

000 001 002 003 004 005 PROVABLY LEARNING REPRESENTATIONS UNDER 006 GENERALIZED DEPENDENCY STRUCTURE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 The presence of noise that depends on the latent variable poses a significant iden-
026 tifiability challenge. Addressing this issue, the standard solution in the literature
027 assumes that the observational data satisfy the conditional independence property
028 given the latent variables. However, this assumption might not be valid in prac-
029 tice. This work relaxes this foundational constraint. Specifically, we consider a
030 *generalized dependency structure* in which the observations may exhibit arbitrary
031 dependencies conditional on the latents. To establish identifiability guarantees,
032 we introduce a two-step theoretical framework. First, we formulate the problem
033 as a factor analysis model use perturbation theory to establish the subspace iden-
034 tifiability of the latent variables. Second, assuming the structural sparsity on the
035 mixing function, or sufficient variability constraint in the latent space, we estab-
036 lish component-wise identifiability of each individual latent factor. Using these
037 identifiability results, we develop an unsupervised approach that reliably uncov-
038 ers the latent representations. Experiments on synthetic and real data verify our
039 theoretical claims.
040
041

1 INTRODUCTION

042 Identification of latent variables underpins the true data generating processes, thus inspiring an ex-
043 tensive line of works on downstream tasks, such as transfer learning (Kügelgen et al., 2021; Kong
044 et al., 2022; Xie et al., 2023; Li et al., 2024) and visual reasoning (Chen et al., 2024a;b; Kong et al.,
045 2024). When there exists structured noise depending on the latent variables, which we term as *de-
046 pendent noise*, theoretical guarantees of identifiability become significant challenging to establish.
047 Prior work (Hu, 2008) partially addresses this issue but fundamentally assumes that observations
048 are conditionally independent given the latents. Some recent works Zheng et al. (2025); Fu et al.
049 (2025); Li et al. (2025c) extends the conditional independence setup to time-series data. However,
050 many real-world systems might violate such assumption. For example, in chest X-ray based disease
051 diagnosis, the goal is to infer a patient’s latent lung-cancer state from the pixel intensities observed in
052 an image. The patient’s inspiratory level, which may itself depend on disease condition, introduces
053 noise to pixel intensities. Partitioning the image into anatomical regions reveals that regional intens-
054 ities remain spatially correlated even with conditioning on disease status. This highlights the need
055 for a flexible and robust framework to identify the latent variables under *generalized dependency
056 structure*, which allows dependencies among observations conditioning on latent variables.
057

058 The existence of dependent noise within the generalized dependency structure necessitates explicitly
059 disentangling the latent variable from noise for identifiability. The existing literature has yet to fully
060 address this challenge. Several works treats the noise terms as known auxiliaries (Lachapelle et al.,
061 2024b; Liang et al., 2023; Lachapelle et al., 2023; Liang et al., 2023; Lippe et al., 2023; Zheng
062 et al., 2022; Yao et al., 2024; Lachapelle et al., 2024a; Li et al., 2025a; Song et al., 2024; Rajendran
063 et al., 2024; Xu et al., 2024; Brady et al., 2025). One might argue that noise term can simply be
064 absorbed into an expanded latent space. The approaches of (Kügelgen et al., 2021; Kong et al.,
065 2022; Xie et al., 2023; Li et al., 2025b; Ng et al., 2025) pursue this route but require partitioning
066 them into invariant / variant components across environments. Rather than partitioning the latent
067 variables, a few methods rely on carefully designed structure between latent variable and the noise
068 term. Specifically, Sun et al. (2025) assumes independence between noise and latent variables, while
069 (Kong et al., 2023) requires that the relations between a pair of latent variables have to be sufficiently
070 distinct. In this paper, we use the term *generalized dependency structure* to refer to data-generating
071

054 processes in which the observed variables are allowed to have arbitrary dependence conditioning on
 055 the latent variable, without the conditional independence restrictions imposed in Li et al. (2025c);
 056 Fu et al. (2025).
 057

058 In contrast to previous methods, we present identifiability theory that uncovers the latent variables
 059 under generalized dependency structure, without requiring pre-specified auxiliary variables, latent
 060 variable partitions and carefully designed structure. Our analysis starts with establishing subspace
 061 identifiability, which separates the noise and latent variables in Theorem 1 through a spectral de-
 062 composition tailored to bounded perturbations. Building upon this foundational result, we introduce
 063 structural sparsity assumption in Theorem 1, which rigorously guarantees the component-wise iden-
 064 tifiability of latent variables. Moreover, we present an alternative result through Theorem 2, which
 065 leverages sufficient variability across multiple domains to ensure component-wise identifiability.
 066 To the best of our knowledge, combining subspace identifiability (Theorem 1) with either struc-
 067 tural sparsity (Theorem 1) or sufficient-variability assumptions (Theorem 2) yields the first general
 068 frameworks for reliably identifying latent variables under generalized dependency structures.
 069

070 Leveraging these theoretical insights, we propose an unsupervised method, which utilizes a varia-
 071 tional inference-based learning objective specifically designed to uncover latent variables. Our ap-
 072 proach effectively models the intricate data-generating processes involving generalized dependency
 073 structures. Extensive experimental evaluations on both synthetic and real-world datasets showcase
 074 significant improvements over existing methods, thereby validating the robustness and effectiveness
 075 of our theoretical and methodological advancements.
 076

2 PROBLEM SETTING

077 Let $\mathbf{x} \in \mathbb{R}^K$ denote the K dimensional observation, $\mathbf{z} \in \mathbb{R}^N$ denote the
 078 latent variable, and $\epsilon \in \mathbb{R}^M$ denote the dependent noise. Also, we assume
 079 $p(\mathbf{z})$ is positive and smooth. Our data generating process is formulated by:
 080

$$\mathbf{x} = g(\mathbf{z}, \epsilon), \quad \epsilon = e(\mathbf{z}, \eta) \quad (1)$$

081 We assume g to be nonlinear, nonparametric, injective and smooth functions.
 082 e denotes another nonlinear, nonparametric, injective and smooth function.
 083 η denotes an independent exogenous variable sampled from
 084 $\mathcal{N}(0, 1)$.
 085

086 Our primary goal is to identify latent variables \mathbf{z} from observed data \mathbf{x} . To
 087 achieve this, we first introduce the definition of observational equivalence
 088 as follows:
 089

Definition 1 (Observational Equivalence). *Let the true data-generating process for the ob-
 090 served variables \mathbf{x} be characterized by $\{g, e, p_{\mathbf{z}}(\mathbf{z}), p_{\epsilon}(\epsilon)\}$ as specified in Eq. 1. A learned model
 091 $\{\hat{g}, \hat{e}, p_{\hat{\mathbf{z}}}(\hat{\mathbf{z}}), p_{\hat{\epsilon}}(\hat{\epsilon})\}$ is said to be observationally equivalent to the true model if their induced data
 092 distributions match exactly, i.e.,*

$$p_{g, e, p_{\mathbf{z}}, p_{\epsilon}}(\mathbf{x}) = p_{\hat{g}, \hat{e}, p_{\hat{\mathbf{z}}}, p_{\hat{\epsilon}}}(\mathbf{x}) \quad (2)$$

093 Identifying \mathbf{z} allows recovery of g and e up to certain indeterminacies, as we assume the injectivity
 094 of g and e . Also, we assume there exists no latent confounders,
 095

096 Suppose there exists an invertible and differentiable transformation h , we further define the notions
 097 of subspace identifiability and component-wise identifiability as follows:
 098

Definition 2. (Subspace Identifiability) *The mapping h is said to achieve subspace identifiability
 100 if there exists a permutation π such that the following transformation holds: $\hat{\mathbf{z}} = h(\pi(\mathbf{z}))$, where $\hat{\mathbf{z}}$
 101 denotes the estimation of \mathbf{z} .*

Definition 3. (Component-wise Identifiability) *For an individual component of the latent variable
 103 \mathbf{z}^n ($n \in [1, N]$), there exists a unique component \hat{n} ($\hat{n} \in [1, N]$) of $\hat{\mathbf{z}}$ matches \mathbf{z}^n up to a permutation
 104 π , such that $\hat{\mathbf{z}}^{\hat{n}} = h^{\hat{n}}(\mathbf{z}^{\pi(n)})$. Then \mathbf{z}^n is component-wise identifiable.*

105 In this work, we breakdown the identifiability problem in two steps. First, we provide our findings
 106 on subspace identifiability in Section 4. Subsequently, we present the component-wise identifiability
 107 result in Section 5.

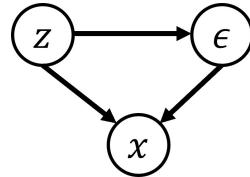


Figure 1: Visualization of the data generations of Eq. 1

108 **3 PRELIMINARIES**

110 To situate our identifiability results within the existing literature, we first recapitulate and summarize
 111 the core assumptions from (Hu, 2008), which supports the identifiability of latent variables up to an
 112 invertible transformation. See Appendix B.1 for the detailed proof of the following.

113 Consider an alternative data generating process defined by: $\mathbf{x}' = g'(\mathbf{z}', \epsilon')$, $\epsilon' = e'(\mathbf{z}', \eta')$, where
 114 \mathbf{z}' is a latent variable, ϵ' is an independent noise term, η' is an auxiliary variable, g' is an injective
 115 smooth function, and e' is an injective and smooth function. \mathbf{x}' can be decomposed into three
 116 disjoint parts $\mathbf{x}' = (\mathbf{x}'_A, \mathbf{x}'_B, \mathbf{x}'_C)$. Hu (2008) assumes *conditional independence* of \mathbf{x}' given the
 117 latent variable \mathbf{z}' by $p(\mathbf{x}'|\mathbf{z}') = p(\mathbf{x}'_A|\mathbf{z}')p(\mathbf{x}'_B|\mathbf{z}')p(\mathbf{x}'_C|\mathbf{z}')$. Under this characterization, \mathbf{x}' can be
 118 interpreted as three conditionally independent measurements of \mathbf{z}' .

119 Identifying \mathbf{z}' necessities disentangling ϵ' from \mathbf{z}' . Without further assumptions, this is impossible
 120 since ϵ' is inherently generated from \mathbf{z}' . To overcome this challenge, we leverage the spectral de-
 121 composition of the integral linear operator:

122 **Definition 4.** Consider random variables \mathbf{r} and \mathbf{v} with supports \mathcal{R} and \mathcal{V} respectively. The linear
 123 integral operator $L_{\mathbf{r}|\mathbf{v}}$ maps a function $f \in F(\mathcal{V})$ to another function $L_{\mathbf{r}|\mathbf{v}}f \in F(\mathcal{R})$, defined by:
 124 $(L_{\mathbf{r}|\mathbf{v}}f)(\mathbf{r}) = \int_{\mathcal{V}} p(\mathbf{r}|\mathbf{v})f(\mathbf{v}) d\mathcal{V}, \quad \forall \mathbf{r} \in \mathcal{R}$.

125 where $p(\mathbf{r}|\mathbf{v})$ denotes the conditional density of \mathbf{r} given \mathbf{v} . We consider $L_{\mathbf{r}|\mathbf{v}}$ to be well defined and
 126 bounded. With Definition 4 established, we impose the following assumptions:

127 **Assumption 1.** The operators $L_{\mathbf{x}'_A|\mathbf{z}'}$ and $L_{\mathbf{x}'_A|\mathbf{x}'_B}$ are injective.

128 **Assumption 2.** for any $\mathbf{z}' \neq \bar{\mathbf{z}'}$, the set $\mathbf{x}'_C : \{p(\mathbf{x}'_C|\mathbf{z}') \neq p(\mathbf{x}'_C|\bar{\mathbf{z}'})\}$ has positive probability.

129 Given Assumptions 1, Hu (2008) arrives at

$$L_{\mathbf{x}'_C; \mathbf{x}'_A|\mathbf{x}'_B} L_{\mathbf{x}'_A|\mathbf{x}'_B}^{-1} = L_{\mathbf{x}'_A|\mathbf{z}'} L_{\mathbf{x}'_C|\mathbf{z}'} L_{\mathbf{x}'_A|\mathbf{z}'}^{-1} \quad (3)$$

130 where the LHS involves only observable variables, and the RHS explicitly depends on the latent
 131 variable \mathbf{z}' . $L_{\mathbf{x}'_C|\mathbf{z}'}$ determines the eigenvalues of $L_{\mathbf{x}'_A|\mathbf{z}'} L_{\mathbf{x}'_C|\mathbf{z}'} L_{\mathbf{x}'_A|\mathbf{z}'}^{-1}$, whose diagonal entries cor-
 132 respond to the conditional distributions $p(\mathbf{x}'_C|\mathbf{z}')$.

133 Eq. 3 suggests that each \mathbf{z}' indexing a distinct conditional distribution of $p(\mathbf{x}'_C|\mathbf{z}')$. Under Assump-
 134 tion 2, where $p(\mathbf{x}'_C \mid \mathbf{z}')$ are distinct for different values of \mathbf{z}' , the eigenvalues are distinct. This
 135 allows a bijective mapping $h' : \mathcal{Z} \rightarrow \mathcal{Z}$ to permute \mathbf{z}' while preserving the values of $p(\mathbf{x}'_C \mid \mathbf{z}')$.
 136 Therefore, the latent variable can only be recovered up to such a permutation, i.e., $\hat{\mathbf{z}'} = h'(\mathbf{z}')$,
 137 which yields the identifiability up to an invertible transformation h' .

138 This identifiability result fundamentally relies on the conditional independence $p(\mathbf{x}'|\mathbf{z}') =$
 139 $p(\mathbf{x}'_A|\mathbf{z}')p(\mathbf{x}'_B|\mathbf{z}')p(\mathbf{x}'_C|\mathbf{z}')$, which might be restrictive. Also, h' might not meet Definition 2 since
 140 it does not have to be differentiable. In what follows, we address to identify \mathbf{z} under the *generalized*
 141 *dependency structure* accommodating both conditional dependence across observations, as well as
 142 differentiable transformation between the estimated and true latent variables.

143 **4 SUBSPACE IDENTIFIABILITY**

144 Our work builds upon Definition 4, Assumptions 1 and 2. Let \mathcal{X} denote the support of observed
 145 variables \mathbf{x} of Eq. 1, which can be partitioned into three subsets $\{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c\}$. This work al-
 146 lows $\{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c\}$ remaining dependent conditioning on \mathbf{z} . Formally, this implies: $p(\mathbf{x}|\mathbf{z}) \neq$
 147 $p(\mathbf{x}_a|\mathbf{z})p(\mathbf{x}_b|\mathbf{z})p(\mathbf{x}_c|\mathbf{z})$, which consequently violates Eq. 3. As a result, we can only obtain
 148 $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1} \neq L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{x}_a|\mathbf{z}}^{-1}$, where $L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ and $L_{\mathbf{x}_a|\mathbf{z}}^{-1}$ exist by Assumption 1. A detailed
 149 explanation appears in the proof of Theorem 1 (Appendix B.2). To address this setting, we explicitly
 150 define a perturbation operator Per to facility such inequality:

$$L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{x}_a|\mathbf{z}}^{-1} = L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1} + Per \quad (4)$$

151 where $Per \neq 0$ denotes deviations from $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$. Our aim thus becomes to identify \mathbf{z} from
 152 $L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{x}_a|\mathbf{z}}^{-1}$. Notably, the partition $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c)$ is arbitrary; Our analysis only requires
 153 that there exist these partitions, and is invariant to any relabeling of these partitions.

162 With the problem formulation in Eq. 4 at hand, we present subspace identifiability result:
 163

164 **Theorem 1.** Consider observed variables $\mathbf{x} \in \mathbb{R}^K$ and the estimated latent variables $\hat{\mathbf{z}} \in \mathbb{R}^N$,
 165 suppose that there exist functions \hat{g} and \hat{e} satisfying the observational equivalence defined in Eq. 2,
 166 and the following assumptions hold:

167 *i* For $\mathbf{x} = \{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c\}$, we allow the dependencies such that $p(\mathbf{x}|\mathbf{z}) \neq p(\mathbf{x}_a|\mathbf{z})p(\mathbf{x}_b|\mathbf{z})p(\mathbf{x}_c|\mathbf{z})$;
 168 *ii* The operators $L_{\mathbf{x}_a|\mathbf{z}}$, $L_{\mathbf{z}|\mathbf{x}_c}$, and $L_{\mathbf{x}_a|\mathbf{x}_c}$ are injective;
 169 *iii* The operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c}L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ has distinct eigenvalues with cardinality equal to that of $L_{\mathbf{x}_b|\mathbf{z}}$;
 170 *iv* $L_{\mathbf{x}_a|\mathbf{z}}L_{\mathbf{x}_b|\mathbf{z}}L_{\mathbf{x}_a|\mathbf{z}}^{-1}$ is self-adjoint.
 171

172 *v* ρ^i denotes the i -th eigenvalue of the operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c}L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$. Let $\kappa = \min_{i \neq j} \frac{|\rho^i - \rho^j| - \alpha}{2} \geq 0$
 173 for some constant $\alpha > 0$, and $|\overline{Per}| < \kappa$, where $|\overline{Per}|$ denotes the upper bound of Per ;

174 *vi* Assumption *i*~*v* results in the existence of an invertible transformation $\tilde{h} : \mathcal{Z} \rightarrow \mathcal{Z}$, such that
 175 $\tilde{\mathbf{z}} = \tilde{h}(\mathbf{z})$, where $\tilde{\mathbf{z}} \in \mathcal{Z}$. We further assume that $\exists M$ such that $M(L_{\mathbf{x}_b|\mathbf{z}}) = M(L_{\mathbf{x}_b|\tilde{h}(\mathbf{z})}) =$
 176 $t(\mathbf{z})$, where t is a differentiable transformation.

177 then for $\tilde{h} \in \tilde{\mathcal{H}}$ and $t \in \mathcal{T}$ (where $\tilde{\mathcal{H}}$ and \mathcal{T} are function classes, and $\tilde{\mathcal{H}} \cap \mathcal{T} \neq \emptyset$), if $h \in \tilde{\mathcal{H}} \cap \mathcal{T} \Rightarrow$
 178 $\tilde{\mathbf{z}} = h(\mathbf{z}) = \tilde{h}(\mathbf{z}) = t(\mathbf{z})$. In other words, \mathbf{z} must be subspace identified.

179 **Proof sketch:** We detail the proof in the Appendix B.2, and this section summarizes the key steps.
 180 As previously described, Assumptions *i* and *ii* are used to derive Eq. 4. Furthermore, Assumption
 181 *iii* implies that, under certain conditions, $L_{\mathbf{x}_b|\mathbf{z}}$ can possess unique entries. To establish such
 182 uniqueness under perturbation, let ρ^i and ρ_Λ^i denote the i -th eigenvalues of $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c}L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ and
 183 $L_{\mathbf{x}_a|\mathbf{z}}L_{\mathbf{x}_b|\mathbf{z}}L_{\mathbf{x}_a|\mathbf{z}}^{-1}$, respectively. Applying Weyl’s inequality (Kato, 2013) to Eq. 4 under Assumption
 184 *iv*, we obtain $|\rho_\Lambda^i - \rho^i| \leq \overline{Per}$. Then, by Assumption *v*, if $|\overline{Per}| < \kappa$, all eigenvalues ρ_Λ^i
 185 remain distinct for any $i \neq j$. Hence, $|\overline{Per}|$ quantifies the permissible perturbation tolerance under
 186 which $L_{\mathbf{x}_a|\mathbf{z}}L_{\mathbf{x}_b|\mathbf{z}}L_{\mathbf{x}_a|\mathbf{z}}^{-1}$ retains unique eigenvalues. The uniqueness of $L_{\mathbf{x}_b|\mathbf{z}}$ implies that permuting
 187 \mathbf{z} would not affect the eigenvalues, i.e., there exists an invertible permutation $\tilde{h} : \mathcal{Z} \rightarrow \mathcal{Z}$ such
 188 that $\tilde{\mathbf{z}} = \tilde{h}(\mathbf{z})$. Finally, Assumption *vi* ensures there exists $h \in \tilde{\mathcal{H}} \cap \mathcal{T}$ that is both invertible and
 189 differentiable, satisfying the requirements of Definition 2.

190 **Remark:** Assumption *i* characterizes conditional dependencies among $\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c$ given \mathbf{z} . Assumption *ii* is adopted by (Hu, 2008) as well. It ensures the existence of the inverse operators $L_{\mathbf{x}_a|\mathbf{z}}^{-1}$,
 191 $L_{\mathbf{z}|\mathbf{x}_c}^{-1}$ and $L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ required in Eq. 4. To address the scaling and potential eigenvalue degeneracy of
 192 the operator $L_{\mathbf{x}_a|\mathbf{z}}L_{\mathbf{x}_b|\mathbf{z}}L_{\mathbf{x}_a|\mathbf{z}}^{-1}$, we introduce Assumption *iii*. Furthermore, Assumptions *iv* and *v* are
 193 crucial for controlling the perturbation term Per , thereby ensuring the distinctness of $L_{\mathbf{x}_b|\mathbf{z}}$. This
 194 distinctness is essential: if eigenvalues were to coincide, the spectral structure $L_{\mathbf{x}_a|\mathbf{z}}L_{\mathbf{x}_b|\mathbf{z}}L_{\mathbf{x}_a|\mathbf{z}}^{-1}$
 195 would become ambiguous, and identifiability would be lost. The uniqueness of $L_{\mathbf{x}_b|\mathbf{z}}$ subsequently
 196 enables a permuting of \mathbf{z} via a bijection $\tilde{h} : \mathcal{Z} \rightarrow \mathcal{Z}$. Notably, the bijection \tilde{h} need not coincide with
 197 the transformation h stipulated in Definition 2. Although the smoothness of $p(\mathbf{z})$ and the mixing
 198 function g from Eq. 1 imply that h is differentiable, establishing subspace identifiability requires
 199 that h matches \tilde{h} exactly. To formally guarantee this equivalence, we introduce Assumption *vi*.

200 5 COMPONENT-WISE IDENTIFIABILITY

201 Theorem 1 guarantees that $\hat{\mathbf{z}}$ is not a function of ϵ , hence \mathbf{z} and ϵ are disentangled. We now focus
 202 on identifying \mathbf{z} in a component-wise manner. Let $J_g(\mathbf{z})$ denote the Jacobian of the mixing function
 203 g , and let $G \in \{0, 1\}^{K \times N}$ represent a binary adjacency matrix indicating connections from latent
 204 variables \mathbf{z} to observed variables \mathbf{x} , where $G^{r,c} = 1$ suggests the existence of the relationship from
 205 \mathbf{z}^c to \mathbf{x}^r . Hence, G is interpreted as the binarized $J_g(\mathbf{z})$. We formally state our first main result
 206 regarding component-wise identifiability as follows:

216 **Corollary 1.** Consider the true model $\{g, e, p(\mathbf{z}), p(\epsilon)\}$ and a learned model $\{\hat{g}, \hat{e}, p(\hat{\mathbf{z}}), p(\hat{\epsilon})\}$ that
 217 satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Suppose
 218 the following assumptions and regularization conditions hold:

219 A Latent dimensions of \mathbf{z} are independent: $p(\mathbf{z}) = \prod_{n=1}^N p(\mathbf{z}^n)$;

220 B For each dimension $n \in [1, N]$ of \mathbf{z} , there exist $\{\mathbf{z}^l\}_{l=1}^{|G^{n,:}|}$ such that:

$$221 \text{span}\{J_g(\mathbf{z}^l)_{n,:}\}_{l=1}^{|G^{n,:}|} = \mathbb{R}_{G^{n,:}}^N, \quad \text{and} \quad [J_{\hat{g}}(\hat{\mathbf{z}}^l)_{n,:}]_{l=1}^{|G^{n,:}|} \in \mathbb{R}_{\hat{G}^{n,:}}^N.$$

222 C For each $n \in [1, N]$, there exists a subset of indices \mathcal{C}_k satisfying $\bigcap_{m \in \mathcal{C}_k} G^{m,:} = \{n\}$;

223 D Sparsity regularization: $|\hat{G}| \leq |G|$

224 Then, $\hat{\mathbf{z}}$ must correspond component-wise to a permutation of the true latent variables \mathbf{z} .

225 **Proof Sketch:** The complete proof is deferred to the Appendix B.3. Here we highlight key steps.
 226 First, observational equivalence and subspace identifiability (Theorem 1) imply $\hat{\mathbf{z}} = h(\mathbf{z})$, which
 227 leads to: $J_g(\mathbf{z}) = J_{\hat{g}}(\hat{\mathbf{z}})J_h(\mathbf{z})$. By leveraging Assumption B along with the sparsity regularization
 228 condition D, we can prove that there exists a permutation between \mathbf{z} and $\hat{\mathbf{z}}$. Subsequently,
 229 component-wise identifiability is proven by contradiction: any violation would contradict the structural
 230 sparsity assumption C.

231 **Remark:** Assumption A is commonly employed in recent literature (Kong et al., 2022; Xie et al.,
 232 2023). Assumption B is introduced to ensure that the Jacobian spans the appropriate subspace.
 233 Previous works Zheng et al. (2022) leverages a similar assumption for their identifiability results
 234 under only the noise-free data generating process. In contrast, Theorem 1 forms the basis of Theorem 1,
 235 and their combination demonstrate the component-wise identifiability even under generalized
 236 dependency structure.

237 To relax Assumption A in Theorem 1, we can alternatively allow latent variables \mathbf{z} to exhibit dependence
 238 via a known auxiliary domain variable \mathbf{u} . In other words, we assume conditional independence
 239 across dimensions of \mathbf{z} given \mathbf{u} , i.e., $p(\mathbf{z}|\mathbf{u}) = \prod_{n=1}^N p(\mathbf{z}^n|\mathbf{u})$. Specifically, we modify the
 240 original data-generating process in Eq. 1 to incorporate the domain index \mathbf{u} explicitly:

$$241 \mathbf{x} = g(\mathbf{z}, \epsilon), \quad \epsilon = e(\mathbf{z}, \mathbf{u}, \eta) \quad (5)$$

242 where \mathbf{u} denotes the domain index, such that $\mathbf{u} \in [1, 2N + 1]$. Under these conditions, we establish
 243 the following identifiability theorem:

244 **Corollary 2.** Suppose observational equivalence (Definition 1) holds between the true model
 245 $\{g, e, p(\mathbf{z}), p(\epsilon)\}$ and a learned model $\{\hat{g}, \hat{e}, p(\hat{\mathbf{z}})\}$, and the subspace identifiability condition in
 246 Theorem 1 is satisfied. Additionally, assume the following conditions:

247 a Latent variables are conditionally independent given domain \mathbf{u} : $p(\mathbf{z}|\mathbf{u}) = \prod_{n=1}^N p(\mathbf{z}^n|\mathbf{u})$;

248 b There exist $2N + 1$ distinct domain values $\mathbf{u} \in [1, 2N + 1]$, such that the $2N$ vectors $\mathbf{w}(\mathbf{z}, \mathbf{u}) -$
 249 $\mathbf{w}(\mathbf{z}, \mathbf{u}_0)$ (with $\mathbf{u} \neq \mathbf{u}_0$) are linearly independent, where the vector $\mathbf{w}(\mathbf{z}, \mathbf{u})$ is defined as:

$$250 \mathbf{w}(\mathbf{z}, \mathbf{u}) = \{\mathbf{v}(\mathbf{z}, \mathbf{u}), \mathbf{v}'(\mathbf{z}, \mathbf{u})\}$$

251 with

$$252 \mathbf{v}(\mathbf{z}, \mathbf{u}) = \left(\frac{\partial \log p(\mathbf{z}^1|\mathbf{u})}{\partial \mathbf{z}^1}, \dots, \frac{\partial \log p(\mathbf{z}^N|\mathbf{u})}{\partial \mathbf{z}^N} \right)$$

$$253 \mathbf{v}'(\mathbf{z}, \mathbf{u}) = \left(\frac{\partial^2 \log p(\mathbf{z}^1|\mathbf{u})}{(\partial \mathbf{z}^1)^2}, \dots, \frac{\partial^2 \log p(\mathbf{z}^N|\mathbf{u})}{(\partial \mathbf{z}^N)^2} \right)$$

254 Then $\{\hat{\mathbf{z}}^{\hat{n}} | \hat{n} \in [1, N]\}$ must be a component-wise transformation of a permuted version of true
 255 $\{\mathbf{z}^n | n \in [1, n]\}$

270 **Proof Sketch.** See the Appendix B.4 for details. Theorem 1 gives an invertible h with $\hat{\mathbf{z}} = h(\mathbf{z})$
 271 and $\mathbf{z} = h^{-1}(\hat{\mathbf{z}})$. Using change of variables and Assumption a, we can obtain $\log p_{\hat{\mathbf{z}}|\mathbf{u}}(\hat{\mathbf{z}} \mid \mathbf{u}) =$
 272 $\sum_{i=1}^n \log p_{\mathbf{z}^i|\mathbf{u}}(\mathbf{z}^i \mid \mathbf{u}) + \log |\det J_{h^{-1}}(\hat{\mathbf{z}})|$. Taking second derivatives in $(\hat{\mathbf{z}}^k, \hat{\mathbf{z}}^v)$, $k \neq v$, the left-
 273 hand side vanishes while the right-hand side yields a linear system in $\{\tilde{h}^{i,(k)} \tilde{h}^{i,(v)}, \tilde{h}^{i,(k,v)'}\}_{i=1}^n$,
 274 where $\tilde{h}^{i,(k)} = \partial \mathbf{z}^i / \partial \hat{\mathbf{z}}^k$ and $\tilde{h}^{i,(k,v)'} = \partial^2 \mathbf{z}^i / (\partial \hat{\mathbf{z}}^k \partial \hat{\mathbf{z}}^v)$. By Assumption b, the resulting $2n$ coeffi-
 275 cient vectors are linearly independent, forcing $\tilde{h}^{i,(k)} \tilde{h}^{i,(v)} = 0$ and $\tilde{h}^{i,(k,v)'} = 0$ for all i and $k \neq v$.
 276 Thus each row and column of $J_{h^{-1}}$ has a single nonzero entry, which yields component-wise iden-
 277 tifiability.
 278

279 **Remark:** Distributional variability assumptions similar to Assumption b have been widely adopted
 280 in the literature on latent variable identifiability (Kong et al., 2022; Zhang et al., 2024). Intuitively,
 281 this assumption ensures that auxiliary variable \mathbf{u} induces sufficient variability across latent dimen-
 282 sions. Building upon Theorem 1, our conclusion of Theorem 2 differs notably from previous works
 283 by explicitly allowing dependencies between \mathbf{z} and ϵ in Eq. 5. In other words, our work degenerates
 284 to previous results without Theorem 1 and modeling the dependent noise ϵ .
 285

286 6 APPROACH

288 Building upon our established identifiability results, we now introduce an unsupervised method
 289 specifically designed for learning $\hat{\mathbf{z}}$. Our proposed method aims to achieve observational equivalence
 290 by explicitly modeling the data-generating process described in Eq. 1. Details of modeling Eq. 5 and
 291 the corresponding experiments are in Appendix D, respectively. In particular, we formulate the joint
 292 density corresponding to Eq. 1 as follows:

$$293 \quad p(\mathbf{z}, \epsilon, \mathbf{x}) = p_\theta(\mathbf{x}|\mathbf{z}, \epsilon) p_\gamma(\epsilon|\mathbf{z}) p_\delta(\mathbf{z}) \quad (6)$$

295 where parameters θ denotes the parameters of g , γ denotes the
 296 parameters of e , and δ parameterizes $p(\mathbf{z})$. The second equa-
 297 tion leverages the fact that \mathbf{x} is independent of $\{\mathbf{z}, \epsilon\}$ given $\hat{\mathbf{x}}$
 298 in Eq. 1. To uncover the latent variables \mathbf{z} and ϵ from observed
 299 data \mathbf{x} , we introduce two encoders, $q_\psi(\mathbf{z}|\mathbf{x})$ and $q_\phi(\epsilon|\mathbf{x})$ pa-
 300 rameterized by ψ and ϕ , respectively.

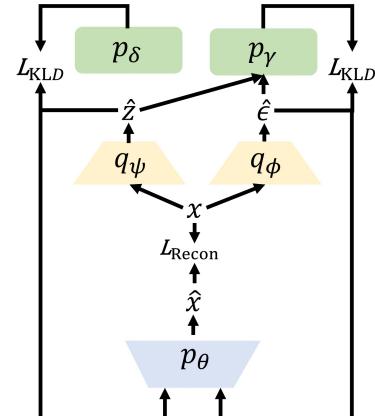
301 To the end of learning Eq. 6, we build our approach upon the
 302 framework of Beta-VAE (Higgins et al., 2016). The overall
 303 architecture of our framework is illustrated in Figure 2. In
 304 what follows, we detail each part of our proposed model.
 305

306 6.1 NETWORK DESIGN

308 Learning the log-likelihood in Eq. 6 via variational inference
 309 suggests the architecture for our approach composing of the
 310 following key elements. Specifically, the architecture includes
 311 two encoders: $q_\psi(\hat{\mathbf{z}}|\mathbf{x})$ for inferring latent variables \mathbf{z} , and
 312 $q_\phi(\hat{\epsilon}|\mathbf{x})$ for estimating the posterior of noise term ϵ . These lat-
 313 ent representations are then utilized by a decoder $p_\theta(\hat{\mathbf{x}}|\hat{\mathbf{z}}, \hat{\epsilon})$
 314 to reconstruct the observations \mathbf{x} . Additionally, we regularize
 315 the latent variables by constraining their posterior distribu-
 316 tions via the KL divergence to match the learned priors. We
 317 detail each of these modules below.

318 **Encoder $q_\psi(\hat{\mathbf{z}}|\mathbf{x})$:** We parameterize $q_\psi(\hat{\mathbf{z}}|\mathbf{x})$ as an isotropic
 319 Gaussian characterized by mean $\mu_{\mathbf{z}}$ and covariance $\sigma_{\mathbf{z}}$. To
 320 approximate this posterior, we employ a neural network en-
 321 coder constructed with an MLP followed by a leaky ReLU
 322 activation:

$$323 \quad \hat{\mathbf{z}} \sim \mathcal{N}(\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}), \quad \mu_{\mathbf{z}}, \sigma_{\mathbf{z}} = \text{LeakyReLU}(\text{MLP}(\mathbf{x})) \quad (7)$$



325 Figure 2: The overall framework
 326 of our proposed approach consists
 327 of: (1) two encoders q_ψ and q_ϕ that
 328 map observations \mathbf{x}_t to $\hat{\mathbf{z}}$ and $\hat{\epsilon}$, re-
 329 spectively; (2) a decoder that recon-
 330 structs observations $\hat{\mathbf{x}}$ from $\hat{\mathbf{z}}$ and $\hat{\epsilon}$;
 331 and (3) two prior estimation mod-
 332 ules p_δ and p_γ that models the prior
 333 of \mathbf{z} and ϵ , respectively. We train
 334 the framework by L_{Recon} along with
 335 L_{KLD} .

324 **Encoder $q_\phi(\hat{\epsilon}|\mathbf{x})$:** Similarly, we parameterize $q_\phi(\hat{\epsilon}|\mathbf{x})$ as another isotropic Gaussian distribution:
 325

$$\hat{\epsilon} \sim \mathcal{N}(\mu_\epsilon, \sigma_\epsilon), \quad \mu_\epsilon, \sigma_\epsilon = \text{LeakyReLU}(\text{MLP}(\mathbf{x})) \quad (8)$$

327 **Prior Estimation $p_\delta(\mathbf{z})$:** We estimate the prior $p_\delta(\mathbf{z})$ as a factorized Gaussian across latent dimensions, since we assume the independence of each dimension of \mathbf{z} in Assumption A of Theorem 1:
 328

$$330 \quad p_\delta(\mathbf{z}) = \prod_{n=1}^N p_\delta(\mathbf{z}^n), \quad \mathbf{z}^n \sim \mathcal{N}(0, 1) \quad (9)$$

333 **Prior Estimation $p_\gamma(\epsilon|\mathbf{z})$:** Direct estimation of the arbitrary density $p_\gamma(\epsilon|\mathbf{z})$ poses a substantial
 334 challenge. To overcome this, we introduce a transformation-based module leveraging normalizing
 335 flows, representing the prior distribution as a Gaussian transformed via an invertible mapping.
 336 Suppose each component of ϵ is independent conditioning on \mathbf{z} , $\forall m \in [1, M]$, the prior model is
 337 formulated through: $\hat{\eta}^m = \hat{\epsilon}^{-1,m}(\hat{\epsilon}^m|\hat{\mathbf{z}})$. Using the change-of-variable, the prior distribution of $\hat{\epsilon}^m$
 338 is computed as: $p_\gamma(\hat{\epsilon}^m|\hat{\mathbf{z}}) = p(\hat{\eta}^m) \left| \frac{\partial \hat{\epsilon}^{-1,m}}{\partial \hat{\epsilon}^m} \right| = p_\gamma(\hat{\epsilon}^{-1,m}(\hat{\epsilon}^m|\hat{\mathbf{z}})) \left| \frac{\partial \hat{\epsilon}^{-1,m}}{\partial \hat{\epsilon}^m} \right|$. Aggregating across all
 339 dimensions, the complete prior distribution is given by:
 340

$$341 \quad p_\gamma(\hat{\epsilon}|\hat{\mathbf{z}}) = \prod_{m=1}^M p(\hat{\eta}^m) \left| \frac{\partial \hat{\epsilon}^{-1,m}}{\partial \hat{\epsilon}^m} \right| \quad (10)$$

343 The normalizing flow transformation $\hat{\epsilon}$ is implemented using a stacked MLP.
 344

345 **Decoder $p_\theta(\hat{\mathbf{x}}|\hat{\mathbf{z}}, \hat{\epsilon})$:** The decoder generates the reconstructed observations $\hat{\mathbf{x}}$ from inferred latent
 346 variables $\hat{\mathbf{z}}$ and $\hat{\epsilon}$. It is implemented using an MLP followed by leaky ReLU activations:
 347

$$\hat{\mathbf{x}} = \text{LeakyReLU}(\text{MLP}(\hat{\mathbf{z}}, \hat{\epsilon})) \quad (11)$$

349 6.2 TRAINING OBJECTIVE

351 In this work, we extend the learning objective from the Beta-VAE framework (Higgins et al., 2016)
 352 by introducing a modified evidence lower bound (ELBO). The full ELBO objective is defined as:
 353

$$\mathcal{L}_{\text{ELBO}} = \underbrace{\mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi, \hat{\epsilon} \sim q_\phi} [\log p_\theta(\hat{\mathbf{x}}|\hat{\mathbf{z}}, \hat{\epsilon})]}_{\mathcal{L}_{\text{Recon}}} + \underbrace{\lambda \|J_{\hat{g}}(\hat{\mathbf{z}})\|_1}_{\text{Sparsity Regularization}} \\ \underbrace{- \beta_1 \mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi} (\log q(\hat{\mathbf{z}}|\mathbf{x}) - \log p_\delta(\mathbf{z})) - \beta_2 \mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi, \hat{\epsilon} \sim q_\phi} (\log q(\hat{\epsilon}|\mathbf{x}) - \log p_\gamma(\hat{\epsilon}|\hat{\mathbf{z}}))}_{\mathcal{L}_{\text{KLD}}} \quad (12)$$

358 where λ , β_1 and β_2 are hyperparameters that balance the KL divergence penalties. The reconstruction
 359 term $\mathcal{L}_{\text{Recon}}$ measures the discrepancy between reconstructed observations $\hat{\mathbf{x}}$ and original inputs
 360 \mathbf{x} , implemented as a mean squared error loss. The KL divergence terms encourage the learned
 361 posterior distributions to match the assumed priors over \mathbf{z} and ϵ . Additionally, we regularize the
 362 decoder using the ℓ_1 norm of the Jacobian matrix $J_{\hat{g}}(\hat{\mathbf{z}})$. This encourages the structural sparsity
 363 of learned \hat{g} . Following standard practice, we use the ℓ_1 norm as a differentiable surrogate for ℓ_0
 364 sparsity constraints. Please refer to Appendix C for the details of network architectures.
 365

366 7 EXPERIMENTS

368 7.1 SYNTHETIC EXPERIMENTS

370 **Experimental Setup** To thoroughly evaluate the capability of our approach in learning causal pro-
 371 cesses and accurately identifying latent variables, we perform simulation experiments using ran-
 372 domly generated causal structures with specified sample sizes and variable dimensions. Speci-
 373 fically, we create a synthetic dataset satisfying our data-generating process described in Eq. 1 (details
 374 in Appendix C.1).

375 For evaluation, we utilize the Mean Correlation Coefficient (MCC) as our primary metric, which
 376 quantifies the accuracy of latent variable recovery by computing the mean absolute correlation be-
 377 tween the estimated and true latent variables. MCC scores range from 0 to 1, with higher values
 378 indicating better identifiability.

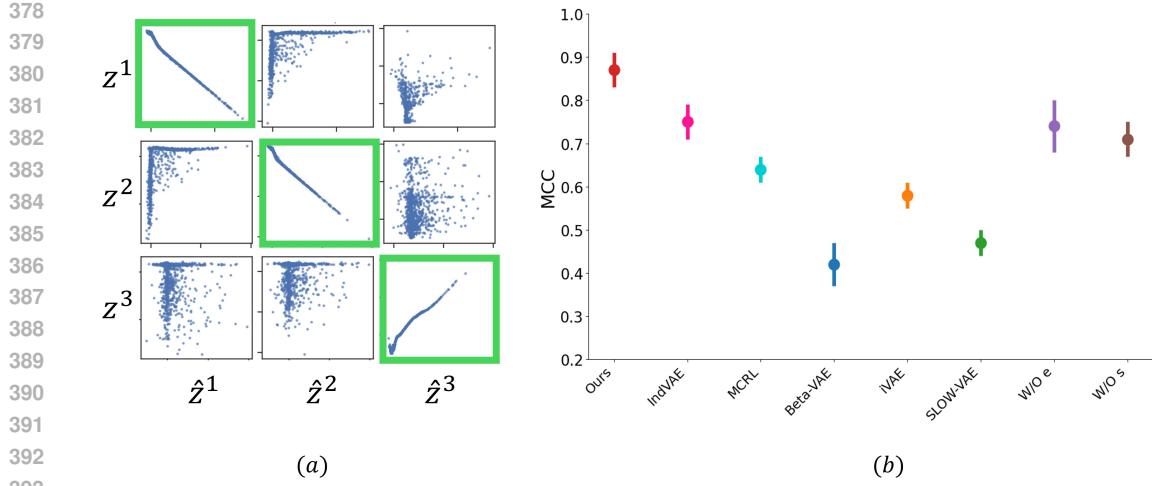


Figure 3: (a) Visualization of the correlations between each component of true latent variables (\mathbf{z}^i) and their corresponding component of estimated latent variables ($\hat{\mathbf{z}}^i$) using our approach. The green bounding boxes highlight the components that are identified. (b) Mean Correlation Coefficient (MCC) scores comparing our framework with state-of-the-art approaches, including IndVAE, MCRL, Beta-VAE, iVAE, and SlowVAE, as well as the ablation baselines W/O e and W/O s .

Results We evaluate our method against several state-of-the-art approaches for latent variable identification. Specifically, we compare our approach to the IndVAE that we build upon (Hu, 2008), which assumes conditional independence among observations given latent variables (see the details of objective in Sec. C.3). The Multimodal Causal Representation Learning framework (MCRL) proposed by (Sun et al., 2025) relies on the assumption that, the noise term ϵ is independent of the latent variables \mathbf{z} . Furthermore, we benchmark against classical representation learning methods such as Beta-VAE (Higgins et al., 2016), iVAE (Khemakhem et al., 2020), and SLOW-VAE (Klindt et al., 2020).

As illustrated in Figure 3(b), our method achieves the highest MCC score among all methods. We attribute this superior performance to our capability to effectively handle generalized dependency structures by accurately disentangling latent variables \mathbf{z} from the dependent noise term ϵ . This fundamental advantage enables our approach to more precisely uncover the true underlying data-generating process. In addition to this quantitative result, Figure 3(a) provides a visual representation of the disentanglement between the true latent variables and their estimates.

Ablation Study and Discussion To elucidate the significance of key assumptions underlying our data generating process, we conduct an ablation study that specifically assesses the impact of generalized dependency structures and structural sparsity. We introduce two ablation baselines for comparison: (1) “W/O e ”, which removes $\epsilon = e(\mathbf{z})$ from Eq. 1. Accordingly, the likelihood becomes $p(\mathbf{z}, \epsilon, \mathbf{x}) = p(\mathbf{x}|\mathbf{z}, \epsilon)p(\mathbf{z}, \epsilon)$; (2) “W/O s ”, which drops the structural sparsity assumption imposed on g .

We present the results of this ablation study in Figure 3(b). Notably, our proposed method outperforms both the “W/O e ” and “W/O s ” baselines, highlighting the critical role of explicitly modeling dependent noise and structural sparsity. The substantial performance gap observed between our approach and the “W/O e ” baseline tips the balance towards the necessity of modeling $\epsilon = e(\mathbf{z})$ to accurately capture the dependencies between ϵ and \mathbf{z} . Similarly, the diminished performance of the “W/O s ” baseline emphasizes the essential contribution of structural sparsity within the mixing function g .

7.2 REAL-WORLD EXPERIMENT

Task Setup: To validate our proposed identifiability theories in realistic and complex scenarios, we apply them to the task of Person Index classification, a subtask of person ReID. In Person Index classification, the goal is to assign a unique identity index to each individual, based on input im-

432 ages. This setup aligns well with our generalized dependency structure setting, as each image of an
 433 individual inherently contains noise, such as varying poses, gaits, or clothes, making it challenging
 434 to disentangle these factors from the underlying identity. Also, different body parts cannot be inde-
 435 pendent conditioning upon the latent person identify index. Consequently, this task serves as a solid
 436 playground for evaluating the robustness and efficacy of our theoretical framework in addressing
 437 real-world complexities.

438 In our implementation, we first employ a pretrained feature extractor to derive feature represen-
 439 tations of each individual person, denoted as $\mathbf{x} \in \mathbb{R}^K$. We consider \mathbf{x} are generated by the la-
 440 tent variable $\mathbf{z} \in \mathbb{R}^N$, directly associated with each person’s identity index, along with a depen-
 441 dent noise variable $\epsilon \in \mathbb{R}^M$, capturing variations such as pose, gait, or clothes. Inspired by the
 442 two-phase training pipeline proposed by (Li et al., 2024; 2025a), we adapt our approach to Per-
 443 son Index classification task as follows. First, we train our approach by optimizing the objective
 444 function detailed in Eq. 12. Subsequently, we introduce a classifier \hat{c} , implemented by a mul-
 445 tilayer perceptron (MLP), to predict the one-hot encoded index label \hat{y} from the inferred latent
 446 representation $\hat{\mathbf{z}}$: $\hat{y} = \text{MLP}(\hat{\mathbf{z}})$. The classifier is optimized using a cross-entropy loss given by:
 447 $\mathcal{L}_{\text{cls}}^{\text{CE}} = -\mathbb{E}_{\hat{y}} [\text{one-hot}(y) \cdot \log(\text{softmax}(\hat{y}))]$ where $\text{one-hot}(y)$ denotes the one-hot embedding of the
 448 true person index label. More data preprocessing details can be found in Appendix C.2.

449 **Data and Comparing Approaches** We conduct our
 450 experiments on the MSMT17 dataset (Wei et al.,
 451 2018), which comprises images of 4,101 unique indi-
 452 viduals. Each individual in the dataset has more than
 453 10 images, resulting in a total of over 120,000 images.
 454 We partition the dataset into three parts: 60% for train-
 455 ing, 20% for validation, and the remaining 20% for
 456 test.

457 For performance comparison, we select several state-
 458 of-the-art methods on the task of Person Index classi-
 459 fication, including GTL (Yang et al., 2025), AGW (Ye
 460 et al., 2021), TransReID (He et al., 2021), and
 461 CLIPReID (Li et al., 2023a). We also benchmark
 462 against MCRL (Sun et al., 2025) and IndVAE (Hu,
 463 2008) to evaluate the efficacy of our identifiability re-
 464 sults under generalized dependency structure.

465 **Results & Discussions:** Table 1 reports the comparison of Top-1 Accuracy (Acc) among state-of-
 466 the-art methods on the MSMT17 dataset. Our method achieves a superior performance, substantially
 467 surpassing approaches that do not explicitly handle dependent noise, such as IndVAE (Hu, 2008) and
 468 MCRL (Sun et al., 2025). More specifically, our approach attains the highest accuracy of 94.4 ± 0.7 ,
 469 significantly improving upon the previous best performance of 93.1 ± 0.5 obtained by IndVAE.
 470 Furthermore, our proposed method demonstrates notable improvements over leading methods in-
 471 cluding GTL (Yang et al., 2025), CLIPReID (Li et al., 2023a), TransReID (He et al., 2021), and
 472 AGW (Ye et al., 2021), outperforming them by significant margins. These results clearly highlight
 473 the effectiveness and robustness of our proposed framework in accurately addressing generalized
 474 dependency structures in complex real-world scenarios.

475 8 CONCLUSION

476 This work introduces a set of novel identifiability guarantees under generalized dependency struc-
 477 tures in which (i) observations can remain dependent given the latent variables and (ii) the noise may
 478 depend on the latents. Our theoretical framework establishes identifiability in two main steps. First,
 479 we rigorously prove the subspace identifiability by leveraging spectral decomposition techniques
 480 grounded in perturbation theory. Building upon this foundation, we further demonstrate component-
 481 wise identifiability. We validate our theoretical contributions through comprehensive experiments
 482 on both synthetic datasets and real-world tasks, showing the efficacy of our findings. While we have
 483 demonstrated the effectiveness of our approach on visual-based task, the lack of other applications
 484 is a limitation of this work.

Table 1: Comparison of Top-1 Accuracy
 on MSMT17 dataset

Methods	Acc
AGW (Ye et al., 2021)	85.5 ± 1.2
TransReID (He et al., 2021)	87.8 ± 0.5
CLIPReID (Li et al., 2023a)	90.1 ± 0.3
GTL Yang et al. (2025)	91.5 ± 1.2
MCRL (Sun et al., 2025)	92.6 ± 0.9
IndVAE (Hu, 2008)	93.1 ± 0.5
Ours	94.4 ± 0.7

486 REFERENCES
487

488 Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, and
489 Wieland Brendel. Interaction asymmetry: A general principle for learning composable abstrac-
490 tions. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
491 <https://openreview.net/forum?id=cC110IU836>.

492 Guangyi Chen, Yuke Li, Xiao Liu, Zijian Li, Eman Al Suradi, Donglai Wei, and Kun Zhang. LLCP:
493 Learning latent causal processes for reasoning-based video question answer. In *The Twelfth In-
494 ternational Conference on Learning Representations*, 2024a. URL [https://openreview.
495 net/forum?id=Cu5wJa5LGO](https://openreview.net/forum?id=Cu5wJa5LGO).

496 Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuwen Sun, Weiran Yao, Xiao Liu,
497 and Kun Zhang. Caring: Learning temporal causal representation under non-invertible generation
498 process. *arXiv preprint arXiv:2401.14535*, 2024b.

499 Minghao Fu, Biwei Huang, Zijian Li, Yujia Zheng, Ignavie Ng, Yingyao Hu, and Kun Zhang.
500 Identification of nonparametric dynamic causal structure and latent process in climate system.
501 *arXiv preprint arXiv:2501.12500*, 2025.

502 Yuqian Fu, Yu Xie, Yanwei Fu, and Yu-Gang Jiang. Styleadv: Meta style adversarial training for
503 cross-domain few-shot learning. In *Proceedings of the IEEE/CVF conference on computer vision
504 and pattern recognition*, pp. 24575–24584, 2023.

505 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
506 MIT Press, 2016.

507 Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li, and Wei Jiang. Transreid: Transformer-
508 based object re-identification. In *Proceedings of the IEEE/CVF international conference on com-
509 puter vision*, pp. 15013–15022, 2021.

510 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
511 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
512 constrained variational framework. In *International conference on learning representations*, 2016.

513 Yingyao Hu. Instrumental variable treatment of nonclassical measurement error models. *Economet-
514 rica*, 76(1):195–216, 2008.

515 Aapo Hyvärinen, Ilyes Khemakhem, and Ricardo Monti. Identifiability of latent-variable and
516 structural-equation models: from linear to nonlinear. *Annals of the Institute of Statistical Mathe-
517 matics*, 76(1):1–33, 2024.

518 Tosio Kato. *Perturbation theory for linear operators*, volume 132. Springer Science & Business
519 Media, 2013.

520 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
521 coders and nonlinear ica: A unifying framework. In *International conference on artificial intelli-
522 gence and statistics*, pp. 2207–2217. PMLR, 2020.

523 David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
524 and Dylan Paeton. Towards nonlinear disentanglement in natural data with temporal sparse coding.
525 *arXiv preprint arXiv:2007.10930*, 2020.

526 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akin-
527 wande, and Kun Zhang. Partial disentanglement for domain adaptation. In Kamalika Chaudhuri,
528 Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of
529 the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine
530 Learning Research*, pp. 11455–11472. PMLR, 17–23 Jul 2022.

531 Lingjing Kong, Biwei Huang, Feng Xie, Eric Xing, Yuejie Chi, and Kun Zhang. Identification of
532 nonlinear latent hierarchical models. *Advances in Neural Information Processing Systems*, 36:
533 2010–2032, 2023.

540 Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P Xing, Yuejie Chi, and Kun Zhang. Learning
 541 discrete concepts in latent hierarchical models. *arXiv preprint arXiv:2406.00519*, 2024.

542

543 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 544 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations prov-
 545 ably isolates content from style. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
 546 Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL https://openreview.net/forum?id=4pf_p0o0Dt.

547

548 Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon
 549 Lacoste-Julien, and Quentin Bertrand. Synergies between disentanglement and sparsity: Gen-
 550 eralization and identifiability in multi-task learning. In *International Conference on Machine
 551 Learning*, pp. 18171–18206. PMLR, 2023.

552

553 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexan-
 554 dre Lacoste, and Simon Lacoste-Julien. Nonparametric partial disentanglement via mech-
 555 anism sparsity: Sparse actions, interventions and sparse temporal dependencies. *arXiv preprint
 556 arXiv:2401.04890*, 2024a.

557

558 Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive de-
 559 coders for latent variables identification and cartesian-product extrapolation. *Advances in Neural
 560 Information Processing Systems*, 36, 2024b.

561

562 Siyuan Li, Li Sun, and Qingli Li. Clip-reid: exploiting vision-language model for image re-
 563 identification without concrete text labels. In *Proceedings of the AAAI conference on artificial
 564 intelligence*, volume 37, pp. 1405–1413, 2023a.

565

566 Yuke Li, Guangyi Chen, Ben Abramowitz, Stefano Anzellotti, and Donglai Wei. Learning causal
 567 domain-invariant temporal dynamics for few-shot action recognition. In *Forty-first International
 568 Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=LvuuYqU0BW>.

569

570 Yuke Li, Yujia Zheng, Guangyi Chen, Kun Zhang, and Heng Huang. Identification of intermittent
 571 temporal latent process. In *The Thirteenth International Conference on Learning Representations*,
 572 2025a. URL <https://openreview.net/forum?id=6Pz7afmsOp>.

573

574 Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace
 575 identification for multi-source domain adaptation. In *Thirty-seventh Conference on Neural
 576 Information Processing Systems*, 2023b. URL <https://openreview.net/forum?id=BACQLWQW8u>.

577

578 Zijian Li, Shunxing Fan, Yujia Zheng, Ignavier Ng, Shaoan Xie, Guangyi Chen, Xinshuai Dong,
 579 Ruichu Cai, and Kun Zhang. Synergy between sufficient changes and sparse mixing procedure
 580 for disentangled representation learning. In *The Thirteenth International Conference on Learning
 581 Representations*, 2025b. URL <https://openreview.net/forum?id=G1r2rBkUdu>.

582

583 Zijian Li, Changze Zhou, Minghao Fu, Sanjay Manjunath, Fan Feng, Guangyi Chen, Yingyao Hu,
 584 Ruichu Cai, and Kun Zhang. Online time series forecasting with theoretical guarantees. In *The
 585 Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025c.

586

587 Wendong Liang, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gre-
 588 sele, and Bernhard Schölkopf. Causal component analysis. In *Thirty-seventh Conference on
 589 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HszLRiHyfO>.

590

591 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Efstratios Gavves.
 592 BISCUIT: Causal Representation Learning from Binary Interactions. In *The 39th Conference
 593 on Uncertainty in Artificial Intelligence*, 2023. URL <https://openreview.net/forum?id=VS7Dn31xuB>.

594

595 Hong Liu, Liang Hu, and Liqian Ma. Online rgb-d person re-identification based on metric model
 596 update. *CAAI Transactions on Intelligence Technology*, 2(1):48–55, 2017.

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.

595

596

597 Ignavier Ng, Yan Li, Zijian Li, Yujia Zheng, Guangyi Chen, and Kun Zhang. A general
598 representation-based approach to multi-source domain adaptation. In *Forty-second International
599 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=BuN4FX0iBr>.

600

601 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
602 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
603 models from natural language supervision. In *International conference on machine learning*, pp.
604 8748–8763. PMLR, 2021.

605

606 Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, and Pradeep Kumar
607 Ravikumar. From causal to concept-based representation learning. In *The Thirty-eighth Annual
608 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=r5nev2SHtJ>.

609

610 Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles,
611 Eric Xing, and Kun Zhang. Temporally disentangled representation learning under unknown
612 nonstationarity. *Advances in Neural Information Processing Systems*, 36, 2024.

613

614 Yuewen Sun, Lingjing Kong, Guangyi Chen, Loka Li, Gongxu Luo, Zijian Li, Yixuan Zhang, Yu-
615 jia Zheng, Mengyue Yang, Petar Stojanov, Eran Segal, Eric P. Xing, and Kun Zhang. Causal
616 representation learning from multimodal biomedical observations. In *The Thirteenth Interna-
617 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=hjROBHstZ3>.

618

619 Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge domain gap for
620 person re-identification. In *Proceedings of the IEEE conference on computer vision and pattern
621 recognition*, pp. 79–88, 2018.

622

623 Ancong Wu, Wei-Shi Zheng, Hong-Xing Yu, Shaogang Gong, and Jianhuang Lai. Rgb-infrared
624 cross-modality person re-identification. In *Proceedings of the IEEE international conference on
625 computer vision*, pp. 5380–5389, 2017.

626

627 Shaoan Xie, Lingjing Kong, Mingming Gong, and Kun Zhang. Multi-domain image generation and
628 translation with identifiability guarantees. In *The Eleventh International Conference on Learning
629 Representations*, 2023.

630

631 Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco
632 Locatello, and Sara Magliacane. A sparsity principle for partially observable causal representation
633 learning. *arXiv preprint arXiv:2403.08335*, 2024.

634

635 Zhengwei Yang, Yuke Li, Qiang Sun, Basura Fernando, Heng Huang, and Zheng Wang. Cross-
636 modal few-shot learning: a generative transfer learning framework, 2025. URL <https://arxiv.org/abs/2410.10663>.

637

638 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
639 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
640 partial observability. In *The Twelfth International Conference on Learning Representations*, 2024.

641

642 Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven CH Hoi. Deep learning
643 for person re-identification: A survey and outlook. *IEEE transactions on pattern analysis and
644 machine intelligence*, 44(6):2872–2893, 2021.

645

646 Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multi-
647 ple distributions: A general setting. In *Forty-first International Conference on Machine Learning*,
648 2024.

649

650 Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
651 beyond. *Advances in neural information processing systems*, 35:16411–16422, 2022.

648 Yujia Zheng, Yang Liu, Jiaxiong Yao, Yingyao Hu, and Kun Zhang. Nonparametric factor analysis
649 and beyond. In *The 28th International Conference on Artificial Intelligence and Statistics*, 2025.
650

651 Fei Zhou, Peng Wang, Lei Zhang, Wei Wei, and Yanning Zhang. Revisiting prototypical network
652 for cross domain few-shot learning. In *Proceedings of the IEEE/CVF conference on computer*
653 *vision and pattern recognition*, pp. 20061–20070, 2023.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A NOTIONS

Table of notions

Variables			
$\mathbf{x} \in \mathbb{R}^K$	Observations	$\hat{\mathbf{x}} \in \mathbb{R}^K$	Reconstructions
κ	The distance between eigenvalues	$\mathbf{u} \in [1, 2N + 1]$	Auxiliary domain variable
$\mathbf{z} \in \mathbb{R}^N$	Latent variables	$\hat{\mathbf{z}} \in \mathbb{R}^N$	Latent variable estimations
ϵ	True dependent noise term	$\hat{\epsilon}$	Estimation of ϵ
η	Auxiliary variable	$\hat{\eta}$	Estimation of η
Indices			
$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	The indices of partitions of \mathbf{x}	$\{A, B, C\}$	The indices of partitions of \mathbf{x}'
$n \in [N]$	The indices of \mathbf{z}	$\hat{n} \in [N]$	The indices of $\hat{\mathbf{z}}$
i	The index of ρ_Λ and ρ	j	The index of ρ_Λ and ρ
Operators			
L	Integral linear operator	\mathbf{d}	Difference operator
ρ_Λ	The eigenvalue of $L_{\mathbf{x}_a \mathbf{z}} L_{\mathbf{x}_b \mathbf{z}} L_{\mathbf{x}_a \mathbf{z}}^{-1}$	ρ	The eigenvalue of $L_{\mathbf{x}_a, \mathbf{x}_b \mathbf{x}_c} L_{\mathbf{x}_a \mathbf{z}}^{-1}$
Per	Perturbation operator	Per	The upper bound of Per
True & learned model			
g	True mixing function	\hat{g}	Learned mixing function
e	True function of ϵ	\hat{e}	Learned function of ϵ
J_g	The jacobian matrix of g	$J_{\hat{g}}$	The jacobian matrix of \hat{g}
Optimizations			
ψ	Parameters of posterior $q_\psi(\mathbf{z} \mathbf{x})$	ϕ	Parameters of posterior $q_\phi(\epsilon \mathbf{x})$
δ	Parameters of prior $p_\delta(\mathbf{z})$	γ	Parameters of prior $p_\gamma(\epsilon \mathbf{z})$
θ	Parameters of decoder $p_\theta(\mathbf{x} \mathbf{z})$	$ \ast _1$	l_1 norm on columns of \ast

B PROOF OF THEOREMS

B.1 PREVIOUS RESULTS

In this section, we recapitulate and summarize the previous results from (Hu, 2008) in details.

Consider observed variables $\mathbf{x}' \in \mathbb{R}^K$ and the estimated latent variables $\hat{\mathbf{z}}' \in \mathbb{R}^N$, suppose that there exist functions \hat{g}' and \hat{e}' satisfying the observational equivalence defined in Eq. 2, and the following assumptions hold:

1. For $\mathbf{x}' = \{\mathbf{x}'_A, \mathbf{x}'_B, \mathbf{x}'_C\}$, $p(\mathbf{x}'|\mathbf{z}') = p(\mathbf{x}'_A|\mathbf{z}')p(\mathbf{x}'_B|\mathbf{z}')p(\mathbf{x}'_C|\mathbf{z}')$;
2. The operators $L_{\mathbf{x}'_A|\mathbf{z}'}$ and $L_{\mathbf{x}'_A|\mathbf{x}'_B}$ are injective;
3. $\forall \mathbf{z}' \neq \bar{\mathbf{z}}', p(\mathbf{x}'_C|\mathbf{z}') \neq p(\mathbf{x}'_C|\bar{\mathbf{z}}');$

then \mathbf{z}' must be identified up to an invertible transformation h' .

756 **Proof:** Given Assumption 1, we can obtain the following:
 757

$$\begin{aligned}
 758 \quad p_{\mathbf{x}'_C \mathbf{x}'_A | \mathbf{x}'_B}(\mathbf{x}'_C, \mathbf{x}'_A | \mathbf{x}'_B) &= \int p_{\mathbf{x}'_C \mathbf{x}'_A \mathbf{z}' | \mathbf{x}'_B}(\mathbf{x}'_C, \mathbf{x}'_A, \mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 759 &= \int p_{\mathbf{x}'_C | \mathbf{x}'_A \mathbf{z}' \mathbf{x}'_B}(\mathbf{x}'_C | \mathbf{x}'_A, \mathbf{z}', \mathbf{x}'_B) p_{\mathbf{x}'_A \mathbf{z}' | \mathbf{x}'_B}(\mathbf{x}'_A, \mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 760 &= \int p_{\mathbf{x}'_C | \mathbf{x}'_A \mathbf{z}'}(\mathbf{x}'_C | \mathbf{x}'_A, \mathbf{z}') p_{\mathbf{x}'_A \mathbf{z}' | \mathbf{x}'_B}(\mathbf{x}'_A, \mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 761 &= \int p_{\mathbf{x}'_C | \mathbf{x}'_A \mathbf{z}'}(\mathbf{x}'_C | \mathbf{x}'_A, \mathbf{z}') p_{\mathbf{x}'_A | \mathbf{z}' \mathbf{x}'_B}(\mathbf{x}'_A | \mathbf{z}', \mathbf{x}'_B) p_{\mathbf{z}' | \mathbf{x}'_B}(\mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 762 &= \int p_{\mathbf{x}'_C | \mathbf{x}'_A \mathbf{z}'}(\mathbf{x}'_C | \mathbf{x}'_A, \mathbf{z}') p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') p_{\mathbf{z}' | \mathbf{x}'_B}(\mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 763 &= \int p_{\mathbf{x}'_C | \mathbf{z}'}(\mathbf{x}'_C | \mathbf{z}') p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') p_{\mathbf{z}' | \mathbf{x}'_B}(\mathbf{z}' | \mathbf{x}'_B) d\mathbf{z} \\
 764 &= \int p_{\mathbf{x}'_C | \mathbf{z}'}(\mathbf{x}'_C | \mathbf{z}') p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') d\mathbf{z} \tag{13}
 \end{aligned}$$

771 Leveraging this equation and Definition 4, we can derive the following operator:
 772

$$\begin{aligned}
 773 \quad (L_{\mathbf{x}'_C; \mathbf{x}'_A | \mathbf{x}'_B} f')(\mathbf{x}'_A) &= \int \int p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') p_{\mathbf{x}'_C | \mathbf{z}'}(\mathbf{x}'_C | \mathbf{z}') p_{\mathbf{z}' | \mathbf{x}'_B}(\mathbf{z}' | \mathbf{x}'_B) f'(\mathbf{x}'_B) d\mathbf{x}'_B d\mathbf{z} \\
 774 &= \int p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') (L_{\mathbf{x}'_C; \mathbf{z}' | \mathbf{x}'_B} L_{\mathbf{z}' | \mathbf{x}'_B} f')(\mathbf{z}') d\mathbf{z} \\
 775 &= (L_{\mathbf{x}'_A | \mathbf{z}'} L_{\mathbf{x}'_C; \mathbf{z}' | \mathbf{x}'_B} f')(\mathbf{x}'_A) \tag{14}
 \end{aligned}$$

779 The above equation indicates:
 780

$$L_{\mathbf{x}'_C; \mathbf{x}'_A | \mathbf{x}'_B} = L_{\mathbf{x}'_A | \mathbf{z}'} L_{\mathbf{x}'_C; \mathbf{z}' | \mathbf{x}'_B} L_{\mathbf{z}' | \mathbf{x}'_B} \tag{15}$$

782 This equivalence holds over some functions space $\mathcal{G}(\mathcal{Z})$, given the factorization properties of the
 783 conditional densities established earlier.
 784

785 Now, integrating over \mathbf{x}'_C , by using the fact that: $\int L_{\mathbf{x}'_C; \mathbf{x}'_A | \mathbf{x}'_B} f'(\mathbf{x}'_C) d\mathbf{x}'_C = L_{\mathbf{x}'_A | \mathbf{x}'_B} f'$ we can
 786 obtain:

$$\begin{aligned}
 787 \quad L_{\mathbf{x}'_A | \mathbf{x}'_B} f'(\mathbf{x}'_A) &= \int p_{\mathbf{x}'_A | \mathbf{x}'_B}(\mathbf{x}'_A | \mathbf{x}'_B) f'(\mathbf{x}'_B) d\mathbf{x}'_B \\
 788 &= \int \int p_{\mathbf{x}'_A | \mathbf{z}', \mathbf{x}'_B}(\mathbf{x}'_A | \mathbf{z}', \mathbf{x}'_B) p_{\mathbf{z}' | \mathbf{x}'_B}(\mathbf{z}' | \mathbf{x}'_B) f'(\mathbf{x}'_B) d\mathbf{x}'_B d\mathbf{z} \\
 789 &= \int p_{\mathbf{x}'_A | \mathbf{z}'}(\mathbf{x}'_A | \mathbf{z}') [L_{\mathbf{z}' | \mathbf{x}'_B} f'] d\mathbf{z} \\
 790 &= L_{\mathbf{x}'_A | \mathbf{z}'} L_{\mathbf{z}' | \mathbf{x}'_B} f'(\mathbf{x}'_A) \tag{16}
 \end{aligned}$$

795 where the second equation leverages $\mathbf{x}'_A \perp \mathbf{x}'_B | \mathbf{z}'$. By assuming the injectivity of $L_{\mathbf{x}'_A | \mathbf{z}'}$ in
 796 Assumption 2, we can arrive at $L_{\mathbf{z}' | \mathbf{x}'_B} = L_{\mathbf{x}'_A | \mathbf{z}'}^{-1} L_{\mathbf{x}'_A | \mathbf{x}'_B}$. Substitute this to Eq. 15:
 797

$$L_{\mathbf{x}'_C; \mathbf{x}'_A | \mathbf{x}'_B} L_{\mathbf{x}'_A | \mathbf{x}'_B}^{-1} = L_{\mathbf{x}'_A | \mathbf{z}'} L_{\mathbf{x}'_C; \mathbf{z}' | \mathbf{x}'_B} L_{\mathbf{z}' | \mathbf{x}'_A}^{-1} \tag{17}$$

800 where the LHS involves only observable variables, and the RHS explicitly depends on the latent
 801 variable \mathbf{z}' . $L_{\mathbf{x}'_C; \mathbf{z}'}$ determines the eigenvalues of $L_{\mathbf{x}'_A | \mathbf{z}'} L_{\mathbf{x}'_C; \mathbf{z}' | \mathbf{x}'_B} L_{\mathbf{z}' | \mathbf{x}'_A}^{-1}$, whose diagonal entries cor-
 802 respond to the conditional distributions $p(\mathbf{x}'_C | \mathbf{z}')$. Each \mathbf{z}' indexing a distinct conditional distribution
 803 of $p(\mathbf{x}'_C | \mathbf{z}')$. Under Assumption 3, where $p(\mathbf{x}'_C | \mathbf{z}')$ are distinct for different values of \mathbf{z}' , the eigen-
 804 values are distinct. This allows a bijective mapping $h' : \mathcal{Z} \rightarrow \mathcal{Z}$ to permute \mathbf{z}' while preserving the
 805 values of $p(\mathbf{x}'_C | \mathbf{z}')$. Therefore, the latent variable can only be recovered up to such a permutation,
 806 i.e., $\hat{\mathbf{z}'} = h'(\mathbf{z}')$, which yields the identifiability up to an invertible transformation h' .
 807

808 B.2 PROOF OF THEOREM 1

809 In this section, we provide a formal proof of Theorem 1:

810 **Theorem 1** Consider observed variables $\mathbf{x} \in \mathbb{R}^K$ and the estimated latent variables $\hat{\mathbf{z}} \in \mathbb{R}^N$,
 811 suppose that there exist functions \hat{g} and \hat{e} satisfying the observational equivalence defined in Eq. 2,
 812 and the following assumptions hold:

813 i For $\mathbf{x} = \{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c\}$, we allow the dependencies such that $p(\mathbf{x}|\mathbf{z}) \neq p(\mathbf{x}_a|\mathbf{z})p(\mathbf{x}_b|\mathbf{z})p(\mathbf{x}_c|\mathbf{z})$;
 814 ii The operators $L_{\mathbf{x}_a|\mathbf{z}}$, $L_{\mathbf{z}|\mathbf{x}_c}$, and $L_{\mathbf{x}_a|\mathbf{x}_c}$ are injective;
 815 iii The operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ has distinct eigenvalues with cardinality equal to that of $L_{\mathbf{x}_b|\mathbf{z}}$;
 816 iv $L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{x}_a|\mathbf{z}}^{-1}$ is self-adjoint.
 817 v ρ^i denotes the i -th eigenvalue of the operator. Let $\kappa = \min_{i \neq j} \frac{|\rho^i - \rho^j| - \alpha}{2} \geq 0$ for some constant
 818 $\alpha > 0$, and $\overline{|Per|} < \kappa$, where $\overline{|Per|}$ denotes the upper bound of $|Per|$;
 819 vi There exists an operator M such that $M(L_{\mathbf{x}_b|\mathbf{z}}) = M(L_{\mathbf{x}_b|\tilde{h}(\mathbf{z})}) = t(\mathbf{z})$, where t is a differen-
 820 tiable transformation.

821 then for $\tilde{h} \in \mathcal{H}$ and $t \in \mathcal{T}$ ($\mathcal{H} \cap \mathcal{T} \neq \emptyset$), if $h \in \mathcal{H} \cap \mathcal{T} \Rightarrow \hat{\mathbf{z}} = h(\mathbf{z}) = \tilde{h}(\mathbf{z}) = t(\mathbf{z})$. In other words,
 822 \mathbf{z} must be subspace identified.

823 **Proof:** Suppose the observational equivalence (Definition 1) holds, our goal is to demonstrate sub-
 824 space identifiability of \mathbf{z} from the data generated process in Eq. 1. To such an end, we proceed in
 825 the following steps:

826 *Step 1: Operator Construction and Spectral Decomposition.*

827 Our approach follows the previous results in Sec. B.1, and proceeds to decompose the bounded
 828 linear operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c}$. Assumption i violates the conditional independence by $p(\mathbf{x}|\mathbf{z}) \neq$
 829 $p(\mathbf{x}_a|\mathbf{z})p(\mathbf{x}_b|\mathbf{z})p(\mathbf{x}_c|\mathbf{z})$, thus introduces a discrepancy between $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c}$ and $L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{z}|\mathbf{x}_c}$ ac-
 830 cording to Eq. 15. Consequently, we can define the difference operators:

$$\begin{aligned} \mathbf{d}(\mathbf{x}_b) &= L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} - L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{z}|\mathbf{x}_c}, \\ \mathbf{d} &= \int \mathbf{d}(\mathbf{x}_b) d\mathbf{x}_b = L_{\mathbf{x}_a|\mathbf{x}_c} - L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{z}|\mathbf{x}_c}. \end{aligned} \quad (18)$$

831 Definition 4 guarantees boundedness of each term in Eq. 18, while Assumption ii ensures the exis-
 832 tence of inverse operators $L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$, $L_{\mathbf{z}|\mathbf{x}_c}^{-1}$ and $L_{\mathbf{x}_a|\mathbf{z}}^{-1}$. Leveraging these, we rewrite:

$$\begin{aligned} L_{\mathbf{x}_a|\mathbf{z}} L_{\mathbf{x}_b|\mathbf{z}} L_{\mathbf{x}_a|\mathbf{z}}^{-1} &= (L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} - \mathbf{d}(\mathbf{x}_b))(L_{\mathbf{x}_a|\mathbf{x}_c} - \mathbf{d})^{-1} \\ &= L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1} + Per, \end{aligned} \quad (19)$$

833 where Per represents the perturbation term arising from the violation of conditional independence.

834 *Step 2: Eigenvalue Uniqueness.*

835 By Assumption iii, the operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ has distinct eigenvalues whose cardinality matches
 836 that of $L_{\mathbf{x}_b|\mathbf{z}}$. To establish the uniqueness of each eigenvalue in $L_{\mathbf{x}_b|\mathbf{z}}$ despite the perturbation,
 837 we apply Weyl's inequality (Kato, 2013) to Eq. 19 under Assumption iv. Let ρ^i denote the i -th
 838 eigenvalue of $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$, and ρ_Λ^i represent the corresponding eigenvalue in $L_{\mathbf{x}_b|\mathbf{z}}$:

$$|\rho_\Lambda^i - \rho^i| \leq \|Per\| \leq \overline{|Per|}, \quad (20)$$

839 where $\|\cdot\|$ is the l_2 operator norm, and $\overline{|Per|}$ denotes its upper bound. Starting from Eq. 20, we can
 840 obtain:

$$|\rho_\Lambda^i - \rho^i| \leq \overline{|Per|}, \quad \text{i.e.,} \quad \rho_\Lambda^i \in (\rho^i - \overline{|Per|}, \rho^i + \overline{|Per|}). \quad (21)$$

841 Suppose, for the sake of contradiction, two distinct eigenvalues, denoted ρ_Λ^1 and ρ_Λ^2 , fall within the
 842 same interval $(\rho^i - \overline{|Per|}, \rho^i + \overline{|Per|})$. Assumption v further suggests that $\kappa = \min_{i \neq j} \frac{|\rho^i - \rho^j| - \alpha}{2} >$
 843 0 and $\overline{|Per|} < \kappa$, we thus have:

$$\begin{aligned} |\rho_\Lambda^1 - \rho^i| &\leq \overline{|Per|} < \frac{|\rho^i - \rho^j|}{2}, \\ |\rho_\Lambda^2 - \rho^i| &\leq \overline{|Per|} < \frac{|\rho^i - \rho^j|}{2}. \end{aligned} \quad (22)$$

864 Applying the triangle inequality, we obtain:
 865

$$866 \quad |\rho_{\Lambda}^1 - \rho_{\Lambda}^2| \leq |\rho_{\Lambda}^1 - \rho^i| + |\rho_{\Lambda}^2 - \rho^i| < |\rho^i - \rho^j| = 2\kappa. \quad (23)$$

868 However, inequality 23 implies:

$$869 \quad \frac{|\rho^1 - \rho^2|}{2} < \kappa, \quad (24)$$

872 which directly contradicts the definition of κ . Thus, each eigenvalue ρ_{Λ}^i is unique within its respec-
 873 tive interval.

874 The uniqueness of ρ_{Λ}^i means that $L_{x_b|z}$ is determined by such decomposition. Specifically, permute
 875 z introduces a permute operator P , such that, $PL_{x_b|z}P^{-1} = L_{x_b|\bar{h}(z)}$, where \bar{h} denotes a permute
 876 transformation. Therefore, associated eigenfunctions $L_{x_a|z}$ and $L_{x_a|\bar{h}(z)}$ are permuted, but the eigen-
 877 values $L_{x_b|z}$ remains invariant. Since \bar{h} is a permute transformation, it has to be invertible. We take
 878 inspirations from the conclusion from Sec. B.1, the distinct eigenvalues imply the existence of a
 879 re-labeling permutation $\tilde{z} = \tilde{h}(\mathbf{z})$, where $\tilde{h} : \mathcal{Z} \rightarrow \mathcal{Z}$ is bijective, and the eigenvalues ρ_{Λ} remain
 880 invariant after such permuted transformation of \mathbf{z} .
 881

882 *Step 3: Connecting Bijection \tilde{h} with Differentiable Transformation h .*

883 Definition 2 requires the invertible transformation h to be differentiable. However, the eigenvalue-
 884 based bijection \tilde{h} alone may not satisfy this differentiability constraint. To resolve this, we invoke
 885 Assumption vi, which guarantees:

$$887 \quad M(L_{\mathbf{x}_b|\mathbf{z}}) = M(L_{\mathbf{x}_b|\tilde{h}(\mathbf{z})}) = t(\mathbf{z}),$$

889 for a differentiable function t . Thus, defining the function classes $\tilde{\mathcal{H}}$ (bijections induced by eigenval-
 890 ues) and \mathcal{T} (differentiable transformations), if $h \in \tilde{\mathcal{H}} \cap \mathcal{T} \neq \emptyset$, the observational equivalence implies
 891 that h coincides with \tilde{h} and t , yielding: $\hat{\mathbf{z}} = h(\mathbf{z})$. Hence, we conclude the subspace identifiability
 892 of \mathbf{z} .
 893

894 B.3 PROOF OF COROLLARY 1

895 **Corollary 1** Consider the true model $\{g, e, p(\mathbf{z}), p(\eta)\}$ and a learned model $\{\hat{g}, \hat{e}, p(\hat{\mathbf{z}}), p(\hat{\eta})\}$ that
 896 satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Suppose
 897 further the following assumptions and regularization conditions hold:

898 A Latent dimensions of \mathbf{z} are independent: $p(\mathbf{z}) = \prod_{n=1}^N p(\mathbf{z}^n)$;

899 B For each dimension $n \in [1, N]$ of \mathbf{z} , there exist $\{\mathbf{z}^l\}_{l=1}^{|G^{n,:}|}$ such that:

$$900 \quad \text{span}\{J_g(\mathbf{z}^l)_{n,:}\}_{l=1}^{|G^{n,:}|} = \mathbb{R}_{G^{n,:}}^N, \quad \text{and} \quad [J_{\hat{g}}(\hat{\mathbf{z}}^l)_{n,:}]_{l=1}^{|G^{n,:}|} \in \mathbb{R}_{\hat{G}^{n,:}}^N.$$

901 C For each $n \in [1, N]$, there exists a subset of indices \mathcal{C}_k satisfying $\bigcap_{m \in \mathcal{C}_k} G^{m,:} = \{n\}$;

902 D Sparsity regularization: $|\hat{G}| \leq |G|$

903 Then, $\hat{\mathbf{z}}$ must correspond component-wise to a permutation of the true latent variables \mathbf{z} .

904 **Proof:** Theorem 1 guarantees the existence of an invertible trasnformation h such that $\hat{\mathbf{z}} = h(\mathbf{z})$
 905 and, since the observational equivalence in Definition 1 indicates $\mathbf{x} = g(\mathbf{z}) = \hat{g}(\hat{\mathbf{z}})$, the chain rule
 906 yields

$$907 \quad J_g(\mathbf{z}) = J_{\hat{g}}(\hat{\mathbf{z}}) J_h(\mathbf{z}) \quad (25)$$

908 Our goal is to show that h is a composition of a permutation and component-wise diagonal transfor-
 909 mations.

910 Let us denote J_h by \mathbf{H} . According to our assumption, for each index i , the set of basis vectors
 911 $e \in \{J_g(\mathbf{z}^{(l)})_{i,:}\}_{l=1}^{|G_{i,:}|}$ spans the space $\mathbb{R}_{G_{i,:}}^n$. This means any vector in $\mathbb{R}_{G_{i,:}}^n$ can be expressed as a
 912

918 linear combination of these basis vectors. In particular, Assumption B suggests that, for any standard
 919 basis vector e_{j_0} with $j_0 \in G_{i,:}$ we have
 920

$$e_{j_0} \mathbf{H} \in \mathbb{R}_{G_{i,:}}^n \implies \mathbf{H}_{j_0,:} \in \mathbb{R}_{G_{i,:}}^n, \quad (26)$$

922 and therefore
 923

$$\forall (i, j) \in G, \quad \{i\} \times \text{supp}(\mathbf{H}_{j,:}) \subset \hat{G}. \quad (27)$$

924 Because $J_g(\mathbf{z})$ and $J_{\hat{g}}(\hat{\mathbf{z}})$ both have full column rank n , \mathbf{H} is invertible. By the Leibniz formula,
 925 there exists a permutation σ with $\mathbf{H}_{i,\sigma(i)} \neq 0$ for all i , i.e., $\sigma(j) \in \text{supp}(\mathbf{H}_{j,:})$ for all j . Combining
 926 this with equation 27 gives
 927

$$\forall (i, j) \in G, \quad (i, \sigma(j)) \in \hat{G}. \quad (28)$$

928 Define the permuted edge set $\sigma(G) = \{(i, \sigma(j)) : (i, j) \in G\}$. Then $\sigma(G) \subset \hat{G}$. Sparsity regular-
 929 ization D on the estimated Jacobian ensures $|\hat{G}| \leq |G| = |\sigma(G)|$, hence
 930

$$\sigma(G) = \hat{G}. \quad (29)$$

931 Suppose, for contradiction, that $\mathbf{H}(z)$ is not a composition of a diagonal matrix and a permutation
 932 matrix, i.e., there exist $j_1 \neq j_2$ such that:
 933

$$\text{supp}(\mathbf{H}_{j_1,:}) \cap \text{supp}(\mathbf{H}_{j_2,:}) \neq \emptyset. \quad (30)$$

934 Let j_3 be an element in this intersection, so $\sigma(j_3) \in \text{supp}(\mathbf{H}_{j_1,:}) \cap \text{supp}(\mathbf{H}_{j_2,:})$. Without loss of
 935 generality, assume $j_3 \neq j_1$. According to Assumption C, there exists a set \mathcal{C}_{j_1} containing j_1 such
 936 that:
 937

$$\bigcap_{i \in \mathcal{C}_{j_1}} G_{i,:} = \{j_1\}. \quad (31)$$

938 Since $j_3 \neq j_1$, it must be that:
 939

$$j_3 \notin \bigcap_{i \in \mathcal{C}_{j_1}} G_{i,:}, \quad (32)$$

940 implying there exists some $i_3 \in \mathcal{C}_{j_1}$ such that:
 941

$$j_3 \notin G_{i_3,:}. \quad (33)$$

942 However, since $j_1 \in G_{i_3,:}$, we have $(i_3, j_1) \in G$. Using Eq. 28, we find:
 943

$$(i_3, \sigma(j_3)) \in \hat{G}. \quad (34)$$

944 But from Eq. 29, this means $(i_3, j_3) \in G$, which contradicts Eq. 33. This contradiction implies our
 945 assumption is false, and therefore \mathbf{H} must be a composition of a permutation matrix and a diagonal
 946 matrix.
 947

948 Together with the equation $J_g = J_{\hat{g}} \mathbf{H}$, we achieve the desired result that t is composed of a permu-
 949 tation and component-wise invertible functions.
 950

951 B.4 PROOF OF COROLLARY 2

952 **Corollary 2** Suppose observational equivalence (Definition 1) holds between the true model
 953 $\{g, e, p(\mathbf{z})\}$ and the learned model $\{\hat{g}, \hat{e}, p(\hat{\mathbf{z}})\}$, and the subspace identifiability condition in Theo-
 954 rem 1 is satisfied. Additionally, assume the following conditions:
 955

956 a Latent variables are conditionally independent given domain \mathbf{u} : $p(\mathbf{z}|\mathbf{u}) = \prod_{n=1}^N p(\mathbf{z}^n|\mathbf{u})$;
 957

958 b There exist $2N + 1$ distinct domain values $\mathbf{u} \in [1, 2N + 1]$, such that the $2N$ vectors $\mathbf{w}(\mathbf{z}, \mathbf{u}) -$
 959 $\mathbf{w}(\mathbf{z}, \mathbf{u}_0)$ (with $\mathbf{u} \neq \mathbf{u}_0$) are linearly independent, where the vector $\mathbf{w}(\mathbf{z}, \mathbf{u})$ is defined as:
 960

$$\mathbf{w}(\mathbf{z}, \mathbf{u}) = \{\mathbf{v}(\mathbf{z}, \mathbf{u}), \mathbf{v}'(\mathbf{z}, \mathbf{u})\}$$

961 with
 962

$$\mathbf{v}(\mathbf{z}, \mathbf{u}) = \left(\frac{\partial \log p(\mathbf{z}^1|\mathbf{u})}{\partial \mathbf{z}^1}, \dots, \frac{\partial \log p(\mathbf{z}^N|\mathbf{u})}{\partial \mathbf{z}^N} \right)$$

$$\mathbf{v}'(\mathbf{z}, \mathbf{u}) = \left(\frac{\partial^2 \log p(\mathbf{z}^1|\mathbf{u})}{(\partial \mathbf{z}^1)^2}, \dots, \frac{\partial^2 \log p(\mathbf{z}^N|\mathbf{u})}{(\partial \mathbf{z}^N)^2} \right)$$

972 Then $\{\hat{\mathbf{z}}^n | \hat{\mathbf{n}} \in [1, N]\}$ must be a component-wise transformation of a permuted version of true
 973 $\{\mathbf{z}^n | n \in [1, n]\}$

974 **Proof:** By Theorem 1 there exists an invertible reparameterization $h : \mathcal{Z} \rightarrow \mathcal{Z}$ such that $\hat{\mathbf{z}} = h(\mathbf{z})$
 975 and $\mathbf{z} = h^{-1}(\hat{\mathbf{z}})$. Applying the change-of-variables formula to the conditional densities (for any
 976 fixed \mathbf{u}) gives:

$$p_{\hat{\mathbf{z}}|\mathbf{u}}(\hat{\mathbf{z}} | \mathbf{u}) = p_{\mathbf{z}|\mathbf{u}}(h^{-1}(\hat{\mathbf{z}}) | \mathbf{u}) |\det J_{h^{-1}}(\hat{\mathbf{z}})|. \quad (35)$$

977 Taking logarithms yields

$$\log p_{\hat{\mathbf{z}}|\mathbf{u}}(\hat{\mathbf{z}} | \mathbf{u}) = \log p_{\mathbf{z}|\mathbf{u}}(\mathbf{z} | \mathbf{u}) + \log |\det J_{h^{-1}}(\hat{\mathbf{z}})|, \quad (36)$$

978 Under Assumption a, we have

$$\sum_{i=1}^n \log p_{\hat{\mathbf{z}}^i|\mathbf{u}}(\hat{\mathbf{z}}^i | \mathbf{u}) = \sum_{i=1}^n \log p_{\mathbf{z}^i|\mathbf{u}}(\mathbf{z}^i | \mathbf{u}) + \log |\det J_{h^{-1}}(\hat{\mathbf{z}})|. \quad (37)$$

979 Following Hyvärinen et al. (2024), take second derivatives with respect to $\hat{\mathbf{z}}^k$ and $\hat{\mathbf{z}}^v$ for $k \neq v$.
 980 Since each term on the left-hand side of Eq. 37 depends only on a single coordinate $\hat{\mathbf{z}}^i$, we have
 981 $\partial \log p_{\hat{\mathbf{z}}^i|\mathbf{u}}(\hat{\mathbf{z}}^i | \mathbf{u}) / \partial \hat{\mathbf{z}}^k = 0$ for $i \neq k$, which implies

$$\frac{\partial^2}{\partial \hat{\mathbf{z}}^k \partial \hat{\mathbf{z}}^v} \sum_{i=1}^n \log p_{\hat{\mathbf{z}}^i|\mathbf{u}}(\hat{\mathbf{z}}^i | \mathbf{u}) = 0. \quad (38)$$

992 For the right-hand side, define for $i = 1, \dots, n$

$$\tilde{h}^{i,(k)} := \frac{\partial \mathbf{z}^i}{\partial \hat{\mathbf{z}}^k}, \quad \tilde{h}^{i,(k,v)'} := \frac{\partial^2 \mathbf{z}^i}{\partial \hat{\mathbf{z}}^k \partial \hat{\mathbf{z}}^v}, \quad (39)$$

$$\eta'_i(\mathbf{z}^i, \mathbf{u}) := \frac{\partial}{\partial \mathbf{z}^i} \log p_{\mathbf{z}^i|\mathbf{u}}(\mathbf{z}^i | \mathbf{u}), \quad \eta''_i(\mathbf{z}^i, \mathbf{u}) := \frac{\partial^2}{\partial \mathbf{z}^{i2}} \log p_{\mathbf{z}^i|\mathbf{u}}(\mathbf{z}^i | \mathbf{u}) \quad (40)$$

1000 A direct application of the chain rule gives

$$\sum_{i=1}^n \left(\eta''_i(\mathbf{z}^i, \mathbf{u}) \tilde{h}^{i,(k)} \tilde{h}^{i,(v)} + \eta'_i(\mathbf{z}^i, \mathbf{u}) \tilde{h}^{i,(k,v)'} \right) + \frac{\partial^2}{\partial \hat{\mathbf{z}}^k \partial \hat{\mathbf{z}}^v} \log |\det J_{h^{-1}}(\hat{\mathbf{z}})| = 0. \quad (41)$$

1005 Fix (k, v) with $k \neq v$ and evaluate this identity at $2n+1$ distinct values of the conditioning variable,
 1006 $\mathbf{u}^{(j)}$ for $j \in \{0, 1, \dots, 2n\}$. Subtracting the equation at $\mathbf{u}^{(0)}$ from that at $\mathbf{u}^{(j)}$ cancels the log-
 1007 determinant term (which does not depend on \mathbf{u}) and yields, for $j = 1, \dots, 2n$,

$$\sum_{i=1}^n \left([\eta''_i(\mathbf{z}^i, \mathbf{u}^{(j)}) - \eta''_i(\mathbf{z}^i, \mathbf{u}^{(0)})] \tilde{h}^{i,(k)} \tilde{h}^{i,(v)} + [\eta'_i(\mathbf{z}^i, \mathbf{u}^{(j)}) - \eta'_i(\mathbf{z}^i, \mathbf{u}^{(0)})] \tilde{h}^{i,(k,v)'} \right) = 0. \quad (42)$$

1012 Let

$$\mathbf{w}(\mathbf{z}, \mathbf{u}) := (\eta''_1(\mathbf{z}^1, \mathbf{u}), \dots, \eta''_n(\mathbf{z}^n, \mathbf{u}), \eta'_1(\mathbf{z}^1, \mathbf{u}), \dots, \eta'_n(\mathbf{z}^n, \mathbf{u}))^\top. \quad (43)$$

1014 Under Assumption b, the $2n$ vectors $\mathbf{w}(\mathbf{z}, \mathbf{u}^{(j)}) - \mathbf{w}(\mathbf{z}, \mathbf{u}^{(0)})$ for $j = 1, \dots, 2n$ are linearly inde-
 1015 pendent, so the only solution to the homogeneous linear system Eq. 42 is

$$\tilde{h}^{i,(k)} \tilde{h}^{i,(v)} = 0 \quad \text{and} \quad \tilde{h}^{i,(k,v)'} = 0 \quad \text{for all } i \in \{1, \dots, n\} \text{ and all } k \neq v. \quad (44)$$

1019 Hence each row of the Jacobian $J_{h^{-1}}(\hat{\mathbf{z}})$ has at most one nonzero entry, and all mixed second
 1020 derivatives vanish. Since h^{-1} is invertible, each row must in fact have exactly one nonzero entry;
 1021 moreover, two distinct rows cannot share the same nonzero column (otherwise $\det J_{h^{-1}}(\hat{\mathbf{z}}) = 0$), so
 1022 there exists a permutation π such that

$$\hat{\mathbf{z}}^{\pi(i)} = h^i(\mathbf{z}^i) \quad \text{for } i = 1, \dots, n, \quad (45)$$

1023 which shows that $\hat{\mathbf{z}}$ is obtained from \mathbf{z} by a permutation of component-wise invertible transfor-
 1024 mations.

1026 B.5 IDENTIFYING ϵ
10271028 **Corollary** Consider the true model $\{g, e, p(\mathbf{z}), p(\eta)\}$ and a learned model $\{\hat{g}, \hat{e}, p(\hat{\mathbf{z}}), p(\hat{\eta})\}$ that
1029 satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Further,
1030 the following assumptions also hold:
1031

- 1032 1. There exists an smooth, invertible transformation f between z, ϵ and $\hat{z}, \hat{\epsilon}$. Also, the diagonal
1033 entries of the jacobian of f coincides with $\frac{\partial \hat{z}}{\partial z}$ and $\frac{\partial \hat{\epsilon}}{\partial \epsilon}$, respectively.
1034
- 1035 2. For $\mathbf{x} = \{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c\}$, we allow the dependencies such that $p(\mathbf{x}|\epsilon) \neq$
1036 $p(\mathbf{x}_a|\epsilon)p(\mathbf{x}_b|\epsilon)p(\mathbf{x}_c|\epsilon)$;
1037
- 1038 3. The operators $L_{\mathbf{x}_a|\epsilon}$, $L_{\epsilon|\mathbf{x}_c}$, and $L_{\mathbf{x}_a|\mathbf{x}_c}$ are injective;
1039
- 1040 4. The operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$ has distinct eigenvalues with cardinality equal to that of
1041 $L_{\mathbf{x}_b|\epsilon}$;
1042
- 1043 5. $L_{\mathbf{x}_a|\epsilon} L_{\mathbf{x}_b|\epsilon} L_{\mathbf{x}_a|\epsilon}^{-1}$ is self-adjoint.
1044
- 1045 6. ρ^i denotes the i -th eigenvalue of the operator $L_{\mathbf{x}_a, \mathbf{x}_b|\mathbf{x}_c} L_{\mathbf{x}_a|\mathbf{x}_c}^{-1}$. Let $\kappa =$
1046 $\min_{i \neq j} \frac{|\rho^i - \rho^j| - \alpha}{2} \geq 0$ for some constant $\alpha > 0$, and $\overline{|Per|} < \kappa$, where $\overline{|Per|}$ denotes
1047 the upper bound of Per ;
1048
- 1049 7. There exists an operator M_ϵ such that $M_\epsilon(L_{\mathbf{x}_b|\epsilon}) = M_\epsilon(L_{\mathbf{x}_b|\tilde{h}_\epsilon(\epsilon)}) = t_\epsilon(\epsilon)$, where t_ϵ is a
1050 differentiable transformation.
1051
- 1052

1053 then for $\tilde{h}_\epsilon \in \tilde{\mathcal{H}}_\epsilon$ and $t_\epsilon \in \mathcal{T}_\epsilon$ (where $\tilde{\mathcal{H}}_\epsilon$ and \mathcal{T}_ϵ are function classes, and $\tilde{\mathcal{H}}_\epsilon \cap \mathcal{T}_\epsilon \neq \emptyset$), if $h_\epsilon \in$
1054 $\tilde{\mathcal{H}}_\epsilon \cap \mathcal{T}_\epsilon \Rightarrow \hat{\epsilon} = h_\epsilon(\epsilon) = \tilde{h}_\epsilon(\epsilon) = t_\epsilon(\epsilon)$. In other words, ϵ must be subspace identified. Combining
1055 with the conclusion from Theorem 1, we can further obtain the block-wise identifiability of z and
1056 ϵ .
10571058 **Proof:** We can arrive at $\hat{\epsilon} = h_\epsilon(\epsilon)$ by following the same proof strategy as in Sec. B.2. Since we
1059 assume there exists an smooth, invertible transformation f between (z, ϵ) and $(\hat{z}, \hat{\epsilon})$:
1060

1061
$$(\hat{z}, \hat{\epsilon}) = f(z, \epsilon). \quad (46)$$

1062

1063 The Jacobian of f with respect to (z, ϵ) is
1064

1065
$$J_f = \begin{pmatrix} \frac{\partial \hat{z}}{\partial z} & \frac{\partial \hat{z}}{\partial \epsilon} \\ \frac{\partial \hat{\epsilon}}{\partial z} & \frac{\partial \hat{\epsilon}}{\partial \epsilon} \end{pmatrix}. \quad (47)$$

1066
1067
1068
1069

1070 Theorem 1 gives $\hat{z} = h(z)$, hence $\frac{\partial \hat{z}}{\partial \epsilon} = 0$. Analogously, $\hat{\epsilon} = h_\epsilon(\epsilon)$ implies $\frac{\partial \hat{\epsilon}}{\partial z} = 0$.
1071 Therefore the Jacobian reduces to
1072

1073
$$J_f = \begin{pmatrix} \frac{\partial \hat{z}}{\partial z} & 0 \\ 0 & \frac{\partial \hat{\epsilon}}{\partial \epsilon} \end{pmatrix}, \quad (48)$$

1074
1075
1076
1077

1078 which is block-diagonal. This shows that the transformation between (z, ϵ) and $(\hat{z}, \hat{\epsilon})$ is block-wise,
1079 i.e., we have block-wise identifiability of z and ϵ .
1080

1080 C IMPLEMENTATION DETAILS
10811082 C.1 SYNTHETIC EXPERIMENT
10831084 **Synthetic Data Generation Process:** Our data generating process for the synthetic experiment is
1085 as follows:

$$\begin{aligned}
 \epsilon_1 &= \mathcal{N}(0, (\mathbf{z}_1)^2), \quad \tilde{g}_1(\mathbf{z}_1, \epsilon_1) = \sinh(\mathbf{z}_1) \times \epsilon_1 \\
 \epsilon_2 &= \tanh(\mathbf{z}_2), \quad \tilde{g}_2(\mathbf{z}_2, \epsilon_2) = \frac{1}{1 + \exp(\mathbf{z}_2)} \times \epsilon_2 \\
 \epsilon_3 &= \text{Laplace}(0, |\mathbf{z}_3|), \quad \tilde{g}_3(\mathbf{z}_3, \epsilon_3) = (\mathbf{z}_3)^2 \times \epsilon_3 \\
 \tilde{\mathbf{x}}_m &= \tilde{g}_m(\mathbf{z}_m, \epsilon_m), \quad \mathbf{x} = g(\tilde{\mathbf{x}}) = \sigma(R\tilde{\mathbf{x}})
 \end{aligned} \tag{49}$$

1092 where $m \in [1, 3]$. We sample 10,000 states drawn from $\mathbf{z} \sim U(0, 1)$, $R \in \mathbb{R}^{3 \times 3}$ is a fixed full-rank
1093 matrix with sparse, small nonzero off-diagonal entries. $\tilde{\mathbf{x}} = (\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \tilde{\mathbf{x}}_3)^\top$, and σ is a smooth strictly
1094 monotone scalar nonlinearity applied coordinate-wise. In practice, we randomly assign the roles of
1095 $\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c$ to $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, so that $(\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c)$ can be any random permutation of $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$.

1096 Table 2: The details of our network architectures for the experiment on MSTM-17 dataset, where
1097 BS means batch size, $N = 32$, $M = 32$ and $K = 1280$.
1098

	Configuration	Description	Output dimensions
1101	Encoder $q\psi$		
1102	Input: \mathbf{x}		$BS \times K$
1103	Dense	128 neurons, LeakyReLU	$BS \times 128$
1104	Dense	128 neurons, LeakyReLU	$BS \times 128$
1105	Dense	Output embeddings	$BS \times 2N$
1106	Bottleneck	Compute mean and variance of posterior	$\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}$
1107	Reparameterization	Sequential sampling	$\hat{\mathbf{z}}$
1108	Encoder $q\phi$		
1109	Input: \mathbf{x}		$BS \times K$
1110	Dense	128 neurons, LeakyReLU	$BS \times 128$
1111	Dense	128 neurons, LeakyReLU	$BS \times 128$
1112	Dense	Output embeddings	$BS \times 2M$
1113	Bottleneck	Compute mean and variance of posterior	$\mu_{\epsilon}, \sigma_{\epsilon}$
	Reparameterization	Sequential sampling	$\hat{\epsilon}$
1114	Decoder		
1115	Input: $\hat{\mathbf{z}}, \hat{\epsilon}$		$BS \times (N + M)$
1116	Dense	128 neurons, LeakyReLU	$BS \times 128$
1117	Dense	128 neurons, LeakyReLU	$BS \times 128$
1118	Dense	input embeddings	$BS \times K$
1119	Prior module		
1120	Input	$\hat{\mathbf{z}}, \hat{\epsilon}$	$BS \times (N + M)$
1121	InverseTransformation	$\hat{\eta}$	$BS \times M$
1122	JacobianCompute	$\log \det J_{\hat{\epsilon}} $	BS
1123	Classifier		
1124	Input: $\hat{\mathbf{z}}$		$BS \times N$
1125	Dense	256 neurons, LeakyReLU	$BS \times 256$
1126	Dense	256 neurons, LeakyReLU	$BS \times 256$
1127	Dense	output one-hot embeddings	$BS \times 4101$

1129 **Implementations & Training Details.** In our synthetic experiments, we set the dimensions $N = 3$
1130 and $K = 3$. The encoders, decoder, and normalizing flow modules were each implemented using
1131 single-layer multilayer perceptrons (MLPs) followed by Leaky ReLU activations.
1132

1133 Our implementation utilized PyTorch 1.11.0. For optimization, we adopted the AdamW optimizer
Loshchilov & Hutter (2019), which is known for enhancing generalization in deep learning models.

1134 The hyperparameters were configured as follows: a learning rate of 1×10^{-3} and a batch size of 64.
 1135 To guarantee robustness and statistical reliability, each model was trained using 10 different random
 1136 seeds. We report the overall performance as the mean \pm standard deviation computed across these
 1137 runs. The loss function employed balances the reconstruction error and the KL-divergence, with
 1138 weighting coefficients set to $\beta_1 = \beta_2 = 0.02$. All experiments were performed on a single NVIDIA
 1139 GeForce RTX 2080 Ti GPU equipped with 11GB of memory.
 1140

1141 C.2 REAL-WORLD EXPERIMENT

1143 To obtain a fair comparison, we adopt the approach outlined by Yang et al. (2025), employing the
 1144 pretrained CLIP model (Radford et al., 2021) as the visual encoder to generate 1280-dimensional
 1145 representations for \mathbf{x} . Table 2 summarizes the specific network architectures implemented for our
 1146 experiments on the real-world MSTM17 dataset.

1147 To train our framework, we utilize the AdamW optimizer combined with a cosine annealing learning
 1148 rate schedule. The initial learning rate is set to 2×10^{-3} , with a weight decay parameter of 1×10^{-2} to
 1149 prevent overfitting. The ELBO loss function incorporates equal weighting coefficients $\beta_1 = \beta_2 =$
 1150 0.02 . We use a batch size of 128, chosen to balance computational efficiency with optimization
 1151 stability. The framework is implemented in PyTorch. Training is done for 80 epochs on a multi-
 1152 GPU configuration comprising four NVIDIA GeForce RTX 2080 Ti GPUs, collectively providing
 1153 44GB of memory.

1154

1155 C.3 THE OBJECTIVE OF INDVAE

1156

1157 In this section, we explain our trained objective for IndVAE, which is designed by taking inspirations
 1158 from (Hu, 2008). To incorporate with the conditional independence assumption, we consider the k -
 1159 th observed variable \mathbf{x}^k is generated as $\mathbf{x}^k = g^k(\mathbf{z}, \epsilon)$. Accordingly, the log-likelihood of the data
 1160 generating process of Eq. 1 can be transformed as follows:

1161

$$\begin{aligned} \log p(\mathbf{z}, \epsilon, \mathbf{x}) &= \log p_\theta(\mathbf{x}|\mathbf{z}, \epsilon) + \log p_\gamma(\epsilon|\mathbf{z}) + \log p_\delta(\mathbf{z}) \\ &= \sum_{k=1}^K \log p_\theta(\mathbf{x}^k|\mathbf{z}, \epsilon) + \log p_\gamma(\epsilon|\mathbf{z}) + \log p_\delta(\mathbf{z}) \end{aligned} \quad (50)$$

1166

1167 Accordingly, the loss function becomes:

1168

$$\begin{aligned} \mathcal{L}_{\text{ELBO}} &= \underbrace{\mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi, \hat{\epsilon} \sim q_\phi} \left[\sum_{k=1}^K \log p_\theta(\hat{\mathbf{x}}^k|\hat{\mathbf{z}}, \hat{\epsilon}) \right]}_{\mathcal{L}_{\text{Recon}}} + \underbrace{\|J_{\hat{g}}(\hat{\mathbf{z}})\|_1}_{\text{Sparsity Regularization}} \\ &\quad - \underbrace{\beta_1 \mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi} (\log q(\hat{\mathbf{z}}|\mathbf{x}) - \log p_\delta(\mathbf{z})) - \beta_2 \mathbb{E}_{\hat{\mathbf{z}} \sim q_\psi, \hat{\epsilon} \sim q_\phi} (\log q(\hat{\epsilon}|\mathbf{x}) - \log p_\gamma(\hat{\epsilon}|\hat{\mathbf{z}}))}_{\mathcal{L}_{\text{KLD}}} \end{aligned} \quad (51)$$

1176

D ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

1178

D.1 APPROACH

1180

1181 Figure 4 visualizes the data-generating process described in Eq. 5. Accordingly, the likelihood for this process, given the known auxiliary variable \mathbf{u} , is
 1182 expressed as:
 1183

1184

$$p(\mathbf{z}, \epsilon, \mathbf{x}|\mathbf{u}) = p_\theta(\mathbf{x}|\mathbf{z}, \epsilon) p_\gamma(\epsilon|\mathbf{z}, \mathbf{u}) p_\delta(\mathbf{z}|\mathbf{u}) \quad (52)$$

1186

1187 As a result, we redesign the encoder and prior module to learn the distribution $p_\gamma(\epsilon|\mathbf{z}, \mathbf{u})$ and $p_\delta(\mathbf{z}|\mathbf{u})$, as shown in Eq. 52, while keeping the decoder

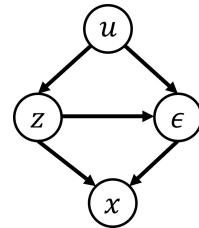


Figure 4: Visualization of the data generations of Eq. 5.

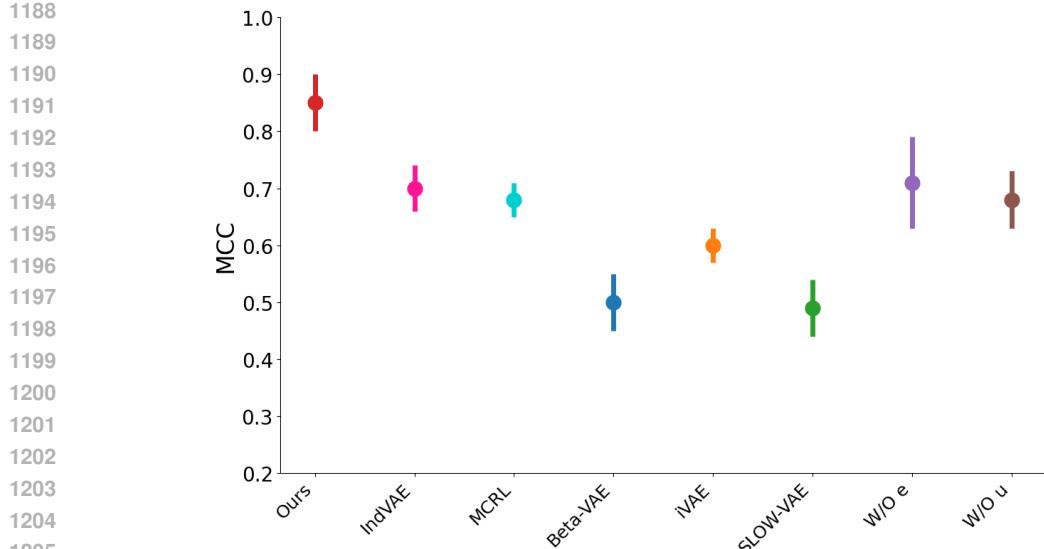


Figure 5: Mean Correlation Coefficient (MCC) scores from the multi-domain experiments comparing our framework with state-of-the-art approaches, including IndVAE, MCRL, BetaVAE, iVAE, and SlowVAE, as well as the baselines W/O e and W/O u .

unchanged. Accordingly, the ELBO is:

$$\mathcal{L}_{\text{ELBO}} = \underbrace{\mathbb{E}_{\hat{\mathbf{z}} \sim q_{\psi}, \hat{\epsilon} \sim q_{\phi}} [\log p_{\theta}(\hat{\mathbf{x}}^k | \hat{\mathbf{z}}, \hat{\epsilon}^k)]}_{\mathcal{L}_{\text{Recon}}} - \underbrace{\beta_1 \mathbb{E}_{\hat{\mathbf{z}} \sim q_{\psi}} (\log q(\hat{\mathbf{z}} | \mathbf{x}) - \log p_{\delta}(\mathbf{z} | \mathbf{u})) - \beta_2 \mathbb{E}_{\hat{\mathbf{z}} \sim q_{\psi}, \hat{\epsilon} \sim q_{\phi}} (\log q(\hat{\epsilon} | \mathbf{x}) - \log p_{\gamma}(\hat{\epsilon} | \hat{\mathbf{z}}, \mathbf{u}))}_{\mathcal{L}_{\text{KLD}}} \quad (53)$$

D.2 ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

Synthetic Data Generation Process: We adopt the data generation procedure from Kong et al. (2022); Li et al. (2023b) to synthesize data for multi-domain experiments. Specifically, we sample latent variables $\mathbf{z} \sim \mathcal{N}(\mu_u, \sigma_u^2 I)$, where domain-specific parameters $\mu_u \sim U(-4, 4)$ and $\sigma_u^2 \sim U(0.01, 1)$ are randomly drawn for each domain u . The remainder of the generation process aligns with Eq. 49, producing data from a total of five domains, i.e., $|\mathbf{u}| = 5$.

Additional Experiments We retain the implementation and training procedures described in Section C.1. Our approach is evaluated against IndVAE (Hu, 2008), which assumes conditional independence among observations given latent variables, as well as against MCRL (Sun et al., 2025), Beta-VAE (Higgins et al., 2016), iVAE (Khemakhem et al., 2020), and SLOW-VAE (Klindt et al., 2020). Furthermore, we conduct an ablation study involving the "W/O e " and "W/O u " baselines.

Figure 5 illustrates the MCC scores obtained in our multi-domain experiments. Our proposed method again achieves superior performance compared to all alternative approaches. This performance advantage can be traced back to our model's capability to disentangle latent variables \mathbf{z} from dependent noise terms ϵ , achieving the best identifiability under generalized dependency conditions. The comparative analysis with "W/O e " and "W/O u " highlights the impact of explicitly modeling e and emphasizes the effectiveness of explicitly modeling u .

D.3 ADDITIONAL ABLATION STUDIES

Ablations for higher dimensional z

we additionally evaluated the scalability of our method to higher latent dimensions on the synthetic dataset by varying the latent dimensionality $N \in \{8, 12, 18\}$, while keeping the network architecture, training protocol, and all other hyperparameters fixed. Table 3 reports the MCC and compares with IndVAE Hu (2008): Even as the latent dimension increases, our method consistently achieves

N	IndVAE	Ours
8	0.64 ± 0.06	0.80 ± 0.02
12	0.51 ± 0.03	0.68 ± 0.05
18	0.47 ± 0.04	0.61 ± 0.05

Table 3: MCC on the synthetic dataset for increasing latent dimensionality N .

higher MCC than IndVAE, indicating that the Jacobian-based sparsity regularization remains effective and that our approach scales well to higher-dimensional latent spaces within the considered regime.

Ablations for hyperparameter sensitivity

In our implementation on the synthetic dataset, we set the weight of the sparsity regularizer to 1 and the KL weights to $\beta_1 = \beta_2 = 0.02$. In this section, we conducted a sensitivity analysis in which we vary *one* of these three hyperparameters at a time while keeping the others fixed at their default values. For all runs we use the same network architecture, batch size, number of epochs, learning rate, and training protocol as in the main experiments. The numbers reported below are MCC scores (mean \pm std. over multiple runs) on the synthetic dataset. These results show the default setting $(\lambda, \beta_1, \beta_2) = (1, 0.02, 0.02)$ obtains the best results.

Additional real-world experiments

we expand our real-world evaluation beyond the original dataset and consider two additional person identity classification benchmarks. Specifically, we use the SYSU-MM01 dataset Wu et al. (2017) and the ROBOTPKU dataset Liu et al. (2017). We only use the RGB modality, since our focus is not on cross-modal person re-identification. SYSU-MM01 contains RGB images of 491 identities from 6 cameras, with a total of 30,071 images. ROBOTPKU contains more than 16,000 RGB images of 180 identities, captured under dynamic robotic viewpoints. These datasets thus provide solid playgrounds for our experiments.

For performance comparison, we follow the same person index classification protocol as in our main experiment and compare against several state-of-the-art methods, including GTL (Yang et al., 2025), AGW (Ye et al., 2021), TransReID (He et al., 2021), CLIPReID (Li et al., 2023a), LDP-net Zhou et al. (2023), Style Fu et al. (2023), as well as MCRL (Sun et al., 2025) and IndVAE (Hu, 2008). Tables 5 and 6 report the Top-1 classification accuracy (mean \pm std. over multiple runs).

To further examine the effect of the architecture choice, we replace the MLP in our framework on the MSTM-17 dataset with a single-layer Gated Recurrent Unit (GRU) Goodfellow et al. (2016) using the same hidden dimension (the classifier architecture and all training and evaluation protocols remain unchanged, and we set $N = M = 32$ for fair comparison). The resulting Top-1 accuracies are: GRU: 94.9 ± 0.4 versus our original MLP-based model: 94.4 ± 0.7 . The GRU improves the classification results slightly against the MLP architecture. Overall, our method consistently outperforms strong baselines across three real-world person identity datasets.

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use LLMs to detect and correct grammatical errors throughout the manuscript. No substantive edits requiring disclosure.

Table 4: Sensitivity of MCC to regularization hyperparameters.

Hyperparameter	Value	MCC
λ	1	0.87 ± 0.04
	0.1	0.82 ± 0.03
	0.01	0.70 ± 0.07
	10	0.68 ± 0.05
β_1	0.02	0.87 ± 0.04
	1	0.73 ± 0.02
	0.001	0.65 ± 0.04
β_2	0.02	0.87 ± 0.04
	1	0.82 ± 0.01
	0.001	0.78 ± 0.06

Table 5: Comparison of Top-1 Accuracy on the ROBOTPKU dataset.

Methods	Acc
AGW (Ye et al., 2021)	87.6 ± 0.8
TransReID (He et al., 2021)	90.2 ± 0.9
CLIPReID (Li et al., 2023a)	91.7 ± 1.1
GTL Yang et al. (2025)	93.9 ± 0.5
MCRL (Sun et al., 2025)	94.5 ± 1.0
IndVAE (Hu, 2008)	95.8 ± 0.8
Ours	97.0 ± 0.5

Table 6: Comparison of Top-1 Accuracy on the SYSU-MM01 dataset.

Methods	Acc
LDP-net Zhou et al. (2023)	91.7 ± 1.1
Style Fu et al. (2023)	92.8 ± 0.8
CLIPReID (Li et al., 2023a)	94.1 ± 1.0
GTL Yang et al. (2025)	95.7 ± 0.4
MCRL (Sun et al., 2025)	96.4 ± 0.8
IndVAE (Hu, 2008)	96.8 ± 0.5
Ours	97.6 ± 0.5