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Abstract

Vision-language models (VLMs) pre-trained001
on extensive datasets can inadvertently learn002
biases by correlating gender information with003
specific objects or scenarios. Current methods,004
which focus on modifying inputs and monitor-005
ing changes in the model’s output probability006
scores, often struggle to comprehensively un-007
derstand bias from the perspective of model008
components. We propose a framework that in-009
corporates causal mediation analysis to mea-010
sure and map the pathways of bias genera-011
tion and propagation within VLMs. This ap-012
proach allows us to identify the direct effects013
of interventions on model bias and the indi-014
rect effects of interventions on bias mediated015
through different model components. Our re-016
sults show that image features are the primary017
contributors to bias, with significantly higher018
impacts than text features, specifically account-019
ing for 32.57% and 12.63% of the bias in the020
MSCOCO and PASCAL-SENTENCE datasets,021
respectively. Notably, the image encoder’s con-022
tribution surpasses that of the text encoder and023
the deep fusion encoder. Further experimen-024
tation confirms that contributions from both025
language and vision modalities are aligned026
and non-conflicting. Consequently, focusing027
on blurring gender representations within the028
image encoder which contributes most to the029
model bias, reduces bias efficiently by 22.03%030
and 9.04% in the MSCOCO and PASCAL-031
SENTENCE datasets, respectively, with min-032
imal performance loss or increased computa-033
tional demands.034

1 Introduction035

Vision-language models have shown promising036

results in tasks such as classification (Li et al.,037

2023; Jia et al., 2021; Radford et al., 2021), im-038

age search (Sun et al., 2023; Radford et al., 2021;039

Li et al., 2023), and object detection (Kuo et al.,040

2023; Li et al., 2022) by training on large-scale041

image-text pairs to understand the correspondences042

between cross-modal image features and language 043

features. Models trained on extensive datasets ex- 044

hibit excellent zero-shot capabilities (Radford et al., 045

2021; Yu et al., 2022; Li et al., 2022; Zhang et al., 046

2022a) but also risk discovering and exploiting 047

societal biases present in the underlying image- 048

text pair corpora, potentially introducing bias that 049

leads to social unfairness (Zhao et al., 2017). The 050

revelation, measurement, and understanding of bi- 051

ases within models (Zhou et al., 2022; Zhang 052

et al., 2022b; Lee et al., 2023; Vig et al., 2020) 053

has sparked widespread research interest and are 054

crucial for bias mitigation (Zhang et al., 2022b; 055

Seth et al., 2023; Dehdashtian et al., 2023). How- 056

ever, most contemporary methods, derived from 057

language models, lack standardized metrics for 058

evaluating bias and primarily assess the correla- 059

tion between the outputs of classifiers and external 060

attributes (Zhang et al., 2022b). Barrett et al. 061

(2019) noted that interpretations based on classifier 062

outputs can be factually inaccurate and not gener- 063

alizable. While these methods can highlight the 064

impacts of certain contributions on model outputs, 065

they (1) fail to comprehend the generation and flow 066

of bias within the model and (2) do not understand 067

the causal roles of model components in the gener- 068

ation and propagation of bias. Consequently, they 069

are not able to provide clear guidance on how to 070

effectively mitigate bias at the model level. 071

In this work, we propose a standardized frame- 072

work to measure bias in VLMs, providing a com- 073

prehensive understanding of how bias flows within 074

the entire model structure. Specifically, we use the 075

GLIP model (Li et al., 2022) as a case study, focus- 076

ing on gender bias in the task of object detection, 077

which is a predominant and challenging problem in 078

computer vision. We conduct the analysis on both 079

the MS-COCO (Lin et al., 2014) and PASCAL- 080

SENTENCE (Rashtchian et al., 2010) datasets. We 081

observe that GLIP model exhibits unbalanced infer- 082

ence capabilities on different genders, with certain 083
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indoor object categories like pets more likely to be084

associated with females and outdoor objects like ve-085

hicles with males. To holistically understand how086

the bias flows in the model, we adapt causal media-087

tion analysis (Vig et al., 2020) to VLMs, providing088

a finer-grained study of contributions from different089

model components. We find that, among the differ-090

ent model components (text module, image module,091

and fusion module that combines them), the image092

module contributes the most to the model’s bias093

– over twice as much as the text module. In the094

MSCOCO and PASCAL-SENTENCE datasets, im-095

age features accounted for 32.57% and 12.63% of096

the bias generated, respectively, compared to ap-097

proximately 15.48% and 5.64% by text features.098

Also, the interaction and updating process between099

image and text features during the deep fusion pro-100

cess significantly impacts bias production, account-101

ing for about 57% of the contributions in the image102

and text encoders. Furthermore, by integrating103

interventions across different modules, we discov-104

ered that their contributions to bias are aligned and105

do not conflict, allowing us to prioritize bias mit-106

igation efforts within the image encoder, which107

is the most substantial contributor to bias. Based108

on the results, we propose to effectively mitigate109

the bias in VLMs: reducing biases from the image110

module can successfully reduce bias by 22.03% on111

the MSCOCO dataset and 9.04% on the PASCAL-112

SENTENCE dataset, compared to a reduction of113

7.08% and 1.18% in the text module. In summary,114

the contributions of our work are:115

• We provide a comprehensive evaluation of the116

bias in VLMs, with an understanding of the117

contribution from each model module, which118

is missing in the literature.119

• We analyze the correlation between the biases120

from different modules and discover that the121

bias in different modules are aligned and do122

not conflict with each other.123

• We propose an effective bias mitigation strat-124

egy to reduce the bias from the module that125

contributes most to the model bias when fac-126

ing a limited budget.127

2 Related Work128

In recent years, vision-language models (VLMs)129

have experienced rapid advancements. The latest130

developments in VLMs often employ a dual-stream131

architecture that separately encodes text and im-132

ages (Kim et al., 2021), and these are then merged133

and aligned to facilitate cross-modal understanding 134

of visual and linguistic features (Radford et al., 135

2021). Furthermore, some studies treat the joint 136

training of images and text as a phrase localization 137

process, aiming to better align and integrate visual 138

and linguistic features (Li et al., 2022). Typically, 139

these models are trained on image-text pairs from 140

datasets such as MSCOCO (Lin et al., 2014), VQA 141

(Antol et al., 2015), OpenImages (Kuznetsova 142

et al., 2020), and Flickr30k Entities (Plummer 143

et al., 2015), achieving impressive results in various 144

downstream tasks including image classification 145

(Radford et al., 2021), image generation (Radford 146

et al., 2021), visual question answering (Li et al., 147

2018; Antol et al., 2015), and image captioning 148

(Lu et al., 2019; Alayrac et al., 2022). 149

Alongside their development, the societal bi- 150

ases exhibited by VLMs have also attracted sig- 151

nificant attention. These models often reflect soci- 152

etal stereotypes and may even amplify such biases 153

(Zhou et al., 2022). Most contemporary research 154

addressing bias in VLMs has borrowed methodolo- 155

gies from language model studies. For instance, 156

Srinivasan and Bisk (2021) utilized a language 157

masking model to explore gender biases by using 158

templates containing a specific entity and analyzing 159

the probabilities of masked entities (Kurita et al., 160

2019). Some researchers have examined biases 161

through the comparison of factual and counterfac- 162

tual inputs, with Zhang et al. (2022b) investigating 163

biases by examining predicted probabilities from 164

both factual and counterfactual inputs, and Howard 165

et al. (2024) using the Perspective API to score pre- 166

dictions derived from such inputs to study model 167

biases. 168

However, existing evaluation methods primarily 169

observe changes in the probability scores of model 170

outputs following interventions on input samples. 171

This approach limits our understanding of the un- 172

derlying causes of bias generation and propagation 173

within model components (Barrett et al., 2019). 174

Therefore, we propose a standardized framework 175

for evaluating bias in vision-language tasks and 176

introduce causal mediation analysis (Robins and 177

Greenland, 1992; Pearl, 2022; Vig et al., 2020) 178

within the context of vision-language models. This 179

methodology helps us understand the pathways of 180

bias generation and propagation from the input 181

level to model components. 182
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3 Bias Measurement and Understanding183

in VLM184

In this section, we propose a bias evaluation metric185

to assess the bias of VLM in the object detection186

task. By applying causal mediation analysis, we187

quantify the contribution on bias from various com-188

ponents within the model pipeline which helps us189

trace the origins and propagation of bias throughout190

the model pipeline. Additionally, we investigate191

the interactions between different modalities to un-192

derstand how they collectively influence model bias193

which will be used as guidance for bias mitigation194

later.195

3.1 Bias Evaluation Metrics196

In the literature, there have been various method-197

ologies proposed to measure bias, including no-198

table contributions from Zhao et al. (2017), Wang199

and Russakovsky (2021) and Zhao et al. (2023).200

These studies often assess bias amplification by201

comparing statistics between the training dataset202

and model outputs, where the models are trained203

and tested on similarly distributed datasets. In204

contemporary settings, most VLMs undergo train-205

ing on extensive collections of image and text cor-206

pora. In real-world applications, users may fine-207

tune a model on a dataset specific to a downstream208

task. The combination of fine-tuning data and pre-209

training data can introduce noise, complicating the210

statistics of previously mentioned bias evaluations.211

Additionally, many pre-training datasets used for212

large-scale models are either difficult to access213

or require significant computational resources for214

analysis, making existing evaluations challenging215

to deploy in modern settings.216

Notably, recent advancements in VLM have217

demonstrated impressive zero-shot performance,218

enabling models to make accurate predictions on219

benchmark datasets without any fine-tuning (Rad-220

ford et al., 2021; Yu et al., 2022; Li et al., 2022;221

Zhang et al., 2022a). In our study, we explore a222

zero-shot scenario where VLMs are directly tasked223

with making predictions on a benchmark dataset224

without any fine-tuning.225

Drawing inspiration from observations in Zhao226

et al. (2017), where females typically correlate227

more closely with indoor objects than males, we228

introduce the definition of BIASVL which captures229

model’s underlying correlations between sensitive230

attributes (e.g., genders) and objects:231

z

Mediator
-Muscle relaxation
-Model components

Treatment
-Training
-Interventions

Outcomes
-Athletic Performance
-∆𝐵𝑖𝑎𝑠

x y

Figure 1: Causal Mediation Analysis example

BIASVL :=
∑
object

|C(object, male) 232

−C(object, female)| (1) 233

where C(x, y) measures the correlation between 234

x and y. In our case, we use a false positive rate 235

(FPR) to describe the correlation, which measures 236

how often one specific gender y can trigger a model 237

to incorrectly predict one object x in the image. 1 238

3.2 Causal Mediation Analysis Method 239

Causal mediation analysis measures how a treat- 240

ment effect influences an outcome either directly or 241

indirectly through a mediator variable (Robins and 242

Greenland, 1992; Vig et al., 2020; Robins, 2003; 243

Pearl, 2022). An illustrative example is shown in 244

Figure 1, where athletes engage in strength training 245

to improve athletic performance. After training, 246

they need muscle relaxation to alleviate soreness, 247

which also impacts performance. Thus, strength 248

training can have a direct effect on athletic perfor- 249

mance through its intended mechanisms and an 250

indirect effect through muscle relaxation. 251

In our study, the treatment consists of interven- 252

tions on the input module, while the mediator could 253

be any model component or finer-grained layer or 254

neuron we are interested in and the outcome is the 255

change in gender bias in the model’s prediction 256

results. Therefore, we define three types of inter- 257

vention: a) replace-gender, which replaces the 258

gender word man or woman to a gender-neutral 259

word person in the text of the input module; b) 260

mask-gender, where pixels corresponding to a per- 261

son in the image module are masked, thus remov- 262

ing gender information from the input images; and 263

c) null, which leaves the original text and image 264

modules unchanged. 265

1Following existing work, we also consider binary gender
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𝒚𝑶

𝒛

Original Input                         
module

(a) Baseline

𝒚𝑬

𝒛

Input module 
with intervention

(b) Intervention Effect
E := yE − yO

𝒚𝑫

𝒛

Input module 
with intervention

(c) Direct Effect
DE := yD − yO

𝒚𝑰

𝒛

Original Input 
module

(d) Indirect Effect
IE := yI − yO

Figure 2: Bias understanding with causal mediation analysis. In the diagram, z represents the mediator, and yO,
yE , yD, yI represent the bias values of the model’s output under various interventions. The intervention effect
quantifies the change in the bias score under the specified intervention; the direct effect quantifies the change in
bias score resulting from an intervention in the input module while maintaining the mediator in the state of a null
intervention; the indirect effect measures the change in the bias score when the input module remains unchanged,
but the mediator is set to the state of a specific intervention.

We perform causal mediation analysis on the266

GLIP model by introducing interventions in the in-267

put module and observing changes in BIASVL val-268

ues defined in Eq.(1). Following Vig et al. (2020),269

we define the Direct Effect (DE) as changes in the270

BIASVL score when the intervention is applied to271

the input module while the mediator (model com-272

ponents) remains in the ‘null’ state of intervention.273

The Indirect Effect (IE) represents changes in the274

bias score when the input module is fixed, but the275

mediator is set in the state of a certain interven-276

tion. We can select any model structure of inter-277

est as the mediator and choose ‘mask-gender’,278

‘replace-gender’, or combinations of them as279

interventions in the input module (Figure 2).280

4 Experimental Setup of Bias281

Measurement and Understanding282

Model For the object detection task, we em-283

ployed the GLIP model pre-trained on the O365,284

GoldG, CC3M, and SBU datasets (Li et al., 2022).285

The model consists of an image module, a text286

module, and a deep-fusion module that updates287

and aligns image features and text features. For ob-288

ject detection, the GLIP model makes predictions289

based on the given image and a text input, which is290

a list of possible categories separated by commas.291

in this study.

Dataset Our experiments were conducted on 292

the MSCOCO and PASCAL-SENTENCE datasets. 293

For MSCOCO, we follow the setting in Zhao et al. 294

(2017), where we only consider 66 objects that ap- 295

pear with man or woman more than 100 times in 296

the training data. For the PASCAL-SENTENCE 297

dataset, which includes 20 categories but lacks gen- 298

der labels, we annotated gender based on the five 299

captions associated with each image. An image 300

is labeled as male if any caption mentions “male, 301

males, man, men, boy, boys” and as female if 302

any caption mentions “female, females, woman, 303

women, girl, girls”. Images that do not include any 304

person or mention both genders were excluded. 305

Interventions on image encoder and text en- 306

coder Initially, we implement replace-gender 307

and mask-gender interventions on the inputs re- 308

spectively without any alterations to the model 309

components. By monitoring the changes in the 310

values of BIASVL, the individual impacts of image 311

and text inputs on gender bias within the input mod- 312

ule were assessed. Subsequently, we conducted a 313

detailed causal mediation analysis on the text en- 314

coder and image encoder, respectively, by choosing 315

the attention head within a specific layer and those 316

in all preceding layers as mediators, conducting 317

experiments from shallow to deep layers. This 318

analysis aimed to identify whether the text encoder 319

or image encoder contributes more significantly to 320
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gender bias and to determine which layers in the321

model are principally responsible for bias genera-322

tion. It also sought to understand how bias flows323

and accumulates across different layers within the324

encoders. Then, we selected a combination of at-325

tention layers from both the image encoder and text326

encoder as mediators to observe changes in bias327

and compare these results with previous findings,328

exploring whether different modalities reinforce329

bias or conflict in the direction of bias.330

Interventions on deep-fusion encoder In the331

deep fusion encoder, where image and text fea-332

tures dynamically interact and are updated, we im-333

plement replace-gender and mask-gender inter-334

ventions in the input module to control the state335

of image and text features within the deep fusion336

module. We also select the attention heads within337

a specific layer and all preceding layers’ attention338

heads as the mediator for conducting causal media-339

tion analysis. By observing changes in the values340

of BIASVL, we explore how image and text fea-341

tures individually affect the deep fusion process342

and subsequently influence bias generation.343

5 Results344

5.1 Bias Measurement345

We present the results of BIASVL in Table 1, for346

the MSCOCO dataset, without any intervention347

on the inputs, the BIASVL measured was 1.434.348

To highlight the significance of this bias, we ran-349

domly divided subsets composed of male images350

into two equal parts, achieving an BIASVL of351

0.278. Similarly, dividing female image subsets352

randomly resulted in an BIASVL of 0.359. Both353

results are significantly lower than 1.434, and com-354

parable results were observed with the PASCAL-355

SENTENCE dataset, as detailed in Table 1. The356

results in the random division demonstrate that a357

model with balanced inference capabilities across a358

dataset would yield minimal BIASVL values when359

divided into equal subsets (i.e., the gender stays360

the same). However, when model predictions are361

influenced by attributes such as gender, splitting362

the dataset based on such attributes leads to higher363

BIASVL values.364

We also provide detailed statistics of False Pos-365

itive Rate (FPR) scores for various objects in the366

PASCAL-SENTENCE dataset, presented in Fig-367

ure 3. Our statistics reveal that a significant portion368

of indoor objects, such as furniture and pets, exhibit369

higher FPRs in images of females than in those of370

males. Conversely, outdoor objects, such as vehi- 371

cles, tend to have higher misclassification rates in 372

images of males. These findings suggest that the 373

model more closely associates females with indoor 374

objects. The FPR scores for different objects on 375

the MSCOCO dataset are included in the appendix. 376

Dataset BIASVL BIASVL(M1,M2) BIASVL(F1,F2)

MSCOCO 1.434 0.278 0.359
PASCAL-S 1.369 0.341 0.381

Table 1: BIASVL for MSCOCO and PASCAL-
SENTENCE (PASCAL-S) Datasets without any inter-
vention. M and F stand for “male” and “female” respec-
tively. BIASVL values obtained in two sets of images
with the same gender are significantly lower than the
BIASVL obtained from datasets divided by gender.
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Figure 3: False Positive Rate (FPR) for various objects
in the PASCAL-SENTENCE dataset. For most pets and
indoor objects, the FPR is higher in images of females
than in those of males; conversely, for most outdoor
objects such as vehicles, the FPR is higher in images of
males than in those of females. These results indicate
that females correlate more closely with indoor objects
than males.

5.2 Bias Understanding with Causal 377

Mediation Analysis 378

We conduct the causal mediation analysis on dif- 379

ferent modules to study their effect on the model 380

bias. We find that the image module influences 381

the model bias more than the text module and the 382

fusion module. In addition, we show that the bias 383

in the image and text modules are aligned – they 384

are showing similar gender bias tendencies rather 385

than conflicting ones. 386

Image encoder Applying the mask-gender in- 387

tervention to the input image module reduced the 388
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Figure 4: Causal mediation analysis of bias on the COCO and PASCAL-S (PASCAL-SENTENCE) datasets. Panels
(a) and (e) show the DE (Direct Effect) and IE (Indirect Effect) for the image module; Panels (b) and (f) represent
the DE and IE for the text module; Panels (c) and (g) illustrate the DE and IE for the text part of the deep-fusion
encoder, and panels (d) and (h) for the image part of the deep-fusion encoder. The findings highlight that image
features contribute more significantly to bias than text features, with the image module being the primary contributor
to model bias.

BIASVL to 0.967 for the MSCOCO dataset and to389

0.664 for the PASCAL-SENTENCE dataset, rep-390

resenting reductions of approximately 32.57% and391

12.63%, respectively. We employed the attention392

heads in the image encoder as the mediator to ex-393

amine both the indirect effects of this model com-394

ponent and the direct effects of the mask-gender395

on predictions. Figure 4a and Figure 4e illustrate396

that employing more attention heads as mediators397

leads to greater reductions in indirect effect, with398

diminishing reductions in direct effect. This sup-399

ports an intuition that removing gender information400

from more layers in the image encoder weakens the401

model’s dependency on latent correlations between402

gender in images and specific objects, thus mitigat-403

ing gender bias in predictions. Furthermore, while404

interventions at the input level significantly impact405

final predictions, targeting the image encoder alone406

achieves about 53% of the mask-gender effect.407

Text encoder Implementing a replace-gender408

intervention on the input text module reduced the409

BIASVL to 1.212 for the MSCOCO dataset and to410

0.720 for the PASCAL-SENTENCE dataset, reduc-411

tions of approximately 15.48% and 5.64%, respec-412

tively. We chose the attention heads within the text413

encoder as the mediator in this case. As shown in414

Figure 4b and Figure 4f, similar to the image en-415

coder insights, removing gender information from416

multiple layers in the text encoder substantially de- 417

creases the model’s reliance on latent correlations 418

between gender in text and specific objects, thereby 419

reducing prediction biases. The replace-gender 420

intervention led to a smaller reduction in bias com- 421

pared to mask-gender, emphasizing the more sub- 422

stantial role of images in generating gender bias 423

relative to text. This outcome is likely influenced 424

by the simplistic structure of the input text used in 425

our study, which adheres to the format described in 426

original GLIP experiments (Li et al., 2022), sepa- 427

rating each category with a period, resulting in less 428

complex text features than image features. Lan- 429

guage models typically capture basic features such 430

as syntactic structures at shallow layers and more 431

complex semantic information at deeper layers, cor- 432

relating with the significant changes in BIASVL 433

observed at the sixth layer. 434

Deep fusion encoder To further validate whether 435

image features contribute more to bias creation than 436

text features, we utilized the attention heads in the 437

deep fusion encoder as the mediator, adjusting the 438

attention heads’ parameters in the states of either 439

mask-gender intervention or replace-gender in- 440

tervention. The results displayed in Figure 4d 441

and Figure 4c show that for the MSCOCO 442

dataset, the indirect effects from mask-gender and 443

replace-gender through the deep fusion encoder 444
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are up to 0.260 and 0.189, respectively, reducing445

the BIASVL by approximately 18.13% and 13.18%446

(Figure 4h and Figure 4g). For the PASCAL-447

Sentence dataset, the reductions are 10.80% and448

0.53%, respectively. These findings reaffirm our449

conclusion that image features play a more substan-450

tial role in bias generation than text features. They451

also suggest that even though the deep fusion mod-452

ule does not extract features directly from images453

and text, the interactive updating process between454

text and image features significantly influences bias455

generation, accounting for approximately 55.70%456

of the effect observed with the encoder alone.457
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Figure 5: Comparison of Bias Reduction Across Modali-
ties with Interventions in Vision (V) and Language Mod-
ules (L) on the MSCOCO and PASCAL-SENTENCE
datasets. V represents the results of interventions in
the vision modality, L represents the results of inter-
ventions in the language modality, and L+V represents
the results of simultaneous interventions in both the vi-
sion and language modalities. The contributions to bias
from the two modalities are aligned and non-conflicting.
Intervening simultaneously in both the visual and lan-
guage modalities results in a greater reduction of bias
compared to interventions in any single modality alone.

Interventions comparison Multi-modal models458

consist of various interacting modules, each of459

which can learn distinct biases. However, the460

current literature does not thoroughly investigate461

whether these biases are aligned or disparate across462

different modules. In this section, we conduct463

an empirical analysis in VLMs to address this464

question. We simultaneously intervene in both465

the vision and language modalities. We apply466

replace-gender and mask-gender interventions467

to the input module and select a consistent propor-468

tion of attention heads in both the image encoder469

and text encoder as mediators. This setup allows us470

to observe changes in BIASVL and compare these471

with the changes induced by interventions in single472

modalities. Figure 5a and Figure 5b demonstrate473

that combined interventions on both images and474

text achieve greater bias reduction than interven-475

tions on either alone. However, the total reduction476

is not merely additive; the overall bias reduction is 477

less than the sum of the individual contributions. 478

6 Bias Mitigation Method 479

Based on our experimental results, image features 480

contribute most significantly to gender bias and the 481

image encoder has a more pronounced impact on 482

bias compared to the text encoder and deep-fusion 483

encoder. Therefore, our intuition is that focusing 484

on reducing gender representation in the image en- 485

coder will effectively reduce bias, especially when 486

facing a computation budget. We use the bias miti- 487

gation achieved from the text encoder as a baseline, 488

then focus on reducing bias from the image encoder 489

and compare the results with the baseline. 490

Text Encoder For the text encoder, we aim to 491

blur the gender representation in text features. We 492

modify the structure of the text encoder to first 493

identify gender-related terms (man, woman, men, 494

women, male, female, males, females) in the in- 495

put text. A new sentence is generated by replac- 496

ing these gendered terms with their corresponding 497

anti-gender terms ( i.e., man to woman, male to 498

female). The text encoder’s output features are 499

the average of the original sentence’s text features 500

and the anti-gender sentence’s text features. Since 501

the only difference between the two sentences is 502

the gendered terms, this approach effectively blurs 503

gender representation within the text encoder. We 504

then let model to make predictions and observe the 505

reduction in BIASVL. 506

Image Encoder Similarly, for the image en- 507

coder, we aim to blur gender representation in 508

image features. To achieve this, we incorporate 509

MTCNN (Zhang et al., 2016) as a face detector 510

and MobileNet (Sandler et al., 2018) as a gender 511

classifier into the existing image encoder frame- 512

work. Both networks are lightweight, allowing 513

their integration without significantly increasing 514

the computational load during inference. When 515

an image is input into the image encoder, the 516

MTCNN (Zhang et al., 2016) network first identi- 517

fies potential faces and outlines them with bound- 518

ing boxes. MobileNet (Sandler et al., 2018) then 519

classifies the gender of the faces within these boxes. 520

We have prepared a male face image and a fe- 521

male face image in advance. Depending on the gen- 522

der predicted by MobileNet (Sandler et al., 2018), 523

we replace the face in the bounding box with the 524

corresponding pre-prepared anti-gender face im- 525
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AP Bias Bias Mitigated

MSCOCO PASCAL-S MSCOCO PASCAL-S MSCOCO PASCAL-S

GLIP-T 46.6 68.4 1.434 0.763 0 0
GLIP_ImageFair 46.2 68.3 1.118 0.694 22.03% 9.04%
GLIP_TextFair 46.6 68.4 1.322 0.754 7.8% 1.18%

Table 2: Performance comparison of different methods on MSCOCO and PASCAL-S (PASCAL-SENTENCE)
datasets. AP (Average Precision) is the metric used for zero-shot object detection. “GLIP” represents the original
GLIP model, “GLIP_ImageFair” denotes the model with bias mitigation implemented in the image encoder, and
“GLIP_TextFair” refers to the model with bias mitigation applied in the text encoder. Intervention in the image
encoder is more effective than the text encoder in reducing the bias score without significant performance loss.

age. The final image features output by the im-526

age encoder are an average of the original image527

features and the features of the newly introduced528

anti-gender face. This method effectively blurs the529

original gender representation in the image. Then530

we let the model to make predictions and observe531

the reduction in BIASVL.532

7 Experimental Setup of Bias Mitigation533

Model We utilized the GLIP model, pre-trained534

on the O365, GoldG, CC3M, and SBU datasets535

(Li et al., 2022). In our setup, we incorporated an536

MTCNN (Zhang et al., 2016) pre-trained on the537

Wider Face and CelebA datasets as a face detec-538

tor within the image encoder. Additionally, we539

integrated a MobileNet (Sandler et al., 2018) pre-540

trained on ImageNet to serve as a gender classifier.541

Dataset We evaluated the effectiveness of bias542

mitigation on the MSCOCO and PASCAL-543

SENTENCE datasets. To assess the model’s object544

detection performance, we compared it with the545

original GLIP (Li et al., 2022) on the MSCOCO546

and PASCAL-SENTENCE datasets using the AP547

(Average Precision) metric for zero-shot object de-548

tection.549

8 Results550

As indicated in Table 2, blurring gender represen-551

tations in the image encoder demonstrated signif-552

icant bias mitigation on both the MSCOCO and553

PASCAL-SENTENCE datasets. The experimental554

findings suggest that obscuring gender information555

in the image encoder is more effective at reducing556

model bias compared to similar interventions in557

the text encoder. Our results show that by blurring558

gender representations in the image features within559

the image encoder, we effectively reduced model560

bias by 22.03% and 9.04% on the MSCOCO and561

PASCAL-SENTENCE datasets, respectively, with 562

minimal impact on model performance. 563

9 Conclusion 564

Vision-language models (VLMs) trained on large- 565

scale image-text pair corpora are at risk of learning 566

social biases from their training data. In this paper, 567

we introduced a standardized framework incorpo- 568

rating causal mediation analysis to measure and 569

understand the pathways through which model bias 570

is generated and propagated within VLMs. We 571

discovered that image features contribute signifi- 572

cantly more to model bias than text features, and 573

the contributions from the image encoder substan- 574

tially exceed those from the text encoder and deep 575

fusion encoder. Furthermore, the contributions to 576

bias from different language modalities reinforce 577

each other. Subsequently, by focusing on the com- 578

ponents that contribute most to bias, we efficiently 579

reduced model bias. 580

Our work provides a framework for measuring, 581

understanding, and mitigating model bias, which, 582

although utilized here within the realm of object 583

detection, can be extended to a wide range of VLM 584

tasks. However, our framework is primarily appli- 585

cable to white-box models, as it requires interven- 586

tions at the internal components of the model. A 587

promising direction for future work would involve 588

expanding our framework to encompass additional 589

modalities such as audio or video. This expansion 590

could further enhance our understanding of multi- 591

modal interactions and their impact on bias, as well 592

as deepen insights into how different sensory inputs 593

contribute to, or mitigate, biases in AI systems. 594

10 Limitations 595

Our work provides a framework for measuring, 596

understanding, and mitigating model bias in vision- 597

8



language models (VLMs), with broad applicabil-598

ity across various VLM tasks. However, our ap-599

proach primarily applies to white-box models, as it600

requires interventions within the model’s internal601

components. Consequently, this limitation implies602

that our methods might not be directly applicable603

to scenarios where model internals are inaccessible604

or when dealing with black-box systems.605
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Figure 6: False Positive Rate (FPR) for various objects in the MSCOCO dataset. For most indoor objects, the FPR
is higher in images of females than in those of males; conversely, for most outdoor objects such as vehicles, the FPR
is higher in images of males than in those of females. These results indicate that females correlate more closely
with indoor objects than males.
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