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Abstract

Analyzing large, complex output datasets from Discrete Event
Simulations (DES) of warehouse operations to identify bottle-
necks and inefficiencies is a critical yet challenging task, often de-
manding significant manual effort or specialized analytical tools.
We propose a novel framework that addresses this challenge
through a powerful integration of Knowledge Graphs (KGs) and
Large Language Model (LLM)-based agents. Our framework first
transforms raw DES output data into a semantically rich KG,
which uniquely captures the intricate relationships between
simulation events and entities (e.g., suppliers, packages, work-
ers, equipment), overcoming unstructured log limitations for
robust analysis. On this KG, our novel LLM-based agent employs
a sophisticated iterative reasoning mechanism that interprets
complex natural language questions by generating insightful,
interdependent sub-questions sequentially. Each sub-question is
formulated one at a time, crucially conditioned on the evidence
from answers to previous ones. For each individual sub-question,
a multi-step process then generates precise Cypher queries for
KG interaction, extracts relevant information, and performs cru-
cial self-reflection to identify and correct potential errors. This
adaptive, iterative, and self-correcting reasoning progressively
pinpoints operational issues and diagnoses root causes, mim-
icking human investigative analysis. We evaluate our approach
using an example warehouse DES setup, systematically introduc-
ing typical bottlenecks like equipment breakdowns and supplier
arrival irregularities. For operational questions, our proposed
pipeline using step-wise thinking demonstrates significantly
higher pass rates compared to traditional baseline methods,
achieving near-perfect performance in identifying key ineffi-
ciencies. Furthermore, for more complex investigative questions,
we qualitatively showcase our framework’s superior diagnostic
capabilities through three case studies, highlighting its profi-
ciency in uncovering subtle and interconnected inefficiencies
often missed by traditional methods. This work attempts to
bridge the gap between simulation modeling and advanced AI-
driven data analysis informed by the broader advancements
in KG+LLM, offering a more intuitive and potent method for
extracting actionable insights from simulation outputs, thereby
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1 Introduction

Modern warehouses are complex systems, defined by intri-
cate interactions between resources (personnel, equipment),
processes (receiving, storage, picking, packing, shipping), and
physical layouts [7, 9, 21]. Discrete Event Simulation (DES) has
emerged as a powerful technique for modeling these systems
[5, 20], allowing stakeholders to evaluate performance, test de-
sign alternatives, and understand system dynamics before im-
plementation. Despite its power, analysis of the voluminous and
highly granular output data generated restricts the full exploita-
tion of DES. Typical DES runs produce extensive event logs,
time-series data on resource states, and detailed queue statistics,
capturing micro-level system behavior. Transforming this raw
data into actionable intelligence—such as precisely identifying
performance bottlenecks, diagnosing root causes of delays, or
pinpointing underutilized resources—presents a non-trivial ana-
lytical hurdle. Conventional approaches, frequently reliant on
manual inspection of aggregate statistics [20] or development
of custom scripts tailored to specific simulation outputs, are not
only time-intensive and error-prone but, critically, often fail to
uncover complex, emergent system behaviors and hidden ineffi-
ciencies arising from the interplay of numerous components.
The need for more sophisticated and efficient analysis meth-
ods is further amplified by the increasing integration of simu-
lation with real-time operational data, particularly within the
paradigm of Digital Twins (DTs) [2, 22, 32]. While DTs aim to
provide a synchronized virtual counterpart to physical systems
for monitoring and decision-making, the fundamental challenge
of interpreting the state and behavior of the simulation or DT
persists. Whether analyzing historical simulation runs or near
real-time DT states, extracting clear insights remains a bottle-
neck in itself. Al is playing an increasingly important role in all
fields; warehouse logistics is no exception [8, 16, 27, 41]. How-
ever, to effectively address the specific analytical bottleneck
in DES and DT data interpretation for warehouses, there is a
pressing need for advanced Al-driven approaches capable of


https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

KDD ’25, August 3, 2025, Toronto, ON, Canada.

unlocking the rich insights embedded within this complex data,
thereby truly enhancing warehouse planning and operational
control.

To address these limitations of conventional DES data analy-
sis, our work proposes a novel framework integrating Knowl-
edge Graphs (KGs) [12] and Large Language Model (LLM)s
[31, 39] for bottleneck identification through natural language
queries, leading towards intelligent warehouse planning assis-
tance. The core idea of our work, supported by research on
domain-specific and event KGs [1], is to first structure the com-
plex relational data generated by DES using a KG. Representing
simulation output as a graph allows the intricate dependen-
cies and flows within the warehouse system to be explicitly
captured and queried. While KGs are increasingly applied to an-
alyze real-world industrial and supply chain data for enhanced
visibility and risk management [19, 30], their application to the
specific domain of simulation output data remains relatively un-
explored. This work leverages KG technology to achieve deeper
simulation understanding, thereby supporting strategic and op-
erational warehouse planning.

Building upon the structured representation provided by
the KG, our framework employs LLM-based agents [10, 38]
to enable intuitive interaction with the simulation data [37],
directly aiding warehouse planners. LLMs possess powerful
natural language understanding and generation capabilities,
allowing users—such as operations analysts or industrial en-
gineers involved in warehouse design, optimization, and day-
to-day planning, who may lack deep expertise in graph query
languages—to pose questions in natural language. The LLM
agent in our framework is not merely an intermediary but is
designed with an iterative reasoning [24, 36] mechanism for
the in-depth diagnostic analysis crucial for warehouse planning.
When presented with a complex natural language query regard-
ing warehouse performance or a planning scenario, the agent
autonomously generates a sequence of insightful sub-questions.
Each sub-question is formulated one at a time, strategically con-
ditioned on the evidence and insights gathered from answers to
previous sub-questions directed at the KG. For each such sub-
question, the agent then generates precise NL-to-Graph Cypher
queries for KG interaction [13, 26]; retrieves relevant informa-
tion; and performs crucial self-reflection [14, 25] to validate its
findings and correct potential errors in its analytical pathway.
This translation to Cypher, instead of SQL, is a deliberate choice
to leverage the KG’s native structure; it allows for more expres-
sive queries on complex operational patterns while avoiding the
cumbersome joins typical of SQL on graph-like data, a distinc-
tion supported by recent text-to-query benchmarks [34]. This
synthesis involves not just presenting raw data but interpreting
patterns, identifying anomalies (like bottlenecks within specific
warehouse zones or affecting critical operational sequences),
and inferring potential root causes based on the relationships
and event sequences captured within the KG. This approach
moves significantly beyond simple data retrieval towards Al-
driven analysis and explanation, vital for informed warehouse
planning and decision-making.

This synergistic integration of Knowledge Graphs (KGs) and
a reasoning LLM-agent transforms a warehouse Digital Twin
(DT) from a predominantly passive simulation environment
into an interactive, explainable knowledge base and an intelli-
gent assistant for warehouse planners. Consequently, planners
can interact with this enhanced DT using natural language to
probe multifaceted operational scenarios, diagnose underlying
causes of inefficiencies and complex performance deviations,
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understand the impact of variability (e.g., in supplier arrivals or
equipment uptime), evaluate alternative operational strategies
more deeply, and proactively identify potential bottlenecks in
proposed warehouse layouts or future operational plans—all
without the need to manually decipher voluminous simulation
logs or write complex scripts. This heightened transparency
and Al-driven decision support significantly improves decision-
making agility and the strategic depth of warehouse planning.
Our work thus provides a robust and novel methodology to
bridge advanced Al with established simulation techniques,
paving the way for more effective and intelligent warehouse
operational management.
The main contributions of this paper are:

o Novel Supply Chain Application for Bottleneck Iden-

tification from DES: To the best of our knowledge, this

work presents the first application combining Knowledge

Graphs (KGs) and Large Language Model (LLM) agents

specifically for analyzing output data from Discrete Event

Simulations (DES) of warehouse operations to identify

bottlenecks and inefficiencies.

Bridging Simulation and Generative AI: We establish

amethodological bridge between traditional DES analysis

techniques and modern Al capabilities offered by KGs and

LLMs, proposing a more powerful and intuitive paradigm

for interpreting simulation data.

o Framework Design: We detail a comprehensive frame-
work encompassing the ontological construction of a
KG from DES output data, and the design of an LLM-
agent equipped with a novel iterative reasoning mecha-
nism (featuring sequential, conditioned sub-questioning,
Cypher generation for KG interaction, and self-reflection)
for effective operational performance analysis and bot-
tleneck diagnosis.

e Experimental Validation Plan: We propose and eval-
uate experiments focused on warehouse simulation sce-
narios with datasets comprising both operational and
investigative questions, designed to validate the effec-
tiveness of our KG+LLM framework in identifying oper-
ational bottlenecks and enhancing analytical efficiency
compared to established baseline methods.

2 Related Work

2.1 Discrete Event Simulation and Knowledge
Graphs in Warehouse Operations

Discrete Event Simulation (DES) is extensively employed in
logistics and warehousing to model and analyze diverse op-
erational facets. The outputs from such DES models typically
furnish key performance indicators (KPIs) like overall system
throughput, queue lengths at different processing stages, wait-
ing times for entities (e.g., orders, products), and the utilization
rates of critical resources [5, 20]. In the contemporary Logistics
4.0 landscape, DES is also increasingly recognized as a funda-
mental component of Digital Twins (DTs). In this role, DES can
function as the cyber twin, potentially updated with real-time
operational data to mirror physical system states and behav-
iors [2, 22, 32]. A primary analytical objective when working
with simulation outputs is the identification of performance
bottlenecks. While traditional statistical indicators including
average queue lengths, waiting times for entities, and resource
utilization rates [5, 20] are valuable for initial assessments and
identifying obvious areas of concern, they often provide only
surface-level insights. Such methods may not adequately reveal
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the underlying root causes of identified bottlenecks, particularly
those that emerge from complex interactions between multiple
system components or from dynamic and fluctuating opera-
tional conditions. Consequently, there is a clear and persistent
need for analytical methods that can transcend simple statisti-
cal thresholds to offer deeper diagnostic capabilities, thereby
enabling a more comprehensive understanding of system ineffi-
ciencies and their origins.

Artificial intelligence (Al) is increasingly being leveraged
to optimize various facets of warehouse operations, including
automation and decision support [8, 16, 27, 35]. Within this
trend, Knowledge Graphs (KGs) have emerged as a powerful
technology for representing and reasoning over complex, inter-
connected data in industrial domains [30]. KGs are increasingly
utilized for diverse applications such as enhancing operational
visibility across supply chains, mapping intricate supplier net-
works, tracking materials and products, managing operational
and supply chain risks, optimizing inventory levels, ensuring
product traceability, and monitoring sustainability initiatives
[33]. For instance, KGs have been developed to improve robot
operations in warehouses [18] and to create digital twin-enabled
dynamic spatial-temporal knowledge graphs for optimizing re-
source allocation in production logistics [40].

While the application of KGs to real-world industrial data
spanning supply chains, manufacturing processes, and asset
management is rapidly advancing and demonstrating significant
value, our review indicates a noticeable gap in the application
of KG technology specifically to structure, analyze, and inter-
pret the output data generated from simulations, such as DES.
This type of data is critical for effective operational planning
and strategic decision-making. Much of the existing work on
KGs in industrial contexts focuses on modeling the physical
system itself, its components, or real-time data streams from
sensors and IoT devices. The opportunity to transform the rich,
relational event data and temporal sequences produced by de-
tailed simulation runs into semantically rich KGs for in-depth
performance analysis and bottleneck diagnosis remains largely
untapped. This represents a significant opportunity to leverage
the structural and semantic strengths of KGs for achieving a
deeper understanding of simulated systems, thereby enhancing
simulation-driven planning and optimization.

2.2 Integrating LLMs and Knowledge Graphs
for Industrial Data Analysis

The advent of Large Language Models (LLMs) [39] has intro-
duced transformative capabilities in natural language under-
standing, generation, and reasoning. The integration of LLMs
with KGs is increasingly recognized as a powerful combination
[31], creating a synergy that aims to develop Al systems that
are both deeply knowledgeable and intuitively conversational.
In this paradigm, KGs serve to ground LLMs with factual, struc-
tured knowledge, which can help mitigate issues like hallucina-
tions and improve the accuracy and reliability of LLM-generated
responses [3]. Conversely, LLMs can make the rich information
stored in KGs more accessible to a wider range of users by en-
abling natural language querying and interaction, abstracting
away the need for specialized query languages [42].

Several patterns for integrating KGs and LLMs have emerged.
One common approach is KG-enhanced LLMs, where KGs are
leveraged either during the LLM’s pre-training or, more fre-
quently, at inference time; Retrieval-Augmented Generation
(RAG) is a prominent technique in this category, using KGs or
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other external sources to inform and contextualize LLM gen-
eration [29]. Conversely, LLM-augmented KGs employ LLMs
to assist in various stages of the KG lifecycle, including con-
struction from unstructured text, knowledge base completion
(like link prediction or entity resolution), enrichment of KG
embeddings, or generating textual descriptions from graph data
(KG-to-text) [31]. A third pattern involves synergized LLMs +
KGs, characterized by a deeper, often bidirectional integration,
frequently featuring LLM-based agents that can reason over,
interact with, and manipulate KGs to perform complex, multi-
step tasks [17, 24]; the proposed framework aligns with this
synergistic approach.

2.3 KG-LLM Systems in Industrial
Applications and the Identified Gap for
Simulation Analysis

The synergistic combination of KGs and LLMs is beginning to
find applications in various industrial scenarios. For example,
researchers have explored integrating KGs and LLMs for en-
hanced querying in industrial environments [11], using LLMs
and context-aware prompting to improve access to manufactur-
ing knowledge [28], and developing LLM-based assistants for
warehouse operations as part of broader Al-driven logistics op-
timization efforts [15]. Furthermore, KG-enhanced LLMs have
been proposed for domain-specific question answering systems
in technical fields [23].

However, despite these advancements, the application of KG-
LLM systems to the unique challenges of analyzing DES output
data for operational insights, particularly for complex tasks like
iterative bottleneck diagnosis and root cause analysis, remains
largely unexplored. While frameworks like SpargLLM [4] have
investigated the use of RAG and query templates to improve
the reliability of LLM interactions with KGs in industrial set-
tings, the specific application of such LLM+KG agent systems
to analyze the unique structure and temporal nature of DES out-
put data for operational insights (like bottleneck diagnosis) is
largely unexplored. There is a critical need to explore how effec-
tively LLM-based agents, equipped with reasoning capabilities,
can:

e Transform complex natural language questions about
DES output simulated warehouse performance into pre-
cise, executable queries over a KG.

o Iteratively refine their understanding and analytical path
based on the evidence retrieved from the KG.

o Synthesize information from disparate parts of the KG to
diagnose operational issues and explain their findings in
an intelligible manner.

The reliability of LLM-driven query generation, the efficacy
of iterative reasoning over simulation-specific KGs, and the
overall ability of such integrated systems to provide actionable,
explainable insights for DES-based warehouse planning and
analysis constitute open research areas that this work aims to
address. Our framework specifically focuses on bridging this
gap by proposing a novel LLM-based agent that employs an
iterative, self-correcting reasoning process over KGs derived
from DES outputs to automate and enhance the identification
and diagnosis of warehouse inefficiencies.
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Figure 1: Workflow diagram of the warehouse unload-
ing process, detailing the sequence from supplier deliver-
ies and worker handling, through stages involving Auto-
mated Guided Vehicles (AGVs) and forklifts, to packages
formed for storage. Numerical figures are for representa-
tional purposes only, the exact numbers are provided in
text.

3 Discrete Event Simulation — Scenario
Design of Warehouse Discharge

This study is based on the data generated by an in-house discrete-
event simulation (DES) model that includes operations of a ware-
house facility engaged in the unloading, internal transport, and
storage of incoming packages. The simulation is designed to
replicate real-world warehouse logistics, capturing the interac-
tions between key resources such as suppliers (trucks), workers,
automated guided vehicles (AGVs), forklifts, and storage infras-
tructure. Key highlights are described here, more information
can be found in appendix.

3.1 Scenario Configuration

The following sections outline the detailed scenario configura-
tion used in the simulation model. These parameters and design
decisions collectively contribute to the fidelity of the simulation
to replicate real-world warehouse operations:

3.1.1 Equipment and Resource Specifications:

o Suppliers: These are external trucks that bring in the
packages to the warehouse. Each supplier holds a total of
N packages where N is sampled from a distribution rang-
ing from 30 to 35. They move at a speed of 20 km/hr. A
total of five suppliers are expected to arrive in simulation.

e Workers: These are 12 employees working at the ware-
house. They can move one package at a time at a speed
of 2 km/hr.

e Automated Guided Vehicles (AGVs): They are auto-
mated transporters that carry packages from the worker
to the forklift. They can be programmed to traverse pre-
specified paths. There are 20 AGVs present in the ware-
house. They move with a speed of 3.5 km/hr. The Time
taken for the AGV to transport a package depends on the
distance it travels which is 140 meters on an average.

o Forklifts: They are man operated machines that can
move packages both horizontally and vertically. They
pick up packages from AGVs and place them on a given
shelf in the storage block. A forklift can move at speed
of 5 km/hr.

3.1.2  Process Flow: The unloading and storage process follows
a structured flow:
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(1) Supplier Arrival: On arrival, a supplier truck heads to
the parking area and waits to be assigned to an unloading
dock. Once an unloading dock becomes available, the
supplier moves towards it and starts unloading.

(2) Unloading Operation: Each supplier is assigned a team
of four workers. Upon reaching an available unload spot,
workers begin transferring packages from the supplier
to a pre-defined waiting point.

(3) Worker to AGV Handoff: Workers wait for the arrival
of an AGV at the waiting point. Upon arrival, the package
is loaded onto the AGV and the worker returns to the
supplier to repeat the process. The worker handling time
is determined by the distance between the supplier and
the waiting point, adjusted for the walking speed.

(4) AGV Transit: The AGV transports the package to the
appropriate block-specific pickup point, with travel time
determined by distance and AGV speed.

(5) Forklift Transfer: A dedicated forklift on the block col-
lects the package from the AGV and stores it in one of the
available bays. The forklift operation time includes the
travel time and a stochastic storage time drawn from a
distribution ranging between 60 to 90 seconds. The stor-
age space has a cluster of 15 bays with each bay having 3
shelves. Each storage block can store 45 packages. There
are five such blocks in the warehouse, making the total
capacity 225.

3.1.3  Operational Assumptions:

o Suppliers arrive at regular intervals of 30 minutes, subject
to yard capacity constraints (maximum of 3 unloading
simultaneously).

e Each worker team of four operates exclusively with its
assigned supplier and unload dock during the unloading
process.

e AGVs are dynamically dispatched to waiting points and
are assigned to packages in a First-In-First-Out (FIFO)
manner.

o Forklifts serve incoming packages at the pickup point us-
ing a FIFO approach and are restricted to their respective
blocks.

e Package handling times for workers and AGVs are deter-
mined by distance and speed; storage time for forklifts
includes a stochastic component.

e Storage allocation for a block is stochastic.

3.1.4 Data Extracted from Simulation. Following data is cap-
tured from each simulation run

e Process and equipment specific: The process specific
data, including the equipment ID, arrival time, process
initiation time, waiting time, process completion time.
This includes suppliers, workers, AGVs and forklifts.
Package specific: For each individual package, we cap-
ture a unique package ID and log key timestamps through-
out the material handling process. These include the time
the package is picked up from the supplier, the waiting
time at the transfer point, the time the package is loaded
onto and departs with an AGV, the time of arrival at the
storage block, and the final timestamp when the package
is placed into storage.
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3.2 Generation of Evaluation Questions

Based on data generated from the normal operating scenario,
two types of questions were formulated for the evaluation of
analytical capabilities:

3.2.1 Operational Questions: A set of 25 distinct operational
questions (see Table 6) was created to assess the proficiency in
retrieving specific factual information and performing straight-
forward analyses using the simulation output. These questions
were designed to cover various aspects of the simulated oper-
ation, with an approximately uniform distribution across key
entities and stages such as supplier interactions, worker activi-
ties, AGV and forklift utilization, and package flow.

3.2.2 Investigative Scenarios and Questions for Bottleneck Iden-
tification: To specifically evaluate the capabilities in identifying
operational bottlenecks, three distinct investigative scenarios
were simulated. Each scenario introduced a specific type of inef-
ficiency into the baseline model, mirroring potential real-world
disruptions:

e Scenario 1: Delay in Stage Transfer: For a particu-
lar supplier, a specific process inefficiency was simu-
lated, primarily introducing intermittent delays within
the AGV-to-Forklift (AGV-FL) transfer stage, leading to
significantly prolonged overall discharge times for their
packages.

Scenario 2: Supplier-Specific Processing Delay: For
a particular supplier, targeted inefficiencies were sim-
ulated, introducing increased handling and suboptimal
task allocation within the unloading and package process-
ing stages, leading to significantly prolonged processing
times.

Scenario 3: Degraded Forklift Performance: One spe-
cific forklift was modeled to operate with reduced ef-
ficiency throughout its designated shift, leading to lo-
calized congestion and delays in tasks reliant on that
particular forklift.

For each of these three systematically perturbed scenarios, a
unique investigative question was formulated. The objective
of each such question was to task the framework with iden-
tifying the primary operational bottleneck or pinpointing the
most significant performance degradation resulting from the
deliberately introduced inefficiency.

4 Methodology

This section briefly outlines the core technical components of
the proposed framework.

4.1 KG Schema Design for DES Data

We utilize a custom KG schema tailored to represent the re-
sources (supplier, worker, AGV, forklift, storage) as nodes and
movement of each package between resources as edges of the
KG. The operational data including timestamps is added as fea-
tures of these edges and nodes. The KG is constructed from the
output logs generated by the DES model through an automated
pipeline. See appendix A.2 for more details.

4.2 LLM Reasoning Agent

The LLM reasoning agent utilizes a dual-path architecture, initi-
ated by query classification, for the complex analysis of oper-
ational and investigative questions on the simulation output-
derived KG. For operational queries, a QA Chain features a
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Figure 2: System architecture of the LLM Reasoning Agent
comprising two components: the QA Chain and the Rea-
soning Chain. Queries are first classified as normal or
bottleneck. Normal queries follow step-wise guidance for
Cypher generation, execution, and self-reflection. Bottle-
neck queries invoke iterative reasoning, where the agent
decomposes the problem into sub-questions, gathers in-
termediate evidence, and dynamically refines its analysis
toward a final answer.

Step Generation module that translates the natural language
query into structured steps, often breaking down complex ques-
tions into simpler sub-queries, each aimed at extracting relevant
information via a single, targeted Cypher query. A Cypher Gen-
eration module then formulates these formal queries, which are
programmatically executed against the KG by a Query Execu-
tion and Correction Module that incorporates an error-handling
loop. The Answer Synthesis (QA) module subsequently receives
and processes the query results (e.g., list of entities, subgraphs,
aggregated values), moving beyond mere data presentation to
interpret initial patterns and synthesize coherent answers.

For complex investigative (bottleneck) queries, an Iterative
Reasoning Chain is activated: a Reasoning module decomposes
the main problem and sequentially generates sub-questions
one at a time. Each sub-question then leverages the entire QA
Chain—enabling iterative Cypher generation, execution, and
focused evidence collection—which allows the agent’s overall
analytical path to be dynamically refined based on intermediate
findings. Upon meeting a sufficiency condition, a Summarizer
module performs the final answer synthesis. This stage involves
in-depth interpretation of the aggregated graph data to iden-
tify patterns indicative of performance issues like bottlenecks
(e.g., identifying workstations with consistently high incoming
flow but low outgoing flow, correlated with long queue times)
and potentially suggesting causal factors based on traversing
relationships in the KG (e.g., linking a bottleneck to upstream
resource unavailability or specific event sequences thereby deliv-
ering a comprehensive diagnostic summary). This architecture
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Table 1: Performance on Operational QA by Method and Stage (Pass@k Scores).
Direct QA: Single-pass Cypher query generation followed by answer synthesis. SR: Self-Reflection. Step-wise Guide:
Question decomposition for structured step generation; each step involves (Cypher query + Answer Generation + Self-

Reflection). P@k indicates Pass@k scores.

Method ‘ Supplier Worker AGV Forklift Package Average
| P@1 P@4 |P@1 P@4 |P@1 P@4|P@1 P@4|P@1 P@4|P@1 P@4
Direct QA 2 0.50 0.60 0.40 0.40 0.25  0.60 0.41 0.56 0.41 0.56 0.41 0.56

Direct QA + SR | 0.95 1.00 | 055 0.80 | 0.60
Step-wise Guide © | 0.90 1.00 | 0.74 1.00 | 0.83

0.60 0.73  0.80 0.73 0.80 0.73 0.80
1.00 | 0.75 1.00 | 0.90 1.00 | 0.82 1.00

synergizes robust, self-correcting query execution with adap-
tive, iterative reasoning for advanced diagnostics, where each
distinct processing module is realized through an independent
Large Language Model call, leveraging either a general-purpose
foundation model or a smaller, task-specific fine-tuned model.

5 Results and Discussion

We evaluated our LLM agent framework using OpenAI’s GPT-
40 (via Langchain QA chains) interacting with a Neo4j knowl-
edge graph through LLM-generated Cypher queries. Interac-
tions were configured with temperature 0.0, top_p 0.95, and a
4096-token limit. While a zero temperature aims for determin-
ism, minor variability can arise from top_p sampling or multi-
step reasoning dynamics. For operational queries, we employed
a QA chain guided by a step-wise approach that decomposed
input questions into structured steps—each involving Cypher
generation, KG querying, and self-reflection. Performance was
measured using the pass@k metric[6] to assess answer accu-
racy across 4 attempts. This was benchmarked against two base-
lines: (i) single-pass Cypher generation with answer synthesis,
and (ii) an enhanced version adding post-answer self-reflection.
For investigative bottleneck scenarios, our iterative Reasoning
chain—refining each step based on accumulated evidence was
compared qualitatively against the enhanced baseline and a
human expert. Future work will explore additional specialized
reasoning models.

5.1 Performance on Operational QA

The experimental results for operational question answering pre-
sented in Table 1 highlight the significant advantages of our pro-
posed Guided Iterative Steps approach. While incorporating a
self-reflection (SR) mechanism into a direct question-answering
pipeline (Baseline: Direct QA + SR) does offer a substantial im-
provement over a simple, single-pass baseline: Direct QA, our
proposed method consistently outperforms both baselines, par-
ticularly in achieving comprehensive correctness as indicated
by the maximum Pass@4 scores across all operational stages.
Qualitative success and failure cases across the approaches are
provided in Appendix A 4.

Our proposed technique takes a different approach than the
conventional reliance on a single, monolithic Cypher query for
operational questions, an approach prone to brittleness due
to its complexity. Instead, it introduces a layer based on ques-
tion decomposition and structured step-wise guidance genera-
tion. Rather than attempting to retrieve and synthesize infor-
mation in one pass, our agent breaks down each query into
a sequence of focused analytical steps. Each step involves tar-
geted Cypher query formulation, execution, and an immedi-
ate self-reflection phase to assess and refine the output before

proceeding. This step-level interaction enables localized error
detection and correction, improving both precision and robust-
ness. This approach contrasts sharply with the baselines, where
reflection—if present—occurs only after a full KG interaction,
limiting its corrective potential. By embedding reflection within
each step, our agent incrementally builds understanding, guided
by intermediate results and error signals. This not only reduces
query complexity but also strengthens the overall reasoning
process. The resulting architecture supports more reliable QA
and serves as a foundation for the iterative, evidence-driven
reasoning required in investigative tasks. The ability to decom-
pose, validate, and refine sub-questions at each stage enables
more accurate KG interactions and enhances the agent’s capa-
bility in both direct question answering and complex diagnostic
scenarios.

5.2 Qualitative Analysis on Investigative QA

We present three case studies to evaluate the agent’s effective-
ness in handling investigative QA. Due to space constraints, only
two are discussed in detail, and the third scenario is provided in
Appendix A.3.

5.2.1 Scenario 1: The first study examined why a supplier,
CamelCargo’s discharge was significantly delayed. The human
expert identified a critical symptom: a 38-minute delay at the
AGV stage for the final package. When the same question was
posed to the baseline method, it broadly attributed delays to
varying times at each stage, mentioning the AGV and forklift
but failing to isolate or quantify the main bottleneck. In con-
trast, our LLM-agent (process detailed in Table 2) validated the
expert’s observation with precise, data-driven analysis. It first
confirmed the overall delay (6,848s vs. a 4,934s average), then,
through sub-questioning, identified the “AGV to FL” transfer
as the key issue—highlighting extreme variability and delays.
Further analysis of related factors (e.g., normal AGV wait times,
localized forklift delays, typical utilization rates) led to a robust
conclusion: the bottleneck stemmed from inefficiencies in the
AGV-to-FL process. This demonstrates the agent’s strength in
not only aligning with expert intuition but also delivering a
more precise and comprehensive diagnosis than the baseline.

5.2.2  Scenario 2: The second study addressed a slowdown in
warehouse discharge operations observed between 10:00 AM
and 12:30 PM. The human expert, analyzing detailed data, noted
that AGV operational times seemed longer for most packages be-
tween 10:30 AM and 11:11 AM, but was not conclusive whether
this was solely due to AGVs or potentially linked to specific
workers or forklifts, though other resource timings appeared
normal. The baseline approach provided a very general expla-
nation for the overall slowdown in the 10:00 AM - 12:30 PM
window, attributing it to the average operational durations of
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Table 2: Case Study 1: Why did CamelCargo discharge take longer than usual?

Note: The LLM Agent formulates its own sequence of questions based on its reasoning framework and evolving evidence from the KG. Human expert iterative questions

for this investigation: (1) What was the difference in discharge time of CamelCargo? (2) What was the average discharge time of other suppliers? (3) How many packages

needed to be unloaded by CamelCargo? (4) What was the average time taken per package in terms of worker operation time, AGV arrival time, AGV operation time, and

forklift operation time? (5) Calculate derived metrics such as waiting time (AGV end time - forklift start time) (6) Did any package deviate from the average time? If yes, in

which category? The LLM generations have been condensed to fit inside the table. Cypher queries shown are highly condensed conceptual representations for brevity.

LLM Agent - Iterative Question

LLM Agent - Plan (Condensed)

KG ResultSet (Condensed)

Cypher Query (Condensed)

What is the total unload time for
CamelCargo compared to the global
average unload time for all suppliers in
the Discharge Flow?

Calculate CamelCargo’s unload
duration (discharge_start to
discharge_end) and compare with
global average for all suppliers.

CamelCargo Unload Time: 6848s.
Global Avg. Unload Time: 4933.8s.

MATCH (s:SUPPLIER
{supplier_id:’CamelCargo’})

RETURN
duration.between(s.discharge_start,
s.discharge_end); MATCH

(s:SUPPLIER) RETURN
avg(duration.between(s.discharge_start,
s.discharge_end))

What is the breakdown of time taken
for each stage of the unload process for
CamelCargo in the Discharge Flow,
and how does it compare to the global
average for each stage?

Calculate durations for Worker-to-AGV,
AGV-to-FL, FL-to-Storage stages for
CamelCargo’s packages; compare with
global averages for these stages.

Worker-AGV: 58s (matches global avg).
AGV-FL (CamelCargo): Highly variable
(e.g., one 2300s), many > global

avg 422.6s.

FL-Storage: Near global avg 116.4s.

MATCH (s:SUPPLIER
{id:’CC’})-[*]->(st: STORAGE)
RETURN
duration(worker_stage) AS
t_ws, duration(agv_stage)
AS t_as, ...; MATCH path
RETURNavg(t_ws),avg(t_as)...

What are the waiting times for AGVs
and forklifts during the CamelCargo
unload process in the Discharge Flow,
and how do they compare to the global
average waiting times for these
equipments?

Calculate AGV waiting (e.g., worker
pick-up end - AGV arrival) and Forklift
waiting (e.g., AGV journey end - FL
placement start) for CamelCargo;
compare to global averages.

Avg. AGV Waiting (CamelCargo):
Neutral ( 12s).

Avg. FL Waiting (CamelCargo):
Positive ( 60.6s, indicating delays).

MATCH (s:SUPPLIER
{id:’CC’})-...->(a:AGV)

RETURN
duration.between(wta.agv_arrival,
wta.worker_end) AS
agv_w;...avg(agv_w)...

What is the utilization rate of forklifts
during the CamelCargo unload process
in the Discharge Flow, and how does it
compare to the global average
utilization rate for forklifts?

Determine FL utilization (total
processing time / total active time) for
each forklift with CamelCargo
packages; compare to global average FL
utilization.

Individual FL utilization rates for
CamelCargo (e.g., FL_00: 41.2%)
generally matched their respective
global average utilization rates.

MATCH
(a:AGV)-[1->(f1:FL)-[1->...
RETURN fl.id, SUM(dur_proc)
/ dur_active AS util;
...avg(util)

What is the utilization rate of AGVs
during the CamelCargo unload process
in the Discharge Flow, and how does it
compare to the global average
utilization rate for AGVs?

Determine AGV utilization (total
processing time / total active time) for
each AGV handling CamelCargo
packages; compare to global average
AGYV utilization.

AGV utilization rates varied (e.g.,
AGV_00: 38.1%, AGV_10: 55.1%); some
higher/lower than an estimated global
average of 41.4%.

MATCH
(W:WORKER)-[1->(a:AGV)-[]->...
RETURN a.id, SUM(dur_proc)

/ dur_active AS util

Agent Summary: The ‘AGV to FL’ stage for CamelCargo exhibited significant delays (specific instances up to 2300s versus 423s average for this stage) and high
variability, which was the main contributor to its extended total unload time (6848s vs. 4934s global average). Forklift waiting times also indicated related delays. Other
stages and overall equipment utilization rates were found to be less critical, pointing towards process inefficiencies primarily within the AGV-FL transfer.

workers ( 58s), AGVs (474s), and forklifts ( 118s) without identi-
fying any specific entity or cause for deviation. In contrast, our
iterative LLM agent (Table 3) systematically diagnosed the issue
within the given timeframe. It first identified that ’AuroraFarms’
had a significantly longer total unload time (8,896s) compared
to other suppliers and the period’s global average ( 6,904s). Sub-
sequent investigation revealed that AuroraFarms, along with
"BlackSheepDist’, also exhibited higher average package pro-
cessing durations. Crucially, the agent pinpointed inefficient
worker and AGV utilization linked to AuroraFarms (e.g., some
worker utilization as low as 2.6% and high AGV utilization peaks
suggesting bottlenecks) as key contributing factors, while ruling
out initial supplier waiting times. This allowed the agent to de-
termine that the slowdown within the specified timeframe was
primarily driven by inefficiencies related to a specific supplier,
AuroraFarms, particularly concerning their package process-
ing throughput and associated resource utilization, a far more
precise and actionable insight than either the human expert’s
localized AGV observation or the baseline’s generic summary.

5.3 Discussion on relevance for warehouse
planning
Our framework demonstrates significant relevance as a plan-

ning assistant across multiple horizons of warehouse opera-
tions. Its high pass@k scores on diverse operational queries

(Table 1) enables planners to obtain precise, real-time visibil-
ity into supplier interactions, resource utilization, and package
flow—supporting both reliable daily control and agile tactical
adjustments. More importantly, the investigative case studies
highlight the framework’s ability to move beyond surface-level
reporting toward meaningful diagnostic insight. By systemati-
cally querying a simulation-derived KG using an LLM-driven
reasoning process, the agent effectively isolates root causes
of performance issues, revealing subtle bottlenecks and inter-
dependencies often missed by traditional analytics. This fusion
of DES with GenAl methods offers a more powerful and inter-
pretable warehouse digital twin. As a result, planners are better
equipped to make targeted, data-driven interventions—whether
through process redesign, resource reallocation, or supplier strat-
egy refinement—ultimately enabling more adaptive, efficient,
and informed warehouse planning.

6 Implications and Limitations

This work marks a significant step towards automating the in-
tricate analysis of DES outputs, offering warehouse planners a
potent tool for rapid diagnostic insights via natural language.
However, the current study has certain limitations. While our
proposed pipeline facilitates KG construction, the initial design
of a comprehensive KG schema tailored to specific DES model
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Table 3: Case Study 2: Why was the discharge slow from 10 to 12.30?

Note: Human expert iterative questions for this investigation: (1) What was the difference in discharge time of suppliers between 10:00 AM and 12:30 PM? (2) What was the

average discharge time of other suppliers during this period? (3) What was the average time taken per package across key operations (worker, AGV, forklift) within this

timeframe? (4) Calculate derived metrics such as waiting times for equipment or packages. (5) Did any package deviate significantly from average processing times? (6) Do

these deviations fall within the 10:00 AM - 12:30 PM window, and which operational categories are primarily responsible? The LLM generations have been condensed to fit

inside the table. Cypher queries are highly condensed conceptual representations for brevity.

LLM Agent - Iterative Question

LLM Agent - Plan (Condensed)

KG ResultSet (Condensed)

Cypher Query (Condensed)

What was the total unload time for
each supplier from 10:00 AM to 12:30
PM, and the global average?

Calculate unload duration
(discharge_end - discharge_start) for
each supplier active in the specified
timeframe; compute global average.

AuroraFarms: 8896s; BlackSheepDist:
6713s; CamelCargo: 5104s.
Global Avg. (in timeframe): 6904.3s.

MATCH (s:SUPPLIER) WHERE
s.discharge_start/end IN
[timeframe] RETURN s.id,
duration(...);...avg(duration)

What were the package waiting times
for each supplier from 10:00 AM to
12:30 PM, and the global average?

Calculate average total processing
duration for packages per supplier
active in timeframe (summing key
stage durations); compute global

Avg. Pkg. Processing Duration -
AuroraFarms: 760.1s;
BlackSheepDist: 746.9s;
CamelCargo: 564.0s.

MATCH
(s:SUPPLIER)-[*]->(st:STORAGE)
WHERE s.discharge IN
[timeframe] RETURN s.id,

average. Global Avg: 689.9s. avg(total_pkg_proc_time);...avg(..
What was the utilization rate of Determine worker and AGV utilization ~ AuroraFarms: Varied worker util. MATCH (s)-[]->(w:WORKER),
workers and AGVs for each supplier (processing time / active time) per (some low, e.g., 2.6%), varied AGV util. ~ (s)-[1->(a:AGV) WHERE
from 10:00 AM to 12:30 PM, and the supplier in timeframe; compute global ~ (some high, e.g., 86%). Other suppliers s.discharge IN [timeframe]
global average? averages. also varied. RETURN s.id, util(w),
util(a); ...avg(...)
What was the supplier waiting time for ~ Calculate supplier waiting Main suppliers (Aurora, BlackSheep, MATCH (s:SUPPLIER) WHERE
each supplier from 10:00 AM to 12:30 (discharge_start - arrival time) for CamelCargo): 0s waiting. s.arrival_time IN
PM, and the global average? suppliers arriving in timeframe; DeltaDrops: 52s. Global Avg: 15.4s. [timeframe] RETURN s.id,
compute global average. duration.between(s.arrival,
s.discharge_start);...avg(...)

What was the breakdown of time taken
for each stage of the package unload
process for each supplier from 10:00
AM to 12:30 PM, and the global
average?

Further dissect stage durations
(Worker-AGV, AGV-FL, FL-Storage) for
each supplier in timeframe; compare to
global stage averages to identify
specific inefficiencies per supplier.

(Detailed stage breakdown per supplier,
e.g., AuroraFarms’ AGV-FL stage
contributing significantly to its high
package processing time.)

MATCH
(s:SUPPLIER)-[stages...]->
(st:STORAGE) WHERE
s.discharge IN [timeframe]
RETURN s.id,avg(dur_stagel),

avg(dur_stage2)...

Agent Summary: Operations related to supplier ‘AuroraFarms’ were the main driver. This was evidenced by AuroraFarms significantly longer total unload time
(88965 vs. ~6904s global average for the period) and higher average package processing/waiting durations (~760s vs. ~690s global average). Contributing factors included
inefficient worker (some instances as low as ~2.6%) and variable AGV utilization (some instances as high as ~86%) associated with AuroraFarms’ packages during this

timeframe. Initial supplier waiting times for key suppliers were not a factor.

outputs requires careful upfront domain expertise and engi-
neering effort. Furthermore, although the LLM agent with its
self-correction mechanisms performed robustly, the absolute
reliability of LLM-generated Cypher queries and the nuanced
accuracy of its synthesized explanations warrant ongoing eval-
uation, particularly when faced with highly novel or ambiguous
operational scenarios not extensively represented within the
KG’s current scope (derived from the simulated data). The gen-
eralizability of the specific KG schema and agent fine-tuning
has primarily been validated within the described warehouse
unloading context, and its seamless applicability to vastly dif-
ferent DES models or a broader array of warehouse processes is
yet to be exhaustively demonstrated.

7 Conclusion and Future Work

Extracting actionable insights from the complex and voluminous
data generated by Discrete Event Simulations poses a significant
challenge to timely and effective decision-making in warehouse
operations. To address this, we proposed a novel framework that
integrates Knowledge Graphs with a reasoning-capable LLM
agent, offering a more intuitive and powerful means of inter-
acting with simulation data. The architecture combines a QA
chain with step-wise guidance and an iterative reasoning chain
equipped with sub-questioning, Cypher query generation, and
self-reflection. This enables both high-accuracy responses to
operational queries and deeper, evidence-driven investigations
into system inefficiencies. Experimental evaluations demon-
strate this framework’s proficiency in accurately answering

operational questions and, more significantly, its robust capa-
bility in performing iterative, evidence-driven investigations
to identify operational bottlenecks within simulated scenarios,
surpassing traditional baseline methods.

Looking ahead, several exciting avenues for future research
emerge. Firstly, we plan to explore the integration and perfor-
mance of other advanced reasoning-focused Large Language
Model architectures or emerging state-of-the-art alternatives
to potentially enhance the agent’s diagnostic depth and effi-
ciency. Secondly, to further validate and demonstrate the frame-
work’s robustness, we will focus on expanding its application to
a wider array of warehouse operations beyond unloading—such
as slotting design, order picking, loading, and inventory manage-
ment—which will inherently involve generating more diverse
and complex simulated scenarios tailored to these new contexts.
This expansion will also necessitate developing rigorous bench-
marking methodologies for its investigative question-answering
capabilities to formally quantify performance in bottleneck iden-
tification tasks across these varied settings. Such extensions will
allow for a thorough assessment of the framework’s adaptabil-
ity and utility across a broader spectrum of logistics challenges,
including the potential for analyzing larger-scale supply chain
simulations.
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A Appendix

A.1 Warehouse Resources

The Table 4 highlights the various resource types and their
respective ids that are modeled in the simulation.

Table 4: The resource ids for the different resource present
in the simulated scenario

Resource Type Resource IDs
. AuroraFarms, BlackSheepDist, CamelCargo,
Supplier
DeltaDrops, EvergreenEdge
BW_02, BW_00, BW_01, BW_03, BW_09,
Worker BW_10, BW_11, BW_08, BW_05, BW_07,

BW_06, BW_04

AGV_10, AGV_12, AGV_11, AGV_00,
AGV_01, AGV_02, AGV_03, AGV_13,
AGV AGV_14, AGV_04, AGV_15, AGV_05,
AGV_16, AGV_08, AGV_17, AGV_09,
AGV_07, AGV_18, AGV_19, AGV_06

Fork Lift FL_00, FL_01, FL, 04, FL_02, FL, 03

Storage Block A,B,C,D

A.2 KG Schema:
Node Properties:

e SUPPLIER:
supplier_id: STRING, arrival_time: DATETIME,

discharge_start:DATETIME, discharge_end: DATETIME

¢ WORKER:
worker_id: STRING

o AGV:

agv_id: STRING

FL (Forklift):

forklift_id: STRING

STORAGE:

block_id: STRING

Relationship Properties:
e SUPPLIER_TO_WORKER

package_id:STRING, worker_pick_up_start:DATETIME

¢ WORKER_TO_AGV
package_id: STRING, agv_arrival:DATETIME,
agv_journey_start:DATETIME, worker_pick_up_end:
DATETIME

e AGV_TO_FL
package_id: STRING, agv_journey_end: DATETIME,
fl_placement_start: DATETIME

e FL_TO_STORAGE
package_id: STRING, fl_placement_end: DATETIME

A.3 Investigative Case Studies - Scenario 3

A.3.1 Scenario 3: Forklift Waiting Times and Connection to Dis-
charge Flow. In the third investigative case study, which implic-
itly probed for forklift-induced delays, the human expert insight-
fully identified Forklift FL_00 (and an associated block) as being
linked to above-average AGV differences or wait times, though
with some initial uncertainty about whether AGVs, workers,
or forklifts were solely responsible. The baseline Direct QA +
Self-Reflection method also flagged FL_00 for having the highest
average waiting time ( 333s) but offered limited further diagno-
sis beyond noting variations among forklifts. Our method (Table
5), through its sequence of targeted inquiries, not only strongly
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corroborated FL_00’s problematic status but also provided a
more comprehensive diagnostic picture. The agent confirmed
FL_00’s exceptionally high average waiting time and, crucially,
also identified its significantly longer package movement time
from AGV to storage ( 152s vs. 123s global average). While also
exploring AGV performance variability, the agent’s overall diag-
nosis clearly centered on FL_00’s dual inefficiency (high waiting
and long task execution) as a key contributor to delays, thus
offering a more multi-faceted and data-rich explanation than
the baseline and a more conclusive identification of forklift-
specific issues compared to the human expert’s initial broader
considerations.

A.4 Operational QA - Success and Failure
Cases

We present selected query instances from Operational QA to
qualitatively compare our proposed method against baseline ap-
proaches. These examples highlight specific successes (marked
in green) and failures (marked in red), offering deeper insight
into the practical performance of each technique.

Case 1: Baseline (Direct QA) Partial Failure,
Other Methods Pass

Question: Which supplier had the shortest total discharge time
and how many packages were moved?

Direct QA: The supplier "EvergreenEdge" had the shortest total
discharge time, which was 3562 seconds. A total of 1 package
was moved.

Direct QA + SR: The supplier with the shortest total discharge
time is EvergreenEdge, and they moved 33 packages.

Step-wise Guide: The supplier with the shortest total discharge
time is EvergreenEdge, with a discharge time of 3562 seconds.
They moved a total of 33 packages.

In this instance, the query required retrieving two distinct
pieces of information (the supplier with the shortest discharge
time and their corresponding package count) and ensuring their
correct association. The ‘Direct QA’ baseline successfully iden-
tified the correct supplier and their discharge time but faltered
in accurately retrieving the associated package count, incor-
rectly stating 1 package. This likely indicates an inability of the
single-pass query generation to correctly formulate or execute
a Cypher query complex enough to link these two facts or per-
form the necessary aggregation accurately. The introduction
of self-reflection in the ‘Direct QA + SR’ baseline enabled it
to overcome this error, suggesting the reflection process could
validate and correct the factual components of the synthesized
answer. Our ‘Step-wise Guide’ approach also provided the cor-
rect and complete answer. Its structured approach, which can
decompose the query into logical steps (e.g., one for identifying
the supplier with the shortest time, followed by a step to retrieve
the package count specifically for that identified supplier) and
validate each part, inherently leads to higher accuracy for such
multi-fact retrieval questions.

Case 2: Both Baselines Fail, Step-wise Guide
Succeeds

Question: What is the average travel time for an AGV to move
a package from the dock to its assigned storage area?
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Table 5: Case Study 3: What do the differences in forklift waiting times reveal about the discharge flow?

Note: The LLM Agent formulates its own sequence of questions. Potential human expert iterative questions for a forklift delay investigation might include: (1) KPIs per
forklift (tasks, durations, idle times)? (2) Which forklifts show consistently longer task/idle times? (3) Operational time breakdown for suspect forklifts? (4) Queue/wait
times for packages per forklift? (5) Are delays linked to specific zones/tasks/times for suspect forklifts? (6) How does a suspect forklift’s throughput compare? (7) Any error
codes/issues reported? Cypher queries are highly condensed conceptual representations.

LLM Agent - Iterative Question LLM Agent - Plan (Condensed)

KG ResultSet (Condensed)

Cypher Query (Condensed)

What is the average forklift waiting
time and utilization across all blocks
during the discharge flow?

Calculate FL waiting (AGV
journey_end - FL placement_start)

FL utilization (active_time / total_span)
per FL. & FL_00: AvgWait 332.9s, Util 0;
FL_01: AvgWait 48.9s, Util 0;
FL_04: AvgWait 36.3s, Util 0;

MATCH
(a:AGV)-[1->(fl:FL)-[1->(st:S)
RETURN fl.id, avg(wait_time),
SUM(active_FL)/total_FL_span
AS util

What are the average package waiting
times at the waiting point for each AGV
during the discharge flow, and how do
these compare to the global average?

Calculate package waiting time for
AGV arrival (AGV_arrival -
worker_pickup_end) per AGV;
compare to global average.

Highly variable: e.g., AGV_10: 3.6m;
AGV_08: 10.3m. Global Avg: 5.5m.
(Indicates some AGVs contribute to or
experience more package wait).

MATCH (w)-[wta:WTA]->(a:AGV)
RETURN a.id,
avg(dur(wta.worker_end,
wta.agv_arrival)).min UNION ...
global_avg

Calculate FL. movement time
(FL_placement_end -
FL_placement_start) per FL; compare
to global average and show difference.

What is the average time taken by each
forklift to move a package from the
AGYV to the storage bay, and how does
this compare to the global average?

FL_00: AvgMove 152.2s (28.9s > global
avg 123.3s). Others (FL_01, FL_02,
FL_03, FL_04) were below global
average.

MATCH
(a)-[1->(f1:FL)-[1->(st:S)
RETURN fl.id, avg(FL_move) AS
t1; ... global_avg AS t2
RETURN fl.id, t1, t2, t1-t2

What is the average time taken by each
AGV to transport a package from the
waiting point to the pickup point, and
how does this compare to the global
average?

Calculate AGV transport time
(AGV_journey_end -

to global average.

AGV_journey_start) per AGV; compare

Variable AGV performance: Some
AGVs (e.g., AGV_07, AGV_09) faster
than 8.7s global avg; others (e.g.,
AGV_00, AGV_08) slower.

MATCH
(w)-[wta:WTAT->(a)-[atf:ATF]->(f1)
RETURN a.id,
avg(dur(wta.agv_start,

atf.agv_end)); ...global_avg

Agent Summary: Forklift FL_00 is the primary bottleneck within the discharge flow, evidenced by its highest average waiting time (approximately 333 seconds),
substantially longer than other forklifts, and also by it taking significantly more time to move packages from AGVs to storage (around 152 seconds, which is about 29
seconds above the global average for this task). While variability was also observed in AGV performance and in total unload times among different suppliers, addressing the
specific operational challenges and inefficiencies tied to FL_00 can help improve the overall efficiency of the discharge process.

Direct QA: The average travel time for an AGV to move a pack-
age from the dock to its assigned storage area is approximately
178 seconds.

Direct QA + SR: The average travel time for an AGV to move
a package from the dock to its assigned storage area is approxi-
mately 178.14 seconds.

Step-wise Guide: The average travel time for an AGV to move
a package from the dock to its assigned storage area is 455
seconds.

This case highlights a scenario where both baseline meth-
ods failed to determine the correct numerical value for a key
performance indicator. Their answers (178s and 178.14s) were
significantly different from the correct value (455s) obtained by
the Step-wise Guide. This discrepancy suggests that the base-
lines likely misinterpreted the scope of the AGV travel (e.g.,
focusing on a shorter segment of the journey, incorrectly identi-
fying the start/end events for the "dock to storage" path, or using
an incorrect aggregation method over the KG). The Direct QA
+ SR baseline, while providing a slight numerical variation, es-
sentially repeated the same fundamental error as the Direct QA,
indicating that its self-reflection mechanism was insufficient
to catch this type of error in calculation logic or path identi-
fication. The success of the proposed method implies that its
structured decomposition of the query into smaller, verifiable
steps allowed it to accurately identify the relevant AGV journey
segments (from dock to storage for each package) and correctly
aggregate these travel times from the KG to compute the true
average.

Case 3: Step-wise Guide Fails, Baseline (QA +
SR) Succeeds

Question: For each person, what was the total number of pack-
ages they handled during a shift?

Direct QA: Syntax Error

Direct QA + SR: Worker BW_11 handled 13 packages, Worker
BW_10 handled 19 packages, Worker BW_09 handled 20 pack-
ages, Worker BW_12 handled 18 packages, Worker BW_05 han-
dled 9 packages, Worker BW_08 handled 8 packages, Worker
BW_06 handled 9 packages, Worker BW_07 handled 9 packages,
Worker BW_02 handled 13 packages, Worker BW_00 handled 14
packages, Worker BW_01 handled 14 packages, Worker BW_03
handled 15 packages, and Worker BW_04 handled 12 packages.

Step-wise Guide Response: The context does not provide any
information about the workers or the number of packages they
handled during a shift. Therefore, it is not possible to determine
the total number of packages handled by each worker.

This case presents an interesting scenario where the Step-
wise Guide incorrectly concluded that the information was
unavailable, while the Direct QA + SR baseline successfully
retrieved the correct data. The Direct QA baseline failed com-
pletely with a syntax error, likely struggling to generate the
somewhat complex Cypher query required for a group-wise
aggregation (summing packages per worker). The Direct QA
+ SR, however, managed to overcome this, indicating that its
combined query generation and self-reflection capability was
sufficient for this particular aggregation task. The failure of
the Step-wise Guide ("context does not provide information")
suggests a potential limitation in its current decomposition strat-
egy or schema interpretation when faced with "for each” type
queries requiring specific group-by-and-aggregate operations.
It’s possible that its step-generation logic broke down the prob-
lem in a way that obscured the path to aggregation, or it failed to
correctly map person to the Worker entity and their associated
package handling events in a way that allowed for summation.
This highlights an area for future refinement in the step gen-
eration and KG traversal logic within our proposed method to
better handle such complex aggregation queries.
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Table 6: Set of 25 Operational Questions along with their categorization.

Category | Question
SUPPLIER | What is the number of discharge processes that are completed on a hourly basis?
Where and how many containers discharged from supplier DeltaDrops distributed in each block in the storage?
Which supplier had the shortest total discharge time and how many packages were moved?
What is the average waiting time for a supplier truck before unloading begins? Which truck waited the most?
Which hour had the most total waiting time during package unload?
WORKER | For each person, what was the total number of packages they handled during a shift?
What is the average time taken by a person to move a package from truck to AGV? Who is the most efficient person ?
How much time does each worker take to unload all packages from supplier DeltaDrops?
How many workers were used to unload packages from supplier CamelCargo?
Which workers were assigned to most number of suppliers?
AGV Which three AGVs processed the least amount of packages?
What is the average travel time for an AGV to move a package from the dock to its assigned storage area?
How many trips does each agv make during unloading along with the average journey time?
How many packages did AGV 04 handle from each supplier ?
Which AGV was the least utilized ?
FORKLIFT | Which package waited the longest for a fork lift ?
How many packages are handled by each forklift?
Which forklift is the most under utilized ?
What is the average time taken by a forklift to move a package to its assigned storage space?
What is the utilization rate (percentage of time in use) for each forklift?
PACKAGE | which storage block contains the highest number of containers?

What is the average time a package discharge takes?

What is the average waiting time for a package to be transferred to a forklift after AGV arrival at the storage area?
Which package experienced the longest total time from arrival at the dock to placement in its final storage location?
How many packages took longer than the average unload time during and what is the average discharge time?
Which packages were handled by both agv 10 and forklift 00?
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