54.8 54.7 64.6 64.4 57.8
Semantic Entropy ✗ 68.9 67.3 57.6 53.8 44.1 43.9 55.9
Lexical Similarity ✗ 62.5 59.0 64.2 57.1 57.3 60.7 60.1

Latent-Based

EigenScore ✗ 69.2 66.9 64.7 59.2 58.5 60.6 63.2
CCS ✓ 57.1 54.2 57.6 55.8 50.5 58.5 55.6
TSV ✓ 60.2 61.1 65.0 59.4 52.9 55.2 59.0

TraceDet ✓ 73.9 74.1 66.1 63.7 77.2 77.1 72.0

Dream-7B-Instruct

Output-Based

Perplexity ✗ - - - - - - -
LN-Entropy ✗ - - - - - - -
Semantic Entropy ✗ 73.7 72.5 62.7 67.7 51.4 48.6 62.8
Lexical Similarity ✗ 58.3 64.0 59.7 62.7 77.3 76.9 66.5

Latent-Based

EigenScore ✗ 66.0 69.1 62.5 67.0 76.9 77.5 69.8
CCS ✓ 56.9 50.3 51.7 58.2 54.2 53.2 54.1
TSV ✓ 75.6 74.7 58.7 63.0 62.3 56.8 65.2

TraceDet ✓ 78.1 86.7 75.1 76.0 84.7 84.1 80.8

(a) Sub-instance extractor: Given the entropy sequence A ∈ RT×B×D, we concatenate it with
sinusoidal time embeddings and encode the result using a Transformer (Queen et al., 2023; Liu
et al., 2024), yielding contextual embeddings emb. The extractor then produces a probabilis-
tic mask M̂ ∈ (0, 1)T×B , where m̂t,b = Linear

(
attn(emb, A)

)
, with attn a cross-attention

mechanism using emb as query and a representation of A as key/value. A temporal binary mask
M ∈ {0, 1}T×B is then sampled from M̂ and applied to A, i.e., Asub = M ⊙ A ∈ RT×B×D,
where ⊙ denotes element-wise multiplication. However, the mask sampling process is inherently
non-differentiable, so we employ the Gumbel–Softmax trick (Jang et al., 2016).

(b) Sub-instance predictor: The masked trajectory Asub is temporally aggregated and passed to the
predictor fϕ, which directly outputs hallucination probabilities fϕ(Asub) ∈ [0, 1], b = 1, . . . , B.
In practice, fϕ consists of temporal aggregation followed by an MLP and an activation layer.

4 EXPERIMENTS

4.1 SETUP

Datasets. We conduct experiments on three widely used factuality QA benchmarks: TriviaQA
(Joshi et al., 2017) consists of open-domain factoid questions with answer spans in Wikipedia.
CommonsenseQA (Talmor et al., 2018) contains multiple-choice questions requiring commonsense
reasoning. HotpotQA (Yang et al., 2018) contains multi-hop questions requiring aggregation across
supporting contexts. These datasets enable evaluation of hallucination detection across varying rea-
soning complexity. For each dataset, we randomly sample 400 QA pairs from the validation split
with available ground-truth labels, partitioned into 200 validation and 200 testing instances to ensure
computational efficiency while maintaining task coverage.

Baseline Methods. We compare our method against seven baselines spanning two categories pro-
posed in Section 2: (1) Output-based methods: Perplexity (Ren et al., 2022), Length-Normalized
Entropy (LN-Entropy) (Malinin & Gales, 2020), Semantic Entropy (Kuhn et al., 2023), and Lex-
ical Similarity (Lin et al., 2023); (2) Latent-based methods: EigenScore (Chen et al., 2024a),
Contrast-Consistent Search (CCS) (Burns et al., 2022), and Truthfulness Separator Vector (TSV)
(Park et al., 2025). We also include two TraceDet variants. Ave Entropy uses the average of step-
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Table 2: AUROC(%) comparison between TraceDet and our proposed baselines (Ave Entropy,
TraceDet w/o Masking). The highest score is bolded and the second highest is underlined.

Model Method
TriviaQA HotpotQA CommonsenseQA

Ave128 64 128 64 128 64

LLaDA-8B-Instruct
Ave Entropy 61.3 68.3 56.2 58.1 63.8 68.8 62.8
TraceDet w/o Masking 71.2 70.3 63.2 61.6 73.1 75.2 69.1
TraceDet 73.9 74.1 66.1 63.7 77.2 77.1 72.0

Dream-7B-Instruct
Ave Entropy 59.1 69.9 50.8 57.8 77.1 76.9 65.3
TraceDet w/o Masking 76.2 87.1 72.5 74.1 81.4 79.1 78.4
TraceDet 78.1 86.7 75.1 76.0 84.7 84.1 80.8

Table 3: Average inference time of 100 samples for different methods.

Metric Perplexity LN-Entropy Semantic Entropy Lexical Similarity EigenScore CCS TSV TraceDet

Time (s) ↓ 468.44 710.63 801.35 715.35 693.46 140.73 160.31 147.52

wise entropies as a naive confidence measure. In TraceDet w/o Masking, we train a transformer
detector while removing the sub-step extraction and its associated loss. All methods use identical
dataset splits, random seeds, and configurations to ensure fair comparison.

Models. We adopt Dream-7B-Instruct (Ye et al., 2025) and LLaDA-8B-Instruct (Nie et al., 2025)
as representative D-LLMs in this work. To the best of our knowledge, they are the only open-
source D-LLMs that provide stepwise token-level logits and hidden representations necessary for
comprehensive baseline comparison across both Output-based and Latent-based detection methods.

Evaluation. We employ task-specific evaluation protocols: multiple-choice tasks are evaluated by
direct comparison with the ground-truth, while Qwen3-8B (Yang et al., 2025a) serves as an external
judge for hallucination assessment in open-domain QA. We further measured the agreement between
the Qwen3-8B judge and human evaluation, finding 90% consistency on TriviaQA and 84% on
HotpotQA. Following previous work (Park et al., 2025; Chen et al., 2024a), we report AUROC
scores, with model selection based on validation performance and evaluation on held-out test sets.

4.2 MAIN RESULTS

Table 1 presents a comprehensive comparison of TraceDet against baseline hallucination detec-
tion methods across two D-LLMs and three factuality QA datasets with varying generation lengths.
TraceDet achieves the highest performance in all experimental settings, outperforming the second
strongest baseline by 8.8% AUROC on LLaDA-8B-Instruct and 11% on Dream-7B-Instruct. These
consistent gains exhibit the value of exploiting temporal denoising dynamics rather than relying
solely on output uncertainty or static hidden-state representations. Among the baselines, Output-
based approaches suffer from poor consistency, with LN-Entropy and Perplexity methods showing
high variance across datasets on the LLaDA-8B-Instruct model. Due to restricted access to inter-
mediate logits from Dream-7B-Instruct, our attempts to estimate Perplexity and LN-Entropy suffer
from severe numerical instabilities, often diverging to infinity. Moreover, Semantic Entropy achieves
75.1% AUROC on TriviaQA with Dream-7B-Instruct but collapses to 51.4% on CommonsenseQA,
underscoring poor robustness when hallucinations decouple from token-level ambiguity. Latent-
based methods capture hidden-state geometry and show more competitive results, but they remain
sensitive to dataset and model choice. TSV achieves 75.6% AUROC on TriviaQA with Dream-7B-
Instruct yet fluctuates significantly across tasks while consistently underperforming TraceDet.

To isolate the contributions of our training framework and the IB principle, we evaluate two ab-
lations in Table 2: Ave Entropy and TraceDet w/o Masking. Naively averaging stepwise entropy
yields insufficient performance, while training without masking improves results but still underper-
forms TraceDet. This demonstrates that the IB principle enables TraceDet to identify maximally
informative sub-instances, yielding clear improvements over both simplified variants.

4.3 ANALYSIS

Understanding TraceDet. The core idea of TraceDet is to select a sub-trace Asub that pre-
serves steps predictive of hallucination. To probe what evidence is kept, we utilize the maxi-
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Figure 3: Comparison of averaged trace entropy selected by different model variants. No masking
refers to the full time step traces. (a) Comparison between different model variants. (b) Comparison
between different masking ratios τ . Results are reported using Dream-7B-Instruct.
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Figure 4: (a) TraceDet performance of different generation lengths with step length fixed at 1. (b)
TraceDet performance with different step lengths with generation length fixed at 128. All results are
reported as AUROC using Dream-7B-Instruct.

mum token entropy Hmax
t , and summarize each example by the mean over the selected steps

Ē = 1
|S|

∑
t∈S Hmax

t . We compare three variants: (i) No Masking, which uses the full trajec-
tory (Asub = A); (ii) TraceDet w/o Lext, the same architecture trained without the extraction loss;
and (iii) TraceDet. Figure 3a shows that TraceDet reduces both the mean and variance of Ē while
preserving separation between hallucinated and non-hallucinated examples, indicating that the mask
effectively denoises the trace while retaining label-relevant anomalies. Removing masking weakens
this effect. Varying the masking ratio τ (Fig. 3b) confirms that stronger masking more aggressively
removes non-diagnostic fluctuations without diminishing discriminative differences.

Efficiency. TraceDet is highly efficient at inference. Unlike AR-LLMs, D-LLMs generate text
through iterative denoising, where each forward pass is computationally more costly. This makes
inference efficiency especially important for hallucination detection in D-LLMs. Existing meth-
ods impose significant computational overhead through two types of multi-sample computations: (i)
Monte-Carlo sampling over output log-likelihood for estimating Perplexity or LN-Entropy, requiring
typically at least 128 remasking samples for stable results (Nie et al., 2025), and (ii) response sam-
pling for similarity-based metrics like Lexical Similarity or Semantic Entropy, multiplying inference
cost by the number of samples S. TraceDet eliminates this overhead by directly leveraging step-
wise entropy signals naturally exposed during denoising, requiring no additional sampling. Table 3
demonstrates that TraceDet achieves better performance while significantly reducing inference cost
compared to multi-sampling baselines. All timing results are reported on the LLaDA-8B-Instruct
model on the same hardware device with S set to 10, which aligns with practical application settings.

Sensitivity to Generation Length and Step Length. D-LLMs typically generate sequences with
fixed lengths, making parameter sensitivity analysis crucial for practical deployment. Generation
length determines the entropy matrix dimensionality, while step length controls token retention at
each denoising step. To assess the influence of these parameters, we conduct sensitivity analysis by
varying generation length L ∈ {16, 32, 64, 128} with step length fixed at 1 (Figure 4a), and step
length S ∈ {1, 2, 4, 8} with generation length fixed at 128 (Figure 4b).
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Figure 5: (a) TraceDet performance sensitivity to remasking strategies. (b) TraceDet performance
sensitivity to Lext parameters τ and β on TriviaQA. All results are reported as AUROC using
Dream-7B-Instruct.

TraceDet demonstrates robust performance across parameter ranges. As shown in Figure 4a,
TraceDet achieves optimal performance at moderate lengths (64 and 32 tokens), with slight dete-
rioration at the longest setting (128 tokens). This suggests that excessively long sequences may
introduce noise that dilutes the hallucination signal. For fact-based QA tasks like TriviaQA, where
answers are typically concise, generation length 64 provides sufficient reasoning capacity while
maintaining detection quality. Figure 4b shows that step length has minimal impact on performance,
with all settings yielding comparable results across datasets. The consistent performance across both
parameter dimensions indicates that TraceDet’s effectiveness is not critically dependent on genera-
tion settings, making it practically robust for deployment across diverse D-LLM configurations.

Sensitivity to Remasking Strategies. Figure 5a examines the impact of different remasking strate-
gies on TraceDet’s performance with Dream-7B-Instruct across four approaches: low-confidence
(retaining most confident predictions), entropy (retaining lowest entropy tokens), random (random
retention), and top-k (retaining based on top-1/top-2 confidence margins). TraceDet maintains ro-
bust performance across most strategies, with AUROC scores ranging from 75-85% on TriviaQA
and CommonsenseQA. However, random remasking shows degraded performance on TriviaQA,
likely because random token retention disrupts the model’s ability to maintain coherent reasoning
patterns essential for fact-based question answering. The stability across remasking strategies (low-
confidence, entropy, top-k) demonstrates TraceDet’s adaptability to different D-LLM configurations.

Sensitivity to Hyperparameters. Figure 5b analyzes the sensitivity of TraceDet to the Lext hy-
perparameters τ (masking ratio) and β (regularization weight). The 3D surface plot reveals a stable
performance plateau across a wide range of parameter combinations. TraceDet achieves optimal
performance when τ ∈ [0.2, 0.3] and β ∈ [0.8, 1.6], indicating that retaining 20-30% of denois-
ing steps with moderate regularization provides the best balance between information preservation
and noise reduction. The broad stability region demonstrates that TraceDet does not require precise
hyperparameter tuning for effective deployment.

5 CONCLUSION

In this work, we addressed the challenge of hallucination detection in D-LLMs by introducing a new
framework, Decoding Trace Detection (TraceDet). TraceDet is a lightweight, diffusion model ar-
chitecture–aware detector built upon information bottleneck principles, which identifies sufficient
sub-instances from the denoising entropy matrix. Our experiments demonstrate that TraceDet con-
sistently achieves superior performance on mainstream D-LLMs across multiple datasets. Beyond
proposing a new hallucination detection method, this work also offers insights into the mechanisms
of hallucination generation in D-LLMs, paving the way toward building more reliable applications
of D-LLMs. As future work, we will focus on developing strategies to mitigate the proposed hal-
lucinated patterns. We believe the insights from TRACEDET can inspire future methods that more
effectively leverage decoding traces as reliable supervision signals for improved detection.
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proval from an institutional ethics committee or review board. All experiments are conducted on
publicly available datasets for scientific purposes only. The work does not involve or target any sen-
sitive attributes such as gender, race, nationality, or skin color. Our study focuses on hallucination
detection in diffusion large language models, with the aim of improving the reliability and safety of
LLMs.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. All experiments were con-
ducted using publicly available datasets, and we provide detailed descriptions of data preprocessing
in Section 4. Our model architecture, hyperparameters, and training protocols are fully specified in
Section 3 and Appendix E. We will release our code and scripts for data processing and evaluation
upon publication to facilitate replication.
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A USAGE OF LLMS

For transparency, we report our use of LLMs. We employed OpenAI ChatGPT solely to assist
with language polishing, copy editing, and improving exposition in terms of grammar, phrasing,
and organization. In addition, we used Qwen-8B as an external judge for hallucination detection
in open-domain QA, but its outputs were carefully checked by the authors. None of these LLMs
was used to (i) generate scientific hypotheses or claims; (ii) design experiments; (iii) perform data
collection, processing, or analysis; (iv) compute metrics or produce numerical results; or (v) create
figures. All substantive content, experimental procedures, and numerical results were produced by
the authors. The corresponding author assumes full responsibility for ensuring the accuracy and
integrity of the paper.

B DETAILED RELATED WORK

Baseline Methods. We compare our method against seven baselines spanning two categories pro-
posed in Section 4.

(1) Output-based methods: These methods operate only on the generated text, detecting hallucina-
tions by analyzing uncertainty or surface similarity.

- Perplexity (Ren et al., 2022): computes the negative log-likelihood of the generated sequence
under the base model. Higher perplexity indicates that the model assigns low probability to its own
output, suggesting potential hallucination.

- Length-Normalized Entropy (LN-Entropy) (Malinin & Gales, 2020): measures the token-level
predictive entropy of the output distribution, normalized by sequence length, so that generations
with unusually high average uncertainty are flagged as hallucinations.

- Semantic Entropy (Kuhn et al., 2023): measures consistency of multiple generations by parti-
tioning them into semantic classes and computing the entropy of this class distribution. A higher
semantic entropy indicates greater uncertainty, which is taken as a signal of hallucination.

- Lexical Similarity (Lin et al., 2023): assesses consistency of multiple generations using lexical
overlap metrics. Low overlap suggests divergence from supporting evidence, which is interpreted as
hallucination.

(2) Latent-based methods. These approaches exploit hidden states or latent directions of LLMs,
probing truthfulness signals directly from internal representations.

- EigenScore (Chen et al., 2024a): proposed in INSIDE (ICLR 2024), it measures response consis-
tency via the log-determinant of the covariance matrix of their latent embeddings.

- Contrast-Consistent Search (CCS) (Burns et al., 2022): queries the model with contrastive
prompts (e.g., factual vs. hallucinated) and evaluates consistency of latent representations. In-
consistent activations are interpreted as evidence of hallucination.

- Truthfulness Separator Vector (TSV) (Park et al., 2025): learns a steering vector that separates
truthful from hallucinated generations in latent space, and then classifies new samples by projecting
onto the learned centroids.

Other potential baselines. Several alternative baselines for hallucination detection exist, however
they are challenging to implement in comparison to our proposed method. One major category,
highlighted in Huang et al. (2025), is fact-checking external retrieval methods, including: FactScore
(Min et al., 2023), which decomposes long-form text into fact chunks and computes the proportion of
chunks verified by an external knowledge base. And, Factool (Chern et al., 2023), a tool-augmented
method enabling LLMs to detect factual hallucinations using external resources. These approaches
rely on additional knowledge sources (e.g., Wikipedia or local databases), which conflicts with our
core objective of detecting hallucinations without external verification.

Other recent hallucination methods include:

• ReDeEP (Sun et al., 2024), a method specifically designed for Retrieval-Augmented Generation
(RAG). It disentangles retrieved evidence from the LLM’s parametric knowledge, then measures
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the alignment between the two. While effective in RAG settings, it is task-specific: in our
internal-signal-based experiments, there is no retrieved context to disentangle, so ReDeEP is not
applicable.

• FactTest (Nie et al., 2024), which formulates hallucination detection as a distribution-free hy-
pothesis testing problem. It controls Type I error by introducing an abstention mechanism, re-
quiring a held-out calibration dataset and repeated testing procedures. Although statistically
elegant, this framework is fundamentally different from our design goal: we aim for lightweight
detection relying purely on model-internal dynamics, without the need for extra calibration data
or abstention strategies.

• AGSER (Liu et al., 2025a), which leverages attention-guided self-reflection. It analyzes self-
attention maps, distinguishes “attentive” vs. “non-attentive” tokens, and trains a secondary clas-
sifier on the distribution of attention patterns to identify hallucinations. This approach depends
on full access to intermediate attention weights and assumes an autoregressive token-to-token at-
tention structure. However, D-LLMs adopt denoising architectures where attention is not aligned
with autoregressive decoding, making AGSER difficult to adapt. Additionally, extracting and
processing large attention tensors incurs substantial computational overhead, which goes against
our efficiency-oriented design.

Overall, while these methods are valuable in their respective contexts, their reliance on external re-
sources, additional datasets, or architectural assumptions makes them unsuitable as direct baselines
for our study. For this reason, we do not include them in the main comparison and instead discuss
them here for completeness.

C ALGORITHMS

We provide the pseudo-code of our method in Algorithm 1.

D MORE ON EQ 4 AND EQ 5

D.1 EQ 4

I(Y ;Asub) =

∫
P (y,Asub) log

P (y | Asub)

P (y)
dy dAsub

=

∫
P (y,Asub) logP (y | Asub) dy dAsub −

∫
P (y,Asub) logP (y) dy dAsub

=

∫
P (y,Asub) logP (y | Asub) dy dAsub +H(Y )

≥
∫

P (y,Asub) log qθ(y | Asub) dy dAsub

= EY,Asub

[
log qθ(Y | Asub)

]
:= −Lcls
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Algorithm 1 Overall training framework for TRACEDET

1: Parameters: batch size B, prior masking ratio r, extraction weight β
2: Inputs: Entropy sequence A ∈ RT×B×D

3: Initialize: Transformer encoder with random weights
4: Input encoding:
5: Project A using MLP-based positional encoder
6: Concatenate sinusoidal time embeddings of dimension dpe

7: Apply Transformer encoder to obtain contextual embeddings emb ∈ RT×B×dff

8: Sub-instance extraction:
9: for t = 1 to T do

10: for b = 1 to B do
11: Compute cross attention: att = attn(emb, A)
12: Apply linear layer and softmax over time steps: m̂t,b = softmax(Linear(att))
13: end for
14: end for
15: Apply masking: Asub = M ⊙A
16: Sub-instance classification:
17: for b = 1 to B do
18: Aggregate temporally: A′

sub = Mean(Asub,·,b,·)
19: Compute hallucination probability: ŷb = ReLU-MLP(A′

sub)
20: end for
21: Training objective:
22: Classification loss: Lcls = BCE(ŷb, yb)
23: Extraction regularizer:

Lext =

T∑
t=1

B∑
b=1

[
m̂t,b log

m̂t,b

r
+ (1− m̂t,b) log

1− m̂t,b

1− r

]
24: Total loss: L = Lcls + β Lext

25: Backpropagate and update parameters

D.2 EQ 5

I(A;Asub) = EA,Asub

[
log

P (Asub | A)

P (Asub)

]

= EA,Asub

[
log

P (Asub | A)Q(Asub)

P (Asub)Q(Asub)

]

= EA,Asub

[
log

P (Asub | A)

Q(Asub)

]
− EA,Asub

[
log

Q(Asub)

P (Asub)

]

= EA,Asub

[
log

P (Asub | A)

Q(Asub)

]
−DKL(P (Asub)∥Q(Asub))

≤ EA

[
DKL

(
P (Asub | A) ∥Q(Asub)

)]

E EXPERIMENT SETTINGS

All experiments were conducted on NVIDIA A40 GPUs. Hyperparameter settings are shown in
Tabel 4.
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Table 4: Hyperparameter search space for TRACEDET. Notation: † log-spaced; ‡ linearly spaced. ∗

only applies to LLaDA.

Parameter Range Grid size

Learning rate (lr) [10−5, 10−3]† 8
Batch size (batch size) {8, 64} 2
Dropout rate (dropout rate) [0.0, 0.4]‡ 5
Number of layers (nlayers) {2, 3, 4} 3
β [0, 2]‡ 6
τ [0.1, 0.4]‡ 4
cfg∗ {0, 1} 2

F CASE STUDY

F.1 INTERLEAVING HALLUCINATION

Retained Steps

<Question>Professor A. Selvanathan is a professor at a university that is public or pri-
vate?</Question>
<Golden label>public</Golden label>
The following are TraceDet extracted steps
<step>”<answer>public</answer>”, </step>
<step>”<answer>Public</answer>”, </step>
<step>”<answer>private</answer>”, </step>
<step>”<answer>private</answer>”, </step>
<Output>”<answer>private</answer>”</Output>

Retained Step

<Question>Friggatriskaidekaphobia (or triskaidekaphobia or paraskevidekatriaphobia) is the fear of
what?</Question>
<Golden label>Friday the 13</Golden label>
The following are TraceDet extracted steps
<step>”<answer> Friggriskagk anythingobia (or frost excessive or kevide atr13 is the fear of num-
bers.</answer>”,</step>
<step>”<answer> Friggriskak thingsobia (oriska k refrigeration oranswerkevide atriobia) is the fear
of ice. </answer>”, </step>
<step>”<answer>Friggatriskakobia (oriskak orkevideatri) is fear of freezing.</answer>”, </step>
<Output>”<answer>Friggatriskaidekaphobia (or triskaidekaphobia or paraskevidekatriaphobia) is
the fear of numbers.</answer>”</Output>

Retained Steps

<Question>On which of the hills of ancient Rome were the main residences of the Cae-
sars?</Question>
<Golden label>Palatine</Golden label>
The following are TraceDet extracted steps
<step>”<answer>Palatine</answer>”, </step>
<step>”<answer>Palatine</answer>”, </step>
<step>”<answer>Pal Hill Hill</answer>”, </step>
<step>”<answer>Palat Hill</answer>”, </step>
<Output>”<answer>Palat Hill</answer>”</Output>
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Retained Steps

<Question>What NIFL Premier Intermediate League team did Sean Connor play for?</Question>
<Golden label>Distillery</Golden label>
The following are TraceDet extracted steps
<step>”<answer>Distillery F.C</answer>”,</step>
<step>”<answer>Newis Distillery F.C</answer>”, </step>
<step>”<answer>Newington Youth.C.C.</answer>”, </step>
<step>”<answer>Newington Youth F.C.</answer>”, </step>
<Output>”<answer>Newington Youth F.C.</answer>”</Output>

F.2 INCONSISTENT GUESSES

Retained Step

<Question>Who was declared Model of the Millennium by Vogue editor Anna Win-
tour?</Question>
<Golden label>Gisele Buendchen</Golden label>
The following are TraceDet extracted steps
<step>”<answer> Cindy Campbell Crawford declared declared Millennium Millennium ed-
itor editor editor editor editor editorour editor editor editor editor editor editorlags Camp-
bell</answer>”,</step>
<step>”<answer> Cindy Crawford Crawford declared declared declared declared Millennium Mil-
lennium editor editor editor editor editorint editorintintint Campbell Campbell Campbell Campbelllags
Campbell </answer>”, </step>
<step>”<answer>Naomi Crawford Crawford Crawford Mossourour Campbell Campbell Campbell
Campbell Campbell Campbell Campbelllags Crawford</answer>”, </step>
<step>”<answer>Nicole Kid Crawford ¡/answer¿lags Campbell Campbell Campbell Nicole Camp-
bell0 model</answer>”, </step>
<Output>”<answer>Nicole Kidman</answer>”</Output>

Retained Step

<Question>Which Canadian born actress was the star in the movie Barb Wire?</Question>
<Golden label>Pamela Anderson</Golden label>
The following are TraceDet extracted steps
<step>”<answer> answeransweransweransweranswer actress actressanswer actress actressanswer
actress actress actress actress actress actress actress Wire Wire Wire Wire Wire Wire Wire Wire Wire
Wire Wire Barb Wire Wire Wire Wire Wire Wire</answer>”,</step>
<step>”<answer> JenniferJennifer 7̆39b7̆d227̆39b7̆d227̆39b7̆d22answeransweransweransweranswer
Wireanswer Wire Wire Wire Wire Wire</answer>”, </step>
<step>”<answer>Michelleodie Ther7̆39b7̆d227̆39b7̆d225̆5106̆069¿ Wire Wire Wire Wire Wire
Canadian</answer>”, </step>
<step>”<answer>Kirstodie Therellar5̆5106̆069answer¿ anisotropicwald Kirst Kirst
Kirstaghanaghan Barb</answer>”, </step>
<Output>”<answer>Kirstie Alley</answer>”</Output>
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F.3 PERSISTENT ERROR

Retained Step

<Question>In the Shakespeare play The Tempest, Prospero is the overthrown Duke of
where?</Question>
<Golden label>The weather in Milan</Golden label>
The following are TraceDet extracted steps
<step>” InInIn Shakespeare play Temp Temp Temp Prosper Prosper Prosper Prosper Prosper Prosper
Prosperrownrown Duke Duke Prosperiel. Prosper¡¡answer¿In Prosper Shakespeare playThe Tempest,
Prospero Prosper Prosper overthrown Duke of ’Ari¿”,</step>
<step>” In the Shakespeare play,o is thethrown Duke of ’ overrown Duke of 2̆018ieliel. ¡answer¿ In
Shakespeare play Theest,o is the overrown Duke of Ariiel”, </step>
<step>”In Shakespeare play The, is thethrown Duke of ’Ariiel’. In the Shakespeare play Theest,
Prospero is the overthrown Duke of ’Ariiel’.”, </step>
<step>”In the Shakespeare play The Tempest, Prospero is the overthrown Duke of ’Ariiel’”, </step>
<Output>”In the Shakespeare play The Tempest, Prospero is the overthrown Duke of ’Ari-
iel’”</Output>
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