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Abstract

We propose a simple and general framework for
nonparametric estimation of heterogeneous treat-
ment effects under fairness constraints. Under
standard regularity conditions, we show that the
resulting estimators possess the double robustness
property. We use this framework to characterize
the trade-off between fairness and the maximum
welfare achievable by the optimal policy. We
evaluate the methods in a simulation study and
illustrate them in a real-world case study.

1. Introduction
In today’s data-centric world, an increasing number of de-
cisions that affect people’s lives are automatically made by
machine learning models. Such decision-making systems
are implemented in various domains, ranging from finance
to healthcare. Considering the multifaceted implications of
such decisions both at the individual and societal levels, it
is crucial to ensure that the underlying models are not only
accurate but fair. In this work, by fairness we mean that
the model estimates are not biased so that they do not sys-
tematically benefit or harm a specific group of people. The
need to address such algorithmic biases has given rise to a
plethora of works on algorithmic fairness (e.g., see Barocas
et al. (2019) for a review). However, despite the abundance
of studies in this general area, comparatively little attention
has been given to fairness in causal inference. In this work,
we propose a novel framework for estimating heterogeneous
treatment effects in a fair and robust manner, leveraging
recent developments in counterfactual optimization (Kim
et al., 2022a;b).

1Department of Statistics, Korea University, Seoul, South Ko-
rea 2Department of Health Care Policy, Harvard Medical School,
MA, USA 3Departments of Biostatistics and Statistics, Harvard
University, MA, USA. Correspondence to: José R. Zubizarreta
<zubizarreta@hcp.med.harvard.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1.1. Related Work

Understanding of treatment-effect heterogeneity and iden-
tifying subgroups that respond in a similar way to a given
treatment is of great importance across scientific domains.
The most common target estimand to study heterogeneity of
treatment effects is the conditional average treatment effect
(CATE). Various methods have been proposed to obtain ac-
curate estimates of and valid inferences for the CATE, with
a special emphasis in recent years on incorporating flexible
machine learning tools (e.g., Imai et al., 2013; van der Laan
& Luedtke, 2014; Athey & Imbens, 2016; Wager & Athey,
2018; Künzel et al., 2017; Nie & Wager, 2017; Kennedy,
2020). See Jacob (2021) for a review.

Although CATE estimation and inference are of indepen-
dent importance, these tasks are central also to better target
interventions, for example by learning subgroup structures
or optimal policies. Much of the earlier attempts on these
areas involve postulating a parametric model for the CATE
to find the subgroups that would benefit from the given treat-
ment (e.g., Murphy, 2003; Brinkley et al., 2010; Henderson
et al., 2010; Orellana et al., 2010). Optimal policies or treat-
ment rules are often designed to identify subgroups with
CATEs larger than a certain threshold of interest, so that
investigators can select the most promising subgroups with
certain efficacy or safety (e.g., Zhao et al., 2013; Schnell
et al., 2016; Chen et al., 2017; Ballarini et al., 2018; Wang &
Rudin, 2022). More robust approaches to find optimal poli-
cies based on the property of doubly robustness have been
proposed in subsequent research (e.g., Zhang et al., 2012;
2013). In recent studies (Kallus, 2018; Kitagawa & Tetenov,
2018; Athey & Wager, 2021), flexible nonparametric ap-
proaches are discussed where an optimal policy is deployed
from a pre-specified class that encodes problem-specific
constraints (e.g., a budget or a capacity constraint).

However, this type of data-driven policy-making processes
may result in discriminatory treatment of groups defined
by sensitive features, such as gender or race. In order to
mitigate these algorithmic biases, a wide array of fair es-
timation criteria have been developed by placing restric-
tions on the joint distribution of outcome variables and
sensitive features (e.g., Barocas et al., 2019; Hardt et al.,
2016). In some cases, such as risk assessment, counterfac-
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tual fairness may be of interest where the fairness criteria
depend on potential (or counterfactual) outcomes (e.g., Kus-
ner et al., 2017; Nabi & Shpitser, 2018; Coston et al., 2020b;
Mishler et al., 2021; Mishler & Kennedy, 2021). Recently,
constraint-based frameworks have been proposed to flexibly
incorporate such fairness criteria in classification (e.g., Zafar
et al., 2019; Mishler & Kennedy, 2021). It is also known
that fairness-accuracy trade-offs may exist because in some
cases the most accurate models under consideration do not
satisfy the desired fairness criterion (e.g., Kleinberg et al.,
2016; Menon & Williamson, 2018; Obermeyer et al., 2019;
Mishler et al., 2021).

To our knowledge, little work has been done at the inter-
section of algorithmic fairness and the estimation of hetero-
geneous treatment effects. Some significant studies have
integrated aspects of algorithmic fairness and policy learn-
ing (Nabi et al., 2019; Viviano & Bradic, 2022). However,
it is still unclear how to extend existing methods in algo-
rithmic fairness to obtain an efficient and robust estimator
for the CATE under general fairness criteria. Further, to the
best of our knowledge, the trade-off between fairness and
the maximum welfare achievable by the optimal policy has
not been formally explored.

1.2. Contribution

Our method builds on promising literature at the intersec-
tion of algorithmic fairness, causal inference, and stochastic
optimization, bridging the gap between algorithmic fair-
ness and the analysis of heterogeneous treatment effects.
At this intersection, our contribution is twofold. First, we
propose a simple and general framework for nonparametric
estimation of the CATE under general fairness constraints.
We cast our estimator as a convex optimization problem
that can be readily solved with off-the-shelf solvers, and
show that the resulting estimators are doubly robust under
standard regularity conditions. The proposed estimator can
attain fast

√
n rates with tractable inference even when in-

corporating flexible machine learning tools. Our proposed
approach contributes to the existing works in terms of ro-
bustness, flexibility, and ease of implementation. Second,
we characterize the trade-off between welfare and fairness,
by analyzing the regret bounds relative to the optimal policy.
To our knowledge, this is the first to quantify the cost of
fairness in policy learning, which helps to understand, for
example, how a desired level of fairness requires a social
welfare compromise.

2. Setup and Framework
2.1. Heterogeneous Treatment Effects and Policy

Learning

Consider an i.i.d. sample (Z1, ..., Zn) of n tuples Z =
(Y,A, S,X) ∼ P for some distribution P, outcome Y ∈

Y , binary intervention A ∈ {0, 1}, sensitive feature S ∈
{0, 1}, and additional covariates X ∈ X for some compact
subset X . Here, we assume that larger values of Y denote
better outcomes. We let W = (S,X) ∈ W represent the
measured pre-intervention variables and let Y a denote the
potential outcome that would have been observed (possibly
contrary to fact) under treatment or intervention A = a.
Throughout, we assume the common causal identification
assumptions of consistency, no unmeasured confounding,
and positivity (e.g., Imbens & Rubin, 2015, Chapter 12).
Under these assumptions, the CATE is defined and identified
as

τ(W ) = E(Y 1 − Y 0 |W ) = µ1(W )− µ0(W ),

where µa(W ) = E[Y | W,A = a],∀a ∈ {0, 1}. A treat-
ment rule or policy g is defined by a mapping from the pre-
treatment variables to the treatment: i.e., g : W → {0, 1}.
The CATE function τ can be used to produce the optimal
policies or to identify subgroups of interest. A policymaker
often chooses a policy in such a way that the expected utility
or welfare defined by

U(g) = E
{
Y 1g(W ) + Y 0 (1− g(W ))

}
(1)

is maximized. It is straightforward to show that the optimal
policy producing the largest value of U(g) is given by

g∗(W ) = 1 {τ(W ) > 0} . (2)

g∗ targets individuals that would have yielded the larger
mean outcome had the treatment assigned1. More generally,
however, one may aim to learn a targeting policy

gI(W ) = 1 {τ(W ) ∈ I} , (3)

where the interval I defines a subgroup of interest.

2.2. Motivating Example

As we illustrate here, ignoring fairness considerations in
the CATE estimation problem may introduce serious biases
and in turn result in unfair policies. Consider the following
data-generating process

S ∼ Bernoulli(0.5), [X1, X2]
⊤ | S ∼ N ([0, 2S − 1]⊤, I2),

P(A = 1 |W ) = expit
(
W⊤[1, 0, 0] + SX1

)
,

µA(W ) = AX3
2/2 + fµ(W ),

for some fixed function fµ : W → R, where expit and I2
denote the inverse logit function and the 2×2 identity matrix.
Then, τ(W ) = X3

2/2 and g∗(W ) = 1(X2 > 0). When we
generate 100 observations from this model, serious fairness
issues arise, as can be seen in Figure 1. For example, under
g∗ only less than 5% of individuals with S = 0 are treated,
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Figure 1. When the optimal policy is applied, only less than 7% of individuals with S = 0 are treated while more than 95% of individuals
in the untreated group are S = 0.

while more than 90% of individuals in the untreated group
are S = 0.

In this case, one would be inclined to believe that the sensi-
tive feature S is the source of the heterogeneity. Also, this
may lead to policies that discriminate against individuals
belonging to the group S = 0. Hence, accurate estimation
of τ alone may induce socially unacceptable consequences
which can cause negative impacts on certain individuals. For
example, if A represents the policing practice of stop-and-
frisk program, it could be used as a recipe for discriminatory
practice of stop-and-frisk toward specific ethnic groups (Gel-
man et al., 2007; White & Fradella, 2016). If A represents
access to medical or health care resources, it could be used
as an excuse to create a barrier to healthcare for people
that are socially disadvantaged. Many recent studies advo-
cate not only cost-effectiveness but also other ethical values
for rationing limited health resources (e.g., Emanuel et al.,
2020; Obermeyer et al., 2019). Unless properly addressed,
the biases in estimated heterogeneity treatment effects can
perpetuate and amplify unfair societal processes and out-
comes. As a result, this can reduce the public’s trust in
data-driven systems (Schwartz et al., 2022).

2.3. Proposed Framework

In this section, we lay out a framework for estimating the
CATE where we can maximize model fit while securing
algorithmic fairness. Specifically, we aim to find a func-
tional approximation of τ , defined by a projection onto a
finite-dimensional parametric model subject to fairness con-
straints. Our target parameter can be reformulated as the
solution to the following constrained stochastic optimization

1Here, the strict inequality follows from the convention (see,
e.g., Zhang et al., 2012).

problem

minimize
β∈Rk

RMSE (β; b) := E
[{
Y 1 − Y 0 − β⊤b(W )

}2]
subject to

∣∣E{ufj(Z)β⊤b(W )
}∣∣ ≤ δj , j ∈ J,

(P)
for some δj ≥ 0 and J = {1, ...,m}. δj is a prespecified
tolerance for the maximum acceptable level of unfairness
in the j-th criterion. The solution of the above program
corresponds to the coefficients of the best-fitting function
of τ on the finite-dimensional model space spanned by the
basis functions b(W ) = [b1(W ), ..., bk(W )]⊤ subject to
the m fairness constraints. Note that here we do not as-
sume anything about the true functional relationship be-
tween Y 1 − Y 0 and W . This form of linear aggregation is
widely used in nonparametric regression (e.g., Juditsky &
Nemirovski, 2000; Tsybakov, 2003). Zhao (2019) discusses
adaptive strategies that allow to consider very rich model
family using b(·).

We follow Mishler & Kennedy (2021) and use the fairness
function ufj : Y2 × {0, 1} → R to accommodate a broad
range of (counterfactual) fairness measures. For example,
the criterion of independence, arguably the most well-known
criterion for fairness, can be applied by letting

ufj(Z) =
1− S

E(1− S)
− S

E(S)
. (4)

This leads to∣∣E{β⊤b(W ) | S = 0
}
− E

{
β⊤b(W ) | S = 1

}∣∣ ≤ δj ,

thus requiring our fitted models to be marginally (approxi-
mately) independent of the sensitive feature with respect to
the CATE. When we want to pursue independence for the
group that benefits from the treatment, we may consider

ufj(Z) =
(1− S)1 {τ(W ) > 0}

E [(1− S)1 {τ(W ) > 0}]
− S1 {τ(W ) > 0}

E [S1 {τ(W ) > 0}]
,

(5)

3



Toward Fair and Robust Policy Learning

which leads to∣∣E{β⊤b(W ) | S = 0, τ(W ) > 0
}

− E
{
β⊤b(W ) | S = 1, τ(W ) > 0

} ∣∣ ≤ δj .

This corresponds to the condition of balance for the positive
class (Kleinberg et al., 2016), with τ(W ) viewed as a risk
score. One may also use other fairness criteria with appro-
priate fairness functions which may depend on Y 1, Y 0 as
well (Mishler & Kennedy, 2021, Section 3).

Similar projection approaches have also been used in causal
inference (e.g., Neugebauer & van der Laan, 2007; Semen-
ova & Chernozhukov, 2021; Kennedy et al., 2021). There
are several reasons why the above projection approach is
preferred in our setting. First, as will be seen shortly, the
coefficients β may be estimated with flexible nonparamet-
ric methods while achieving the parametric

√
n rates and

tractable inference due to the property of double robustness.
It also aids interpretability: it allows practitioners to better
grasp the heterogeneity in treatment effects and audit the
resulting policies according to the specified level of unfair-
ness. Finally, the optimal solution of (P) can be estimated
by solving the optimization problem that approximates (P)
using various off-the-shelf algorithms. We will discuss this
in more detail in the following section.

Another helpful feature of this framework is that we can
consider a general setting where only a subset of covariates
V ⊆W can be used for predicting the counterfactual con-
trast Y 1 − Y 0. This allows for runtime confounding, where
some factors used by decision-makers are recorded in the
training data (used to construct nuisance estimates) but not
available for prediction (see Kim et al. (2022a) for details;
see also Coston et al. (2020a) and the references therein).
Remark 2.1. Following the convention in the fairness lit-
erature, in (P) we only place restrictions on the absolute
difference between the first moments (i.e., the conditional
means). However, one may consider restricting more com-
prehensive set of distributional features beyond the means
by replacing the constraints with∣∣E{ufj(Z)d

(
β⊤b(W )

)}∣∣ ≤ δj ,

where the function d : R → Rp determines the distribu-
tional features which we want to constrain in each fairness
criterion. For instance, one can match up to the p-th moment
by setting d(x) = [x, . . . , xp]⊤. This generalizes the con-
ventional measure of fairness and allows to pursue stricter
levels of fairness. However, this entails costs of much harder
implementation (i.e., non-convex and non-linear optimiza-
tion) and stronger regularity conditions for our theoretical
results. We leave this extension for future work.

Notation. We briefly introduce some additional notation
used in the rest of the paper. For any fixed vector v, we

let ∥v∥q denote the Lq-norm. Let Pn denote the empir-
ical measure over (Z1, ..., Zn). Given a sample opera-
tor h (e.g., an estimated function), we let P denote the
conditional expectation over a new independent observa-
tion Z, as in P(h) = P{h(Z)} =

∫
h(z)dP(z) 2. Then

we use ∥h∥q,P to denote the Lq(P) norm of h defined by

∥h∥q,P =
[∫

∥h(z)∥qqdP(z)
] 1

q . Lastly, we let ≲ denote less
than or equal to up to a nonnegative constant.

3. Estimation and Inference
(P) is not directly solvable so we need to find an approxi-
mating program of the “true" program (P). A complication
arises since standard approaches to stochastic programming
such as stochastic approximation (SA) and sample average
approximation (SAA) (e.g., Nemirovski et al., 2009; Shapiro
et al., 2014) are infeasible in our setting, because i) the rele-
vant sample moments and stochastic (sub)gradients depend
on unobserved counterfactuals, and ii) these approaches
cannot incorporate efficient semiparametric estimators with
cross-fitting (e.g., Newey & Robins, 2018). We therefore
build our estimators on the recent developments by Kim
et al. (2022a;b) where counterfactual components are esti-
mated flexibly without any restrictions on our estimand or
estimator.

We first describe simple estimators of each counterfactual
component. Based on the identification assumptions, we
obtain the following identity

E[Y ab(W )] = E [µa(W )b(W )] = E
[

AY

πa(W )
b(W )

]
,

where πa(W ) = P[A = a | W ] is the propen-
sity score. Then one may estimate the counterfactual
parameter E[Y ab(W )] using the plug-in (PI) estima-
tor Pn {µ̂a(W )b(W )} or the inverse-probability-weighted
(IPW) estimator Pn {AY /π̂a(W )b(W )} depending on the
quality of information to model the observational outcome
or treatment process. Here µ̂a and π̂a are some estimators of
µa and πa, respectively. Although widely used in practice,
these estimators cannot attain

√
n rates in general when

nonparametric methods are used (Kennedy, 2016).

We provide more efficient influence-function-based semi-
parametric estimators for the counterfactual components in
(P). Let φa denote the uncentered efficient influence func-
tion (EIF) for the parameter E[Y a] = E {E[Y |W,A = a]},
which is defined by

φa(Z; η) =
1(A = a)

πa(W )
{Y − µA(W )}+ µa(W ),

with a set of the nuisance components η = {πa, µa}
(Kennedy, 2017; 2022).

2When h is a fixed operator, P and E are used interchangeably.
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Following Robins et al. (2008), Zheng & Van Der Laan
(2010), Chernozhukov et al. (2017), Newey & Robins
(2018), and Kennedy (2020), we propose to use sample
splitting (or cross fitting) to allow for arbitrarily complex nui-
sance estimators η̂. Specifically, we split the data intoK dis-
joint groups, each with size n/K approximately, by drawing
variables (B1, ..., Bn) independent of the data, with Bi = b
indicating that subject i was split into group b ∈ {1, ...,K}.
Then the semiparametric estimator for E[Y ab(W )] based
on the EIF and sample splitting are given by

1

K

K∑
b=1

Pb
n {φa(Z; η̂−b)b(W )} ≡ Pn {φa(Z; η̂−B)b(W )} ,

where we let Pb
n denote empirical averages only over the

set of units in group b {i : Bi = b} and let η̂−b denote
the nuisance estimator constructed only using those units
{i : Bi ̸= b}. This suggests

Pn {φ1(Z; η̂−B)− φ0(Z; η̂−B)b(W )} (6)

as our estimator for E[(Y 1 − Y 0)b(W )] = E[τ(W )b(W )].
Under weak regularity conditions, this sample-splitting-
based semiparametric estimator attains the efficiency bound
with the double robustness property, and thus allow us to
employ flexible machine learning methods while achieving
the

√
n-rate of convergence and valid inference (Kennedy,

2017)3.

Development of an efficient estimator for E {ufj(Z)b(W )}
depends on the form of the fairness function ufj . Here, we
provide a few illustrative cases. First, for the fairness func-
tion (4) corresponding to the criterion of independence, one
may simply use the following sample-average type estima-
tor:

Pn

{
ûfjb(W )

}
= Pn

[{
(1− S)

Pn(1− S)
− S

Pn(S)

}
b(W )

]
,

which is naturally
√
n-consistent without any need for nui-

sance estimation.

Next, for the fairness functions involving a non-smooth com-
ponent as in (5), we can employ some standard techniques
in the nonparametric literature. One of them is the margin
condition. In case of (5), we can restrict the probability that
the two outcome regression functions get too close to each
other, by imposing the following margin condition:

Definition 3.1 (Margin Condition). For any margin expo-
nent α > 0 and for all t ≥ 0,

P(|µ1(W )− µ0(W )| ≤ t) ≲ tα. (7)
3If one is willing to rely on appropriate empirical process con-

ditions (e.g., Donsker-type or low entropy conditions (Van der
Vaart, 2000)), then η can be estimated on the same sample without
sample splitting. However this would limit the flexibility of the
nuisance estimators.

The above margin condition is analogous to that used in Kita-
gawa & Tetenov (2018); Luedtke & van der Laan (2016a;b);
Kennedy et al. (2019; 2020) as well as other problems in-
volving estimation of non-smooth functionals such as clas-
sification (Audibert & Tsybakov, 2007), couneterfactual
density estimation (Kim et al., 2018), and clustering (Lev-
rard, 2018). This margin condition allows us to use the
following plug-in type estimator with sample splitting:

Pn

{
ûfjb(W )

}
=

1

K

K∑
b=1

Pb
n

(
b(W )×[

(1− S)1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}
1
K

∑K
b=1 Pb

n [(1− S)1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}]

− S1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}
1
K

∑K
b=1 Pb

n [S1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}]

])
.

The above estimator attains
√
n-consistency and asymptotic

normality if P [1{µ̂1 − µ̂0 > 0} ≠ 1{µ1 − µ0 > 0}] =

oP(1) and maxa ∥µ̂a − µa∥α∞,P = oP(n
− 1

2 ) (more details
can be found in Appendix C). Alternatively, one may use
smoothing approximation techniques such as kernel or poly-
nomial smoothing (e.g., Kim et al., 2018; Kennedy, 2020).
We do not discuss each of them here as it is beyond the
scope of this paper.

Further, if our fairness function involves the potential out-
comes, we can utilize estimators similar to those employed
for our objective function. Specifically, if the fairness func-
tion ufj(Y 0, Y 1,W ) is a smooth function of Y 1, Y 0, then
one may use the following EIF-based semiparametric esti-
mator

Pn

{
ûfjb(W )

}
= Pn {ufj (φ0(Z; η̂−B), φ1(Z; η̂−B),W ) b(W )} ,

which is asymptotically normal and efficient according to
the same logic as used for (6).

Consequently, our approximating program can be found as
the following convex quadratic program (QP):

minimize
β∈Rk

1

2
β⊤Pn

{
b(W )b(W )⊤

}
β

− β⊤Pn [{φ1(Z; η̂−B)− φ0(Z; η̂−B)} b(W )]

subject to
∣∣∣β⊤Pn

{
ûfjb(W )

}∣∣∣ ≤ δj , j ∈ J.

(P̂)
The above QP can be readily solved using off-the-shelf
solvers. Let β̂ be an optimal solution to (P̂). Our proposed
estimator for τ is then given by τ̂(W ) = β̂⊤b(W ).

Next, we introduce the following assumptions on our basis
expansion and nuisance estimation.
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(A1) E[b(W )b(W )⊤] is positive definite

(A2) P(π̂a ∈ [ϵ, 1− ϵ]) = 1 for some ϵ > 0

(A3) ∥µ̂a − µa∥2,P = oP(1) or ∥π̂a − πa∥2,P = oP(1)

(A4) ∥π̂a − πa∥2,P∥µ̂a − µa∥2,P = oP(n
− 1

2 )

Assumption (A1), requiring that our basis functions are
never perfectly collinear, ensures that the quadratic growth
condition holds at the optimal solution in (P). This could be
replaced with a weaker technical condition (see Kim et al.,
2022b, or Appendix B). It also guarantees uniqueness of the
optimal solution to (P). Assumptions (A2) - (A4) are con-
ditions regarding our nuisance estimation, and commonly
used in semiparametric estimation in the causal inference
literature (e.g., Kennedy, 2016; 2022). We also need the
following assumptions to ensure that the stochastic compo-
nents in the constraints are consistent at fast rates and attain
asymptotic normality.

(A5) Pn

{
ûfjb(W )

}
− E {ufjb(W )} = OP

(
n−

1
2

)
(A6)

√
n
[
Pn

{
ûfjb(W )

}
− E {ufjb(W )}

]
converges in

distribution to a normal random variable with zero mean
and finite variance.

In the following theorem, we provide the large-sample prop-
erties of our proposed estimator.

Theorem 3.2. Let β∗ and β̂ denote the optimal solutions to
(P) and (P̂), respectively. If Assumptions (A1) - (A3), and
(A5) hold, then

∥β̂ − β∗∥2 = OP

(
max

a
∥π̂a − πa∥2,P∥µ̂a − µa∥2,P + n−

1
2

)
.

If we additionally assume (A4) and (A6), and that the Linear
Independence Constraint Qualification (LICQ) and Strict
Complementarity (SC) hold at β∗, then

√
n(β̂ − β∗) con-

verges in distribution to a normal random variable with zero
mean and finite variance.

The above result immediately follows by Theorems 3.1 and
3.2 of Kim et al. (2022b), and gives conditions under which
β̂ is

√
n-consistent and asymptotically normal. Thus, valid

confidence intervals and hypothesis tests can be constructed
via the bootstrap. The doubly robust second-order term
∥π̂a − πa∥2,P∥µ̂a − µa∥2,P will be small if either πa or
µa are estimated accurately. In nonparametric modeling,
this second-order error substantially lowers the bar for the
nuisance estimator convergence rate, which allows much
more flexible methods to be employed while still achieving√
n rates; for example, it suffices that both nuisance func-

tions are estimated consistently at n
1
4 rates (Kennedy, 2016).

LICQ and SC are regularity conditions commonly found in

the optimization literature (e.g., Still, 2018; Shapiro et al.,
2014); see Appendix B for the formal definitions. Here we
use weaker assumptions than the standard results in stochas-
tic optimization (Shapiro, 1993) due to the linear constraints
(Kim et al., 2022b). We also remark that, while we choose
the mean squared error RMSE as our default risk function,
other risk functions, even those with regularization terms,
may be used in our framework if they satisfy the necessary
regularity conditions (see Kim et al., 2022b, Section 3).

4. Regret Bounds and Fairness-Welfare
Tradeoff

In this section, we analyze the regret upper bounds and dis-
cuss the implications of using the proposed CATE estimator
under fairness criteria for the estimation of the optimal pol-
icy g∗ defined in (2). One may estimate g∗ by

ĝ(W ) = 1

{
β̂⊤b(W ) > 0

}
, (8)

where β̂⊤b is our estimates of τ obtained by solving (P̂).
Note that since ĝ is a non-smooth function of β̂⊤b, one
should not in general expect to achieve the same level of
fairness for ĝ as for β̂⊤b (see Appendix A for more details).
Following the convention in the literature, we evaluate the
performance of the above estimated policy in terms of the
welfare loss or regret relative to the maximum achievable
welfare U(g∗), i.e., U(g∗)− U(ĝ).

We shall use the margin condition (3.1) for our analysis,
which helps us to avoid expensive classification errors for
ĝ when τ is close to 0. In the following lemma, we adapt
the comparison results in Audibert & Tsybakov (2007) and
provide two useful inequalities between the regrets and the
Lq risks of the proposed CATE estimator.

Lemma 4.1. Assume that the margin condition (7) holds
with margin exponent 0 < α < ∞. Define the risk score
∆ ≡ ∆(W ) = τ(W ) and ∆̂ ≡ ∆̂(W ) = β̂⊤b(W ). Then

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥α+1

∞,P
.

Further, for any 1 ≤ q <∞,

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥ q(1+α)
q+α

q,P
.

Using this lemma, the following theorem provides upper
bounds of the regret for our proposed estimator ĝ in (8).
These results are asymptotic in the sample size n.

Theorem 4.2. Assume (A1) - (A3), (A5) and that the margin
condition (7) holds with margin exponent 0 < α <∞. Let

β̃ = argmin
β∈Rk

E
{(
Y 1 − Y 0 − β⊤b(W )

)2}
, (9)
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and define the remainder terms

R1,n = OP

(
max

a
∥π̂a − πa∥2,P∥µ̂a − µa∥2,P + n−

1
2

)
,

R2 = O
(∥∥∥∑

j

√
λjufj(Z)

∥∥∥
2,P

∥∥∥b(W )
∥∥∥
2,P

)
,

where λj ≥ 0 is the Lagrange multiplier associated with
the j-th fairness constraint in (P). Then

(i) U(g∗)− U(ĝ) ≲
∥∥∥τ(W )− β̃⊤b(W )

∥∥∥1+α

∞,P

+R1+α
1,n +R1+α

2 ,

(ii) P {ĝ(W ) ̸= g∗(W )} ≲
∥∥∥τ(W )− β̃⊤b(W )

∥∥∥α
∞,P

+Rα
1,n +Rα

2 ,

(iii) U(g∗)− U(ĝ) ≲
∥∥∥τ(W )− β̃⊤b(W )

∥∥∥ q(1+α)
q+α

q,P

+R
q(1+α)
q+α

1,n +R
q(1+α)
q+α

2 ,∀1 ≤ q <∞.

In (ii), Pr {ĝ(W ) ̸= g∗(W )} is the probability that ĝ differs
from the true optimal policy g∗ over a new observation.
Theorem 4.2 shows that the regret bounds depend on the
levels of both the nuisance estimation accuracy and fairness
we wish to achieve in the CATE estimation problem.

Specifically, each bound listed in Theorem 4.2 consists of
three terms. The first term is an unavoidable modeling
error minimized through least square estimation, which will
vanish if µa(·) lies in the function space spanned by the
basis functions b(·).

The second term, R1,n, is essentially the doubly robust
second-order term that appears in Theorem 3.2. R1,n con-
verges to zero at

√
n rates even when πa and µa are flexibly

estimated at slower than
√
n rates.

The third term, R2, has important implications. It indicates
the cumulative unfairness in the CATE with respect to the
sensitive features, measured by a series of the fairness func-
tions. If we use small values of the tolerance level δj so that
the optimum β∗ is constrained by the j-th fairness constraint
(i.e., the j-th constraint is active), then the corresponding
Lagrange multiplier, λj , is positive. On the contrary, if we
loosen the standard by using large values of δj so that the
j-th fairness constraint does not constrain β∗, λj is set to
zero. Therefore, our attempts toward making optimal poli-
cies more fair may lead to an additional welfare loss (regret)
relative to the universally maximum possible welfare U(g∗).
In other words, there is a trade-off between fairness in the
optimal policy and the maximum achievable welfare.

In short, Theorem 4.2 states that, while the proposed ap-
proach can significantly reduce the cost of estimating the

nuisance components, there is still a cost associated with the
fairness constraints in order to estimate the optimal policy
at the required level of fairness.

Finally, we remark that a comparable analysis for gI in
(3) can also be performed with a slightly different margin
condition, where the probability is restricted on the edge of
the interval I.

5. Experiments
5.1. Simulation study

In this section, we conduct a simulation study to illustrate
the theoretical properties and finite-sample performance
of the proposed estimators. We generate synthetic data
according to the process described in Section 2.2 where we
set

fµ(W ) = log(SX2
1 + 10) + exp(−SX2/5) + SX1,

Y a = µa(W ) + ϵ, ϵ ∼ N(0, 1), Y = Y 1A+ Y 0(1−A).

In the following experiments, we consider the indepen-
dence criterion with the fairness function defined in (4).
b(W ) consists of the polynomial terms W,W 2,W 3 and
{WjWkWs}j,k,s to form the third-order Taylor expan-
sion. All nuisance functions are estimated using the
cross-validation super learner ensemble implemented in
the SuperLearner R package to combine generalized
additive models, adaptive regression splines, and random
forests.

We first assess the ability of the proposed estimators to
mitigate unfairness in the estimated CATE. To this end, we
generate a sample of size 2000 observations and estimate
τ̂ using (P̂) with K = 2 splits, under δ = ∞ (i.e., with
no fairness constraints) and δ = 0. We then compare the
densities of τ̂ for each value of δ, and show how individuals
belonging to distinct groups are distributed in terms of S in
Figure (2). In Figure 3, we compute the proportions of S =
1 to S = 0 for each decision of ĝ(W ) = 1 {τ̂(W ) > 0}
under δ = ∞ and δ = 0.

In Figure 2, without the fairness constraints, we observe
a pronounced violation of the independence criterion in τ̂ ;
individuals belonging to the group S = 1 (S = 0) are
mostly distributed in the regime τ̂ > 0 (τ̂ < 0). This
eventually leads to disproportionate (unfair) policies (top of
Figure 3) where individuals with S = 1 are to be treated.
However, when the fairness constraint is applied with δ = 0,
this issue is largely resolved. In Figure 2, we observe that
the conditional sample means of τ̂ given S = 0 and S = 1
are nearly identical, and many individuals belonging to the
S = 1 (S = 0) group are shifted to the left (right) compared
to the case δ = ∞. This produces policies where the treated
and untreated groups are more balanced along the sensitive

7
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Figure 2. Densities of τ̂(W ) for δ = ∞ and δ = 0. In each figure, two dashed
vertical lines correspond to Pn {τ̂ | S = 0} and Pn {τ̂ | S = 1}.

Figure 3. Proportions of S = 1 to S = 0 for
each decision of ĝ.

feature, giving individuals with S = 0 more chances to be
treated (bottom of Figure 3).

To illustrate the theoretical findings in Section 4, which state
that the fairness in optimal policies comes at a price, we
estimate g∗ across different values of δ ranging between 0
and 4. In our simulation settings, δ = 4 is equivalent to
having no constraints (δ = ∞) as the fairness constraint
becomes inactive. This time, we also estimate the welfare
U(g∗) and the unfairness of our policy E {uf(Z)g∗(W )}
on a separate independent sample of the same size. We
compare our methods to the doubly robust score approach
(WA21) of Wager & Athey (2018), and the m-hybrid (KT18-
m) and e-hybrid (KT18-e) rules by Kitagawa & Tetenov
(2018). We do not incorporate our fairness constraint for
these approaches since it is not addressed in the original
works. The results across 500 simulations are presented in
Figure 4.

The results illustrate the predictions of our theory. In Figure
4, the estimated welfare gradually decreases as we apply
stricter tolerance levels (δ). The figure also shows that one
may reduce unfairness without any noticeable decrease in
welfare up to a certain point. To get the result of the bottom
of Figure (3), we have to sacrifice the overall welfare by
0.13. This illustrates the trade-off between fairness and
social welfare. Further in the simulation, we see that the cost
of reducing the same amount of unfairness grows rapidly as
we continue to decrease δ. Without the fairness constraints,
the proposed method achieves a comparable performance to
the doubly robust approach of Athey & Wager (2021).

Finally, to illustrate the double robustness property in Theo-
rems 3.2 and 4.2, we consider three estimators: the proposed
estimator and the previous two where the counterfactual
component is estimated by the PI and IPW estimators. In

Figure 4. The curve visualizes how much welfare is required to
sacrifice in order to achieve a desired level of fairness.

each simulated dataset, again ĝ is estimated on samples of
size 2000 and 10000 across the same values of δ as above,
and the regret and the unfairness are estimated on new, sep-
arate samples. The results across 500 simulations are pre-
sented in Figure 5. Again we observe the trade-off between
fairness and regret. However, the regret of the proposed
method decays faster than the other methods as the sam-
ple size grows, due to the double robustness property (the
second-order product of nuisance errors).

5.2. Case study

We next illustrate our methods on the COMPAS dataset
originally gathered to assess the risk of recidivism (Angwin
et al., 2016). Following Mishler et al. (2021), we let A
represent pretrial release, with A = 1 if defendants are re-
leased and A = 0 if they are incarcerated. Our sensitive

8
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Figure 5. Regret and unfairness curves of the three estimators for n = 2k (left) and n = 10k (right).

Method Recidivism
Risk IDP PB

KT18-e 0.33 0.28 0.15
KT18-m 0.28 0.31 0.16
WA21 0.25 0.33 0.17

Ours (δ = ∞) 0.27 0.32 0.16
Ours (δ = 0) 0.34 0.09 0.07

Table 1. The estimated risk of recidivism and unfairness.

feature represents race, restricted to defendants who are
Caucasian (n = 2013) and African-American (n = 3175),
coded as S = 0 and S = 1, respectively. The outcome
of interest, Y , is rearrest within two years. We use three
covariates: age, sex, and number of prior arrests. We are
interested in estimating the policy that minimizes the risk
of recidivism, so in this case our target optimal policy is
g∗(W ) = 1 {µ1(W ) < µ0(W )} where the corresponding
welfare defines the risk of recidivism. We use roughly two-
thirds of the data to estimate ĝ, and the rest to estimate
the welfare and unfairness using the same setting as in the
preceding subsection. Here, we consider two fairness cri-
teria simultaneously: independence (4) (IDP) and positive
balance (5) (PB).

In Table 1, we compare our estimators with δ = 0 and
δ = ∞ to the three other approaches used in Figure 4. As
expected, without the fairness constraint, while producing
similar risks, all the methods show large disparities; in fact,
the estimated optimal policies suggest incarcerating more
African-American defendants. However, when the proposed
estimator is used with δ = 0, both disparities are jointly
reduced by a significant margin with a small impact on
the risk. This illustrates the effectiveness of the proposed
methodology.

6. Discussion
We propose a new framework for fair and robust estimation
of heterogeneous treatment effects and discuss its impli-
cations for policy learning. Our method is easily imple-
mentable and allows practitioners to flexibly incorporate
various fairness constraints to meet the desired level of fair-
ness. This affords new opportunities to leverage recent
advances in algorithmic fairness for robust estimation of
heterogeneous treatment effects. The proposed CATE es-
timator enables us to design targeting policies in a fairer
fashion. Importantly, our theoretical results in Section 4
help us to understand the trade-off between fairness and
welfare.

There are some caveats to mention, and ways in which our
work could be improved. Our method is intended to attain a
desired level of fairness in CATE estimation, not in target-
ing policies. Different methods are required to estimate a
particular targeting policy that satisfies a specific fairness
criterion. In a forthcoming paper, we develop a novel non-
parametric estimator for this kind of fair optimal policies.
Further, although the setup we consider here is widely used,
in future work it is desirable to consider extensions to time-
varying treatments, instrumental variables, and mediation.
Finally, it is also of interest to apply the proposed methods
to various real-world problems, to bring new insights into
fair heterogeneous treatment effect estimation and policy
learning.
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APPENDIX

A. Fairness in Optimal Policy
Even though a certain fairness criterion is met for a prediction f(W ) that we are concerned with, we might not be able to
achieve the same level of fairness for 1 {f(W ) > 0}. To illustrate this, consider the criterion of independence and assume
that for some σ > 0,

f(W ) | S = 0 ∼ N(−δ, σ2)

f(W ) | S = 1 ∼ N(δ, σ2).

The above setup naturally satisfies the independence fairness constraint:

|E {f(W ) | S = 0} − E {f(W ) | S = 1}∥2,P ≤ δ.

However we get ∣∣E [1 {f(W ) > 0} | S = 1]− E
[
1
{
β⊤b(W ) > 0

}
| S = 0

]∥∥
2,P

=
1

2

{
erf
(
δ

σ

)
− erf

(
− δ

σ

)}
.

Hence, when σ is large so there is sufficient overlap between the two conditional distributions, RHS of the above equation
vanishes as δ → 0 and thereby the criterion of independence will likely to hold for 1 {f(W ) > 0} as well. On the other
extreme, when σ is very small so there is no overlap, then RHS remains as 1/2 and the same fairness criterion would not
hold at all for 1 {f(W ) > 0}.

This shows that the following fairness condition alone∣∣E{uf(Z)β⊤b(W )
}∣∣ ≤ δ

does not guarantee that the same condition holds for 1
{
β⊤b(W ) > 0

}
in general.

However, this issue can be greatly alleviated by employing the fairness function such as (5) under the margin condition. In
this case, the unfairness would differ at most by the order of δ +

∥∥τ(W )− β⊤b(W )
∥∥
2,P.

B. Formal Definitions of the Regularity Conditions
Let Cfair :=

{
β
∣∣ ∣∣E{ufj(Z)β⊤b(W )

}∣∣ ≤ δj , j ∈ J
}

. For simplicity, define a set of inequality constraints C = {β |
gj(β) ≤ 0, 1 ≤ j ≤ M} such that C = {Cfair, Clin}, where Clin is a set of extra linear constraints Then for a feasible point
β̄ ∈ C, we define the active index set.

Definition B.1 (Active set). We define the active index set J0 by

J0(β̄) = {1 ≤ j ≤M | gj(β̄) = 0}.

In what follows, we define LICQ and SC with respect to (P).

Definition B.2 (LICQ). Linear independence constraint qualification (LICQ) is satisfied at β̄ ∈ S if the vectors ∇βgj(β̄),
j ∈ J0(β̄) are linearly independent.

Definition B.3 (SC). Let L(β, γ) be the Lagrangian. Strict Complementarity (SC) is satisfied at β̄ ∈ S if, with multipliers
γ̄j ≥ 0, j ∈ J0(β̄), the Karush-Kuhn-Tucker (KKT) condition

∇βL(β̄, γ̄) := ∇βL(β̄) +
∑

j∈J0(β̄)

γ̄j∇βgj(β̄) = 0,

is satisfied such that γ̄j > 0,∀j ∈ J0(β̄).
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LICQ is arguably one of the most widely-used constraint qualifications that admit the first-order necessary conditions. SC
means that if the j-th inequality constraint is active then the corresponding dual variable is strictly positive, so exactly one of
them is zero for each 1 ≤ j ≤ m. SC is widely used in the optimization literature, particularly in the context of parametric
optimization (e.g., Shapiro et al., 2014).

Next, we give the second-order condition that can replace Assumption (A1).

(A1’) For each optimal solution β∗ in (P),

ς⊤E[b(W )b(W )⊤]ς > 0, ∀ς ∈ {ς ∈ Rk | b(W )⊤ς ≤ 0, ufj(Z)b(W )⊤ς ≤ 0, j ∈ J0(β
∗)} \ {0}.

Here, J0(β∗) is the active index set for β∗. Assumption (A1’) implies that β∗ is locally isolated, and is weaker than
Assumption (A1) which we used in the main text for simplicity. This guarantees that the quadratic growth condition holds at
each β∗ (Shapiro et al., 2014).

C. Estimation of Non-smooth Functionals under the Margin Condition
We first consider the fairness function which involves the non-smooth component of the form 1{ϑ(W ) > 0} for some ϑ.
We first provide the following useful lemma.

Lemma C.1. For any functionals ϑ, ξ : Z → R, ∥ξ∥∞,P < ∞ and their estimates ξ̂, ϑ̂, let ψ =

P {ϕϑ} ≡ P {ξ(Z)1{ϑ(W ) > 0}} and consider the plug-in estimator ψ̂ = Pn

{
ϕ̂ϑ−B

}
≡ 1

K

∑K
b=1 Pb

n

{
ϕ̂ϑ−b

}
=

1
K

∑K
b=1 Pb

n

{
ξ̂(Z)1{ϑ̂−b(W ) > 0}

}
. Assume that

1. For any margin exponent α > 0 and for all t ≥ 0, the following margin condition holds:

P(|ϑ(W )| ≤ t) ≲ tα,

2. P
[
1{ϑ̂(W ) > 0} ≠ 1{ϑ(W ) > 0}

]
+ ∥ξ̂ − ξ∥2,P = oP(1).

Then,

ψ̂ − ψ = OP

(
∥ξ̂ − ξ∥1,P + ∥ϑ̂− ϑ∥α∞,P +

1√
n

)
.

If we further assume

3 ∥ξ̂ − ξ∥1,P + ∥ϑ̂− ϑ∥α∞,P = oP

(
n−

1
2

)
,

then
√
n
(
ψ̂ − ψ

)
d−→ N (0, var(ϕ)) .

Proof. We can write ψ̂ − ψ as

(Pn − P)ϕϑ + (Pn − P)
(
ϕ̂ϑ−B

− ϕϑ

)
+ P

(
ϕ̂ϑ−B

− ϕϑ

)
For the second term, noting that (Pn − P)

(
ϕ̂ϑ−B

− ϕϑ

)
=
∑K

b=1 (Pn − P)
{
(ϕ̂ϑ−b

− ϕϑ)(1(B = b)
}

and n ≲ n
K , we

have ∥∥∥(Pn − P)
{
(ϕ̂ϑ−b

− ϕϑ)(1(B = b)
}∥∥∥

2,P
≤
∥∥∥ϕ̂ϑ−b

− ϕϑ

∥∥∥
2,P

≲
∥∥∥ϕ̂ϑ − ϕϑ

∥∥∥
2,P

=
∥∥∥(ξ̂ − ξ)1{ϑ̂ > 0}+ ξ

(
1{ϑ̂ > 0} − 1{ϑ > 0}

)∥∥∥
2,P

≲ P
[
1{ϑ̂(W ) > 0} ≠ 1{ϑ(W ) > 0}

]
+ ∥ξ̂ − ξ∥2,P.
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Hence, if P
[
1{ϑ̂(W ) > 0} ≠ 1{ϑ(W ) > 0}

]
+ ∥ξ̂− ξ∥2,P = oP(1), then the the second term is oP( 1√

n
) by Kennedy et al.

(2020, Lemma 1).

The third term can be rewritten as

P
{
(ξ̂ − ξ)1(ϑ̂−B > 0)

}
+ P

[
ξ
{
1(ϑ̂−B > 0)− 1(ϑ > 0)

}]
.

The first term in the above display can be simply bounded as

P
{
(ξ̂ − ξ)1(ϑ̂−B > 0)

}
≲ ∥ξ̂ − ξ∥1,P.

For the second term, using the similar logic as before, we have that

P
[
ξ
{
1(ϑ̂−B > 0)− 1(ϑ > 0)

}]
≲ P

∣∣∣ξ {1(ϑ̂ > 0)− 1(ϑ > 0)
}∣∣∣

≤ ∥ξ∥∞,PP
∣∣∣{1(ϑ̂ > 0)− 1(ϑ > 0)

}∣∣∣
≲ P

(
|ϑ| ≤ |ϑ̂− ϑ|

)
≤ ∥ϑ̂− ϑ∥α∞,P,

where the last inequality follows by the margin condition. Putting the two pieces together, we conclude

P
(
ϕ̂ϑ−B

− ϕϑ

)
≲ ∥ξ̂ − ξ∥1,P + ∥ϑ̂− ϑ∥α∞,P

If this term is oP
(
n−

1
2

)
(Condition 3), then the

√
n-consistency and asymptotic normality follows by the central limit

theorem and Slutsky’s theorem.

Lemma C.1 gives corresponding convergence rates, as well as conditions under which ψ̂ is asymptotically normal and
efficient.

Now consider the unfairness estimand E {ufj(Z)b(W )} with the fairness function (5)

ufj(Z) =
(1− S)1 {τ(W ) > 0}

E [(1− S)1 {τ(W ) > 0}]
− S1 {τ(W ) > 0}

E [S1 {τ(W ) > 0}]
.

By Lemma C.1 and the continuous mapping theorem, one can deduce that the estimator

Pn

{
ûfjb(W )

}
=

1

K

K∑
b=1

Pb
n

([
(1− S)1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}

1
K

∑K
b=1 Pb

n [(1− S)1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}]

− S1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}
1
K

∑K
b=1 Pb

n [S1 {µ̂1,−b(W )− µ̂0,−b(W ) > 0}]

]
b(W )

)
attains the

√
n rate of convergence if

max ∥µ̂a − µa∥α∞,P = OP(n
− 1

2 ),

P [1{τ̂(W ) > 0} ≠ 1{τ(W ) > 0}] = oP(1),

and is asymptotically normal and efficient if it additionally holds that

max ∥µ̂a − µa∥α∞,P = oP(n
− 1

2 ).

Importantly, Lemma C.1 could also be used for constructing efficient estimators for target functionals involving a non-
smooth component of the more general form 1 {τ(W ) ∈ I} for some interval (or union of intervals) I on R, as long as
1 {τ(W ) ∈ I} can be expressed as a smooth function of {1 {κ1,jτ(W ) + κ2,j > 0}}j for some constants κ1,j , κ2,j ∈ R.
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D. Proofs
D.1. Proof of Theorem 3.2

One may rewrite (P) as the following nonlinear program with linear constraints

minimize
β∈Rk

f(β, T )

subject to Cβ ≤ δ,

where

δ = [δ1, . . . , δm]
⊤
,

T = {E[b(W )b(W )⊤]i,j ,E[(Y 1 − Y 0)b(W )]i}ki,j=1 ∈ Rk(k+1),

C = [E{uf1(Z)b(W )}, . . . ,E{ufm(Z)b(W )}]⊤ ∈ Rm×k.

According to our approximating program (P̂) we have that,

T̂ = {Pn[b(W )b(W )⊤]i,j ,Pn

{(
φ1(Z; ϑ̂−B)− φ0(Z; ϑ̂−B)

)
b(W )

}
i
}ki,j=1,

Ĉ = [Pn

{
ûf1b(W )

}
, . . . ,Pn

{
ûfmb(W )

}
]⊤.

Given the conditions (A1) - (A3), (A5), by Lemma A.1 of (Kim et al., 2022a), it follows that

∥T̂ − T∥2 = OP

(
max ∥π̂ − π∥2,P∥µ̂a − µa∥2,P + n−

1
2

)
,

∥Ĉ − C∥F = OP

(
max ∥π̂ − π∥2,P∥µ̂a − µa∥2,P + n−

1
2

)
.

Further, under the conditions (A1), Theorem 3.1 of (Kim et al., 2022b) gives that

∥β̂ − β∗∥2 = OP

(
max ∥π̂ − π∥2,P∥µ̂a − µa∥2,P + n−

1
2

)
.

If we further assume the conditions (A4),(A6) so that every element in T̂ , Ĉ is indeed a
√
n-consistent and asymptotically

normal estimator for the corresponding element in T , C, then the asymptotic normality with
√
n rates can be obtained by

Theorem 3.2 of (Kim et al., 2022b), under the necessary regularity conditions described in Theorem 3.2.

D.2. Proof of Lemma 4.1

Proof. The proof mimics the proofs of Lemma 5.1 and Lemma 5.2 in (Audibert & Tsybakov, 2007). To show the first
inequality, note that

U(g∗)− U(ĝ) = P
[
∆
(
1 {∆ > 0} − 1

{
∆̂ > 0

})]
≤ P

[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})]

≤
∥∥∥∆̂−∆

∥∥∥
∞,P

P
{
|∆| ≤

∥∥∥∆̂−∆
∥∥∥
∞,P

}
≲
∥∥∥∆̂−∆

∥∥∥α+1

∞,P
,

where the first inequality follows by Lemma 1 of (Kennedy et al., 2020) and the last by the margin condition.
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Next, for any t > 0 we have

U(g∗)− U(ĝ) ≤ P
[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})1 {|∆| ≤ t}

]
+ P

[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})1 {|∆| > t}

]
≤ P

[∣∣∣∆̂−∆
∣∣∣1 {|∆| ≤ t}

]
+ P

[∣∣∣∆̂−∆
∣∣∣1{∣∣∣∆̂−∆

∣∣∣ > t
}]

≤
∥∥∥∆̂−∆

∥∥∥
q,P

Pr {|∆| ≤ t}
q−1
q +

∥∥∥∆̂−∆
∥∥∥
q,P

(
P|∆̂−∆|q

tq

) q−1
q

≲
∥∥∥∆̂−∆

∥∥∥
q,P
t
q−1
q +

∥∥∥∆̂−∆
∥∥∥q
q,P

tq−1
,

where the third inequality follows by the Hölder and Markov inequalities and the last by the margin condition. Now, the

RHS in the last display is minimized when t = O

(∥∥∥∆̂−∆
∥∥∥ q

q+α

q,P

)
, yielding

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥ q(1+α)
q+α

q,P
.

D.3. Proof of Theorem 4.2

Proof. By the first inequality in Lemma 4.1, we have

U(g∗)− U(ĝ) ≲
∥∥∥τ(W )− β̂⊤b(W )

∥∥∥α+1

∞,P

Recall that β∗ and β̃ are optimal solutions to (P) and (9), respectively. Then ∀a, by the triangle and Cauchy–Schwarz
inequalities, ∣∣∣τ(W )− β̂⊤b(W )

∥∥∥
2,P

≤
∣∣∣τ(W )− β̃⊤b(W )

∥∥∥
2,P

+ ∥b(W )∥2
{
∥β̃ − β∗∥2 + ∥β∗ − β̂∥2

}
.

Next, for some λ ∈ Rm consider the following Lagrange form of (P).

minimize
β∈B

E
{(
Y 1 − Y 0 − β⊤b(W )

)2}
+

m∑
j=1

λj
[
β⊤E {ufj(Z)b(W )}

]2
(10)

Since our constraint set consists of only linear constraints strong duality holds, and there exists a dual solution λ ≥ 0 to (P)
such that any solution β̃ in (P) minimizes

E
{(
Y 1 − Y 0 − β⊤b(W )

)2}
+

m∑
j=1

λj

([
β⊤E {ufj(Z)b(W )}

]2 − δj

)
.

Hence, β̃ is a solution in (10) as well.

Now, consider the following parametrized program

minimize
β∈B

f(β, ξ) := E
{(
Y 1 − Y 0 − β⊤b(W )

)2}
+

m∑
j=1

(
β⊤ξj

)2
, (P(ξ))

with ξ = (ξ1, ..., ξm), ξj ∈ Rk, and let β(ξ) denote an optimal solution of P(ξ). (9) and (10) correspond to (P(ξ)) with the
parameter ξj = 0 and ξj =

√
λjE {ufj(Z)b(W )}, ∀j, respectively.
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By positive-definiteness of E[b(W )b(W )⊤], P(0) is strongly convex everywhere. Consequently the quadratic growth
condition holds at β(0) such that

c∥β(0)− β′∥22 ≤ f(β′, 0)− f (β(0), 0)

for some constant c > 0 and all β′ ∈ Rk. Hence,

c∥β(0)− β(ξ)∥22 ≤ f (β(ξ), 0)− f (β(0), 0)

= f (β(ξ), 0)− f (β(ξ), ξ) + f (β(ξ), ξ)− f (β(0), ξ) + f (β(0), ξ)− f (β(0), 0)

≤
{
∥β(ξ)∥22 + ∥β(0)∥22

}
∥ξ∥22,

where the last inequality follows by f (β(ξ), ξ)− f (β(0), ξ) ≤ 0.

From the above argument, by the Cauchy–Schwarz and Jensen’s inequality we have that

∥β̃ − β∗∥2 ≲

∥∥∥∥∥∥E

∑

j

√
λjufj(Z)

 b(W )


∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
j

√
λjufj(Z)

∥∥∥∥∥∥
2,P

√√√√ k∑
i=1

E{b(W )i
2}

≤

∥∥∥∥∥∥
∑
j

√
λjufj(Z)

∥∥∥∥∥∥
2,P

∥b(W )∥2,P .

Further, under the conditions (A1)-(A3), (A5), by Theorem 3.2, it follows that

∥β∗ − β̂∥2 = OP

(
n−

1
2 +max

a
∥π̂a − πa∥2,P max ∥τ̂ − τ∥2,P

)
.

Since 0 < α <∞, we obtain the desired result by putting the pieces together due to Minkowski’s inequality.

The part (iii) follows by the exact same logic as used for the part (i).

The part (ii) immediately follows by the fact that

P {ĝ(W ) ̸= g∗(W )} = P
{
|ĝ(W )− g∗(W )∥2,P

}
≤ P

[
1

{
|τ(W )∥2,P ≤

∑∣∣∣τ(W )− β̂⊤b(W )
∥∥∥
2,P

}]
≲
∥∥∥τ(W )− β̂⊤b(W )

∥∥∥α
∞,P

.
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