
Pushing the Limits of AMR Parsing with Self-Learning

Young-Suk Lee∗, Ramón Fernandez Astudillo∗, Tahira Naseem∗,
Revanth Gangi Reddy∗†, Radu Florian, Salim Roukos

IBM Research
{ysuklee,tnaseem}@us.ibm.com ramon.astudillo@ibm.com

Abstract

Abstract Meaning Representation (AMR) pars-
ing has experienced a notable growth in perfor-
mance in the last two years, due both to the im-
pact of transfer learning and the development
of novel architectures specific to AMR. At
the same time, self-learning techniques have
helped push the performance boundaries of
other natural language processing applications,
such as machine translation or question an-
swering. In this paper, we explore different
ways in which trained models can be applied
to improve AMR parsing performance, includ-
ing generation of synthetic text and AMR an-
notations as well as refinement of actions ora-
cle. We show that, without any additional hu-
man annotations, these techniques improve an
already performant parser and achieve state-of-
the-art results on AMR 1.0 and AMR 2.0.

1 Introduction

Abstract Meaning Representation (AMR) are
broad-coverage sentence-level semantic represen-
tations expressing who does what to whom. Nodes
in an AMR graph correspond to concepts such as
entities or predicates and are not always directly
related to words. Edges in AMR represent relations
between concepts such as subject/object.

AMR has experienced unprecedented perfor-
mance improvements in the last two years, partly
due to the rise of pre-trained transformer models
(Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2019), but also due to AMR-specific architecture
improvements. A non-exhaustive list includes la-
tent node-word alignments through learned per-
mutations (Lyu and Titov, 2018a), minimum risk
training via REINFORCE (Naseem et al., 2019),
a sequence-to-graph modeling of linearized trees
with copy mechanisms and re-entrance features

∗ Equal contribution.
†Work done during AI Residency at IBM Research.

(Zhang et al., 2019a) and more recently a highly
performant graph-sequence iterative refinement
model (Cai and Lam, 2020) and a hard-attention
transition-based parser (F. A. et al., 2020), both
based on the Transformer architecture.

Given the strong improvements in architectures
for AMR, it becomes interesting to explore alter-
native avenues to push performance even further.
AMR annotations are relatively expensive to pro-
duce and thus typical corpora have on the order of
tens of thousands of sentences. In this work we
explore the use self-learning techniques as a means
to escape this limitation.

We explore the use of a trained parser to itera-
tively refine a rule-based AMR oracle (Ballesteros
and Al-Onaizan, 2017; F. A. et al., 2020) to yield
better action sequences. We also exploit the fact
that a single AMR graph maps to multiple sen-
tences in combination with AMR-to-text (Mager
et al., 2020), to generate additional training sam-
ples without using external data. Finally we revisit
silver data training (Konstas et al., 2017a). These
techniques reach 77.3 and 80.7 Smatch (Cai and
Knight, 2013) on AMR1.0 and AMR2.0 respec-
tively using only gold data as well as 78.2 and 81.3
with silver data.

2 Baseline Parser and Setup

To test the proposed ideas, we used the AMR setup
and parser from (F. A. et al., 2020) with improved
embedding representations. This is a transition-
based parsing approach, following the original
AMR oracle in (Ballesteros and Al-Onaizan, 2017)
and further improvements in (Naseem et al., 2019).

Briefly, rather than predicting a graph g from
a sentence s directly, transition-based parsers pre-
dict instead an action sequence a. This action se-
quence, when applied to a state machine, produces
the graph g = M(a, s). This turns the problem of

Figure 1: Role of sentence s, AMR graph g and oracle actions a in the different self-learning strategies. Left:
Replacing rule-based actions by machine generated ones. Middle: synthetic text generation for existing graph
annotations. Right: synthetic AMR generation for external data. Generated data (). External data ().

predicting the graph into a sequence to sequence
problem, but introduces the need for an oracle to
determine the action sequence a = O(g, s). As in
previous works, the oracle in (F. A. et al., 2020) is
rule-based, relying on external word-to-node align-
ments (Flanigan et al., 2014; Pourdamghani et al.,
2016) to determine action sequences. It however
force-aligns unaligned nodes to suitable words, no-
tably improving oracle performance.

As parser, (F. A. et al., 2020) introduces the
stack-Transformer model. This is a modification
of the sequence to sequence Transformer (Vaswani
et al., 2017) to account for the parser state. It mod-
ifies the cross-attention mechanism dedicating two
heads to attend the stack and buffer of the state
machine M(a, s). This parser is highly performant
achieving the best results for a transition-based
parser as of date and second overall for AMR2.0
and tied with the best for AMR1.0.

The stack-Transformer is trained as a conven-
tional sequence to sequence model of p(a | s) with
a cross entropy loss. We used the full stack and full
buffer setting from (F. A. et al., 2020) with same
hyper-parameters for training and testing with the
exception of the embeddings strategy detailed be-
low. All models use checkpoint averaging (Junczys-
Dowmunt et al., 2016) of the best 3 checkpoints
and use a beam size of 101 while decoding. We
refer to the original paper for exact details.

Unlike in the original work, we use RoBERTa-
large, instead of RoBERTa-base embeddings, and
we feed the average of all layers as input to the
stack-Transformer. This considerably strengthens
the baseline model from the original 76.3/79.5
for the AMR1.0/AMR2.0 development sets to
77.6/80.8 Smatch2. This baseline will be hence-
forth referred to as (F. A. et al., 2020) plus Strong
Embeddings (+SE).

1This increased scores at most 0.8/0.4 for AMR1.0/2.0.
2We used the latest version available, 1.0.4

3 Oracle Self-Training

As explained in Section 2, transition-based parsers
require an Oracle a = O(g, s) to determine
the action sequence producing the graph g =
M(a, s). Previous AMR oracles (Ballesteros and
Al-Onaizan, 2017; Naseem et al., 2019; F. A. et al.,
2020) are rule based and rely on external word-
to-node alignments. Rule-based oracles for AMR
are sub-optimal and they do not always recover
the original graph. The oracle score for AMR 2.0,
measured in Smatch, is 98.1 (F. A. et al., 2020)
and 93.7 for (Naseem et al., 2019). In this work,
we explore the idea of using a previously trained
parser, p(a | s) to improve upon an existing oracle,
initially rule-based.

For each training sentence s with graph g and
current oracle action sequence a∗, we first sam-
ple an action sequence ã ∼ p(a | s). Both ã
and a∗ are run through the state machine M()
to get graphs g̃ and g∗ respectively. We then re-
place a∗ by ã if Smatch(g̃, g) > Smatch(g∗, g) or
(Smatch(g̃, g) = Smatch(g∗, g) and |ã| < |a∗|).
This procedure is guaranteed to either increase
Smatch, shorten action length or leave it unaltered.
The downside is that many samples have to be
drawn in order to obtain a single new best action,
we therefore refer to this method as mining.

Starting from the improved (F. A. et al., 2020),
we performed 2 rounds of mining, stopping after
less than 20 action sequences were obtained in a
single epoch, which takes around 10 epochs3. Be-
tween rounds we trained a new model from scratch
with the new oracle to improve mining. This led to
2.0% actions with better Smatch and 3.7% shorter
length for AMR1.0 and 2.8% and 3.2% respec-
tively for AMR2.0. This results in an improvement
in oracle Smatch from 98.0 to 98.2 for AMR 1.0
and 98.1 to 98.3 for AMR 2.0.

3One round of mining takes around 20h, while normal
model training takes 6h on a Tesla V100.

Table 1 shows that mining for AMR leads to an
overall improvement of up to 0.2 Smatch across the
two tasks with both shorter sequences and better
Smatch increasing model performance when com-
bined. Example inspection revealed that mining
corrected oracle errors such as detached nodes due
to wrong alignments. It should also be noted that
such type of errors are much more present in previ-
ous oracles such as (Naseem et al., 2019) compared
to (F. A. et al., 2020) and margins of improvement
are therefore smaller.

Technique AMR1.0 AMR2.0
(F. A. et al., 2020)+SE 77.6 ±0.1 80.8 ±0.1
< length ∪ > smatch 77.8 ±0.1 80.9 ±0.2

Table 1: Dev-set Smatch for AMR 1.0 and AMR 2.0
for different mining criteria. Average results for 3 seeds
with standard deviation.

4 Self-Training with Synthetic Text

AMR abstracts away from the surface forms i.e.
one AMR graph corresponds to many different
valid sentences. The AMR training data, how-
ever, provides only one sentence per graph with
minor exceptions. AMR 1.0 and AMR 2.0 train-
ing corpora have also only 10k and 36k sentences,
respectively, making generalization difficult. We
hypothesize that if the parser is exposed to allow-
able variations of text corresponding to each gold
graph, it will learn to generalize better.

To this end, we utilize the recent state-of-the-
art AMR-to-text system of Mager et al. (2020), a
generative model based on fine-tuning of GPT-2
(Radford et al., 2019). We use the trained model
p(s | g) to produce sentences from gold AMR
graphs. For each graph g in the training data, we
generate 20 sentences via sampling s̃ ∼ p(s | g)
and one using the greedy best output. We then use
the following cycle-consistency criterion to filter
this data. We use the improved stack-Transformer
parser in Table 1 to generate two AMR graphs:
one from the generated text s̃, g̃ and one from the
original text s, ĝ. We then use the Smatch between
these two graphs to filter out samples, selecting up
to three samples per sentence if their Smatch was
not less than 80.0. We remove sentences identical
to the original gold sentence or repeated. Filtering
prunes roughly 90% of the generated sentences.
This leaves us with 18k additional sentences for
AMR 1.0 and 68k for AMR 2.0. Note that the
use of parsed graph, rather than the gold graph, for

filtering accounts for parser error and yielded better
results as a filter.

Two separate GPT-2-based AMR-to-text sys-
tems were fine-tuned using AMR 1.0 and AMR
2.0 train sets and then sampled to generate the re-
spective text data4 and conventional training was
carried out over the extended dataset. As shown
in Table 2, synthetic text generation, henceforth
denoted synTxt, improves parser performance over
the (F. A. et al., 2020)+SE baseline for AMR2.0
and particularly for AMR1.0, possibly due to its
smaller size.

Technique AMR1.0 AMR2.0
(F. A. et al., 2020)+SE 77.6 ±0.1 80.8 ±0.1

synTxt 78.2 ±0.1 81.2 ±0.1

Table 2: Dev-set Smatch for AMR 1.0 and AMR 2.0.
for synthetic text. Average results for 3 seeds with stan-
dard deviation.

5 Self-Training with Synthetic AMR

A trained parser can be used to parse unlabeled
data and produce synthetic AMR graphs, hence-
forth synAMR. Although these graphs do not have
the quality of human-annotated AMRs, they have
been shown to improve AMR parsing performance
(Konstas et al., 2017b; van Noord and Bos, 2017).
The performance of prior works is however not
any more comparable to current systems and it is
therefore interesting to revisit this approach.

For this, we used the improved (F. A. et al., 2020)
parser of Sec. 2 to parse unlabeled sentences from
the context portion of SQuAD-2.0, comprising 85k
sentences and 2.3m tokens, creating an initial
synAMR corpus. This set is optionally filtered
to reduce the training corpus size for AMR 2.0 ex-
periments and is left unfiltered for AMR 1.0, due to
its smaller size. The filtering combines two criteria.
First, it is easy to detect when the transition-based
system produces disconnected AMR graphs. Out-
puts with disconnected graphs are therefore filtered
out. Second, we use a cycle-consistency criteria
as in Section 4 whereby synthetic text is gener-
ated for each synthetic AMR with (Mager et al.,
2020). For each pair of original text and generated
text, the synAMR is filtered out if BLEU score
(Papineni et al., 2002) is lower than a pre-specified

4synTxt training takes 17h for AMR 2.0 and 5h hours
for AMR 1.0 on a Tesla V100. AMR-to-text training for 15
epochs takes 4.5h on AMR 1.0 and 15h on AMR 2.0.

threshold, 5 in our experiments. Because the AMR-
to-text generation system is trained on the human-
annotated AMR only, generation performance may
be worse on synthetic AMR and out of domain
data. Consequently we apply BLEU-based filtering
only to the input texts with no out of vocabulary
(OOV) tokens with respect to the original human-
annotated corpus. After filtering, the synAMR data
is reduced to 58k sentences.

Following prior work, we tested pre-training on
synAMR only, as in (Konstas et al., 2017b), or on
the mix of human-annotated AMR and synAMR, as
in (van Noord and Bos, 2017) and then fine-tuned
on the AMR1.0 or AMR2.0 corpora. Table 3 shows
the results for AMR1.0 and AMR2.0 under the two
pre-training options. Results show that pre-training
on the mix of human-annotated AMR and synAMR
works better than pre-training on synAMR only, for
both AMR1.0 and AMR 2.05.

Technique AMR1.0 AMR2.0
(F. A. et al., 2020)+SE 77.6 ±0.1 80.8 ±0.1

synAMR only 78.1±0.0 80.7 ±0.0

human+synAMR 78.6±0.1 81.6 ±0.0

Table 3: Dev-set Smatch for AMR1.0 and AMR2.0. for
the baseline parser and synthetic AMR training. Aver-
age results for 3 seeds with standard deviation.

6 Detailed Analysis

6.1 Comparison Background

We compare the proposed methods with recent
prior art in Table 4. Pre-trained embeddings are
indicated as BERT baseb and largeB (Devlin et al.,
2019), RoBERTa baser and largeR (Liu et al.,
2019). Note that RoBERTA large, particularly with
layer average, can be expected to be more perfor-
mant then BERT. Graph Recategorization is used in
(Lyu and Titov, 2018b; Zhang et al., 2019b) and in-
dicated as G. This is a pre-processing stage that seg-
ments text and graph to identify named entities and
other relevant sub-graphs. It also removes senses
and makes use of Stanford’s CoreNLP to lemma-
tize input sentences and add POS tags. Graph re-
categorization also requires post-processing with
Core-NLP at test time to reconstruct the graph. See
(Zhang et al., 2019b, Sec. 6) for details.

5human+synAMR and synAMR training take about 54h
and 19h respectively for AMR2.0 and 17h and 13h respectively
for AMR1.0. Fine-tuning takes 4h for AMR2.0 and 3h for
AMR1.0 on a Tesla V100.

Model AMR1.0 AMR2.0
(Lyu and Titov, 2018b)G 73.7 74.4
(Naseem et al., 2019)B - 75.5
(Zhang et al., 2019b) B,G 71.3 77.0
(F. A. et al., 2020) r 75.4 ±0.0 79.0 ±0.1

(Cai and Lam, 2020) b 74.0 78.7
(Cai and Lam, 2020) b,G 75.4 80.2
(F. A. et al., 2020)+SER 76.9 ±0.1 80.2 ±0.0

oracle mining 76.9 ±0.0 80.3 ±0.1

synTxt 77.3 ±0.2 80.7 ±0.2

synAMRU 77.6 ±0.1 81.0 ±0.1

mining + synTxt 77.5 ±0.1 80.4 ±0.0

mining + synAMRU 77.7 ±0.1 80.9 ±0.0

synTxt + synAMRU 78.1 ±0.1 81.0 ±0.2

mining + synTxt + synAMRU 78.2 ±0.1 81.3 ±0.0

Table 4: Test-set Smatch for AMR1.0 and AMR2.0

Both (Naseem et al., 2019; F. A. et al., 2020)
use a similar transition-based AMR oracle, but
(Naseem et al., 2019) uses stack-LSTM and Re-
inforcement Learning fine-tuning. These oracles
require external alignments and a lemmatizer at
train time, but only a lemmatizer at test time. It is
important to underline that for the presented meth-
ods we do not use additional human annotations
throughout the experiments and that the only ex-
ternal source of data is additional text data for syn-
thetic AMR, which we indicate with U .

6.2 Results

As displayed in Table 4, the baseline system is
close to the best published system with better re-
sults for AMR1.0 (+0.8) and worse for AMR2.0
(−0.5). Transition-based systems process the sen-
tence from left to right and model the AMR graph
only indirectly through its action history and the
alignments of actions to word tokens. This can be
expected to generate a strong inductive bias that
helps in lower resource scenarios.

Regarding the introduced methods, mining
shows close to no improvement in individual re-
sults. SynAMR provides the largest gain (0.7/0.8)
for AMR1.0/AMR2.0 while synTxt provides close
to half that gain (0.4/0.3). The combination of both
methods also yields an improvement over their in-
dividual scores, but only for AMR1.0 with a 0.9
improvement. Combination of mining with syn-
Txt and synAMR hurt results, however synTxt and
synAMR does improve for AMR2.0 attaining a 1.1
improvement.

Overall, the proposed approach achieves 81.3
Smatch in AMR2.0 combining the three methods,

System Smatch Unlabeled No WSD Concepts Named Ent. Negations Wikif. Reentr. SRL
(Cai and Lam, 2020) b 78.7 81.5 79.2 88.1 87.1 66.1 81.3 63.8 74.5
(Cai and Lam, 2020) b,G 80.2 82.8 80.8 88.1 81.1 78.9 86.3 64.6 74.2
(F. A. et al., 2020)+SER 80.2 84.2 80.7 88.1 87.5 64.5 78.8 70.3 78.2
oracle mining 80.3 84.2 79.0 87.8 87.7 65.4 79.0 70.4 78.2
synTxt 80.7 84.6 81.1 88.5 88.3 69.8 78.8 71.1 79.0
synAMRU 81.0 85.0 81.5 88.6 88.5 65.4 79.0 71.1 79.0
mining+synTxt 80.4 84.5 80.9 87.9 87.7 65.8 79.3 70.5 78.5
mining+synAMRU 80.9 84.9 81.4 88.4 88.0 66.0 79.3 70.9 78.9
synTxt+synAMRU 81.0 84.9 81.5 88.6 88.3 67.4 78.9 71.5 79.1
mining+synTxt+synAMRU 81.3 85.3 81.8 88.7 88.7 66.3 79.2 71.9 79.4

Table 5: Detailed scoring of the final system on AMR2.0 test sets

which is the best result obtained at the time of
submission for AMR2.0, improving 1.1 over (Cai
and Lam, 2020). It also obtains 78.2 for AMR1.0,
which is 2.8 points above best previous results. Ex-
cluding silver data training, synTxt achieves 80.7
(+0.5) in AMR2.0 and 77.5 (+2.1) with minining
in AMR1.0.

We also provide the detailed AMR analysis from
(Damonte et al., 2017) for the best previously pub-
lished system, baseline and the proposed methods
in Table 5. This analysis computes Smatch for
sub-sets of AMR to loosely reflect particular sub-
tasks, such as Word Sense Disambiguation (WSD),
Named Entity recognition or Semantic Role Label-
ing (SRL). The proposed approaches and the base-
line consistently outperform prior art in a majority
of categories and the main observable differences
seems due to differences between the transition-
based and graph recategorization approaches. Wik-
ification and negation, the only categories where
the proposed methods do not outperform (Cai and
Lam, 2020), are handled by graph recategorization
post-processing in this approach. Graph recatego-
rization comes however at the cost of a large drop
in the Name Entity category, probably due to need
for graph post-processing using Core-NLP. Com-
pared to this, transition-based approaches provide
a more uniform performance across categories, and
in this context the presented self-learning methods
are able to improve in all categories. One aspect
that merits further study, is the increase in the Nega-
tion category when using synTxt, which improves
5.4 points, probably due to generation of additional
negation examples.

7 Related Works

Mining for gold, introduced in Section 3, can be
related to previous works addressing oracle limita-

tions such as dynamic oracles (Goldberg and Nivre,
2012; Ballesteros et al., 2016), imitation learning
(Goodman et al., 2016) and minimum risk train-
ing (Naseem et al., 2019). All these approaches
increase parser robustness to its own errors by ex-
posing it to actions that are often inferior to the
oracle sequence in score. The approach presented
here seeks only the small set of sequences improv-
ing over the oracle and uses them for conventional
maximum likelihood training.

Synthetic text, introduced in Section 4, is re-
lated to Back-translation in Machine Translation
(Sennrich et al., 2016). The approach presented
here exploits however the fact that multiple sen-
tences correspond to a single AMR and thus needs
no external data. This is closer to recent work on
question generation for question answering sys-
tems (Alberti et al., 2019), which also uses cycle
consistency filtering.

Finally, regarding synthetic AMR, discussed in
Section 5, with respect to prior work (Konstas et al.,
2017b; van Noord and Bos, 2017) we show that syn-
thetic AMR parsing still can yield improvements
for high performance baselines, and introduce the
cycle-consistency filtering.

8 Conclusions

In this work6, we explored different ways in which
trained models can be applied to improve AMR
parsing performance via self-learning. Despite
the recent strong improvements in performance
through novel architectures, we show that the pro-
posed techniques improve performance further,
achieving new state-of-the-art on AMR 1.0 and
AMR 2.0 tasks without the need for extra human
annotations.

6https://github.com/IBM/
transition-amr-parser/.

https://github.com/IBM/transition-amr-parser/
https://github.com/IBM/transition-amr-parser/

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration
improves a greedy stack LSTM parser. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2005–2010,
Austin, Texas. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-
ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ramon Fernandez Astudillo, Miguel Ballesteros,
Tahira Naseem, Austin Blodget, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. In Findings of the EMNLP2020 (to
appear).

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1426–
1436.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceed-
ings of COLING 2012, pages 959–976, Mumbai, In-
dia. The COLING 2012 Organizing Committee.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for Abstract Meaning
Representation parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1–
11, Berlin, Germany. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Rico
Sennrich. 2016. The AMU-UEDIN submission to
the WMT16 news translation task: Attention-based
NMT models as feature functions in phrase-based
SMT. In Proceedings of the First Conference on
Machine Translation: Volume 2, Shared Task Pa-
pers, pages 319–325, Berlin, Germany. Association
for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017a. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017b. Neural amr:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chunchuan Lyu and Ivan Titov. 2018a. AMR parsing
as graph prediction with latent alignment. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 397–407, Melbourne, Australia. As-
sociation for Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018b. AMR parsing
as graph prediction with latent alignment. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 397–407, Melbourne, Australia. As-
sociation for Computational Linguistics.

Manuel Mager, Ramón Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. Gpt-too: A

https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D16-1211
https://doi.org/10.18653/v1/D16-1211
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=b36spsuUAde
https://openreview.net/forum?id=b36spsuUAde
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/C12-1059
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/W16-2316
https://doi.org/10.18653/v1/W16-2316
https://doi.org/10.18653/v1/W16-2316
https://doi.org/10.18653/v1/W16-2316
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037

language-model-first approach for amr-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, Seattle, USA. Association for Computational
Linguistics.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding Smatch: Transition-based AMR parsing
with reinforcement learning. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4586–4592, Florence,
Italy. Association for Computational Linguistics.

Rik van Noord and Johan Bos. 2017. Neural seman-
tic parsing by character-based translation: Experi-
ments with abstract meaning representations. arXiv
preprint arXiv:1705.09980v2.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Nima Pourdamghani, Kevin Knight, and Ulf Herm-
jakob. 2016. Generating english from abstract mean-
ing representations. In Proceedings of the 9th in-
ternational natural language generation conference,
pages 21–25.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3784–3796, Hong Kong, China. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://www.aclweb.org/anthology/D19-1392
https://www.aclweb.org/anthology/D19-1392

