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Abstract

In multi-objective optimization, a single decision vector must balance the trade-offs
across many objectives. Pareto-optimal solutions are those achieving optimal trade-
offs, where improving any objective comes at a cost to another. As many different
decisions can be Pareto optimal, this raises the question of which solution to pick
and how. We formulate this problem as one of optimizing a preference function over
the set of Pareto-optimal solutions, or Pareto-constrained optimization for short.
It poses significant challenges: not only is the constraint set defined implicitly,
but it is also generally non-convex and non-smooth, even when the objectives are
strongly convex. We propose an equivalent formulation of the problem where the
constraint set is the simplex, leading to clearer notions of optimality and stationarity
that improve upon existing definitions in literature. We give an algorithm with
a last-iterate convergence rate of O(K ~'/2) to stationarity when the preference
function is Lipschitz smooth and when the objective functions are strongly convex
and Lipschitz smooth. Motivated by applications like Reinforcement Learning
with Human Feedback (RLHF), we also extend this algorithm to the case where
access to the preference function is only available through dueling feedback.

1 Introduction

Modern, large-scale machine learning often draws data from diverse sources, are simultaneously
deployed across many settings to perform many tasks, or need to perform well across many different
metrics. These learning settings can naturally be formulated as multi-objective optimization (MOO)
problems, including multi-task, multi-distribution, meta-learning; multi-calibration, multi-group
learning; learning from crowds, or from heterogeneous/multi-fidelity sources; personalization, prefer-
ence learning; hyperparameter optimization, model fine-tuning and model fusion (Jin, 2007; Sener
and Koltun, 2018; Huang et al., 2015; Haghtalab et al., 2022; Ye et al., 2021; Reed et al., 2022;
Martinez et al., 2020; La Cava, 2023; Kamani et al., 2021; Globus-Harris et al., 2022; Lee et al., 2022;
Tosh and Hsu, 2022; Raykar et al., 2010; Chen et al., 2025a). As a result, MOO has increasingly
attracted the interest of the learning community. But, in contrast to the single-objective case, far less
has been established theoretically and algorithmically for the multi-objective setting—even very basic
questions may not have rigorous definitions or solutions. We formalize and tackle such a problem.

To give an intuitive problem description, consider the concrete example of large language model
(LLM) alignment (Houlsby et al., 2019; Liu et al., 2022; Ding et al., 2023). In this problem, we aim
to finetune LLM outputs to achieve a number of desiderata: positivity of the tone, succinctness of the
answer, consistency with lexical conventions, and so on. While no model is generally optimal under
all criteria, it is Pareto optimal if it makes an optimal trade-off between the objectives. We would
like our decision to at least be Pareto optimal, as this means no other decision was strictly better by
all metrics. Many different trade-offs can usually be made; we call the set of all such decisions the
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Fareto set. Eventually, as we must single out one from this set to deploy, we ask how to select the
most preferred Pareto-optimal solution. That is, out of the many different possible trade-offs that can
be made, which one do we choose and how do we discover it?

There are two main frameworks to making this selection (Hwang and Masud, 2012). The first is
through scalarization, where multiple objectives are aggregated into one. Thus, it reduces the problem
back to the familiar single-objective setting (Mahapatra and Rajan, 2020; Lin et al., 2024). The
second, indirect approach is to find a representative subsample of the Pareto set; this helps a decision
maker by paring down the number of solutions that need to be inspected (Lin et al., 2019; Liu et al.,
2021; Kobayashi et al., 2019; Guerreiro et al., 2021).

Neither approach quite fully answers to how to select the final trade-off. It might not be clear how to
meaningfully scalarize a multi-objective problem, especially when the objectives are incomparable.
And while subsampling can reduce the complexity of the problem, the actual decision is left open.
For classical settings, these gaps may not be crucial. But modern, large-scale decision-making
settings can be high-dimensional, incorporate many objectives, or have high-throughput and need
to be automatic. It may be impossible to scalarize the problem by hand, and even a representative
subsample of the Pareto set can become untenably large, scaling exponentially with the number of
objectives (Papadimitriou and Yannakakis, 2000). There is a need for a more principled selection,
which motivates the question we ask:

Given a set of objectives (f1,. .., fn) and a preference fy, how do we define a suitable
notion of the most preferred Pareto solution, and how do we efficiently approximate it?

The preference-based formulation of multi-objective optimization, with the inclusion of a preference
function fy, refines more common versions of MOO given in standard references (e.g., Ehrgott (2005)).
While the objectives fi, ..., f, and the preference f, are mathematically the same type of objects,
the latter can conceptually represent the more ineffable desiderata that human decision-makers or
users may have, as in the earlier example about LLM alignment. For this reason, we also consider
learning from dueling preference feedback in this paper. In that setting, instead of direct access to fo,
we can only ask users to rank different options x according to their preferences fo(x).

Besides LLM finetuning, several standard problems in machine learning also fit this preference-based
framework of MOO. In fairness-aware learning, the objectives can represent subgroup utilities, while
the preference f is a social welfare function. In neural architecture search, objectives can be accuracy,
latency, and energy consumption while f, can be user-specific preferences reflecting their priorities.
In portfolio optimization, objectives could be return, risk, and liquidity, while f, might capture the
risk aversion tendency of an investor. We now formalize the problem mathematically.

1.1 Pareto-Constrained Optimization

Let F' = (f1,..., fn) : R? — R" be a set of n objectives that are jointly minimized over a shared
decision space R? and let Pareto(F) be the set Pareto-optimal solutions, consisting of decision
vectors © € R? that make an optimal trade-off between objectives. As it is often not clear a priori
which trade-off to make, we consider the Pareto-constrained optimization problem, where the aim is
to optimize a preference function f, : R — R constrained to the Pareto set of F:

minwEPareto(F) fO(‘T) (D

and we call a solution z of this optimization problem preference optimal. This problem is also called
semivectorial bilevel optimization or optimization on efficient sets, and it can be considered as an
instantiation of bi-level optimization (Bolintinéanu, 1993b; Yamamoto, 2002; Bonnel and Morgan,
2006; Dempe, 2018; Ye and Liu, 2022). It has applications for economics, portfolio management,
manufacturing planning, and machine learning (Thach et al., 1996; Yamamoto, 2002; Ye and Liu,
2022). While heuristics have been proposed, little more is known. In fact, even notions such as
stationarity have not been formalized, which is generally needed to study convergence.

Main Challenges There are major challenges to this problem.

1. Theoretical Challenges. The Pareto set is generally non-smooth and non-convex. It can have
“needle-like extensions” and “knees” (Kulkarni et al., 2022), or “singularities” (Sheftel et al.,
2013). These are possible even when the objectives are quadratics (see Figure 1). Moreover,



in the setting where both objectives and preferences are linear, the problem is known to be
NP-hard (Fiilop, 1993). Thus, there is a need for appropriate relaxations of the problem
that are algorithmically attainable. But even defining a reasonable notion of stationarity is
not straightforward, given the complicated nature of the constraint set (Zhang et al., 2020;
Kornowski and Shamir, 2021; Li et al., 2020; Jordan et al., 2023; Kornowski et al., 2024).

2. Algorithmic Challenges. The Pareto set is non-smooth, non-convex, and an implicitly defined
object. It is not clear how to analytically parameterize Pareto(F') or to specify Pareto(F') as
a feasible set of a system of inequalities. Pareto-constrained optimization (1) becomes even
more challenging when we do not have access to the preference function fj, but only preference
comparisons between two decision vectors, as is the case of RLHF for LLM alignment.

1.2 Main Results

We consider Pareto-constrained optimization with strongly convex and smooth objectives f1, ..., fn,
and smooth, but potentially nonconvex preference function fy. We list our main contributions below.

1. We introduce the Pareto manifold of F' (Definition 3), a ‘lifting’ of the Pareto set, that recovers
the Pareto set when projected down to R?. We show that the Pareto manifold is a smooth
manifold diffeomorphic to the (n — 1)-simplex. This leads to a clear notion of stationarity.

2. We use the connection with the simplex to introduce an (approximate) stationarity condition
(Definitions 3 and 5) for the Pareto-constrained optimization. We show that any non-trivial,
local stationarity condition requires more than local first-order information about F'.

3. We propose the Pareto Majorization-Minimization algorithm (Algorithm 1), which converges
to an (eg, €)-approximate preference stationary point of Pareto-constrained optimization with
iteration complexity O(e,?), ignoring logarithmic factors, under first-order feedback V fq
(Theorem 10), and noisy dueling preference feedback (Theorem 11).

1.3 Related Work

Selecting the most-preferred decision vector out of the Pareto set is a classical problem in MOO
(see Bolintinéanu (1993b) and related works therein for classical motivation), and it has also gained
renewed interest from the machine learning community. However, it is well-established to be
challenging (e.g. Fiilop (1993)), and most prior work studying the Pareto-constrained optimization
problem have largely focused on (i) linear preferences (Philip, 1972; Benson, 1984; Liu and Ehrgott,
2018), (ii) linear objectives (Dauer, 1991; Bolintinéanu, 1993a; Tao et al., 1996; Yamamoto, 2002),
or (iii) specific choices of preference functions (Steuer, 1989; Mahapatra and Rajan, 2020).

To our knowledge, there are only two prior works that have studied the problem more generally
in the nonlinear setting. The first work is Bolintinéanu (1993b), which considers a regularized
version of the problem: they balance the preference f; with a penalty term capturing the Pareto set
of F'. While regularized solutions are suboptimal for the original problem, they show that these
solutions asymptotically become optimal as the weight on the penalty term goes to infinity. They
also describe a necessary condition for the regularized solution, which can be approximated via
nonlinear programming. The second work is Ye and Liu (2022), which provides a heuristic for
the same problem based on a similar but distinct penalty function. They also propose a stationary
condition—stationarity with respect to their optimization dynamics. But, this turns out to not be a
necessary condition, meaning that their dynamics can actively avoid optimal points (see Appendix D).

These two conditions in both papers entangle independent aspects of an ideal solution: (a) being
close to preference optimal and (b) being close to the Pareto set. As a result, these conditions can
seem somewhat opaque. In this work, we first clarify the manifold structure of the Pareto set under
strong convexity of the objectives. This enables us to keep these two aspects disentangled, and to
derive standard, necessary relaxations of preference optimality. While existing work have studied the
smoothness structure of the Pareto set (Hillermeier, 2001a,b; Hamada et al., 2020), the prior focus has
been on extrinsic smoothness within the decision space. We instead leverage the intrinsic geometry
of the Pareto manifold, which is diffeomorphic to the simplex, to simplify optimization.

The algorithm we propose along with its analysis draw on majorization-minimization and trust-region
ideas to handle the implicit nature of the problem (Lange et al., 2000; Marumo et al., 2023). This
algorithm can make use of both first-order preference information or dueling feedback. For dueling



feedback, we work under a standard preference learning model (see Section 6.2) from psychology,
statistics, and also more recent learning literature (Bradley and Terry, 1952; Agresti, 2012; Wang et al.,
2023). For this setting, we also make use of ideas from derivative-free or zeroth-order optimization
(Jamieson et al., 2012; Saha et al., 2025; Cai et al., 2022). In terms of guarantees, we provide the
first finite-time convergence result to approximate preference stationarity. Additionally, we provide
non-asymptotic guarantees on the suboptimality of approximately preference-optimal solutions,
which parallel the asymptotic guarantee of Bolintinéanu (1993b).

Following an earlier version of this article shared on arXiv,> Chen et al. (2025b) developed results for
the Pareto-constrained optimization problem that goes beyond strictly-convex objectives.

Organization In Section 2 we discuss some preliminaries on Pareto set. In Section 3, we introduce
the Pareto manifold. In Section 4, we define preference stationarity. In Section 5, define approximate
preference stationarity and formalize our assumptions. In Section 6, we present Algorithm 1,
which solves Pareto-constrained optimization under two feedback models: (a) access to a first-order
feedback, and (b) access to preference comparisons. In Section 7, we provide rates of convergence.
For a detailed glossary, see Appendix A. Full proofs are provided in the appendix.

2 The Pareto Set

From multi-objective optimization, recall that a decision x is Pareto optimal if there is no way to
improve any one f; without also worsening some other f;. Formally:

Definition 1 (Pareto optimality). Given objectives f1,. .., fn, we say that a decision vector x € R¢
is Pareto optimal if for all ' € R%:

fil@") < fi(z) = 35 st fi@) > fi(x).

The set of Pareto optimal decision vectors of f1,. .., [ forms the Pareto set, denoted Pareto(F).

For smooth objectives, a related, first-order condition called Pareto stationarity is necessary for
Pareto optimality Marugciac (1982). In the following, let A"~! denote the (n — 1)-simplex, and for
all 3 € A™~1, let fz denote the linear scalarization:

fa(x) = Bifi(x) + -+ Bnful(). 2

Definition 2 (Pareto stationarity). Given objectives f1, ..., fn, we say that a decision x € R? is
Pareto stationary if V fz(z) = 0 for some 3 € A"71.

When the objectives f1, ..., f, are twice-differentiable and strictly convex, Pareto stationarity is also
necessary for Pareto optimality Fliege et al. (2009). We shall assume throughout that the objectives are
smooth and strongly convex (Assumption A), so these two notions coincide. Given these definitions,
optimization constrained to the Pareto set as defined in (1) is highly non-trivial: the Pareto set remains
implicit, and it is generally non-smooth and non-convex. The following gives the example in Figure 1.

Example 1 (A singular Pareto set arising from strongly convex objectives). Define three positive-

definite quadratic objectives f; : R* — R of the form f;(z) = 3(x — x;) " A;(z — z;),

10 0 025 0 1 1 0 0.5
Al:{o 1] xl:M’ AF[O 1} ”:{0.5}’ A3:{O 0.25} ‘”3:{1]'

Even in this highly-structured setting where all objectives are strongly convex quadratics, the Pareto
set is non-convex and has a singularity. This example is visualized in Figure 1.

3 Lifting to the Pareto Manifold

We can overcome the issue of non-smoothness of the Pareto set by lifting the problem into a higher-
dimensional space R? x A"~1, which contains what we call the Pareto manifold. This is the set of
all tuples (z, ) such that x is a Pareto stationary point of the linearly scalarized objective fg.

Definition 3 (Pareto manifold). The Pareto manifold P(F) C R? x A"~ is the zero set:
P(F) = {(@,8): Vfs(x) = 0}.

*Earlier title: Optimization on Pareto Sets: On a Theory of Multi-Objective Optimization (Roy et al., 2023).




(0,1,0)

(0,0,1)

Pareto(F)
Figure 1: The Pareto set of the three positive-definite quadratic objectives given by Example 1.

(Left) The 2-simplex parametrizes all scalarizations f3. (Right) The Pareto set in R?. For each
B € A?, the minimizer z* () of fz is Pareto optimal; the colors preserve this correspondence.

In the case of strictly convex objectives, the projection of the Pareto manifold P(F)) to its first
component in the decision space R? precisely yields the Pareto set, as shown by Lemma 1. As
this projection can also collapse any smoothness structure that P(F') has, it becomes clear how
non-smoothness arises on the Pareto set. On the other hand, Proposition 2 shows that it is a smooth
submanifold of R? x A"~! diffeomorphic to the (n — 1)-simplex.

Lemma 1. Let F' = (f1,..., fn) be a collection of smooth and strictly convex objectives. Then:
x € Pareto(F) <= (z,B8) € P(F) forsome 3 € A" L.

Proposition 2 (Characterization of the Pareto manifold). Let F = (fi,..., fn) be a collection of
smooth and strictly convex objectives. Define x* : A"~ — Pareto(F') by:

z*(B) = wp := argmingcpa f3(z). 3)
Let VF(z) € R™*? be the Jacobian. Then, the map =* has derivative:

Va* (8) = =V fs(wp) 'V (z5) ", “

so that the map 3 — (z, 3) is a diffeomorphism of A"~ with the Pareto manifold P(F).

The main tool used is the implicit function theorem; we defer the full proofs to Appendix B.

4 Solution Concept: Preference Stationarity

The tight connection between the Pareto set and the Pareto manifold given by Lemma 1 allows us to
smoothly lift the preference optimization problem (1) onto the Pareto manifold, as follows:
min g)ep(r) fo(@). ®

And as Proposition 2 shows, the Pareto manifold is diffeomorphic to the simplex, so (5) further
reduces to the following smooth optimization over the convex set A"~ 1,

mingean-1 (fo o 2)(B). ©)

This is an equivalent formulation: if 5 solves (6), then z*(3) solves (1) and (5). Furthermore, as
the constraint set is the simplex, we can appeal to convex optimization for the following notion of
preference stationarity, which is necessary for preference optimality (Nesterov, 2003).

Definition 3 (Preference stationarity). We say that a point x € Pareto(F') is weakly preference
stationary if there exists some 3 € A"~Y where (x, 8) € P(F) such that:

—V(foox*)(B)T (B - B) <0, V5 eA", @)
with Va* as in (4).> If (7) holds for all 3 where (x,3) € P(F), then x is preference stationary.

SAs VF(z3) "8 = Vfs(zs) = 0, (7) reduces to —V(fo o z*)(B3) T 8’ < 0, forall 3/ € A",



Proposition 4 (Necessary condition (Lemma 3.1.19 of Nesterov (2003))). Preference optimality
implies (weak) preference stationarity.

It turns out that developing reasonable relaxations of preference optimality without lifting the problem
to Pareto manifold is surprisingly subtle. For example, a prior notion of stationarity (e.g., Ye and Liu
(2022)) is not necessary for preference optimality (Appendix D.1). Any optimization dynamics that
achieve stationarity conditions that are not necessary can actively avoid optimal decisions. We show
that any local first-order condition suffers from this limitation (Appendix D).

5 Algorithmic Solution Concept: Approximate Preference Stationarity

In first-order optimization, notions of approximate stationarity allow us to provide meaningful, finite-
time guarantees about the solutions that are reached by optimization algorithms in practice; likewise,
we introduce the following e-approximate version of preference stationarity. Again, we appeal to a
standard notion of approximate solutions Nesterov (2013); Marumo et al. (2023).

Definition 5 (Approximate preference stationarity). Let £g,e > 0. A point (x,3) € RY x A"~ 1is
(€0, &)-preference stationary if:

~Vfo(zs) Va*(B)(B' — B) <eollf' — B, VB €A™ L. (8a)
V()2 <e (8b)

Intuitively, if (z, B ) is approximately preference stationary, then (a) there is a ball around B within
which fy o 2* decreases at most at an O(eg)-rate when moving away from /3, and (b) the point Z is
O(e)-close to x 5 We will formalize this geometric interpretation in Proposition 6. To do so, we need
to formalize the assumptions, which are standard and used in the rest of the paper.

Assumption A. Let the objectives f1, ..., fn : R* — R be twice differentiable, ji-strongly convex,
and have L-Lipschitz continuous gradient. That is, uI < V2f;(z) < Ll foralli =1,...,n. We
also define k := L/p and r := max; jc[,) || argmin f;(x) — argmin f;(z)||2.

Assumption B. Let the objectives fi, ..., fn : R* = R have Ly-Lipschitz continuous Hessian.
That is, for all x,y € R and i = 1,...,n, we have HVin(x) - Vin(y)H2 < Ly |z =y,

Assumption C. Let the preference function fy : R* — R have Lo-Lipschitz continuous gradient.
That is, for all z,y € RY, we have |V fo(x) — V fo(y)|ly, < Lo |z — yll5

Assumption A allows us to bound the diameter of the Pareto set (Lemma E.1); Assumption B bounds
the curvature of the Pareto manifold (Lemma E.2); and all three lead to bounds on approximation
errors (Lemma E.5 and Lemma E.6) needed as the constraint set is implicit. They also lead to the
following geometric intuition for approximate preference stationarity (see Appendix E for proof).

Proposition 6 (Geometric meaning of approximate stationarity). Let (&, ) be (¢, €)-preference
stationary. With Assumptions A,B,C, and R := diam (Pareto(F)) and s := 2u?eq /(Lo L*R?), then:

(@) if |8 = BllL < s, then fo(xs) — fo(x) = —20l|8 — Bll1, and
(b) & — z5]l2 < e/
5.1 Overcoming Implicitness: Approximating Local Information

The final issue is that these notions of (approximate) preference stationarity are implicit. They depend
on Vz*(f) and z*, which come from solving the optimization problem:

*(B) =z = argglin fa(z), ©)
zeRd
Va*(B8) = —VQfg(l‘g)_1VF(l‘5)T. “

Since x5 does not generally have a closed form, we cannot exactly compute Va*(3), which is
needed to directly check whether the pair (&, 3) is (approximately) preference stationary. Since we
cannot compute Vz*(3) exactly, an obvious estimator is the following, which uses local information
V2 fz(z) and VF(z) at x as a proxy for the corresponding local information at z:

Va*(x,8) = —V2fs(z) ' VF(z)T. (10)



Algorithm 1 Pareto majorization-minimization (PMM)

Input: objectives F' = (f1,..., fn); preference function fj; black-box optimizer a@n; a family
of majorizing surrogates {g(-;z, 8) : (z, 8) € R? x A"~1}, exact (13) or approximate (16)
Initialize: (z¢,3)) € R? x An~!

1: fork=1,...,K do

2:  Select the (approximate) majorizing surrogate g () < g(-; Zx, Bk)

3:  Compute approximate minimizers

—

Br41 < argmin gi () and xpqy < argmin fg, (). 9)
BeAn—1 rcRd

4: end for
5: return (g1, Br41)

With the above assumptions, approximate information is enough to verify approximate stationarity.
Again, we defer proofs to Appendix E.

Lemma 7 (Verifiability of approximate stationarity). Under Assumptions A,B,C, the point (%, ) is
(€0, €)-preference stationary if |V f5(2)||2 < ¢, and for some x € R? and o € (0,1),
(a) an « - eg-approximate stationary condition holds for all B’ € A"~1:

—V fo(@)TVa* (z, 8)(8' - B) < a-e0l|B — Bl|1, (11)

(b) an error bound holds: errvy (B, z) < (1 — @) - &g, where:

M
errsu(2.8) = (GReI VAl + Lodo ) 9 55(0)]

and Moy = kR, My = 2k*R(1 + Ly R/ ).

6 Algorithm Design: Pareto Majorization-Minimization

In this section, we present our algorithm to solve (6). While this is conceptually the optimization of a
smooth function f o 2* over the convex set A”~!, the main challenge is that the objective is implicit.
Methods like gradient descent require both £* and Va*, to compute the gradient via chain rule:

V(foox")(B) = Vo(a*(8)) Va*(8).
But, if we can estimate 2* () to arbitrary precision by solving the optimization in (3), then Va*(3)
can also be approximated arbitrarily well: both of its terms, VF'(x) and V2 f5(z) ™1, are continuous
in z and 8 by assumption. Thus, the estimator Vz*(x, 8) defined in (10) approaches Va*(3) as x
approaches xg. We will quantify the validity of the estimator by using it to construct a majorizing
surrogate function, a function that upper bounds fy o =*, where better estimators yield tighter bounds.

Definition 4 (Majorizing surrogate). A function g : A"~ ! — R majorizes fy o x* if:
folzg) < g(B), (12)
forall B € A", We say that g is a (majorizing) surrogate of f.

The following uses the estimator Va* (z, B) to construct a family of quadratic surrogates for fj o z*.
An error term erry g, (z, 5) appears as a constant in (13), which Lemma E.6 shows goes to zero as
(z, B) goes to (x5, 3). Thus, the estimator becomes more ‘valid’ with better estimates of z*(53).
Proposition 8 (A family of majorizing surrogates). Let F' and fy satisfy Assumptions A,B,C. Let
erry s, (x, 3) be as defined in Lemma E.6. Define the family indexed by (z,3) € RY x An~L:

9(B';2, B) = folxp) + Vo(x)TVa*(z, 8)(B — B) + suell 8 — Bl + erry s (x, 8),  (13)
where g = nLoM. Then g(§'; x, B) majorizes fo o x*, satisfying (12).

This result is proved in Appendix F. Technically, we still cannot explicitly compute g(8’; z, )
because it contains the term fo(x ). However, to minimize g using any gradient-based method, we
only need Vg(5'; z, 3), which does not require the knowledge of fy(x3) nor erry s, (x, 3).



6.1 Minimizing the Majorizing Surrogate with First-Order Preference Information

The first algorithm we describe assumes access to a first-order feedback to fy, which allows us to
compute the majorizing surrogate g(3’; x, 3) from Proposition 8. We then directly minimize the
surrogate. The idealized Pareto majorization-minimization (PMM) algorithm proceeds in rounds:

1. majorization: query @x*(xk, Bk) to construct majorizing surrogate g (5) = g(8; zx, Bx),

2. minimization: make updates (41 < argmin gx(53) and x4 < argmin fg, ().
Aﬂ.fl meRd

The majorizing property of the surrogate ensures that fy(z, ) improves every iteration. In fact, there
is no need to fully optimize g5, and fg, () in the second step. By relaxing this step, we obtain
Algorithm 1 when it uses the exact surrogates (13) and any black-box optimizer. In Section 7, we
provide a last-iterate convergence rate for Algorithm 1 to an (g, €)-preference stationary point.

6.2 A Model of Dueling Feedback

In the next section, we will extend Algorithm 1 to the dueling feedback setting. Especially in cases of
human preferences, exact forms of f or V f; are unknown, but we can ask users to rank different
options by preference. Such a setting arises, for example, in supervised fine-tuning or RLHF (e.g. Zhu
et al. (2023); Ziegler et al. (2019)). We assume a comparison oracle that provides noisy, binary
responses to the queries of the form: do you prefer x1 over x5?

Definition 5 (Preference feedback model). Given two options x1 and x2, the comparison oracle
returns a binary random variable Y (x1,x2) € {0,1} where:

E [Y (21, 22)] = o (fo(z2) — fo(x1)), (15)

and o (-) is a link function. A response Y (x1, x2) = 1 indicates that users prefer x1 over xs.

This is a standard model from preference learning, psychology, and RLHF (e.g. Bradley and Terry
(1952); Wang et al. (2023); Chen et al. (2025a)), and it aims to capture the phenomenon where
preference judgments tend to be noisier when it is difficult to discriminate a clear winner (Nunnally
and Bernstein, 1994). The link function o formalizes the relationship between the ‘random component’
in the observed responses to the ‘systematic component” of the underlying preference values fo(x)
(Nelder and Wedderburn, 1972; Agresti, 2012). For analysis, we make standard assumptions, which
are satisfied by all commonly-used link functions including the logistic, softplus, and tanh functions.
Assumption D (Link function). Let B satisfy B > sup |fo o 2*|. Let o(-) : [-B, B] — (0, 1) be
a known link function that is a smooth, L1-Lipschitz, and monotonically increasing function. We
assume that 0(0) = L, and the inverse o= (p) is locally Ly (14 (p(1 — p))~")-Lipschitz continuous.

6.3 Optimizing Preferences with Dueling Feedback

In Section 6.1, we described a version of PMM using first-order preference information, where the
gradient V fo(x) gives rise to the majorizing surrogate function g(3; z, 8)) from Proposition 8.
Under dueling feedback, the gradient is not directly available, but we construct an estimator V fo(z),
as described in Algorithm 2. The basic idea is to estimate V fo(x) by querying preferences between
the pair x1 = = + yU and 2 = =z — U, where U is a uniform-at-random unit vector and + is a
precision parameter. A single comparison can be seen as an estimate of py = o(2yV fo(z)TU).
Since we assume knowledge of o, we can invert this to measure V fo(z). This leads to the following
family of approximate majorizing surrogate, indexed by (x, 3) € R? x A"~ L:

9(B'52,B8) = folzs) +V fo(x) ' Va*(z, B)(B = B) + 5ugllB" = BII3 + errvy, (2, B).  (16)
This family of approximate surrogates can also be used in Algorithm 1. Of course, it performance

depends on the quality of the estimator V fj(z). It also requires a separate analysis, which will use
the following bounds on the bias and the variance of V fo(z), proved in Appendix H.1.

Lemma 9 (Bias and variance of dueling gradient estimator). Under Assumptions A to D, let v fo(x)
be defined as in (14) with o = 1/8, m < d*log(d/z¢)/e8, b= d/e3, and vy < eo/d. Then:

IEV fo(2)] = Vo(@)ll2 S0, and  E[|Vfo(z) = Vfo(2)I3] S €8,

In the next section, we provide the results on the iteration complexity of Algorithm 1 with first-order
feedback (Theorem 10) and dueling feedback (Theorem 11).




Algorithm 2 Approximation of preference gradient with dueling feedback

Input: decision vector x, weights 3, clipping threshold «, precision -y, number of batches b, batch
size m, and a comparison oracle Y (x1, z2) satisfying (15)

1: Sample a unit vector in R? uniformly at random, U; ~ Unif(S?~!) for each i € [b]
2: Query comparison oracle for Y;; := Y (z 4+ yU;, z — yU;) for each (i, j) € [b] x [m]
3: Compute clipped Bernoulli parameter estimators for each ¢ € [b] and the gradient estimator:

. 1 A 1 d _4,.
Pi < CLIP[q,1—q] (m Z Y;j> and V fo(x) 3 Z 20 Y(py) - Us (14)
jetm) iep] 7
where CLIP[, 1 _,](p) is the projection of p into the interval [a, 1 — a].
4: return V fo(x)

7 Convergence Analysis

We establish the convergence rate of Algorithm 1 in terms of the convergence guarantees of its two
black-box optimizers: one for the surrogate g( - ; z, 3) and another for the scalarized objective fz(-).
For our convergence results, we assume that the optimizers achieve the guarantees:

Assumption E (Black-box optimizers). Let B and & ) be the approximate solutions that are returned
by the black-box optimizers for g( -;x, ) and f(-) in (9) of Algorithm 1:

B argming(Fsx,8) and &« argmin fy(x).
B'eAn—1 R4

We assume that there are constants cq, co > 0 such that:

1. the approximate minimizer B is O(eq)-approximately stationary:
ve e A" V(B B)(B — B) < er-eoll B~ Bllz,
2. the approximate minimizer & 5 is an O(&3)-approximate solution: IVfa(@p)ll < c2-e

Theorem 10 (Convergence of PMM with first-order feedback). Suppose that F' and fy satisfy
Assumptions A to C, and that the black-box optimizers satisfy Assumption E. Fix 0 < e*/? < gy < 1.
Let (xy, Bk ) be the iterates of Algorithm I using the family of surrogates (13). There exist c¢1(fo, F)
and c5( fo, F) bounded away from zero and a stopping time K such that ( foox*)(B) is monotonically
decreasing for k € [K] and (v, Bi) is an (€, €)-preference stationary point. Furthermore:

2:“9' (f*_f*)

2 2 )
[CREN

K <
where f* := max fo(z) and f. = min fo(x) are optimized over the compact set Pareto(F).

Proof sketch. We use a standard approach and show that every iteration, either we have converged
to an eg-preference stationary point and can stop, or we can find a way to improve the preference
by Q(£3). To do so, we require the optimizer for the surrogate g to also achieve O(eg)-approximate
stationarity, which is enough to achieve an O(£3)-approximately optimal point (Lemmas G.4 and G.5):

(B;, B) < g(B*; %, 8) + O(e3),

where 5* minimizes the surrogate. The surrogate contains an approximation error erry s, (5, ). If
this error term is (£3), then it is possible for the surrogate to fail to either (i) decide that the current
iterate (3 is eg-preference stationary or (ii) make progress by finding some [ that certifiably improves
on fo. We preclude this by requiring the optimizer for f3 to achieve O(£3)-optimality. O

The full proof of Theorem 10 is in Appendix G.



- — PNG &

e = s )
— PMM

0.8 4

22104

0.0 4 0.04\

T it
Figure 2: Visualization of learning dynamics for two Pareto-constrained optimization problems; ours
Algorithm 1 (PMM) is in orange, and the existing method (PNG) introduced by Ye and Liu (2022)
is in blue. In both cases, the dynamics begin at the black dot. The ground truth preference-optimal
solution, found by exhaustive search, is marked by a black square. The boundary of the Pareto set of
F is colored white. The preference function fj is visualized by the heatmap and contour lines. All
objectives and preferences are strongly-convex quadratics. See Appendix I for details.

Remark 1. Algorithm I makes calls to sub-routines at each iteration to solve two sub-problems.
As the problems are strongly-convex and Lipschitz-smooth, they can be solved using (projected)
gradient descent with iteration complexity O(log(1/ep)). And so, taking the computational cost of
the sub-problems into account only increases the rate obtained in Theorem 10 by logarithmic factors.

Theorem 11 (Convergence of PMM with dueling feedback). In addition to the assumptions of
Theorem 10, suppose that the link function o satisfies Assumption D. Let the family of approximate
surrogates (16) be constructed by Algorithm 2 with input parameters («, v, b, m) that are specified
by Lemma 9. Let (xy, Bx)x be the iterates of Algorithm 1 using this family of surrogates. There is a
stopping time K such that E[(fo o *) (B )] is monotonically decreasing for k € [K| and (xx, Bx)
is an (g¢, €)-preference stationary point in expectation, i.e., |V fg, (xx)||2 < €, and conditions (a)
and (b) of Lemma 7 hold in expectation for (x, fr ). Moreover, K = O (562

The complete theorem statement and its proof are given in Appendix H.2.

Remark 2. The rate obtained in Theorem 10 is dimension-independent ensuring its applicability to
large-scale problems. However, under dueling feedback, to achieve the rate in Theorem 11, m and b
needs to be dimension-dependent, which is unavoidable (Wang et al., 2023; Chen et al., 2025a; Saha
etal., 2021). One might expect a rate dependent on n < d under more informative dueling feedback,
e.g., preferences between [3 vectors rather than x. Exploring such strategies is left for future work.

8 Conclusion

In this work, we provide a principled and efficient way to select a decision vector from the Pareto set
of a set of objectives f1, ..., f, given an additional preference function fy. The primary motivation
is to seek the most preferred solution from a large model like LLM that is pretrained to satisfy a
number of desiderata. A main contribution of this work is to provide a geometrically-meaningful
notion of (approximate) preference stationarity. This is non-trivial due to the non-smoothness and
non-convexity of the Pareto set. We achieve this by reformulating the constraint set as the Pareto
manifold instead of the Pareto set. We also provide a simple algorithm that achieves £g-approximate
stationarity with iteration complexity of O(e, 2), under both first-order and dueling feedback.

There are several promising directions for future research. For example, extending this work to
nonconvex F' is significantly more challenging. Another impactful direction is incorporating deter-
ministic dueling feedback to enhance practical applicability. A high-dimensional setup, where not
only the decision vector is high-dimensional, but the number of objectives f1, fa,- - , f,, are allowed
to increase with the problem scale, will also be quite interesting to explore.
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A Notation

Symbol Usage
An—lL the (n — 1)-simplex equipped with the ¢;-metric
At ={BeR": 3, Bi = land Vi€ [n], B; >0}
A" 1(x) the set of 3 satisfying V fg(x) =0, (17)
Vaz*, Va* derivative of the map z* and its approximation, (4), (10)
erryy,(z,8) | bound on the approximation error of V( fy o *), Lemma E.6
F,(f1,...,fn) | thesetof objective functions
fo the preference function
fa(x) the scalarized objective ) _, 5 fi(x), (2)
985z, B) majorizing surrogate for f(xa ), (12)
K condition number « := L/ for V2 f;, Assumption A
L, Ly, Ly Lipschitz parameters for V f;, V2 f;, and V fo, Assumptions A, B, C
My, My Lipschitz parameters for z* and Vz*, Lemma E.2
I strong convexity parameter for f;, see Assumption A
fbg strong convexity parameter nLyM; for the surrogate g, (12)
Pareto(F) the set of Pareto optimal solutions of F, Definition 1
T distance between the minimizers of f1, ..., f,, Assumption A
P(F) the Pareto manifold, Definition 3
R diam (Pareto(F)) := sup { ||z — #'[|2 : z,2’ € Pareto(F)}, Lemma E.1
x*(B8), xp stationary point for f3, (3)
o link function for comparison oracle, (15)
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B Proofs for Section 3

Lemma 1. Let F' = (f1,..., fn) be a collection of smooth and strictly convex objectives. Then:

x € Pareto(F) <= (z,B8) € P(F) forsome 3 € A" 1.

Proof. The condition on the left states that x is Pareto optimal. The one on the right states that x is
Pareto stationary. When the objectives are smooth and strongly convex, Pareto optimality and Pareto

stationarity are equivalent (Theorem 3.1, Fliege et al. (2009)). O]
Proposition 2 (Characterization of the Pareto manifold). Let F' = (f1,..., fn) be a collection of
smooth and strictly convex objectives. Define x* : A"~ — Pareto(F') by:

z*(B) = xg ;= argmin pa fa(x). 3)
Let VF(z) € R™*? be the Jacobian. Then, the map =* has derivative:

Va*(B) = =V fa(xs) 'V F(zs) T, “

so that the map 3 — (3, 3) is a diffeomorphism of A"~ with the Pareto manifold P(F).

Proof. The map x* is well-defined because fz is strongly convex—it is the convex combination
of strongly convex objectives, so it has a unique minimizer. And as the objectives are smooth, the
stationarity condition V fg(z) = 0 uniquely holds at z*(5):

Vfs(xg) =0
Define the map ((z, 5) = V fz(z). Then, the Pareto manifold is precisely the zero set P(F') =
¢~1(0), and which can be parametrized by simplex A"~ via the map 3 + (xg, 3).

In fact, it is a smooth parametrization. To see this, we apply the implicit function theorem (Theo-
rem B.1), which states that the map z* is smooth at § when V((zg, 8) is invertible. Indeed, we
have that ( is continuously differentiable, with:

Val(z,8) = > BiV2fi(x) = V2 fa(x),

i€[n]

Vel(x,8) =Vs | > BiVfi(x) | =VF(x)".
i€[n]

As fg is strictly convex, it has positive definite Hessian, so that detV,{(zg, 3) # 0. Furthermore,
Theorem B.1 also implies that the derivative of Vx* is given by Equation (4). It follows that the
map 3 +— (xg, 3) is smooth. It also has a smooth inverse. Namely, the projection onto the second
component (zg, ) + (. Thus, P(F) is diffeomorphic with A"~ 1. O

Theorem B.1 (Implicit function theorem, Spivak (2018)). Let f : R x R™ — R? be continuously
differentiable on an open set containing (a,b) and let f(a,b) = 0. Let V, f(u,v) be the d x d

matrix:
[Vuf(u,v)}ij = Vy, fi(u,v).

If det V. f(a,b) # O, there are open sets U C R? and V' C R™ containing a and b respectively
with the following property: for each v € V there is a unique g(v) € U such that f(g(v),v) = 0.
Furthermore, the map g is differentiable with derivative given by:

Vo) = — [Vuf(9(v),0)] " Vo f(g(v),v).
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Figure 3: An embedding of the Pareto manifold from (1) into three dimensions from two
camera angles. The singularity seen in (1) is an artifact of the projection of the manifold into
the decision space, rather than an intrinsic irregularity in the manifold.
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C A comparison of solution concepts

In this section, we elaborate on the relationship between different solution concepts (optimality,
stationarity, approximate stationarity) for the Pareto-constrained optimization problem:

minimize (fo o 2™)(5). (6)
BeAn—1
The solution concepts are related by:
preference cC preference c weak preference c approximate preference
optimality stationarity stationarity stationarity

It is fairly clear that the first and last inequalities are strict. We discuss the inner inequality.

It turns out that a point x can be weakly preference stationary without being preference station-
ary. However, this can only happen if z is also a point of singularity in Pareto(F'). Geometri-
cally, if we consider Pareto(F) as the projection of P(F) onto its first component in R, the this
means that multiple points are collapsed onto z. Algebraically, this means that the set of gradients
Vfi(x),...,Vf.(x) fails to have full (Pareto) rank (Smale, 1973; Hamada et al., 2020).

To elaborate, define the set:
A" N z) = {Be A" : Vfs(z) =0} (17)
Then, x is Pareto stationary if there is some /3 in Al (z), so that:
> BiVii(z) =0,
i€[n]

and the rank of this set of gradients is at most n — 1. Since A™~! does not contain any collinear
vectors, if A”~1(x) contains more than a single point, then the rank of the set of gradients must be
strictly less than n — 1. This leads us to the definition:

Definition C.1 (Pareto genericity). Let {v1,...,v,} C R% This set is Pareto generic if-
Brvr + -+ Bpup, =0, for some € A",
and the non-degeneracy condition holds: rank(vy,...,v,) =n — 1.

If VF(z) is Pareto generic, then A"~ !(x) contains a unique 3, so we immediately have:

Proposition C.1 (Weak and strong preference stationarity). When the set of gradients VF (x) is
Pareto generic and x is weakly preference stationary, then x is preference stationary.

However, when the gradients V F'(x) are not Pareto generic, then weak preference stationarity can be
strictly weaker. Let (x, 3) where 8 € A"~!(z) be weakly preference stationary, so that:

— Vi) (= V2fa(x) 'VFE(@) (8 - 8)) <0, vgeA™
Va*(8)(8' )

We can simplify this by using the fact that V f3(z) = VF(x)"3 = 0. Then, one way for the
stationary condition to be fulfilled is for the underlined term to be normal to V fo(x):

— V2 f5(2) ' VF(2) T8 € span(Vo(x)) ", V8 € AL

This statement has the following geometric interpretation. These vectors are contained in the Clarke
tangent cone of Pareto(F’) at x. If these are the only vectors in the tangent cone, then this condition
states that —V fo () is contained in the normal cone of Pareto(F) at .

But, in general, the tangent cone contains the union of subspaces:
U  {-Vfs2)'VF(@)'8 : 8 e A"}
pear—1(z)

And so, when A™—! (z) does not contain a unique vector, the tangent cone can contain more vectors.
By selecting different 3’s, we recover different slices of the tangent cone. This also means that even
if the above normality condition holds for one (3, it may fail to hold for another B e An1 (z). Then,
(z, B) is weakly preference stationary while (z, 3) may not be.
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D Insufficiency of first-order information

The notion of preference stationarity uses second-order information in F, for the term V2 f5(z) L.
A natural question is whether there are reasonable notions of stationarity that only use first-order
information. It turns out there are none, if we require the stationarity condition to be (i) non-trivial,
(ii) necessary for preference optimality and (iii) decidable from local information at a single point x.

The reason is that from V F'(x) alone, we can only determine whether the point x is contained in the
Pareto manifold. It is not enough to determine locally how the manifold curves. For example, (4)
shows two different Pareto sets that share the same gradients at a point z. The local optimality of x
with respect to fy depends on its neighboring Pareto points. It turns out that to attain a non-trivial
and necessary condition, we would either need to look at higher-order information, or first-order
information at more than a one point.

To formalize this, we define stationarity conditions as decision functions. These are functions that
return Boolean outcomes true or false (we interpret these functions as ways of classifying points as
stationary or not). In particular, we consider first-order stationary conditions, which makes decisions
given only the gradients V fy and V f, ...,V f, at a single point:

Definition D.1 (Stationarity function). A first-order stationary condition is a decision function whose
input is a tuple of n + 1 vectors in R%:
n+1 times

Stationary : RY x x R? — {true, false}.

Let fo be a smooth preference function and f1, . .., fn be smooth, strongly convex objectives. We say
that a first-order condition is necessary if the following holds:

x is preference optimal ~—>  Stationary (Vfo(:v), o, Vi (x)) = true.
There are two specific cases in which it is possible to determine that a decision x is not preference
optimal from first-order information. First, if « is not even Pareto optimal, then it cannot be preference

optimal. This occurs whenever V f3(x) # 0 for all 3 € A™"~!. The second case occurs if z is Pareto
optimal, but V f(x) is in the convex cone spanned by the columns of VF'(x),

Vfo(z) = Z iV fi(x), where )\; > 0.
i€[n]

In particular, let # = zg. Then, let v : [0,1] — A™~! be the curve parametrized by v(t) =
tA + (1 —t)B. Then whenever V fy(z5) # 0:

4 ol ()

. —V fo(zp)V? f3(xs) " VF(x5)" (A - B)

= —V fo(zs)V?fs(xp) 'V fo(zp) <O0.

Intuitively, these solutions are not preference optimal because we can find more preferable Pareto
solutions by weighting those objectives that align with fy more. To exclude these specific cases,
we introduce the notion of preference genericity. Then, Proposition D.1 shows that any necessary,
first-order stationary condition must accept all preference generic sets.

Definition D.2 (Preference genericity). Let {vg,v1,...,v,} C R? where 1 < n < d. This set is
preference generic if there exists some 3 € A"~ such that v, + - - - Bpv, = 0, and:

vo ¢ span(vy, ..., U,).

Proposition D.1 (Necessary first-order conditions are trivial). If Stationary is a necessary, first-order
stationary condition, then it is trivial in the following sense:

Stationary(vg, . . ., v, ) = true,
for any preference generic set of vy, . . . , v, € R%
Proof. 1t suffices to show that there exist fy, F, and x* such that z* is preference optimal and for

1=0,...,n:
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Figure 4: Two instances of Pareto(f1, f2) are shown (thick gray lines), where f; and fo
are positive-definite quadratic objectives in R? (visualized by contour lines). At z (the
black dot), the two instances share the same local information —V f1(z) and —V fa(x)
(orange arrows); they cross the contour lines at right angles. When n = 2, the Pareto set
contains all z such that V f1(z) = —AV fa(2) for A > 0. Notice that if fj is strictly convex
and = does not minimize f; over R2, then x cannot be stationary for both instances.

And since z* is preference optimal, any necessary stationary condition must accept:

Stationary(vg, . . ., v,) = true.

Without loss of generality, let x* = 0 by an affine transformation. To construct f; and F’, we can
simply consider a family of positive-definite quadratics:

¢ Let the preference function f; be:

1
folz) = 5l + ol
Notice that V fo(z*) = vy.

e Let the objectives f1, ..., f, share the same Hessian:

1
@) = SA - I,
where A € R%* is full rank and z; € R?. Let H = AT A for short.

We show that we can set A and the z;’s so that 2* is preference optimal while (18) holds.

By Lemma D. 1, the Pareto set is the convex hull C := conv(zy, ..., z,). Notice that the choice of H
and v;’s determines the z;’s, since we require V f;(z*) = v;, which expands to:

2 =—H v, Vi € [n].

From convex optimization, * = 0 is preference optimal if (i) z* € C and (ii) C is normal to V fj.
Indeed, these two conditions can be fulfilled:

(1) Because vy, ..., v, is assumed to be Pareto generic, zero is a convex combination of the v;’s. As
the z;’s are related to the v;’s by a linear transformation, this also implies that zero is a convex
combination of the z;’s (with the same set of convex weights).

(ii) We need to show that the subspace span(vy, . . ., v, ) can be mapped into span(vg )~ by the map
v+ —H 1y where H is positive definite. Lemma D.2 shows that such a map H exists as long
as vg ¢ span(vy, ..., v,), which is assumed from preference genericity.

Thus, there exists fo and F' that is preference optimal at * with matching first-order information. A
necessary stationary condition must therefore be accepted. O

Remark D.1. Suppose that Stationary is not necessary, but that we can design some optimization
method that provably converges to a stationary point in {x : Stationary(x) = true}. Then, there are
settings in which the method provably avoids preference optimal points.
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In the remainder of this section, we prove Lemma D.1 and Lemma D.2 used above.
LemmaD.1. Let f1,. .., f, : RY = R be positive-definite quadratics with a shared Hessian:

i) = 314G =)

where A € R%%? jg full rank and z; € R, Then, the Pareto set is the convex hull:

Pareto(f1,..., fn) = conv(zi, ..., 2pn).
Proof. As the objectives f1, ..., f, are strongly convex, optimality is equivalent to stationarity. Thus,
x € Pareto(fi, ..., f,) if and only if there exists some 3 € A"~! such that:
0= BiVfix),
1€[n]

which, when expanded, states that:

(ATA)z = (ATA) > Bz

i€[n]
But as A is invertible, this is equivalent to:
v="Y Biz,
1€[n]
which is to say that z € conv(zy, ..., z,). O

Lemma D.2. Let U and V be linear subspaces of R? such that U N V+ = {0}. Then, there exists
some positive definite map H : R? — R® such that H({U) C V.

Proof. If S C R%is a subspace, let Il : R? — R? be the projection onto S. Define the map:
.HZ:IRP+HVLHUL
Then H satisfies the following:

* H is positive definite. To see this, let 0 # = € R? have decomposition = x; + x5, where
21 € U and 25 € U~L. Then:

r Hz = xIHVxl + 2zl 29 + +$IH\/L£C2 +
T Iyz rTHVLHULI
_ 2 T 1 2
= |Myay||* + 2y 22+, Hyas + > S|y zy + 22| > 0,
~— 2
0

where the last inequality is strict because z # 0 and U N V4 = {0}.
* H{U) C V.Ifx € U, then by definition II;;1 z = 0 so that Hx = Ilyz € V.

D.1 An example of a first-order stationarity condition avoiding optimality

In this section, we discuss the first-order stationarity condition of Ye and Liu (2022), defined to as
stationarity with respect to their optimization dynamics, Pareto navigating gradient descent (PNG).
We show that it fails to be a necessary condition for preference optimality.

Despite that, their condition and dynamics have appealing properties since (i) they do not require
second-order information, which is computationally more expensive, and (ii) their dynamics largely
satisfies what they call the Pareto improvement property, which ensures that each objective enjoys
monotonic improvement during optimization:

d
%fi(xt) <0, forall i € [n].
As Pareto improvement can be at odds with preference optimality, this leads to an open question:

when and how should we balance Pareto improvement with preference optimality?
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Definition D.3 (PNG stationarity, Ye and Liu (2022)). Let ¢ > 0. The PNG vector v.(z) is defined:

1
ve(z) :=arg min §||Vf0(x) — ]2
’UERd

st. Vi(z) v >, foralli € [n].
Let £ > 0. A vector x € R% is (c, €)-PNG stationary if v.(x) = AV fo(x) for some X < 0 and:
i v =e.
soin V@)l =e

In the following, we consider an example in R? with n = 2 objectives. Let the standard basis be
denoted e;, e; € R, and let the objective functions fi, f> : R? — R be defined:

i) = SIAGHe)?  ad  fo) = AG - el (19)

where A € R?*2 is full-rank. Lemma D.1 shows that the Pareto set of the objectives Pareto(f1, f2)
is the line segment from —e; to e;. Thus, the Pareto set is invariant under change in A, while PNG
stationarity is not, as the constraint set changes with A:

{v: (x+e)) Ho> chn{v:(z— e)) Hv > c},
and H = A" A. Due to this discrepancy, PNG stationary points can be preference suboptimal.

Example D.1. Let the preference function be: fo(x) = 3|l — e2||%, and let the objectives f1, f2 be
defined as in the above (19) with:

11
H:ATAz[l 2]. (20)

Then, the unique preference optimal point is the origin 0. However, the (c, €)-PNG stationary point is
bounded away from 0. It even converges to e1 as the error tolerance € goes to zero.
Proof. Consider the PNG vector v.(x) when z is in the region:

C={zeR*:Vfy(z) Vfi(z) <0, fori =1,2} N {egz > 0}.

Here, both constraints V f; (:c)Tv > c are active in the constrained optimization problem that defines
the PNG vector; and so, v.(x) is the vertex point of the constraint set, satisfying:

Vii(z) ve(z) = Via(z) Tve(z) = c.
Expanding out the gradients, we obtain:
(x+e) " Ho.(z) = ¢ and (z —e)) Hu.(z) = c.

This implies that e] Hv.(x) = 0. Now suppose that zpxg € C is PNG stationary. Then, by
definition, it must satisfy V fo(zpng) € span(vc(xpNg)), so it has the form:

TpNG = €2 + Au, where e] Hu = 0.

Whenever the standard basis vectors are not eigenvectors of H, the line e; + Au intersects
Pareto(f1, f2) away from 0. For example, let A satisfy (20).

Then, the line e2 + Au runs through e; and e;. We can verify that C contains all points on this line
between its two endpoints. When = e3 + A(e; — e2) and A € (0, 1), we have:

Viox) ' Vii(z)=(z—e) H(z +e)
=Aer —e) H((1+Nei + (1 —Aez) = —A(1— ),
and similarly, we have:
Vio(x) ' Viz) = (z —er) H(z —e;)
=Aep —ex) TH((A—1)(e1 —e2)) = —A(L = \).
This implies that for all ¢ > 0 and £ > 0, the (¢, €)-PNG stationary point is bounded away from 0,

converging to e; as € goes to zero. O

This example is visualized in Figure 2.
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E Proofs for Section 5

In this section, we derive the following implications from the assumptions from Section 5:

* Assumption A allows us to bound the size of the Pareto set (Lemma E.1).

* Assumption B additionally bounds the curvature of the Pareto manifold: we show that Vz* is
well-behaved (Lemma E.2) and is well-approximated by Vz* (Lemma E.5).

¢ Assumption C further leads to error bounds when approximating gradient of foox™ (Lemma E.6).
It also allows us to define a notion of approximate preference stationarity that is geometrically
meaningful (Proposition 6) and can be verified using approximate information (Lemma 7).

Let’s recall from Assumption A that the condition number of the objectives V2 f; for i € [n] is upper
bounded by « := L/u. We also defined the scale parameter 7 as the maximum distance between any
of the minimizers of the objectives:

ri= 4ma[x] H argmin f;(x) — arg min fj(gc)H2
1,JEMN

Lemma E.1 (Size of Pareto set). Let F satisfy Assumption A. Then R < +/kr, where:
R := diam(Pareto(F)) = sup {||z — 2/||2 : 2,2 € Pareto(F)}.

Proof. Because each f; is u-strongly convex and L-Lipschitz smooth, so is the convex combination
f5. This implies the upper and lower bounds:

1 1
S > Billr — aill3 < falx) < 5L > Billz — @ill3-
i€[n] i€[n]
It follows that the minimizer of fz is bounded:
1
fB(xg) < §L’I“2.

On the other hand, if a point ||z — ;|| > 2s for some i € [n], then by reverse triangle inequality,
|z — z;|| > sforall j € [n]. This implies that:

1

|z — ;|| > 2s = fa(z) > §u52.
It follows that if ||z — z;|| > 2+/L/p for some 4, then x is not a Pareto optimal point. O

Lemma E.2 (Smoothness of z*). Let F satisfy Assumptions A,B. Then, x* : A" 1 — R is
My-Lipschitz continuous and has M- -Lipschitz continuous gradients, where:

My = kR and M, = 2xk’R (1 + %) )

Proof of Lemma E.2 That x* is Lipschitz continuous with Lipschitz continuous gradients follows
from the following two lemmas:

Lemma E3. Let F = (f1,..., fn) be a set of twice-differentiable objectives and let fo be a smooth
preference. Suppose the objectives are L-Lipschitz smooth and pi-strongly convex:

pl = V2 fi < LL.
Let R := diam(Pareto(F)). Then, the map x* : (A" "1, 01) — (R%, £y) is LR/ u-Lipschitz.

Proof. Recall from (4) that Va*(8) = —=V2 fz(x5) 'V F(z5) . Then:

(%)
IVa* (B)ll2 < [V falaa) |, - [VF@e) ],
(#) 1
S - LRa
7

where (i) is a property of the || - |1 2-norm, (ii) uses uI < V2 f3(x5) and Lemma G.1. O
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Lemma EA4. Let 5,3 € A" L. Then,

2L°R LR
Vo7 (3) = 9 (8] = 255 (14 222 - -

Proof. By definition, we have:

[Va*(8) = Va* (B[], , = | = V*fa(zs) ' VE(2p) " + V2 far(2s) ' VE(s) |,

We can add and subtract V2 f3(x5) "'V F(zs/) " inside the right-hand side (RHS):

| = V2 fs(ws) ™" - [VF(wg) = VF ()] + [V2fa(2p) ™" = Vs (2p) "] VF(2) ||, -

(RHS)

We can bound the two terms in the norm separately. For the first:

@) I ) L°R
H1,2 = H ||$ﬁ—$ﬂ'|| <

| = V2fs(as) "t - [VF(xs5) — VF(zg)] 218 = Bh,

where (i) follows the same argument as Lemma E.5, and (ii) applies Lemma E.3. For the second term,
we can add and subtract V2 fg/ (x5) "'V F(25/) " to obtain:

[[V2fp(ap) ™" = V2 far ()™ - VF(a)T |,
= |[[V*fa(ws) ™" = V2 Sp (wp) ™" + V2 far(25) ™ = V2 g (wp) '] - VE(p) " ||,
Lu LR
< (Lip-0+ 22 R y5— 1) -1

where V2 f5(x) ™! — V2 fz/ (x) 1 is bounded by Lemma G.3; V2 f5(x) ~! — V2 f5(2’) ~! is bounded
by Lemma G.2 and Lemma E.3; |V F(x5) T ||1.2 is bounded by Lemma G.1. O

The result follows by substituting in the definitions of M and M; . |
Lemma E.5 (Approximability of Va*). If F satisfies Assumptions A,B. Then:

IV2*(8) = Va*(z, B)ll.2 < L XNV f5(2)]|2.

Proof. Recall that g := 2*(/3). Then, by definition, we have:

|Va* (2, 8) - 1o =1l = V2f3(@) ' VF (@) + V2 fa(25) " V()] -

We can add and subtract V2 f5(x) "'V F(z3) " inside the right-hand side (RHS) to get:

(RHS) = || = V2f5(2) "+ [VF(z) = VF ()] + [V f5(2) " = V2fs(w0) "] - VF(p) |,
@) I L
<. ||x—x5||+7§||x—xﬁ||~w

(i) L( LHR)
< (14 2 Vs,
2 . IV fa()|l

where (i) the first blue term uses I < V2 f5 and the L-Lipschitz smoothness of the objectives, while
the bracket orange term follows from Lemma G.2 and the final purple term follows from Lemma G.1,
and (ii) uses the u-strong convexity of fg. O

Lemma E.6 (Approximability of V(fo o «*)). If F, fo satisfy Assumptions A,B,C. Then:

IV (fooz*)(B)T = Viola) Var(z,B)|, , < erryy, (x, ),

where erry g, (z, B) = m (2Mo IV fo(x)]]2 +L0MO> IV f5(x) |2
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Proof. Add and subtract V fo(x) T V2*(3) within the norm on the right-hand side:
(RHS) = |(Vfo(as)T = Vo) Va'(8) + Vo) (Va*(8) = Va*(z, 9))|
1M
AL

where we use the fact that fj is Lo-Lipschitz smooth by Assumption C, that =* is My-Lipschitz

continuous by Lemma E.2, and that ||Vz*(8) — Va* () Lemma E.5. The result
follows from upper bounding ||zg — x|| by p-strong convexity of fg:

1,2

< LoMyl|lxg — x| + ||Vf0(33)||

1
les — 2| < [V fs(2)].
o
O

Proposition 6 (Geometric meaning of approximate stationarity). Let (&, §) be (¢, €)-preference
stationary. With Assumptions A,B,C, and R := diam (Pareto(F)) and s := 2u?eo /(Lo L*R?), then:

(@) if |8 = Bll1 < s, then fo(xg) — fo(zs) > —2e0|8 — B, and
(b) || —z4ll2 <e/p.

Proof. (a) Recall that 2 is the minimizer of f, by definition. Because fg is p-strongly convex,
we can bound the distance between = and g by:

1 5
|z — 2| < ;IIVfﬁ(:v)II < -

‘;:

where the second inequality follows from condition (8a).

(b) Let 85 := (1 — s)3 + s’ parametrize the line connecting 3 and 3. Let « : [0, 1] — Pareto(F)
be the path v(s) := 2*(fs), so that:

dy(s) = Va*(8:)(8 — B)ds

We can now upper bound the difference:
folos) = o) = = [ VfoCas) Tanto
—— [ [Vso@a) — Vfalan) + Vfolan)] "ar(s)
¥

< / Lollzs, — 5]l [d(s)| + / (= Vfolws) Td(s))-

5

Let’s bound the integrals separately. Since xg, = / dv(s)(B" — B3), we have by Lemma E.3:
0

LR
s, — xpll < 7H5—5’II1 5.

We also have |dvy(s)| < p~'LR||B — '

L0L2R2 1 L0L2R2
/ Lollzs, — 5] [dr(s)] < / 18— B2 sds = =222 1 15— g2,
i

1, by Lemma E.3. The first integral is bounded by:

T2

For the second integral, first note that condition (8b) implies:

~Vfolzs) dy(s) = =V fo(zs) Va(zp)(6' — B) < e 8- F|],,
yielding the other bound:

1
/ (= Volzs)Tdy(s)) < / coll = Bl ds = ol — A1
¥y 0
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Putting these two together, we obtain:

1 LoL?R?

fo(zp) — folzp) < 5

318 = B +<oll8 Bl

2
It follows that if we restrict || — 8'||1 < %, one of the factors of |3 — 8’||; in the first

term can be absorbed into the constant, proving the result:
folxs) < fo(wpr) + 28018 — B'll1-

O

Lemma 7 (Verifiability of approximate stationarity). Under Assumptions A,B,C, the point (Z, 3) is
(€0, €)-preference stationary if |V f5(2)||2 < ¢, and for some x € R? and o € (0,1),

(a) an o - eg-approximate stationary condition holds for all B’ € A"~ 1:

—V fo(z)TVa* (x, B) (8 — B) < a-eoll - B, (11)

(b) an error bound holds: erry (B,2) < (1 — a) - e, where:

M,
2M,

exve (. 5) = © ( IV fo(a)la + L0M0> IV 5]

and My = kR, My = 252R(1 + Ly R/ ).
Proof. For (e, &g)-preference stationarity, we require ||V f3(2)|2 < € and:

Vfo(zg) Va* (B)(B = B) +eo- 1|8 = Bl > 0.
Then by Lemma E.6, the left-hand side is lower bounded:

V fo(x)TVa* (z, B)(B' — B) — errv s, (Box) - 18" — Bl + ol B — Bl
= Vfola)TVa* (2, 5)(8' - B) + a0l 8" — Bl

>0
+(1—a)-ellf' = Bl —errys, (B,2) - 18" = B,
>0
for a € (0,1). The two terms are lower bounded by zero by conditions (1) and (2). O
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F Proofs for Section 6

Proposition 8 (A family of majorizing surrogates). Let F' and fy satisfy Assumptions A,B,C. Let
erry s, (x, 3) be as defined in Lemma E.6. Define the family indexed by (z,3) € RY x An~1:

9(8'32,8) = fo(wg) + V fo(x) T Va*(x,8)(8' = B) + 3ugllB — Bl + vy, (@, 8),  (13)
where iy := nLoM,. Then g(f'; z, B) majorizes fo o x*, satisfying (12).
Proof. As fy and x* are respectively Lg- and M;-Lipschitz smooth (Assumption C and Lemma E.5),

their composition is Lo M -Lipschitz smooth, and so it admits the standard quadratic upper bound
(e.g., Lemma 1.2.3, Nesterov (2003)):

. 1
Jolzpr) < fo(ws) + V(fo o 2)(B) (B = B) + gnLoMi |8 — BII3,
where we have used ||’ — §]|2 < n||8’ — B||3. This could be an easy choice for our majoriz-

ing surrogate g but the gradient V(fy o z*)(f) is implicit. Substituting in the approximation
V fo(z) TVa*(z, B) yields the result, where the error term comes from Lemma E.6. O
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G Convergence for Pareto majorization-minimization

Theorem 10 (Convergence of PMM with first-order feedback). Suppose that F and fy satisfy
Assumptions A to C, and that the black-box optimizers satisfy Assumption E. Fix 0 < e'/? < gq < 1.
Let (xy, Bk )k be the iterates of Algorithm I using the family of surrogates (13). There exist ¢1(fo, F)
and c5( fo, F) bounded away from zero and a stopping time K such that ( foox*)(B) is monotonically
decreasing for k € [K] and (xk, Bi) is an (€, €)-preference stationary point. Furthermore:

2:“‘9' (f*_.f*)

K <
= 2. .2
i€

i
where f* := max fo(z) and f. = min fo(x) are optimized over the compact set Pareto(F’).

Proof. Fix k > 1. For short, we let:

(2,8) = (z5—1,Bk—1)  and  (&,B) = (. Br).

Claim. At each iteration, either (i) the preference improves by at least a constant:

1
fo(zg) = folap) < —5% €5,

or (ii) the point (Z, ) is (e, €)-preference stationary.

Assuming the claim holds, the theorem immediately follows: if the algorithm in K steps has not
found an (eg, €)-preference stationary point, then the value fo(x s, ) must decrease every iteration by
a constant. But because f; o z* is lower bounded over A"~! by f*, this can happen at most:

2#9'<f**f*)

times.
2. .2
ci €

Proof of the claim. Let 3* := argming can—1 g(8'; %, 3). Lemma G.4 shows that an approximate
stationary point B of a strongly convex function is close to the exact point 5*:
A * C1€0
18 = B%[l2 < — =4, 1)
Hg

where we let ¢ denote this constant for short.
We can analyze B through 8*. There are two cases, leading to either (1) O(e)-preference stationarity
or (2) O(g3)-constant descent. The two cases depend on the suboptimality of 3.

Case 1: ||8* — Bll2 < 26. Here, S is fairly close to the optimum S* of the surrogate. We show
that the approximate stationarity of 5 with respect to the surrogate implies approximate preference
stationarity. We do so via Lemma 7, which states that (£, ) is (eq, €)-preference stationary provided:

IVfa(@)llz < e (22)
Y fol@) TV (2, B) (B — ) < seollf — Bl VB € A (23)
erry g, (m,B) < %50 (24)

While (22) is immediate from our choice of cs, defined in the last section of the proof, the others do
not follow automatically from approximate stationarity with respect to the surrogate: the surrogate is

derived from local information at (z, 3), while we would like guarantees at (z, B) But because 5* is
close to both 3 and 3, we can control all of these. By triangle inequality:

18 = Bllz <118 = B*ll2+ 18" = Bll2 < 3, (25)
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combining (21) and the assumption that ||3* — S||2 < 24.
We now show (23). We have for all 5/ € A”~1,

~Vfolz) " Va*(z,B)(8 - B)
(4) ~ A ~ ~ . .
< —Vfo(x)TVz* (2, 8)(8' = B) + |V folz)T (Va*(z, 8) — Va* (2, 8)) ]| - 18— Bl

(i) . L 5 5
< aigo- 18" = Bl + IV fo(@)ll2 - ?HB —Blz2- 118" = Bl

(@) 1 L||V fo(z 5
< 52 (ase+ A 55). -y, 26)
(iv) 1 , ~

< L0 18 - Bl

where (i) adds and subtracts V fo(z) T Vz*(x, 8)(8' — 3) and applies Holder’s inequality, (ii) sub-
stitutes in Condition 1 for the first term and bounds the second via Lemma G.3, and (iii) bounds

|8 — 6 ||2 using (25), and (iv) applies the definition of ¢, set in the last section of the proof.
To show (24), we have:

Ay (D) 1/ M
errvfo(xvﬁ) = errvfo(m,ﬁ) + ; <2MO

(id) 1/ M,
< erryy, (T, )+;

19 5ol 2 + LOMO) (I955@)ll2 = IV £l

IV o) +L0Mo) V@)l - 18 = Bl

2M,

Gi) 1 2 [ M, .

< Z. = Lo M, F . 2
< 5 2 (IR + Loy {eae + [9F @) e -39} @
(Z) 1

= 550

where (i) expands out erry f,, (i) uses the fact that 8 +— |V F(z) " 8|2 is | VF () " ||2-Lipschitz in
B with respect to the £2-norm, (iii) applies the definition of erry s, and the inequality (25), and (iv)
follows by definition of c; and c», set in the last section of the proof.

As (22, 23, 24) hold, Lemma 7 shows that (z, 3) is (e, €)-preference stationary.

Case 2: ||8* — B]|2 > 24. Here 3 is suboptimal and 3* achieves a large descent:

(@)
fo(xp~) — fo(zp) < g(B%;2,8) — folzp)
() 1
< erryy,(z, 8) — gugllﬂ* —Bl13

(413) 1 M

< - (QMl |Vf0(90)||2+L0M0> C250 — 21190” (28)
0

(iv) 3

< =S hgd?, 29

where (i) uses the majorizing property of g, (ii) follows from Lemma G.5, (iii) applies the definition
of erry ¢, (, 3) and the assumption that € < £3, and (iv) uses the definition of c5.

The large descent also carries over to /3 because it is approximately stationary:

(3) .

folzg) = folzp) < g(Biz, B) — fo(zp)
@ 9(B%2,8) — fo(zs) + (9(B; 2, B) — g(B*; 2, B))
(”l) 3 ]. C1 2

2
< —51195 +cigg -0 = "2, " €05
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where (i) uses the majorizing property of g, (ii) adds and subtracts g(5*; x, 8) and (iii) applies (29)
and Lemma G 4.

Thus, the preference improves by at least a constant. To finish proving the claim, we need to verify
that it is indeed possible to set ¢y and ¢, appropriately.

Setting ¢; and co: we tabled a few inequalities above. Recall:

For (22), we need:
Co < 1.

For (26), we need:

3L||V
2<0150+ I fg($)||2 . 01€0) <
2 Hg
For (27), we need:

2 (M ci€
2 (SRl + Zoo) {eae 4 3IVF@ T 92 < e,

For (28), we need:

1 [ M ) , 1 <Cﬁ0)2
— V folx + LoMy | coch < = —_—
. <2M0|| fo(x)ll2 + LoMo ) c265 2t \ T,

It is unenlightening but straightforward to verify that it suffices to set:

6L||Vf0(1’)||2 12 1 T
. <
Sl 2 (IR + oMo ) [VFE) o <1

2 (M
cr-ma {12 (S IV @l + Lo ) - (2v 24 ) } <1

c1 ~max{2+

where a V b := max{a, b}.

A concerned reader may wonder whether ¢; and ¢, may be bounded away from zero, as claimed in
the theorem statement: we need to ensure that |V fo()||2 and || VF(z) T ||2 do not blow up. Indeed,
this holds because the iterates x; remain within a constant distance of the Pareto set. In particular,
since c2 < 1, by Condition 2, we have that the kth iterate satisfies:

g
|2k — 2z, ]l < =,
Bk 1

which follows from p-strong convexity of fg, . Thus, all iterates of the algorithm are within &/ of
the Pareto set and also satisfy for all k, ¥’ € N:
[or — zp || < R+ 2¢/p.

Then, by Ly-Lipschitz smoothness, we can bound:

IVfo(zi)ll < IV folz)]l + IV fo(zx) — Vio(z1)ll
< |IVfo(z)l + Lo - (R+2¢/ ). (30)

Similarly, by L-Lipschitz smoothness, we also have:
IVF(zi) " [l2 < [VE(21) |l + [VF(z) T = VE(21) " ||2
< ||VF(z1) |2 +nL- (R + 2¢/p). 31)

G.1 A bound on the gradient
Lemma G.1. Let R := diam(Pareto(F)). Then for any x5 = z*(3),
IVE(zp)" ||, , < LR.
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Proof. By definition, we have:

i€[n]

HVF(xB)THl,z = sup
Iz]l1=1

2

(4)
< sup Yzl [Isign(z:) - Viws)ll2

llzlla=1 i€[n)
(i)
< max ||V fi(z5)ll2
i€[n]
(iid)
< max L||z — x;||2,
1€[n]
where (i) follows from Jensen’s inequality, (ii) holds because the max is no smaller than the average,
(iii) applies L-Lipschitz smoothness. In particular, let x; = argmin f;(x), so that V f;(z;) = 0.
Then:
IVfi(zp) = Vfi(zi)lla < Llzg — xifl2.
The result holds because x5 and all z;’s are contained in Pareto(F). O
G.1.1 Lemmas: matrix inverses
Lemma G.2. Let M : R? — R*? pe L-Lipschitz satisfying M (z) = uI where R? has the £5-norm
and R¥*? the operator norm. Then, the map x + M (z)~' is L/u2-Lipschitz.
Proof. For short, let us denote M (') by M,,. Note that I = (M., + M, — M.)M_ !, so that:
Maj_l _ Mg;l — Mw—l _ wa/l(Mw, + Z\lm — Mx,)Mw—l
=M= Mgt = M (M — My )M = =M (M, — My ) Mg

which is series of unenlightening algebraic manipulations. But now, we may apply L-Lipschitz
continuity to obtain || M, — M,|| < L||z — 2'|| and the u-lower bound to obtain || M|, || M| <
p~ 1. Together, we obtain L/u2-Lipschitz continuity:

L
[M(2)™" = M(2") 71| < Lzl —a'].

O

Lemma G.3. Let My, ..., M, be positive-definite matrices in R%*¢ equipped with the operator
norm, and let A"~ be equipped with the {1 norm. Suppose the following holds:

(L=< My, ..., M, <LL
The map 3 — Mgl where Mg := 3, () BiM; has bounded derivative ||V5M571||1’2 < L/p>

Proof. We can compute the derivative of the above map:
-1 -1 -1
VMgt =—Mg' (VsMg) Mg+,

where Vg Mpdf = Mgyg. The upper bound on the M;’s implies that ||V 3Mg||1,2 < L. On the other
hand, the lower bound implies that || M Yo < . O

G.1.2 Lemmas: constrained optimization of strongly convex functions

Lemma G.4. Let f : R® — R be smooth and convex and let C C R™ be a convex constraint set.
Suppose that 5*, 5 € C are stationary and e-approximately stationary, respectively:

~VIE)TB-6)<0  and  —VB)T(B-B) <elf-Bl, VBeC.
Then, f(3) — f(8%) < e||3 — B*||. Furthermore, if f is p-strongly convex, then ||3 — 8*|| < &/p.
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Proof. For the first part, we apply the mean value theorem, which states that there exists some 3 that
is a convex combination of 3 and 8* such that:

FB) - £(8) L VBT (B -8
BTG 8

(iii) . .
< el -8,
where (i) applies the mean value theorem, (ii) uses the monotonicity of gradients of convex functions:
~ T N
(VIB)=VI(B) (B=B)=0

and that B - B = /\(B — [3*) for some A € [0, 1], and (iii) applies the e-stationarity condition.

For the second part, by strong convexity, we have on the one hand:

(VIB) = VFB9)) (B —B") > ulB - B>

And on the other, by stationarity and e-stationarity, we have that:
(V18 = VI(8) (A=) 2 ell3 - 8.
Dividing through by ||3 — 8*|| yields the result. O
Lemma G.5. Let C C R"™ be a convex constraint set with 5 € C, and let Q) : C — R be a quadratic:
QB) = c+0T(8' — B) + 50118 — B ()
where ¢ € R, v € R", and C > 0. Let * € C minimize Q. If ||3* — B|| > & > 0, then:
QE) - QB) < 50,
Proof. Define the quadratic function ¢ : R — R by:
a0 = e+ 20T (5 — 6) + 5N 6 ~ Bl
=c+ %CHB* = BIIPA (X —2X%) (33)

T *
7% minimizes q. Restricting () to the line between 3 and 5*, we get:

Q(B+A(B" = B)) = a(N),
for A € [0, 1]. This follows by expanding the definition of Q).

where \* =

Notice that ¢ monotonically decreases on the interval 0 < A < \*, and also that ¢ monotonically
increases for A > A\*. Because Q(*) = ¢(1) minimizes () on the convex set C, ¢ must be descending
on A € [0,1]. Thus, 1 < \*. It follows that 1 — 2A* < —1. Plugging in into (33), we have:

Q) = 4(1) < e~ 5016~ BIP.

Applying Q(8o) = cand ||3* — B|| > ¢ yields the result. O
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H Proofs for Dueling Feedback

H.1 Proof of Lemma 9

Lemma 9 (Bias and variance of dueling gradient estimator). Under Assumptions A to D, let Vfo (x)
be defined as in (14) with a = 1/8, m < d*log(d/z¢)/e8, b= d/e3, and v < eq/d. Then:

BV fo(2)] = Vo(@)ll2 S0, and  E[|Vfo(z) — Vfo(2)I3] < €3,

Before proving Lemma 9, we first need the following lemma.

Lemma H.1. Letr Assumption D be true. Then, we have,
E[|o™1() = 07 ()] < dexp(—2mp?) + 5
+ (exp (—2m(1 — o — 1/1)?) + exp (—2m(1/u — )?)) LZC2 ("' — af* + |a —u™'?).

Proof. We will omit the subscripts and write p;, p; = % > jetm] Yij, Dotyus,z a8 D, P, p when
there is no confusion. Consider the following three events.

1. For some constants u,! > 1, define event Eq :== {a < p <1 —a | 1/u < p < 1/1} such that
a>1/u,and 1 — a < 1/1.

2. B ={p>1l—al|l/u<p<1/l}.
3. Bs={p<al|l/u<p<l/l}.

By Hoeffding’s inequality, we have,
P(E;) >1—exp (—2m(1 — o —1/1)?) —exp (—2m(1/u — a)?),
P(Ey) <exp (—2m(1 —a—1/1)%), P(E3) <exp (—2m(1/u —a)?). (34)
Let v .= p — p. Let the event F; be true. Then we have p = p, and
o7 (8) — 0 (0)] < LoCalv].

where C,, = (1 + ﬁ + ﬁ) For sufficiently small max(p—a«, 1 —a—p) > 8 > 0, consider

the event, £, = {|v| > 8 | E1}.

exp(—2mf?)

P(E,) < P(EY)

Then, since |v| < 2,

exp(—2mp3?)

E[lv? | Ey] <4 PE) + B2 (35)

Under Es,
071 (5) = 07 ()| < LoCalp — p| < LoCala — u™|. (36)

Under E3,
071 (B) — o7 ()] < LoCulp — pl < LoCall ' —al. (37)

Combining (34), (35), (36), and (37), we obtain,
E o' 0) - o (o]
<P(E))LZCZE [|v|*] + (P(Es) + P(E3)) L3C2 (|17 = af* + Ja —u™'?)
<4 exp(—2mp°) + 3
+ (exp (—2m(1 — a — 1/1)?) + exp (—2m(1/u — a)?)) L2C2 (|I”" — a* + |a —u™'[?).
O
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Proof of Lemma 9. Since Algorithm | ensures that z;, are contained in a compact set, Assumption C
implies that |V fo||, < G for some constant G > 0 as observed in (30).*

Then,

(z + yui) — fo(z —yu;)| < Gy implying [ < p;-ll-vui,x—’vui < u, where,

l=0(—G)"", and u=0c(HG@) ", (38)
By Lipschitz continuity of o(-), using ¢(0) = 1/2, and v < 1/(4L1G), we have, (I,u) = (4/3,4).
First we look at the bias of V fo(z).

|EV fo@)] = Vol

d - K —
Tfyb Z (U ! (Potyui o—ru;) Ui = O ! (Prtryus z—yus) uz)]

2

b
+ %ZE[O’ 1(p;c+'yu1,x 'yu) ] va( )

1=1

2

d
gg (2exp(—mpB?) + B + 2L, Cy exp (—m/64)) + 3Lody
LAB+2L,Ca)8
< o
<cséy,

+ 3L0d’y

where c3 > 0 is a constant. The first inequality follows by triangle inequality, the second inequality
follows by Lemma H.1, Section 3 of Agarwal et al. (2010), and choosing o = é, and the third

inequality follows by choosing m = max (1/3%,64) log(1/8), the fourth inequality follows by

choosing 3 = 2, and the fifth inequality follows by choosing v = £¢/d. Note that with these choice
of v, u, [, one has C,, is bounded by a constant 27.

Now consider the variance term.

B |[¥ho(e) - Vha(o)

. d 2
§2E vaO(x) —E [201 (px-‘r’yu,m—’yu) U:|
2 2
d 2
+2EHEb(f%m+m%wwﬂvn@>]
Y 2
. d 2
<2E HVfo(x) —-E [27‘71 (px-&-’vu,x—'yu) “} + 6L(2)d2’72
2

202 & ) _
—% ZE [|071 (pa?—‘r’yui,m—’yui) —o! (p$+’Yui7$—'Yu7‘,)|2:|

202 ZVar Y (Potyus o)) + 6L3d*y

2d2 2 5 2 9 7 9 2d2 2 5o o
<77 (dexp(=2mB%) + B + LCZ exp (=m/32)) + - ( GPd + =5 ) + 6L3d%y

2 2 L2 2 2 L2 2.2
5 d (5 +7200a)ﬁ 7 <G2d+ OC;FY >—|—6L(2)d2’}/2

<c3ep.

“To be precise, in the dueling feedback case, since we do not know V fo(x), we need to make a mild
assumption that there is at least one point x, € £ where 2 is some compact set containing Pareto(F') such that
V fo(zs) < B where B > 0 is a constant. Then the algorithm can always be initiated at © = x; and the V fy(x)
remain uniformly bounded as per (30). This is a mild assumption because if the gradient is large everywhere,
then the problem itself becomes meaningless to study. For all practical purposes, we can assume ||V foll, < G.
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where the first inequality follows by Young’s inequality, the second inequality follows by Section 3
of Agarwal et al. (2010), the third inequality follows by Young’s and Cauchy Schwarz inequality, the
fourth inequality follows by Lemma H.1, Lemma 2 of Bach and Perchet (2016), and choosing o = %,

the fifth inequality follows by choosing m = max (1/3%,64) log(1/3), and the seventh inequality
follows by choosing b = d/a%, B=~2%andy=¢ep/d. O

H.2 Proof of Theorem 11

We expand Theorem 11 here.

Theorem H.1 (Convergence of PMM with Dueling Feedback). Let F, fy, and o satisfy Assump-

tions A, B, C, and D. Fix 0 < €1/2 < go < 1. Let 3 and B be the approximate solutions that are
returned by the black-box optimizer for §( - ; x, 5) and f3(-), defined in (13) and (2), respectively:

B argming(8;x,8) and  &p ¢+ argmin fa(@).
BreAn—1 z€R4

Given constants c1,co > 0, suppose the black-box optimizer achieves the following guarantees:
1. the approximate minimizer B is O(eq)-approximately stationary:
—Vi(Biz, B)(B = B) <ci-eoll B’ — Bll2, VB € AL

2. the approximate minimizer &g is an O(e?)-approximate solution:

IVfa(@s)l < c2-e

Let (xy, Bk )k be the iterates of Algorithm 1 with dueling feedback. Then, choosing a = 1/8,
m < d*log(d/eg)/ed, b= d/ed, and~y < eo/d in (14), there exist c1(fo, F) and ca( fo, F) bounded
away from zero and some K such that E[(fo o 2*)(Bx)] is monotonically decreasing for k € [K)|
and (xzx, Bi) is an (g9, €)-preference stationary point in expectation, i.e., ||V {3, (xx)|2 < €, and
conditions (a) and (b) of Lemma 7 hold in expectation for (xy, Br). In particular, we have the
following.

E[_Vfo(fol)Tﬁx*(l’thﬁK)(ﬁ/ - Br)] <E BEOWI - ﬂK||1] ; Vg e Am!

1
Elerry s, (x—1, k)] < €0

Also,
< 2pg - (f*_f*)

= 2. 2
i - €5

K

Proof of Theorem 11 Fix & > 1. For short, we let:
(x76) = (-rk—laﬁk—l) and (i‘aB) = (kaBk)-

Claim. At each iteration, either (i) the preference improves by at least a constant on expectation:
1 C1 2
Elfo(z5) — folwg)) < —5- - &,

Hg

or (ii) the point (&, () is (eg, €)-preference stationary on expectation.

Assuming the claim holds, the theorem immediately follows: if the algorithm in K steps has not
found an (e, €)-preference stationary point, then E[fy(zg, )] must decrease every iteration by a
constant. But as fy o z* is lower bounded over A”~! by f*, on expectation, this can happen at most:

2/1*9'(f* _f*)

times.
2. 2
€1 €0
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Proof of the claim. Let 3* := argming can-1 g(8'; 2, 8), and B* = arg ming can-1 §(8'; 7, B).
Lemma G.4 shows that an approximate stationary point B of a strongly convex function is close to
the exact point 3*:

18— B[l < 222 =4, (39)
Hg

where we let § denote this constant for short. Since g(3’; x, 3) is a strongly convex function and
simplex is a compact convex set, by tilt stability of solution mapping of strongly convex functions
(see Proposition 2G.4 of Dontchev and Rockafellar (2009)), we have,

The last inequality follows by Lemma E.2.

B*—p*

<o (90 = Vo) O )], < S Vot - Vo], 0

There are two cases, leading to either (1) O(g()-preference stationarity or (2) O(sg)-constant descent.
The two cases depend on the suboptimality of /.

Case 1: ||8—*||2 < 26. Here, {3 is fairly close to the optimum S3* of the true surrogate. We show that

the approximate stationarity of /5 with respect to the noisy surrogate implies approximate expected

preference stationarity. Similar to Theorem 10, (&, 3) is expected (g, ¢)-preference stationary
provided:

IV f3(@)ll2 < 2 (1)
~E|Vfo(a) Va' (2, 8)(8' - )| <E [;5()”5’ - Bnl] . vgeaArt @)
Elerre (s 3)] < %0 @)
Observe that,

18 = Bl < 18 = lla+ 18" = 5"l + 15 = Blla < 36+ 22 [Vl = V(o) 44
g

combining (39), (40), and the condition that ||5* — 8|2 < 20.

Note that (41) follows trivially by Condition 2 of Theorem H.1. One can efficiently find such a B
with log(1/¢¢) iteration complexity as it just requires optimizing a strongly-convex objective over a
compact convex set.

Now we show (42). We have the following bound.
= Vfo()"Va" (2. B)(8' - 5)
== Vg(B:2, B)(8 = B) + 11y (B— 5.8 = B)
Sclsouﬁ’—BHIJrug (’ﬂ B+ |87 - B

15 = 8lL,)

< (0150 +30 + ZZ]O H@fo(x) - Vfo(x)HQ) (45)

The equality follows by the definition of g. The first inequality follows by Condition 1 of Theorem 11,
triangle inequality, and Holder’s inequality. The second inequality follows by (39), (40), and by the
condition ||3* — S|, < 20 in Case 1.
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Now, for all 3/ € A”~1 we have,

= Vo) V" (2. B)(8' - 5)
<V h@) O @)~ )+ Vo) (T 2. 6) — V(2. 8) o - 1 Al
< Vo) TV (w, B)E — B)+ Mo [V fole) ~ Vol |

+ IV fola) T (Va* (2, B) — Va*(z, )l - I8 — Bl

< (a0 30+ 22 [ salo) - V)], ) 18 = Bl + 30 [ alo) - V(o)
Hg 2

L . .
+ IV fo(2)]2 - 7llﬁ —Bllz- 18" = Bl

(iv)
< <01€0 + <1 + *”Vfo( )|2) 30 + My (M

(46)

where (i) adds and subtracts V fo(2) T Va* (z, 8)(3' — ) and applies Holder’s inequality, (ii) follows
by adding and subtracting —V fo () T Va*(x, 3) (8’ — /3), Lemma E.2, Holder’s inequality, and the
fact that [|z|| . < [|x]|,. (iii) follows by (45), Lemma E.2, and Lemma G.3, and (iv) bounds || 5 — |2

using (25), and (iv) follows by (44). Taking conditional expectation on both sides, using Lemma 9,
and Cauchy-Schwarz inequality, we get,

E [~V fo(2) Va* (@, 3)(8' = B) | =, 4]

s(ﬁaﬁ <1+|Vfo( >||2) 05% 1 M (Mlgﬂ (35)2) ) E[18 = BIZ)3.

Taking expectation on both sides and by the definition of ¢4, - B H < 2, we have,
1

eoE[l|8" = BlI]-

w\»—*

E[-Viole) Ve (@, 8)(8' - B)] <
To show (43), we have:
erry £, (, B)

0] 1/ M
= erryy, (7, 8) + . (2M

(@)ll2 + L0M0> (IV£3@l2 = 1V fa(@)l )

(i1) 1/ M .
< enog(@.0) + 1 (GREIVA@I+ Lo ) V72 13 - 5l

M Mo 1l =
< 5 2 (@l + Lodo) (cae+ (354 o CE Vh(a)],) IVFE@TR).
47)

where (i) expands out erry f,, (i) uses the fact that 8 +— |V F(z) T 8|2 is | VF () " ||2-Lipschitz in
B with respect to the £2-norm, and (iii) applies the definition of errvy s, and (44). Taking conditional
expectation on both sides, and by Lemma 9,

E [errvfo (z,0) | 3375}

1 2/ M c3 M
=30 (2M1 (@)]2 +L0Mo> (cga + (35+ ?’MQ%O> IIVF(ar)TIIz)

Taking expectation on both sides, and by definitions of ¢; and ¢z, we have,

1

E [errvfo (z, B)} 5€0-
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Case 2: ||8* — Bl|2 > 24. Here f3 is suboptimal and 8* achieves a large descent. Akin to (29), we
have,

3
fows-) = folzp) < —5ned”. (48)

Now we have,

fo(zz) — fo(zp)

2 9B, ) — foles)
=g(B%2,8) — fo(zp) + (9(B;, B) — g(B%;2,8)) + (9(B%;2,8) — 9(B*; 2, B))

(21) R 2
pr—=p"
2

< —*Ngéz +Vg(Biz,8) (B —B") + % ‘

(#47) . R . T . . T4 -
< —fuga —w,x BTG =B+ (Vo) = Vo)) Va'(@,8) (8- B")

< 77[Lg(s + c1€0

|
(v)

< —Jupt +azod + S [a) - V(o) + ;‘Z‘i [ 5o - Vot

(iv) 3 ’ ~

where (i) uses the majorizing property of g, (i) applies (48), and strong convexity of g(-; z, §), (iii)
follows from the definition of §(-; x, 8), (iv) follows from Hélder’s inequality, and choice of ¢, (V)

follows by (39), (40), and Lemma E.2.

Taking conditional expectation on both sides, using Lemma 9

Elfo(z5) — folws) | 2, 6] < _g,ug62 tereod + calMode 0334028%_
Hg Hg
Taking expectation on both sides,
c3Modeg N c%Mgsg.
Hg 24
Observe that, choosing parameters properly in Lemma 9, we can always ensure

c3 < min(pger /(8My), ¢1/(12My)).

Elfo(xs) — folws)] < —gugaz ereob +

Then, we have,
1
Elfo(zz) — fo(zp)] < _1”952'

Thus, in expectation, the preference improves by at least a constant. The choices of ¢; and ¢, follows
similarly as in Theorem 10.
|

37



I Details to Visualization of Toy Examples

Figure 2 visualizes learning dynamics for two different Pareto-constrained optimization problems.
The code can be found at

Preference optimization on a non-smooth Pareto set The left sub-figure is an example of
optimization on the Pareto set described in Example 1. In particular, the preference function is:

AN T P )

Hyperparameters used using the PNG algorithm by Ye and Liu (2022) include the Pareto-set approxi-
mation threshold e = 0.001, learning rate £ = 0.01, and regularization parameter a; = 0.01. These
were not particularly tuned. The two different phases in the algorithm can be clearly observed in the
dynamics. In particular, when the iterates are close to the Pareto set, the PNG dynamics minimizes
fo. Otherwise, it aims to move toward the Pareto set in a direction that also optimizes the preference.
This leads to the jagged appearance of the PNG dynamics. We ran 40k iterations.

The PMM algorithm visualize in this example alternates between updating x, and 3. Each update
step for Sy is implemented by an approximate gradient descent, making use of Vx*, followed by a
projection back onto the simplex. The learning rate for 5 chosen here was 0.1. Then, the update step
for z;, consists of a single step of gradient descent on fg, with learning rate of 0.1. A total of 1500
iterations was run. These hyperparameters were not specifically tuned.

Preference optimization where first-order information is insufficient The right sub-figure
visualizes the counterexample given in Example D.1.

The PNG algorithm in this example used parameters e = 0.001, £ = 0.1, and o = 0.01. We ran
the algorithm for 26k iterations. The PMM algorithm in this example is the same as the previous
example. The learning rate chosen here was 0.1. The inner loop used 1 step of gradient descent with
learning rate of 0.1. We ran 1500 iterations and did not attempt to tune hyperparameters.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction clearly states our main result with explicit rate. As
this is a theoretical paper, this summarizes our main contribution.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We mention after Theorem 10 that dimension dpeendence in the dueling
feedbak setting is unavoidable. Also our work is for strongly convex objectives.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the assumptions are in the main body. Proofs are mostly in the Appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is contained in the supplementary materials and at

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: No experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: NO experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: No esperiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: We abide by all the rules.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Even though this is a theoretical work, we mention the introduction about the
possible applications nad their implications of our framework.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or model used.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: No such participant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: No.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( ) for
what should or should not be described.
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