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ABSTRACT

Deep networks have been used to learn transferable representations for domain
adaptation. Existing deep domain adaptation methods systematically employ pop-
ular hand-crafted networks designed specifically for image-classification tasks,
leading to sub-optimal domain adaptation performance. In this paper, we present
Neural Architecture Search for Domain Adaptation (NASDA), a principle frame-
work that leverages differentiable neural architecture search to derive the optimal
network architecture for domain adaptation task. NASDA is designed with two
novel training strategies: neural architecture search with multi-kernel Maximum
Mean Discrepancy to derive the optimal architecture, and adversarial training
between a feature generator and a batch of classifiers to consolidate the feature
generator. We demonstrate experimentally that NASDA leads to state-of-the-art
performance on several domain adaptation benchmarks.

1 INTRODUCTION

Supervised machine learning models (Φ) aim to minimize the empirical test error (ε(Φ(x),y)) by
optimizing Φ on training data (x) and ground truth labels (y), assuming that the training and testing
data are sampled i.i.d from the same distribution. While in practical, the training and testing data
are typically collected from related domains under different distributions, a phenomenon known as
domain shift (or domain discrepancy) (Quionero-Candela et al., 2009). To avoid the cost of annotating
each new test data, Unsupervised Domain Adaptation (UDA) tackles domain shift by transferring the
knowledge learned from a rich-labeled source domain (P (xs,ys)) to the unlabeled target domain
(Q(xt)). Recently unsupervised domain adaptation research has achieved significant progress with
techniques like discrepancy alignment (Long et al., 2017; Tzeng et al., 2014; Ghifary et al., 2014;
Peng & Saenko, 2018; Long et al., 2015; Sun & Saenko, 2016), adversarial alignment (Xu et al.,
2019a; Liu & Tuzel, 2016; Tzeng et al., 2017; Liu et al., 2018a; Ganin & Lempitsky, 2015; Saito
et al., 2018; Long et al., 2018), and reconstruction-based alignment (Yi et al., 2017; Zhu et al., 2017;
Hoffman et al., 2018; Kim et al., 2017). While such models typically learn feature mapping from one
domain (Φ(xs)) to another (Φ(xt)) or derive a joint representation across domains (Φ(xs)⊗ Φ(xt)),
the developed models have limited capacities in deriving an optimal neural architecture specific for
domain transfer.

To advance network designs, neural architecture search (NAS) automates the net architecture engi-
neering process by reinforcement supervision (Zoph & Le, 2017) or through neuro-evlolution (Real
et al., 2019a). Conventional NAS models aim to derive neural architecture α along with the net-
work parameters w, by solving a bilevel optimization problem (Anandalingam & Friesz, 1992):
Φα,w = arg minα Lval(w∗(α), α) s.t. w∗(α) = argminwLtrain(w,α), where Ltrain and Lval in-
dicate the training and validation loss, respectively. While recent works demonstrate competitive
performance on tasks such as image classification (Zoph et al., 2018; Liu et al., 2018c;b; Real et al.,
2019b) and object detection (Zoph & Le, 2017), designs of existing NAS algorithms typically assume
that the training and testing domain are sampled from the same distribution, neglecting the scenario
where two data domains or multiple feature distributions are of interest.

To efficiently devise a neural architecture across different data domains, we propose a novel learning
task called Neural Architecture Search for Domain Adaptation (NASDA). The ultimate goal of
NASDA is to minimize the validation loss of the target domain (Ltval). We postulate that a solution
to NASDA should not only minimize validation loss of the source domain (Lsval), but should also
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Figure 1: An overview of NASDA: (a) Continuous relaxation of the research space by placing a
mixture of the candidate operations on each edge. (b) Inducing the final architecture by joint opti-
mization of the neural architecture parameters α and network weights w, supervised by minimizing
the validation loss on the source domain and reducing the domain discrepancy. (c)(d) Adversarial
training of the derive feature generator G and classifiers C.

reduce the domain gap between the source and target. To this end, we propose a new NAS learning
schema:

Φα,w = argminαLsval(w∗(α), α) + disc(Φ∗(xs),Φ∗(xt)) (1)
s.t. w∗(α) = argminw Lstrain(w,α) (2)

where Φ∗ = Φα,w∗(α), and disc(Φ∗(xs),Φ∗(xt)) denotes the domain discrepancy between the
source and target. Note that in unsupervised domain adaptation, Lttrain and Ltval cannot be computed
directly due to the lack of label in the target domain.

Inspired by the past works in NAS and unsupervised domain adaptation, we propose in this paper an
instantiated NASDA model, which comprises of two training phases, as shown in Figure 1. The first is
the neural architecture searching phase, aiming to derive an optimal neural architecture (α∗), following
the learning schema of Equation 1,2. Inspired by Differentiable ARchiTecture Search (DARTS) (Liu
et al., 2019a), we relax the search space to be continuous so that α can be optimized with respect to
Lsval and disc(Φ(xs),Φ(xt)) by gradient descent. Specifically, we enhance the feature transferability
by embedding the hidden representations of the task-specific layers to a reproducing kernel Hilbert
space where the mean embeddings can be explicitly matched by minimizing disc(Φ(xs),Φ(xt)). We
use multi-kernel Maximum Mean Discrepancy (MK-MMD) (Gretton et al., 2007) to evaluate the
domain discrepancy.

The second training phase aims to learn a good feature generator with task-specific loss, based on
the derived α∗ from the first phase. To establish this goal, we use the derived deep neural network
(Φα∗ ) as the feature generator (G) and devise an adversarial training process between G and a batch
of classifiers C. The high-level intuition is to first diversify C in the training process, and train G to
generate features such that the diversified C can have similar outputs. The training process is similar
to Maximum Classifier Discrepancy framework (MCD) (Saito et al., 2018) except that we extend
the dual-classifier in MCD to an ensembling of multiple classifiers. Experiments on standard UDA
benchmarks demonstrate the effectiveness of our derived NASDA model in achieving significant
improvements over state-of-the-art methods.

Our contributions of this paper are highlighted as follows:

• We formulate a novel dual-objective task of Neural Architecture Search for Domain Adap-
tation (NASDA), which optimize neural architecture for unsupervised domain adaptation,
concerning both source performance objective and transfer learning objective.

• We propose an instantiated NASDA model that comprises two training stages, aiming to
derive optimal architecture parameters α∗ and feature extractor G, respectively. We are the
first to show the effectiveness of MK-MMD in NAS process specified for domain adaptation.

• Extensive experiments on multiple cross-domain recognition tasks demonstrate that NASDA
achieves significant improvements over traditional unsupervised domain adaptation models
as well as state-of-the-art NAS-based methods.
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2 RELATED WORK

Deep convolutional neural network has been dominating image recognition task. In recent years,
many handcrafted architectures have been proposed, including VGG (Simonyan & Zisserman, 2014),
ResNet (He et al., 2016), Inception (Szegedy et al., 2015), etc., all of which verifies the importance
of human expertise in network design. Our work bridges domain adaptation and the emerging field of
neural architecture search (NAS), a process of automating architecture engineering technique.

Neural Architecture Search Neural Architecture Search has become the mainstream approach
to discover efficient and powerful network structures (Zoph & Le, 2017; Zoph et al., 2018). The
automatically searched architectures have achieved highly competitive performance in tasks such
as image classification (Liu et al., 2018c;b), object detection (Zoph et al., 2018), and semantic
segmentation (Chen et al., 2018). Reinforce learning based NAS methods (Zoph & Le, 2017; Tan
et al., 2019; Tan & Le, 2019) are usually computational intensive, thus hampering its usage with
limited computational budget. To accelerate the search procedure, many techniques has been proposed
and they mainly follow four directions: (1) estimating the actual performance with lower fidelities.
Such lower fidelities include shorter training times (Zoph et al., 2018; Zela et al., 2018), training on a
subset of the data (Klein et al., 2017), or on lower-resolution images. (2) estimating the performance
based on the learning curve extrapolation. Domhan et al. (2015) propose to extrapolate initial learning
curves and terminate those predicted to perform poorly. (3) initializing the novel architectures based
on other well-trained architectures. Wei et al. (2016) introduce network morphisms to modify an
architecture without changing the network objects, resulting in methods that only require a few GPU
days (Elsken et al., 2017; Cai et al., 2018a; Jin et al., 2019; Cai et al., 2018b). (4) one-shot architecture
search. One-shot NAS treats all architectures as different subgraphs of a supergraph and shares
weights between architectures that have edges of this supergraph in common (Saxena & Verbeek,
2016; Liu et al., 2019b; Bender, 2018). DARTS (Liu et al., 2019a) places a mixture of candidate
operations on each edge of the one-shot model and optimizes the weights of the candidate operations
with a continuous relaxation of the search space. Inspired by DARTS (Liu et al., 2019a), our model
employs differentiable architecture search to derive the optimal feature extractor for unsupervised
domain adaptation.

Domain Adaptation Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned
from one or more labeled source domains to an unlabeled target domain. Various methods have
been proposed, including discrepancy-based UDA approaches (Long et al., 2017; Tzeng et al., 2014;
Ghifary et al., 2014; Peng & Saenko, 2018), adversary-based approaches (Liu & Tuzel, 2016; Tzeng
et al., 2017; Liu et al., 2018a), and reconstruction-based approaches (Yi et al., 2017; Zhu et al.,
2017; Hoffman et al., 2018; Kim et al., 2017). These models are typically designed to tackle single
source to single target adaptation. Compared with single source adaptation, multi-source domain
adaptation (MSDA) assumes that training data are collected from multiple sources. Originating from
the theoretical analysis in (Ben-David et al., 2010; Mansour et al., 2009; Crammer et al., 2008),
MSDA has been applied to many practical applications (Xu et al., 2018; Duan et al., 2012; Peng
et al., 2019). Specifically, Ben-David et al. (2010) introduce an H∆H-divergence between the
weighted combination of source domains and a target domain. These models are developed using the
existing hand-crafted network architecture. This property limits the capacity and versatility of domain
adaptation as the backbones to extract the features are fixed. In contrast, we tackle the UDA from a
different perspective, not yet considered in the UDA literature. We propose a novel dual-objective
model of NASDA, which optimize neural architecture for unsupervised domain adaptation. We are
the first to show the effectiveness of MK-MMD in NAS process which is designed specifically for
domain adaptation.

3 NEURAL ARCHITECTURE SEARCH FOR DOMAIN ADAPTATION

In unsupervised domain adaptation, we are given a source domain Ds = {(xsi ,ysi )}
ns
i=1 of ns labeled

examples and a target domainDt = {xtj}
nt
j=1 of nt unlabeled examples. The source domain and target

domain are sampled from joint distributions P (xs,ys) and Q(xt,yt), respectively. The goal of this
paper is to leverage NAS to derive a deep networkG : x 7→ y, which is optimal for reducing the shifts
in data distributions across domains, such that the target risk εt (G) = E(xt,yt)∼Q [G (xt) 6= yt] is
minimized. We will start by introducing some preliminary background in Section 3.1. We then
describe how to incorporate the MK-MMD into the neural architecture searching framework in
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Section 3.2. Finally, we introduce the adversarial training between our derived deep network and a
batch of classifiers in Section 3.3. An overview of our model can be seen in Algorithm 1.

3.1 PRELIMINARY: DARTS

In this work, we leverage DARTS (Liu et al., 2019a) as our baseline framework. Our goal is to search
for a robust cell and apply it to a network that is optimal to achieve domain alignment between Ds
and Dt. Following Zoph et al. (2018), we search for a computation cell as the building block of the
final architecture. The final convolutional network for domain adaptation can be stacked from the
learned cell. A cell is defined as a directed acyclic graph (DAG) of L nodes, {xi}Ni=1, where each
node x(i) is a latent representation and each directed edge e(i,j) is associated with some operation
o(i,j) that transforms x(i). DARTS (Liu et al., 2019a) assumes that cells contain two input nodes and
a single output node. To make the search space continuous, DARTS relaxes the categorical choice of
a particular operation to a softmax over all possible operations and is thus formulated as:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (3)

where O denotes the set of candidate operations and i < j so that skip-connect can be applied. An
intermediate node can be represented as xj =

∑
i<j o

(i,j)(xi). The task of architecture search then
reduces to learning a set of continuous variables α = {α(i,j)}. At the end of search, a discrete
architecture can be obtained by replacing each mixed operation ō(i,j) with the most likely operation,
i.e., o∗

(i,j)

= argmaxo∈O α
(i,j)
o and α∗ = {o∗(i,j)}.

3.2 SEARCHING NEURAL ARCHITECTURE

Denote by Ltrain and Lval the training loss and validation loss, respectively. Conventional neural
architecture search models aim to derive Φα,w by solving a bilevel optimization problem (Anan-
dalingam & Friesz, 1992): Φα,w = arg minα Lval(w∗(α), α) s.t. w∗(α) = argminwLtrain(w,α).
While recent work (Zoph et al., 2018; Liu et al., 2018c) have show promising performance on tasks
such as image classification and object detection, the existing models assume that the training data
and testing data are sampled from the same distributions. Our goal is to jointly learn the architecture
α and the weights w within all the mixed operations (e.g. weights of the convolution filters) so that
the derived model Φw∗,α∗ can transfer knowledge fromDs toDt with some simple domain adapation
guidence. Initialized by Equation 1, we leverage multi-kernel Maximum Mean Discrepancy (Gretton
et al., 2007) to evaluate disc(Φ∗(xs),Φ∗(xt).

MK-MMD Denote by Hk be the Reproducing Kernel Hilbert Space (RKHS) endowed with a
characteristic kernel k. The mean embedding of distribution p in Hk is a unique element µk(P )
such that Ex∼P f (x) = 〈f (x) , µk (P )〉Hk

for all f ∈ Hk. The MK-MMD dk (P,Q) between
probability distributions P and Q is defined as the RKHS distance between the mean embeddings of
P and Q. The squared formulation of MK-MMD is defined as

d2
k (P,Q) ,

∥∥EP [Φα (xs)]−EQ
[
Φα
(
xt
)]∥∥2

Hk
. (4)

In this paper, we consider the case of combining Gaussian kernels with injective functions fΦ,
where k(x, x′) = exp(−‖fΦ(x) − fΦ(x)′‖2). Inspired by Long et al. (2015), the characteristic
kernel associated with the feature map Φ, k (xs,xt) = 〈Φ (xs) ,Φ (xt)〉, is defined as the convex
combination of n positive semidefinite kernels {ku},

K ,

{
k =

n∑
u=1

βuku :

n∑
u=1

βu = 1, βu > 0,∀u

}
, (5)

where the constraints on {βu} are imposed to guarantee that the k is characteristic. In practice we
use finite samples from distributions to estimate MMD distance. Given Xs = {xs1, · · · ,xsm} ∼ P
and Xt = {xt1, · · · ,xtm} ∼ Q, one estimator of d2

k(P,Q) is

d̂2
k(P,Q) =

1(
m
2

) ∑
i 6=i′

k(xs
i,x

s′
i)−

2(
m
2

) ∑
i 6=j

k(xsi ,x
t
j) +

1(
m
2

) ∑
j 6=j′

k(xt
j ,x

t′
j). (6)
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Algorithm 1 Neural Architecture Search for Domain Adaptation
Phase I: Searching Neural Architecture
1: Create a mixed operation o(i,j) parametrized by α(i,j) for each edge (i, j)
2: while not converged do
3: Update architecture α by ∂

∂αL
s
val

(
w − ξ ∂

∂wL
s
train(w,α), α

)
+ λ ∂

∂α

(
d̂2
k (Φ(xs),Φ(xt))

)
4: Update weights w by descending ∂

∂wL
s
train(w,α)

5: end while
6: Derive the final architecture based on the learned α∗.

Phase II: Adversarial Training for Domain Adaptation
1: Stack feature generator G based on α∗, initialize classifiers C
2: while not converged do
3: Step one: Train G and C with Ls(xs,ys) = −E(xs,ys)∼Ds

∑K
k=1 1[k=ys] log p(ys|xs)

4: Step two: Fix G, train C with loss: Ls(xs,ys)− Ladv(xt)(Eq. 13)
5: Step three: Fix C, train G with loss: Ladv(xt)
6: end while

The merit of multi-kernel MMD lies in its differentiability such that it can be easily incorporated into
the deep network. However, the computation of the d̂2

k(P,Q) incurs a complexity of O(m2), which
is undesirable in the differentiable architecture search framework. In this paper, we use the unbiased
estimation of MK-MMD (Gretton et al., 2012) which can be computed with linear complexity.

NAS for Domain Adaptation Denote by Lstrain and Lsval the training loss and validation loss on the
source domain, respectively. Both losses are affected by the architecture α as well as by the weights w
in the network. The goal for NASDA is to find α∗ that minimizes the validation loss Ltval(w∗, α∗) on
the target domain, where the weights w∗ associated with the architecture are obtained by minimizing
the training loss w∗ = argminw Lstrain(w,α∗). Due to the lack of labels in the target domain, it is
prohibitive to compute Ltval directly, hampering the assumption of previous gradient-based NAS
algorithms (Liu et al., 2019a; Chen et al., 2019). Instead, we derive α∗ by minimizing the validation
loss Lsval(w∗, α∗) on the source domain plus the domain discrepancy, disc(Φ(xs),Φ(xt)), as shown
in Equation 1.

Inspired by the gradient-based hyperparameter optimization (Franceschi et al., 2018; Pedregosa, 2016;
Maclaurin et al., 2015), we set the architecture parameters α as a special type of hyperparameter.
This implies a bilevel optimization problem (Anandalingam & Friesz, 1992) with α as the upper-level
variable and w as the lower-level variable. In practice, we utilize the MK-MMD to evaluate the
domain discrepancy. The optimization can be summarized as follows:

Φα,w = argminα

(
Lsval(w∗(α), α) + λd̂2

k

(
Φ(xs),Φ(xt)

) )
(7)

s.t. w∗(α) = argminw Lstrain(w,α) (8)

where λ is the trade-off hyperparameter between the source validation loss and the MK-MMD loss.

Approximate Architecture Search Equation 7,8 imply that directly optimizing the architecture
gradient is prohibitive due to the expensive inner optimization. Inspired by DARTS (Liu et al.,
2019a), we approximate w∗(α) by adapting w using only a single training step, without solving the
optimization in Equation 8 by training until convergence. This idea has been adopted and proven to
be effective in meta-learning for model transfer (Finn et al., 2017), gradient-based hyperparameter
tuning (Luketina et al., 2016) and unrolled generative adversarial networks. We therefore propose a
simple approximation scheme as follows:

∂

∂α

(
Lsval(w∗(α), α) + λd̂2

k

(
Φ(xs),Φ(xt)

) )
≈ ∂

∂α
Lsval

(
w − ξ ∂

∂w
Lstrain(w,α), α

)
+ λ

∂

∂α

(
d̂2
k

(
Φ(xs),Φ(xt)

) )
(9)

where w − ξ ∂
∂wL

s
train(w,α) denotes weight for one-step forward model and ξ is the learning rate

for a step of inner optimization. Note Equation 9 reduces to ∇αLval(w,α) if w is already a local
optimum for the inner optimization and thus∇wLtrain(w,α) = 0.
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(a) Normal cells (left) and Reduce cells (right) for STL→CIFAR10

(b) Normal cells (upper) and Reduce cells (lower) for MNIST→USPS

Method Params
(M)

Search Cost
(GPU days)

NASNet 3.3 1,800
AmoebaNet 3.2 3,150

PNAS 3.2 225
DARTS 3.3 1.5
SNAS 2.8 1.5

PDARTS 3.4 0.3

NASDA 2.7 0.3

(c) Network architecture statis-
tics comparison

Figure 2: (a) Neural architecture for STL→CIFAR10 task. (b) Neural architecture for MNIST→USPS
results. (c) Comparison between our NASDA model and state-of-the-art NAS models.

The second term of Equation 9 can be computed directly with some forward and backward passes.
For the first term, applying chain rule to the approximate architecture gradient yields

∂

∂α
Lsval(w′, α)− ξ

( ∂2

∂α∂w
Lstrain(w,α)

∂

∂w′
Lsval(w′, α)

)
(10)

wherew′ = w−ξ ∂
∂wLtrain(w,α). The expression above contains an expensive matrix-vector product

in its second term. We leverage the central difference approximation to reduce the computation
complexity. Specifically, let η be a small scalar and w± = w ± η ∂

∂w′L
s
val(w

′, α). Then:

∂2

∂α∂w
Lstrain(w,α)

∂

∂w′
Lsval(w′, α) ≈

∂
∂αLtrain(w+, α)− ∂

∂αLtrain(w−, α)

2η
(11)

Evaluating the central difference only requires two forward passes for the weights and two backward
passes for α, reducing the complexity from quadratic to linear.

3.3 ADVERSARIAL TRAINING FOR DOMAIN ADAPTATION

By neural architecture searching from Section 3.2, we have derived the optimal cell structure (α∗)
for domain adaptation. We then stack the cells to derive our feature generator G. In this section, we
describe how do we consolidate G by an adversarial training of G and the classifiers C. Assume C
includes N independent classifiers {C(i)}Ni=1 and denote pi(y|x) as the K-way propabilistic outputs
of C(i), where K is the category number.

The high-level intuition is to consolidate the feature generator G such that it can make the diversified
C generate similar outputs. To this end, our training process include three steps: (1) train G and C on
Ds to obtain task-specific features, (2) fix G and train C to make {C(i)}Ni=1 have diversified output,
(3) fix C and train G to minimize the output discrepancy between C. Related techniques have been
used in Saito et al. (2018); Kumar et al. (2018).

First, we train both G and C to classify the source samples correctly with cross-entropy loss. This
step is crucial as it enables G and C to extract the task-specific features. The training objective is
min
G,C
Ls(xs,ys) and the loss function is defined as follows:

Ls(xs,ys) = −E(xs,ys)∼Ds

K∑
k=1

1[k=ys] log p(ys|xs) (12)
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In the second step, we are aiming to diversify C. To establish this goal, we fix G and train C to
increase the discrepancy of C’s output. To avoid mode collapse (e.g. C(1) outputs all zeros and C(2)

output all ones), we add Ls(xs,ys) as a regularizer in the training process. The high-level intuition
is that we do not expect C to forget the information learned in the first step in the training process.
The training objective is min

C
Ls(xs,ys)− Ladv(xt), where the adversarial loss is defined as:

Ladv(xt) = Ext∼Dt

N−1∑
i=1

N∑
j=i+1

‖(pi(y|xt)− pj(y|xt)‖1 (13)

In the last step, we are trying to consolidate the feature generator G by training G to extract
generalizable representations such that the discrepancy of C’s output is minimized. To achieve this
goal, we fix the diversified classifiers C and train G with the adversarial loss (defined in Equation 13).
The training objective is min

G
Ladv(xt).

4 EXPERIMENTS

Method STL→ CIFAR10

DANN 56.9
MCD 69.2
DWT 71.2

SE 74.2
G2A 72.8

VADA 73.5
DIRT-T 75.3

NASNet+Phase II 67.3
AmoebaNet+Phase II 67.0

DARTS+Phase II 68.8
PDARTS+Phase II 66.0

NASDA 76.8

Table 1: Accuracy (%) STL→CIFAR-10

We compare the proposed NASDA model with many state-
of-the-art UDA baselines on multiple benchmarks. In the
main paper, we only report major results; more details
are provided in the supplementary material. All of our
experiments are implemented in the PyTorch platform.

In the architecture search phase, we use λ=1 for all the
searching experiments. We leverage the ReLU-Conv-BN
order for convolutional operations, and each separable
convolution is always applied twice. Our search space
O includes the following operations: 3 × 3 and 5 × 5
separable convolutions, 3 × 3 and 5 × 5 dilated separa-
ble convolutions, 3 × 3 max pooling, identity, and zero.
Our convolutional cell consists of N = 7 nodes. Cells
located at the 1

3 and 2
3 of the total depth of the network

are reduction cells. The architecture encoding therefore is
(αnormal, αreduce), where αnormal is shared by all the normal cells and αreduce is shared by all the
reduction cells.

4.1 SETUP

Digits We investigate three digits datasets: MNIST, USPS, and Street View House Numbers (SVHN).
We adopt the evaluation protocol of CyCADA (Hoffman et al., 2018) with three transfer tasks: USPS
to MNIST (U→ M), MNIST to USPS (M→ U), and SVHN to MNIST (S→ M). We train our
model using the training sets: MNIST (60,000), USPS (7,291), standard SVHN train (73,257).

STL→CIFAR10 Both CIFAR10 (Krizhevsky et al., 2009) and STL (Coates et al., 2011) are both
10-class image datasets. These two datasets contain nine overlapping classes. We remove the ‘frog’
class in CIFAR10 and the ‘monkey’ class in STL datasets as they have no equivalent in the other
dataset, resulting in a 9-class problem. The STL images were down-scaled to 32×32 resolution to
match that of CIFAR10.

SYN SIGNS→GTSRB We evaluated the adaptation from synthetic traffic sign dataset called SYN
SIGNS (Moiseev et al., 2013) to real-world sign dataset called GTSRB (Stallkamp et al., 2011).
These datasets contain 43 classes.

We compare our NASDA model with state-of-the-art DA methods: Deep Adaptation Network
(DAN) (Long et al., 2015), Domain Adversarial Neural Network (DANN) (Ganin & Lempitsky,
2015), Domain Separation Network (DSN) (Bousmalis et al., 2016), Coupled Generative Adver-
sarial Networks (CoGAN) (Liu & Tuzel, 2016), Maximum Classifier Discrepancy (MCD) (Saito
et al., 2018), Generate to Adapt (G2A) (Sankaranarayanan et al., 2018), Stochastic Neighborhood
Embedding (d-SNE) (Xu et al., 2019b), Associative Domain Adaptation (ASSOC) (Haeusser et al.,
2017).
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Method M→ U U→M S→M Avg(digits) Method SYN SIGNS→ GTSRB

DAN 81.1 - 71.1 76.1 DAN 91.1
DANN 85.1 73.0 71.1 76.4 DANN 88.7
DSN 91.3∗ - 82.7 - DSN 93.1

CoGAN 91.2∗ 89.1 - - CORAL 86.9
MCD 94.2 94.1 96.2 94.8 MCD 94.4
G2A 95.0 90.8 92.4 92.7 ASSOC 82.8

SBADA-GAN 95.3 97.6 76.1 89.7 SRDA-RAN 93.6
d-SNE 99.0 98.7 96.5 98.1 DADRL 94.6

NASDA 98.0 98.7 98.6 98.4 NASDA 96.7

Table 2: Accuracy (%) on Digits and Traffic Signs for unsupervised domain adaptation.

4.2 EMPIRICAL RESULTS

Neural Architecture Search Results We show the neural architecture search results in Figure 2. We
can observe that our model contains more “avg_pool” and “5x5_conv” layer than other NAS model.
This will make our model more generic as the average pooling method smooths out the image and
hence the model is not congested with sharp features and domain-specific features. We also show
that our NASDA model contains less parameters and takes less time to converge compared with
state-of-the-art NAS architectures. Another interesting finding is that our NASDA contains more
sequential connections in both Normal and Reduce cells when trained on MNIST→USPS.

Unsupervised Domain Adaptation Results The UDA results for Digits and SYN SIGNS→GTSRB
are reported in Table 2, with results of baselines directly reported from the original papers if the
protocol is the same (numbers with ∗ indicates training on partial data). The NASDA model
achieves a 98.4% average accuracy for Digits dataset, outperforming other baselines. For SYN
SIGNS→GTSRB task, our model gets comparable results with state-of-the-art baselines. The results
demonstrate the effectiveness of our NASDA model on small images.

The UDA results on the STL→CIFAR10 recognition task are reported in Table 1. Our model achieves
a performance of 76.8%, outperforming all the baselines. To compare our search neural architecture
with previous NAS models, we replace the neural architecture in G with other NAS models. Other
training settings in the second phase are identical to our model. As such, we derive NASNet+Phase
II (Zoph et al., 2018), AmoebaNet+Phase II (Shah et al., 2018) , DARTS+Phase II (Liu et al.,
2019a), and PDARTS+Phase II (Chen et al., 2019) models. The results in Table 1 demonstrate that
our model outperform other NAS based model by a large margin, which shows the effectiveness of
our model in unsupervised domain adaptation. Specifically, we set PDARTS+Phase II as an ablation
study to demonstrate the effectiveness of our task-specific design in learning domain-adaption aware
features.

Figure 3: T-SNE for 4 classifiers

Analysis To dive deeper into the training process of our NASDA
model, we plot the T-SNE embedding of the weights of C in
USPS→MNIST in Figure 3. This is achieved by recording
the weights of all the classifiers at each epoch. The black dot
indicates epoch zero, which is the common starting point. The
color from light to dark corresponds to the epoch number from
small to large. The T-SNE plots clearly show that the classifiers
are diverged from each other, demonstrating the effectiveness of
the second step of our NASDA training described in Section 3.2.

5 CONCLUSION

In this paper, we first formulate a novel dual-objective task of Neural Architecture Search for Domain
Adaptation (NASDA) to invigorate the design of transfer-aware network architectures. Towards
tackling the NASDA task, we have proposed a novel learning framework that leverages MK-MMD
to guide the neural architecture search process. Instead of aligning the features from existing
handcrafted backbones, our model directly searches for the optimal neural architecture specific for
domain adaptation. Furthermore, we have introduced the ways to consolidate the feature generator,
which is stacked from the searched architecture, in order to boost the UDA performance. Extensive
empirical evaluations on UDA benchmarks have demonstrated the efficacy of the proposed model
against several state-of-the-art domain adaptation algorithms.
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