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ABSTRACT

The presence of noise that depends on the latent variable poses a significant iden-
tifiability challenge. Addressing this issue, the standard solution in the literature
assumes that the observational data satisfy the conditional independence property
given the latent variables. However, this assumption might not be valid in prac-
tice. This work relaxes this foundational constraint. Specifically, we consider a
generalized dependency structure in which the observations may exhibit arbitrary
dependencies conditional on the latents. To establish identifiability guarantees,
we introduce a two-step theoretical framework. First, we formulate the problem
as a factor analysis model use perturbation theory to establish the subspace iden-
tifiability of the latent variables. Second, assuming the structural sparsity on the
mixing function, or sufficient variability constraint in the latent space, we estab-
lish component-wise identifiability of each individual latent factor. Using these
identifiability results, we develop an unsupervised approach that reliably uncov-
ers the latent representations. Experiments on synthetic and real data verify our
theoretical claims.

1 INTRODUCTION

Identification of latent variables underpins the true data generating processes, thus inspiring an ex-
tensive line of works on downstream tasks, such as transfer learning (Kügelgen et al., 2021; Kong
et al., 2022; Xie et al., 2023; Li et al., 2024) and visual reasoning (Chen et al., 2024a;b; Kong et al.,
2024). When there exists structured noise depending on the latent variables, which we term as de-
pendent noise, theoretical guarantees of identifiability become significant challenging to establish.
Prior work (Hu, 2008) partially addresses this issue but fundamentally assumes that observations
are conditionally independent given the latents. Somce recent works Zheng et al. (2025); Fu et al.
(2025); Li et al. (2025c) extends the conditional independence setup to time-series data. However,
many real-world systems might violate such assumption. For example, in chest X-ray based disease
diagnosis, the goal is to infer a patient’s latent lung-cancer state from the pixel intensities observed in
an image. The patient’s inspiratory level, which may itself depend on disease condition, introduces
noise to pixel intensities. Partitioning the image into anatomical regions reveals that regional inten-
sities remain spatially correlated even with conditioning on disease status. This highlights the need
for a flexible and robust framework to identify the latent variables under generalized dependency
structure, which allows dependencies among observations conditioning on latent variables.

The existence of dependent noise within the generalized dependency structure necessitates explicitly
disentangling the latent variable from noise for identifiability. The existing literature has yet to fully
address this challenge. Several works treats the noise terms as known auxiliaries (Lachapelle et al.,
2024b; Liang et al., 2023; Lachapelle et al., 2023; Liang et al., 2023; Lippe et al., 2023; Zheng
et al., 2022; Yao et al., 2024; Lachapelle et al., 2024a; Li et al., 2025a; Song et al., 2024; Rajendran
et al., 2024; Xu et al., 2024; Brady et al., 2025). One might argue that noise term can simply be
absorbed into an expanded latent space. The approaches of (Kügelgen et al., 2021; Kong et al.,
2022; Xie et al., 2023; Li et al., 2025b; Ng et al., 2025) pursue this route but require partitioning
them into invariant / variant components across environments. Rather than partitioning the latent
variables, a few methods rely on carefully designed structure between latent variable and the noise
term. Specifically, Sun et al. (2025) assumes independence between noise and latent variables, while
(Kong et al., 2023) requires that the relations between a pair of latent variables have to be sufficiently
distinct. In this paper, we use the term generalized dependency structure to refer to data-generating
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processes in which the observed variables are allowed to have arbitrary dependence conditioning on
the latent variable, without the conditional independence restrictions imposed in Li et al. (2025c);
Fu et al. (2025).

In contrast to previous methods, we present identifiability theory that uncovers the latent variables
under generalized dependency structure, without requiring pre-specified auxiliary variables, latent
variable partitions and carefully designed structure. Our analysis starts with establishing subspace
identifiability, which separates the noise and latent variables in Theorem 1 through a spectral de-
composition tailored to bounded perturbations. Building upon this foundational result, we introduce
structural sparsity assumption in Theorem 1, which rigorously guarantees the component-wise iden-
tifiability of latent variables. Moreover, we present an alternative result through Theorem 2, which
leverages sufficient variability across multiple domains to ensure component-wise identifiability.
To the best of our knowledge, combining subspace identifiability (Theorem 1) with either struc-
tural sparsity (Theorem 1) or sufficient-variability assumptions (Theorem 2) yields the first general
frameworks for reliably identifying latent variables under generalized dependency structures.

Leveraging these theoretical insights, we propose an unsupervised method, which utilizes a varia-
tional inference-based learning objective specifically designed to uncover latent variables. Our ap-
proach effectively models the intricate data-generating processes involving generalized dependency
structures. Extensive experimental evaluations on both synthetic and real-world datasets showcase
significant improvements over existing methods, thereby validating the robustness and effectiveness
of our theoretical and methodological advancements.

2 PROBLEM SETTING

Figure 1: Visualiza-
tion of the data gener-
ations of Eq. 1

Let x ∈ RK denote the K dimensional observation, z ∈ RN denote the
latent variable, and ϵ ∈ RM denote the dependent noise. Also, we assume
p(z) is positive and smooth. Our data generating process is formulated by:

x = g(z, ϵ), ϵ = e(z, η) (1)

We assume g to be nonlinear, nonparametric, injective and smooth func-
tions. e denotes another nonlinear, nonparametric, injective and smooth
function. η denotes an independent exogenous variable sampled from
N (0, 1).

Our primary goal is to identify latent variables z from observed data x. To
achieve this, we first introduce the definition of observational equivalence
as follows:
Definition 1 (Observational Equivalence). Let the true data-generating process for the ob-
served variables x be characterized by {g, e, pz(z), pϵ(ϵ)} as specified in Eq. 1. A learned model
{ĝ, ê, pẑ(ẑ), pϵ̂(ϵ̂)} is said to be observationally equivalent to the true model if their induced data
distributions match exactly, i.e.,

pg,e,pz,pϵ(x) = pĝ,ê,pẑ,pϵ̂(x) (2)

Identifying z allows recovery of g and e up to certain indeterminacies, as we assume the injectivity
of g and e. Also, we assume there exists no latent confounders,

Suppose there exists an invertible and differentiable transformation h, we further define the notions
of subspace identifiability and component-wise identifiability as follows:
Definition 2. (Subspace Identifiability) The mapping h is said to achieve subspace identifiability
if there exists a permutation π such that the following transformation holds: ẑ = h(π(z)), where ẑ
denotes the estimation of z.
Definition 3. (Component-wise Identifiability) For an individual component of the latent variable
zn (n ∈ [1, N ]), there exists a unique component n̂ (n̂ ∈ [1, N ]) of ẑ matches zn up to a permutation
π, such that ẑn̂ = hn̂(zπ(n)). Then zn is component-wise identifiable.

In this work, we breakdown the identifiability problem in two steps. First, we provide our findings
on subspace identifiability in Section 4. Subsequently, we present the component-wise identifiability
result in Section 5.
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3 PRELIMINARIES

To situate our identifiability results within the existing literature, we first recapitulate and summarize
the core assumptions from (Hu, 2008), which supports the identifiability of latent variables up to an
invertible transformation. See Appendix B.1 for the detailed proof of the following.

Consider an alternative data generating process defined by: x′ = g′(z′, ϵ′), ϵ′ = e′(z′, η′), where
z′ is a latent variable, ϵ′ is an independent noise term, η′ is an auxiliary variable, g′ is an injective
smooth function, and e′ is an injective and smooth function. x′ can be decomposed into three
disjoint parts x′ =

(
x′
A, x′

B , x′
C

)
. Hu (2008) assumes conditional independence of x′ given the

latent variable z′ by p(x′|z′) = p(x′
A|z′)p(x′

B |z′)p(x′
C |z′). Under this characterization, x′ can be

interpreted as three conditionally independent measurements of z′.

Identifying z′ necessities disentangling ϵ from z. Without further assumptions, this is impossible
since ϵ′ is inherently generated from z′. To overcome this challenge, we leverage the spectral de-
composition of the integral linear operator:
Definition 4. Consider random variables r and v with supports R and V respectively. The linear
integral operator Lr|v maps a function f ∈ F (V) to another function Lr|vf ∈ F (R), defined by:
(Lr|vf)(r) =

∫
V p(r|v)f(v) dV, ∀r ∈ R.

where p(r|v) denotes the conditional density of r given v. We consider Lr|v to be well defined and
bounded. With Definition 4 established, we impose the following assumptions:
Assumption 1. The operators Lx′

A|z′ and Lx′
A|x′

B
are injective.

Assumption 2. for any z′ ̸= z̄′, the set x′
C : {p(x′

C |z′) ̸= p(x′
C |z̄′)} has positive probability.

Given Assumptions 1, Hu (2008) arrives at
Lx′

C ;x′
A|x′

B
L−1
x′
A|x′

B
= Lx′

A|z′Lx′
C |z′L−1

x′
A|z′ (3)

where the LHS involves only observable variables, and the RHS explicitly depends on the latent
variable z′. Lx′

C |z′ determines the eigenvalues of Lx′
A|ZLx′

C |z′L−1
x′
A|z′ , whose diagonal entries cor-

respond to the conditional distributions p(x′
C |z′).

Eq. 3 suggests that each z′ indexing a distinct conditional distribution of p(x′
C |z′). Under Assump-

tion 2, where p(x′
C | z′) are distinct for different values of z′, the eigenvalues are distinct. This

allows a bijective mapping h′ : Z → Z to permute z′ while preserving the values of p(x′
C | z′).

Therefore, the latent variable can only be recovered up to such a permutation, i.e., ẑ′ = h′(z′),
which yields the identifiability up to an invertible transformation h′.

This identifiability result foundamentally relies on the conditional independence p(x′|z′) =
p(x′

A|z′)p(x′
B |z′)p(x′

C |z′), which might be restrictive. Also, h′ might not meet Definition 2 since
it does not have to be differentiable. In what follows, we address to identify z under the generalized
dependency structure accommodating both conditional dependence across observations, as well as
differentiable transformation between the estimated and true latent variables.

4 SUBSPACE IDENTIFIABILITY

Our work builds upon Definition 4, Assumptions 1 and 2. Let X denote the support of observed
variables x of Eq. 1, which can be partitioned into three subsets {xa,xb,xc}. This work al-
lows {xa,xb,xc} remaining dependent conditioning on z. Formally, this implies: p(x|z) ̸=
p(xa|z)p(xb|z)p(xc|z), which consequently violates Eq. 3. As a result, we can only obtain
Lxa,xb|xc

L−1
xa|xc

̸= Lxa|zLxb|zL
−1
xa|z, where L−1

xa|xc
and L−1

xa|z exist by Assumption 1. A detailed
explanation appears in the proof of Theorem 1 (Appendix B.2). To address this setting, we explicitly
define a perturbation operator Per to facility such inequality:

Lxa|zLxb|zL
−1
xa|z = Lxa,xb|xc

L−1
xa|xc

+ Per (4)

where Per ̸= 0 denotes deviations from Lxa,xb|xc
L−1
xa|xc

. Our aim thus becomes to identify z from
Lxa|zLxb|zL

−1
xa|z. Notably, the partition x = (xa, xb, xc) is arbitrary; Our analysis only requires

that there exist these partitions, and is invariant to any relabeling of these partitions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

With the problem formulation in Eq. 4 at hand, we present subspace identifiability result:
Theorem 1. Consider observed variables x ∈ RK and the estimated latent variables ẑ ∈ RN ,
suppose that there exist functions ĝ and ê satisfying the observational equivalence defined in Eq. 2,
and the following assumptions hold:

i For x = {xa,xb,xc}, we allow the dependencies such that p(x|z) ̸= p(xa|z)p(xb|z)p(xc|z);

ii The operators Lxa|z, Lz|xc
, and Lxa|xc

are injective;

iii The operator Lxa,xb|xc
L−1
xa|xc

has distinct eigenvalues with cardinality equal to that of Lxb|z;

iv Lxa|zLxb|zL
−1
xa|z is self-adjoint.

v ρi denotes the i-th eigenvalue of the operator Lxa,xb|xc
L−1
xa|xc

. Let κ = mini ̸=j
|ρi−ρj |−α

2 ≥ 0

for some constant α > 0, and |Per | < κ, where |Per | denotes the upper bound of Per ;

vi Assumption i∼ v results in the existence of an invertible transformation h̃ : Z → Z , such that
z̃ = h̃(z), where z̃ ∈ Z . We further assume that ∃M such that M(Lxb|z) = M(Lxb|h̃(z)) =

t(z), where t is a differentiable transformation.

then for h̃ ∈ H̃ and t ∈ T (where H̃ and T are function classes, and H̃ ∩ T ̸= ∅), if h ∈ H̃ ∩ T ⇒
ẑ = h(z) = h̃(z) = t(z). In other words, z must be subspace identified.

Proof sketch: We detail the proof in the Appendix B.2, and this section summarizes the key steps.
As previously described, Assumptions i and ii are used to derive Eq. 4. Furthermore, Assump-
tion iii implies that, under certain conditions, Lxb|z can possess unique entries. To establish such
uniqueness under perturbation, let ρi and ρiΛ denote the i-th eigenvalues of Lxa,xb|xc

L−1
xa|xc

and
Lxa|zLxb|zL

−1
xa|z, respectively. Applying Weyl’s inequality (Kato, 2013) to Eq. 4 under Assump-

tion iv, we obtain |ρiΛ − ρi| ≤ Per . Then, by Assumption v, if |Per | < κ, all eigenvalues ρiΛ
remain distinct for any i ̸= j. Hence, |Per | quantifies the permissible perturbation tolerance under
which Lxa|zLxb|zL

−1
xa|z retains unique eigenvalues. The uniqueness of Lxb|z implies that permut-

ing z would not affect the eigenvalues, i.e., there exists an invertible permutation h̃ : Z → Z such
that z̃ = h̃(z). Finally, Assumption vi ensures there exists h ∈ H̃ ∩ T that is both invertible and
differentiable, satisfying the requirements of Definition 2.

Remark: Assumption i characterizes conditional dependencies among xa,xb,xc given z. As-
sumption ii is adopted by (Hu, 2008) as well. It ensures the existence of the inverse operators L−1

xa|z,
L−1
z|xc

and L−1
xa|xc

required in Eq. 4. To address the scaling and potential eigenvalue degeneracy of
the operator Lxa|zLxb|zL

−1
xa|z, we introduce Assumption iii. Furthermore, Assumptions iv and v are

crucial for controlling the perturbation term Per, thereby ensuring the distinctness of Lxb|z. This
distinctness is essential: if eigenvalues were to coincide, the spectral structure Lxa|zLxb|zL

−1
xa|z

would become ambiguous, and identifiability would be lost. The uniqueness of Lxb|z subsequently
enables a permuting of z via a bijection h̃ : Z → Z . Notably, the bijection h̃ need not coincide with
the transformation h stipulated in Definition 2. Although the smoothness of p(z) and the mixing
function g from Eq. 1 imply that h is differentiable, establishing subspace identifiability requires
that h matches h̃ exactly. To formally guarantee this equivalence, we introduce Assumption vi.

5 COMPONENT-WISE IDENTIFIABILITY

Theorem 1 guarantees that ẑ is not a function of ϵ, hence z and ϵ are disentangled. We now focus
on identifying z in a component-wise manner. Let Jg(z) denote the Jacobian of the mixing function
g, and let G ∈ {0, 1}K×N represent a binary adjacency matrix indicating connections from latent
variables z to observed variables x, where Gr,c = 1 suggests the existence of the relationship from
zc to xr. Hence, G is interpreted as the binarized Jg(z). We formally state our first main result
regarding component-wise identifiability as follows:

4
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Corollary 1. Consider the true model {g, e, p(z), p(ϵ)} and a learned model {ĝ, ê, p(ẑ), p(ϵ̂)} that
satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Suppose
the following assumptions and regularization conditions hold:

A Latent dimensions of z are independent: p(z) =
∏N
n=1 p(z

n);

B For each dimension n ∈ [1, N ] of z, there exist {zl}|G
n,:|

l=1 such that:

span{Jg(zl)n,:}|G
n,:|

l=1 = RNGn,: , and [Jĝ(ẑ
l)n,:]

|Ĝn,:|
l=1 ∈ RN

Ĝn,:

C For each n ∈ [1, N ], there exists a subset of indices Ck satisfying
⋂
m∈Ck G

m,: = {n};

D Sparsity regularization: |Ĝ| ≤ |G|

Then, ẑ must correspond component-wise to a permutation of the true latent variables z.

Proof Sketch: The complete proof is deferred to the Appendix B.3. Here we highlight key steps.
First, observational equivalence and subspace identifiability (Theorem 1) imply ẑ = h(z), which
leads to: Jg(z) = Jĝ(ẑ)Jh(z). By leveraging Assumption B along with the sparsity regulariza-
tion condition D, we can prove that there exists a permutation between z and ẑ. Subsequently,
component-wise identifiability is proven by contradiction: any violation would contradict the struc-
tural sparsity assumption C.

Remark: Assumptions A is commonly employed in recent literature (Kong et al., 2022; Xie et al.,
2023). Assumption B is introduced to ensure that the Jacobian spans the appropriate subspace.
Previous works Zheng et al. (2022) leverages a similar assumption for their identifiability results
under only the noise-free data generating process. In contrast, Theorem 1 forms the basis of Theo-
rem 1, and their combination demonstrate the component-wise identifiability even under generalized
dependency structure.

To relax Assumption A in Theorem 1, we can alternatively allow latent variables z to exhibit depen-
dence via a known auxiliary domain variable u. In other words, we assume conditional indepen-
dence across dimensions of z given u, i.e., p(z|u) =

∏N
n=1 p(z

n|u). Specifically, we modify the
original data-generating process in Eq. 1 to incorporate the domain index u explicitly:

x = g(z, ϵ), ϵ = e(z,u, η) (5)

where u denotes the domain index, such that u ∈ [1, 2N + 1]. Under these conditions, we establish
the following identifiability theorem:

Corollary 2. Suppose observational equivalence (Definition 1) holds between the true model
{g, e, p(z), p(ϵ)} and a learned model {ĝ, ê, p(ẑ)}, and the subspace identifiability condition in
Theorem 1 is satisfied. Additionally, assume the following conditions:

a Latent variables are conditionally independent given domain u: p(z|u) =
∏N
n=1 p(z

n|u);

b There exist 2N + 1 distinct domain values u ∈ [1, 2N + 1], such that the 2N vectors w(z,u)−
w(z,u0) (with u ̸= u0) are linearly independent, where the vector w(z,u) is defined as:

w(z,u) = {v(z,u),v′(z,u)}

with

v(z,u) =

(
∂ log p(z1|u)

∂z1
, . . . ,

∂ log p(zN |u)
∂zN

)
v′(z,u) =

(
∂2 log p(z1|u)

(∂z1)2
, . . . ,

∂2 log p(zN |u)
(∂zN )2

)

Then {ẑn̂|n̂ ∈ [1, N ]} must be a component-wise transformation of a permuted version of true
{zn|n ∈ [1, n]}

5
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Proof Sketch. See the Appendix B.4 for details. Theorem 1 gives an invertible h with ẑ = h(z)
and z = h−1(ẑ). Using change of variables and Assumption a, we can obtain log pẑ|u(ẑ | u) =∑n
i=1 log pzi|u(z

i | u) + log |det Jh−1(ẑ)|. Taking second derivatives in (ẑk, ẑv), k ̸= v, the left-
hand side vanishes while the right-hand side yields a linear system in {h̃i,(k)h̃i,(v), h̃i,(k,v)′}ni=1,
where h̃i,(k) = ∂zi/∂ẑk and h̃i,(k,v)

′
= ∂2zi/(∂ẑk∂ẑv). By Assumption b, the resulting 2n coeffi-

cient vectors are linearly independent, forcing h̃i,(k)h̃i,(v) = 0 and h̃i,(k,v)
′
= 0 for all i and k ̸= v.

Thus each row and column of Jh−1 has a single nonzero entry, which yields component-wise iden-
tifiability.

Remark: Distributional variability assumptions similar to Assumption b have been widely adopted
in the literature on latent variable identifiability (Kong et al., 2022; Zhang et al., 2024). Intuitively,
this assumption ensures that auxiliary variable u induces sufficient variability across latent dimen-
sions. Building upon Theorem 1, our conclusion of Theorem 2 differs notably from previous works
by explicitly allowing dependencies between z and ϵ in Eq. 5. In other words, our work degenerates
to previous results without Theorem 1 and modeling the dependent noise ϵ.

6 APPROACH

Building upon our established identifiability results, we now introduce an unsupervised method
specifically designed for learning ẑ. Our proposed method aims to achieve observational equivalence
by explicitly modeling the data-generating process described in Eq. 1 Details of modeling Eq. 5 and
the corresponding experiments are in Appendix D, respectively. In particular, we formulate the joint
density corresponding to Eq. 1 as follows:

p(z, ϵ,x) = pθ(x|z, ϵ)pγ(ϵ|z)pδ(z) (6)

Figure 2: The overall framework
of our proposed approach consists
of: (1) two encoders qψ and qϕ that
map observations xt to ẑ and ϵ̂, re-
spectively; (2) a decoder that recon-
structs observations x̂ from ẑ and ϵ̂;
and (3) two prior estimation mod-
ules pδ and pγ that models the prior
of z and ϵ, respectively. We train
the framework by LRecon along with
LKLD.

where parameters θ denotes the parameters of g. γ denotes the
parameters of e, and δ parameterizes p(z). The second equa-
tion leverages the fact that x is independent of {z, ϵ} given x̃
in Eq. 1. To uncover the latent variables z and ϵ from observed
data x, we introduce two encoders, qψ(z|x) and qϕ(ϵ|x) pa-
rameterized by ψ and ϕ, respectively.

To the end of learning Eq. 6, we bulid our approach upon the
framework of Beta-VAE (Higgins et al., 2016). The overall
architecture of our framework is illustrated in Figure 2. In
what follows, we detail each part of our proposed model.

6.1 NETWORK DESIGN

Learning the log-likelihood in Eq. 6 via variational inference
suggests the architecture for our approach composing of the
following key elements. Specifically, the architecture includes
two encoders: qψ(ẑ|x) for inferring latent variables z, and
qϕ(ϵ̂|x) for estimating the posterior of noise term ϵ. These la-
tent representations are then utilized by a decoder pθ(x̂|ẑ, ϵ̂)
to reconstruct the observations x. Additionally, we regularize
the latent variables by constraining their posterior distribu-
tions via the KL divergence to match the learned priors. We
detail each of these modules below.

Encoder qψ(ẑ|x): We parameterize qψ(ẑ|x) as an isotropic
Gaussian characterized by mean µz and covariance σz. To
approximate this posterior, we employ a neural network en-
coder constructed with an MLP followed by a leaky ReLU
activation:

ẑ ∼ N (µz, σz), µz, σz = LeakyReLU(MLP(x)) (7)

6
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Encoder qϕ(ϵ̂|x): Similarly, we parameterize qϕ(ϵ̂|x) as another isotropic Gaussian distribution:

ϵ̂ ∼ N (µϵ, σϵ), µϵ, σϵ = LeakyReLU(MLP(x)) (8)

Prior Estimation pδ(z): We estimate the prior pδ(z) as a factorized Gaussian across latent dimen-
sions, since we assume the independence of each dimension of z in Assumption A of Theorem 1:

pδ(z) =

N∏
n=1

pδ(z
n), zn ∼ N (0, 1) (9)

Prior Estimation pγ(ϵ|z): Direct estimation of the arbitrary density pγ(ϵ|z) poses a substantial
challenge. To overcome this, we introduce a transformation-based module leveraging normaliz-
ing flows, representing the prior distribution as a Gaussian transformed via an invertible mapping.
Suppose each component of ϵ is independent conditioning on z, ∀m ∈ [1,M ], the prior model is
formulated through: η̂m = ê−1,m(ϵ̂m|ẑ). Using the change-of-variable, the prior distribution of ϵ̂m

is computed as: pγ(ϵ̂m|ẑ) = p(η̂m)
∣∣∣∂ê−1,m

∂ϵ̂m

∣∣∣ = pγ(ê
−1,m(ϵ̂m|ẑ))

∣∣∣∂ê−1,m

∂ϵ̂m

∣∣∣. Aggregating across all
dimensions, the complete prior distribution is given by:

pγ(ϵ̂|ẑ) =
M∏
m=1

p(η̂m)

∣∣∣∣∂ê−1,m

∂ϵ̂m

∣∣∣∣ (10)

The normalizing flow transformation ê is implemented using a stacked MLP.

Decoder pθ(x̂|ẑ, ϵ̂): The decoder generates the reconstructed observations x̂ from inferred latent
variables ẑ and ϵ̂. It is implemented using an MLP followed by leaky ReLU activations:

x̂ = LeakyReLU(MLP(ẑ, ϵ̂)) (11)

6.2 TRAINING OBJECTIVE

In this work, we extend the learning objective from the Beta-VAE framework (Higgins et al., 2016)
by introducing a modified evidence lower bound (ELBO) The full ELBO objective is defined as:

LELBO =Eẑ∼qψ, ϵ̂∼qϕ [log pθ(x̂|ẑ, ϵ̂)]︸ ︷︷ ︸
LRecon

+ λ ∥Jĝ(ẑ)∥1︸ ︷︷ ︸
Sparsity Regularization

−β1Eẑ∼qψ
(
log q (ẑ|x)− log pδ(z)

)
− β2Eẑ∼qψ,ϵ̂∼qϕ

(
log q (ϵ̂|x)− log pγ(ϵ̂|ẑ)

)︸ ︷︷ ︸
LKLD

(12)

where λ, β1 and β2 are hyperparameters that balance the KL divergence penalties. The reconstruc-
tion term LRecon measures the discrepancy between reconstructed observations x̂ and original inputs
x, implemented as a mean squared error loss. The KL divergence terms encourage the learned
posterior distributions to match the assumed priors over z and ϵ. Additionally, we regularize the
decoder using the ℓ1 norm of the Jacobian matrix Jĝ(ẑ). This encourages the structural sparsity
of learned ĝ. Following standard practice, we use the ℓ1 norm as a differentiable surrogate for ℓ0
sparsity constraints. Please refer to Appendix C for the details of network architectures.

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENTS

Experimental Setup To thoroughly evaluate the capability of our approach in learning causal pro-
cesses and accurately identifying latent variables, we perform simulation experiments using ran-
domly generated causal structures with specified sample sizes and variable dimensions. Specifi-
cally, we create a synthetic dataset satisfying our data-generating process described in Eq. 1 (details
in Appendix C.1).

For evaluation, we utilize the Mean Correlation Coefficient (MCC) as our primary metric, which
quantifies the accuracy of latent variable recovery by computing the mean absolute correlation be-
tween the estimated and true latent variables. MCC scores range from 0 to 1, with higher values
indicating better identifiability.
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Figure 3: (a) Visualization of the correlations between each component of true latent variables
(zi) and their corresponding component of estimated latent variables (ẑi) using our approach. The
green bounding boxes highlight the components that are identified. (b) Mean Correlation Coeffi-
cient (MCC) scores comparing our framework with state-of-the-art approaches, including IndVAE,
MCRL, BetaVAE, iVAE, and SlowVAE, as well as the ablation baselines W/O e and W/O s.

Results We evaluate our method against several state-of-the-art approaches for latent variable iden-
tification. Specifically, we compare our approach to the IndVAE that we build upon (Hu, 2008),
which assumes conditional independence among observations given latent variables (see the details
of objective in Sec. C.3). The Multimodal Causal Representation Learning framework (MCRL) pro-
posed by (Sun et al., 2025) relies on the assumption that, the noise term ϵ is independent of the latent
variables z. Furthermore, we benchmark against classical representation learning methods such as
Beta-VAE (Higgins et al., 2016), iVAE (Khemakhem et al., 2020), and SLOW-VAE (Klindt et al.,
2020).

As illustrated in Figure 3(b), our method achieves the highest MCC score among all methods. We
attribute this superior performance to ours capability to effectively handle generalized dependency
structures by accurately disentangling latent variables z from the dependent noise term ϵ. This
fundamental advantage enables our approach to more precisely uncover the true underlying data-
generating process. In addition to this quantitative result, Figure 3(a) provides a visual representation
of the disentanglement between the true latent variables and their estimates.

Ablation Study and Discussion To elucidate the significance of key assumptions underlying our
data generating process, we conduct an ablation study that specifically assesses the impact of gener-
alized dependency structures and structural sparsity. We introduce two ablation baselines for com-
parison: (1) “W/O e”, which removes ϵ = e(z) from Eq. 1. Accordingly, the likelihood becomes
p(z, ϵ,x) = p(x|z, ϵ)p(z, ϵ); (2) “W/O s”, which drops the structural sparsity assumption imposed
on g.

We present the results of this ablation study in Figure 3(b). Notably, our proposed method outper-
forms both the “W/O e” and “W/O s” baselines, highlighting the critical role of explicitly modeling
dependent noise and structural sparsity. The substantial performance gap observed between our
approach and the “W/O e” baseline tips the balance towards the necessity of modeling ϵ = e(z)
to accurately capture the dependencies between ϵ and z. Similarly, the diminished performance of
the “W/O s” baseline emphasizes the essential contribution of structural sparsity within the mixing
function g.

7.2 REAL-WORLD EXPERIMENT

Task Setup: To validate our proposed identifiability theories in realistic and complex scenarios, we
apply them to the task of Person Index classification, a subtask of person ReID. In Person Index
classification, the goal is to assign a unique identity index to each individual, based on input im-

8
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ages. This setup aligns well with our generalized dependency structure setting, as each image of an
individual inherently contains noise, such as varying poses, gaits, or clothes, making it challenging
to disentangle these factors from the underlying identity. Also, different body parts cannot be inde-
pendent conditioning upon the latent person identify index. Consequently, this task serves as a solid
playground for evaluating the robustness and efficacy of our theoretical framework in addressing
real-world complexities.

In our implementation, we first employ a pretrained feature extractor to derive feature represen-
tations of each individual person, denoted as x ∈ RK . We consider x are generated by the la-
tent variable z ∈ RN , directly associated with each person’s identity index, along with a depen-
dent noise variable ϵ ∈ RM , capturing variations such as pose, gait, or clothes. Inspired by the
two-phase training pipeline proposed by (Li et al., 2024; 2025a), we adapt our approach to Per-
son Index classification task as follows. First, we train our approach by optimizing the objective
function detailed in Eq. 12. Subsequently, we introduce a classifier ĉ, implemented by a mul-
tilayer perceptron (MLP), to predict the one-hot encoded index label ŷ from the inferred latent
representation ẑ: ŷ = MLP(ẑ) The classifier is optimized using a cross-entropy loss given by:
LCE

cls = −Eŷ [one-hot(y) · log(softmax(ŷ))] where one-hot(y) denotes the one-hot embedding of the
true person index label. More data preprocessing details can be found in Appendix C.2.

Table 1: Comparison of Top-1 Accuracy
on MSMT17 dataset

Methods Acc
AGW (Ye et al., 2021) 85.5 ± 1.2
TransReID (He et al., 2021) 87.8 ± 0.5
CLIPReID (Li et al., 2023a) 90.1 ± 0.3
GTL Yang et al. (2025) 91.5 ± 1.2
MCRL (Sun et al., 2025) 92.6 ± 0.9
IndVAE (Hu, 2008) 93.1 ± 0.5
Ours 94.4 ± 0.7

Data and Comparing Approaches We conduct our
experiments on the MSMT17 dataset (Wei et al.,
2018), which comprises images of 4,101 unique indi-
viduals. Each individual in the dataset has more than
10 images, resulting in a total of over 120,000 images.
We partition the dataset into three parts: 60% for train-
ing, 20% for validation, and the remaining 20% for
test.

For performance comparison, we select several state-
of-the-art methods on the task of Person Index classi-
fication,including GTL (Yang et al., 2025), AGW (Ye
et al., 2021), TransReID (He et al., 2021), and
CLIPReID (Li et al., 2023a). We also benchmark
against MCRL (Sun et al., 2025) and IndVAE (Hu,
2008) to evaluate the efficacy of our identifiability re-
sults under generalized dependency structure.

Results & Discussions: Table 1 reports the comparison of Top-1 Accuracy (Acc) among state-of-
the-art methods on the MSMT17 dataset. Our method achieves a superior performance, substantially
surpassing approaches that do not explicitly handle dependent noise, such as IndVAE (Hu, 2008) and
MCRL (Sun et al., 2025). More specifically, our approach attains the highest accuracy of 94.4±0.7,
significantly improving upon the previous best performance of 93.1 ± 0.5 obtained by IndVAE.
Furthermore, our proposed method demonstrates notable improvements over leading methods in-
cluding GTL (Yang et al., 2025), CLIPReID (Li et al., 2023a), TransReID (He et al., 2021), and
AGW (Ye et al., 2021), outperforming them by significant margins. These results clearly highlight
the effectiveness and robustness of our proposed framework in accurately addressing generalized
dependency structures in complex real-world scenarios.

8 CONCLUSION

This work introduces a set of novel identifiability guarantees under generalized dependency struc-
tures in which (i) observations can remain dependent given the latent variables and (ii) the noise may
depend on the latents. Our theoretical framework establishes identifiability in two main steps. First,
we rigorously prove the subspace identifiability by leveraging spectral decomposition techniques
grounded in perturbation theory. Building upon this foundation, we further demonstrate component-
wise identifiability. We validate our theoretical contributions through comprehensive experiments
on both synthetic datasets and real-world tasks, showing the efficacy of our findings. While we have
demonstrated the effectiveness of our approach on visual-based task, the lack of other applications
is a limitation of this work.
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A NOTIONS

Table of notions

Variables

x ∈ RK Observations x̂ ∈ RK Reconstructions
κ The distance between eigenvalues u ∈ [1, 2N + 1] Auxiliary domain variable
z ∈ RN Latent variables ẑ ∈ RN Latent variable estimations
ϵ True dependent noise term ϵ̂ Estimation of ϵ
η Auxiliary variable η̂ Estimation of η

Indices

{a,b, c} The indices of partitions of x {A,B,C} The indices of partitions of x′

n ∈ [N ] The indices of z n̂ ∈ [N ] The indices of ẑ
i The index of ρΛ and ρ j The index of ρΛ and ρ

Operators

L Integral linear operator d Difference operator
ρΛ The eigenvalue ofLxa|zLxb|zL

−1
xa|z ρ The eigenvalue of Lxa,xb|xcL

−1
xa|xc

Per Perturbation operator Per The upper bound of Per

True & learned model

g True mixing function ĝ Learned mixing function
e True function of ϵ ê Learned function of ϵ
Jg The jacobian matrix of g Jĝ The jacobian matrix of ĝ

Optimizations

ψ Parameters of posterior qψ(z|x) ϕ Parameters of posterior qϕ(ϵ|x)
δ Parameters of prior pδ(z) γ Parameters of prior pγ(ϵ|z)
θ Parameters of decoder pθ(x|z) | ∗ |1 l1 norm on columns of ∗

B PROOF OF THEOREMS

B.1 PREVIOUS RESULTS

In this section, we recapitulate and summarize the previous results from (Hu, 2008) in details.

Consider observed variables x′ ∈ RK and the estimated latent variables ẑ′ ∈ RN , suppose that
there exist functions ĝ′ and ê′ satisfying the observational equivalence defined in Eq. 2, and the
following assumptions hold:

1. For x′ = {x′
A,x

′
B ,x

′
C}, p(x′|z′) = p(x′

A|z′)p(x′
B |z′)p(x′

C |z′);

2. The operators Lx′
A|z′ and Lx′

A|x′
B

are injective;

3. ∀z′ ̸= z̄′, p(x′
C ; z

′) ̸= p(x′
C ; z̄

′);

then z′ must be identified up to an invertible transformation h′.
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Proof: Given Assumption 1, we can obtain the following:

px′
Cx′

A|x′
B
(x′
C ,x

′
A|x′

B) =

∫
px′

Cx′
Az′|x′

B
(x′
C ,x

′
A, z

′|x′
B)dz

=

∫
px′

C |x′
Az′x′

B
(x′
C |x′

A, z
′,x′

B)px′
Az′|x′

B
(x′
A, z

′|x′
B)dz

=

∫
px′

C |x′
Az′(x′

C |x′
A, z

′)px′
Az′|x′

B
(x′
A, z

′|x′
B)dz

=

∫
px′

C |x′
Az′(x′

C |x′
A, z

′)px′
A|z′x′

B
(x′
A|z′,x′

B)pz′|x′
B
(z′|x′

B)dz

=

∫
px′

C |x′
Az′(x′

C |x′
A, z

′)px′
A|z′(x′

A|z′)pz′|x′
B
(z′|x′

B)dz

=

∫
px′

C |z′(x′
C |z′)px′

A|z′(x′
A|z′)pz′|x′

B
(z′|x′

B)dz (13)

Leveraging this eqation and Definition 4, we can derive the following operator:

(Lx′
C ;x′

A|x′
B
f ′)(x′

A) =

∫ ∫
px′

A|z′(x′
A|z′)px′

C |z′(x′
C |z′)pz′|x′

B
(z′|x′

B)f
′(x′

B)dx
′
Bdz

=

∫
px′

A|z′(x′
A|z′)(Lx′

C ;z′Lz′|x′
B
f ′)(z′)dz

= (Lx′
A|z′Lx′

C ;ZLz′|x′
B
f ′)(x′

A) (14)

The above equation indicates:

Lx′
C ;x′

A|x′
B
= Lx′

A|z′Lx′
C ;z′Lz′|x′

B
(15)

This equivalence holds over some functions space G(Z), given the factorization properties of the
conditional densities established earlier.

Now, integrating over x′
C , by using the fact that:

∫
Lx′

C ;x′
A|x′

B
f ′(x′

C)dx
′
C = Lx′

A|x′
B
f ′ we can

obtain:

Lx′
A|x′

B
f ′(x′

A) =

∫
px′

A|x′
B
(x′
A|x′

B)f
′(x′

B)dx
′
B

=

∫ ∫
px′

A|z′,x′
B
(x′
A|z′,x′

B)pz′|x′
B
(z′|x′

B)f
′(x′

B)dx
′
Bdz

=

∫
px′

A|z′(x′
A|z′)[Lz′|x′

B
f ′]dz

= Lx′
A|z′Lz′|x′

B
f ′](x′

A) (16)

where the second equation leverages x′
A ⊥ x′

B | z′. By assuming the inejctivity of Lx′
A|z′ in

Assumption 2, we can arrive at LZ|x′
B
= L−1

x′
A|z′Lx′

A|x′
B

. Substitute this to Eq. 15:

Lx′
C ;x′

A|x′
B
L−1
x′
A|x′

B
= Lx′

A|z′Lx′
C ;ZL

−1
x′
A|z′ (17)

where the LHS involves only observable variables, and the RHS explicitly depends on the latent
variable z′. Lx′

C ;z′ determines the eigenvalues of Lx′
A|ZLx′

C ;z′L−1
x′
A|z′ , whose diagonal entries cor-

respond to the conditional distributions p(x′
C |z′). Each z′ indexing a distinct conditional distribution

of p(x′
C |z′). Under Assumption 3, where p(x′

C | z′) are distinct for different values of z′, the eigen-
values are distinct. This allows a bijective mapping h′ : Z → Z to permute z′ while preserving the
values of p(x′

C | z′). Therefore, the latent variable can only be recovered up to such a permutation,
i.e., ẑ′ = h′(z′), which yields the identifiability up to an invertible transformation h′.

B.2 PROOF OF THEOREM 1

In this section, we provide a formal proof of Theorem 1:

15
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Theorem 1 Consider observed variables x ∈ RK and the estimated latent variables ẑ ∈ RN ,
suppose that there exist functions ĝ and ê satisfying the observational equivalence defined in Eq. 2,
and the following assumptions hold:

i For x = {xa,xb,xc}, we allow the dependencies such that p(x|z) ̸= p(xa|z)p(xb|z)p(xc|z);
ii The operators Lxa|z, Lz|xc

, and Lxa|xc
are injective;

iii The operator Lxa,xb|xc
L−1
xa|xc

has distinct eigenvalues with cardinality equal to that of Lxb|z;

iv Lxa|zLxb|zL
−1
xa|z is self-adjoint.

v ρi denotes the i-th eigenvalue of the operator. Let κ = mini ̸=j
|ρi−ρj |−α

2 ≥ 0 for some constant
α > 0, and |Per | < κ, where |Per | denotes the upper bound of Per ;

vi There exists an operator M such that M(Lxb|z) = M(Lxb|h̃(z)) = t(z), where t is a differen-
tiable transformation.

then for h̃ ∈ H̃ and t ∈ T (H̃ ∩ T ̸= ∅), if h ∈ H̃ ∩ T ⇒ ẑ = h(z) = h̃(z) = t(z). In other words,
z must be subspace identified.

Proof: Suppose the observational equivalence (Definition 1) holds, our goal is to demonstrate sub-
space identifiability of z from the data generated process in Eq. 1. To such an end, we proceed in
the following steps:

Step 1: Operator Construction and Spectral Decomposition.

Our approach follows the previous results in Sec. B.1, and proceeds to decompose the bounded
linear operator Lxa,xb|xc

. Assumption i violates the conditional independence by p(x|z) ̸=
p(xa|z)p(xb|z)p(xc|z), thus introduces a discrepancy between Lxa,xb|xc

and Lxa|zLxb|zLz|xc
ac-

cording to Eq. 15. Consequently, we can define the difference operators:
d(xb) = Lxa,xb|xc

− Lxa|zLxb|zLz|xc
,

d =

∫
d(xb) dxb = Lxa|xc

− Lxa|zLz|xc
. (18)

Definition 4 guarantees boundedness of each term in Eq. 18, while Assumption ii ensures the exis-
tence of inverse operators L−1

xa|xc
, L−1

z|xc
and L−1

xa|z. Leveraging these, we rewrite:

Lxa|zLxb|zL
−1
xa|z = (Lxa,xb|xc

− d(xb))(Lxa|xc
− d)−1

= Lxa,xb|xc
L−1
xa|xc

+ Per , (19)

where Per represents the perturbation term arising from the violation of conditional independence.

Step 2: Eigenvalue Uniqueness.

By Assumption iii, the operator Lxa,xb|xc
L−1
xa|xc

has distinct eigenvalues whose cardinality matches
that of Lxb|z. To establish the uniqueness of each eigenvalue in Lxb|z despite the perturbation,
we apply Weyl’s inequality (Kato, 2013) to Eq. 19 under Assumption iv. Let ρi denote the i-th
eigenvalue of Lxa,xb|xc

L−1
xa|xc

, and ρiΛ represent the corresponding eigenvalue in Lxb|z:

|ρiΛ − ρi| ≤ ∥Per∥ ≤ Per , (20)

where ∥ · ∥ is the l2 operator norm, and Per denotes its upper bound. Starting from Eq. 20, we can
obtain:

|ρiΛ − ρi| ≤ Per, i.e., ρiΛ ∈ (ρi − Per, ρi + Per). (21)

Suppose, for the sake of contradiction, two distinct eigenvalues, denoted ρ1Λ and ρ2Λ, fall within the
same interval (ρi − Per, ρi + Per). Assumption v further suggests that κ = mini ̸=j

|ρi−ρj |−α
2 >

0 and Per < κ, we thus have:

|ρ1Λ − ρi| ≤ Per <
|ρi − ρj |

2
,

|ρ2Λ − ρi| ≤ Per <
|ρi − ρj |

2
. (22)
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Applying the triangle inequality, we obtain:

|ρ1Λ − ρ2Λ| ≤ |ρ1Λ − ρi|+ |ρ2Λ − ρi| < |ρi − ρj | = 2κ. (23)

However, inequality 23 implies:

|ρ1 − ρ2|
2

< κ, (24)

which directly contradicts the definition of κ. Thus, each eigenvalue ρiΛ is unique within its respec-
tive interval.

The uniqueness of ρiΛ means that Lxb|z is determined by such decomposition. Specifically, permute
z introduces a permute operator P , such that, PLxb|zP

−1 = Lxb|h̄(z), where h̄ denotes a permute
transformation. Therefore, associated eigenfunctions Lxa|z and L−1

xa|z are permuted, but the eigen-
values Lxb|z remains invariant. Since h̄ is a permute transformation, it has to be invertible. We take
inspirations from the conclusion from Sec. B.1, the distinct eigenvalues imply the existence of a
re-labeling permutation z̃ = h̃(z), where h̃ : Z → Z is bijective, and the eigenvalues ρΛ remain
invariant after such permuted transformation of z.

Step 3: Connecting Bijection h̃ with Differentiable Transformation h.

Definition 2 requires the invertible transformation h to be differentiable. However, the eigenvalue-
based bijection h̃ alone may not satisfy this differentiability constraint. To resolve this, we invoke
Assumption vi, which guarantees:

M(Lxb|z) =M(Lxb|h̃(z)) = t(z),

for a differentiable function t. Thus, defining the function classes H̃ (bijections induced by eigenval-
ues) and T (differentiable transformations), if h ∈ H̃∩T ̸= ∅, the observational equivalence implies
that h coincides with h̃ and t, yielding: ẑ = h(z). Hence, we conclude the subspace identifiability
of z.

B.3 PROOF OF COROLLARY 1

Corollary 1 Consider the true model {g, e, p(z), p(η)} and a learned model {ĝ, ê, p(ẑ), p(η̂)} that
satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Suppose
further the following assumptions and regularization conditions hold:

A Latent dimensions of z are independent: p(z) =
∏N
n=1 p(z

n);

B For each dimension n ∈ [1, N ] of z, there exist {zl}|G
n,:|

l=1 such that:

span{Jg(zl)n,:}|G
n,:|

l=1 = RNGn,: , and [Jĝ(ẑ
l)n,:]

|Ĝn,:|
l=1 ∈ RN

Ĝn,:

C For each n ∈ [1, N ], there exists a subset of indices Ck satisfying
⋂
m∈Ck G

m,: = {n};

D Sparsity regularization: |Ĝ| ≤ |G|

Then, ẑ must correspond component-wise to a permutation of the true latent variables z.

Proof: Theorem 1 guarantees the existence of an invertible trasnformation h such that ẑ = h(z)
and, since the observational equivalence in Definition 1 indicates x = g(z) = ĝ(ẑ), the chain rule
yields

Jg(z) = Jĝ(ẑ) Jh(z) (25)

Our goal is to show that h is a composition of a permutation and component-wise diagonal transfor-
mations.

Let us denote Jh by H. According to our assumption, for each index i, the set of basis vectors
e ∈ {Jg(z(l))i,:}

|Gi,:|
l=1 spans the space RnGi,: . This means any vector in RnGi,: can be expressed as a

17
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linear combination of these basis vectors. In particular, Assumption B suggests that, for any standard
basis vector ej0 with j0 ∈ Gi,: we have

ej0 H ∈ Rn
Ĝi,:

=⇒ Hj0,: ∈ Rn
Ĝi,:

, (26)

and therefore
∀(i, j) ∈ G, {i} × supp

(
Hj,:

)
⊂ Ĝ. (27)

Because Jg(z) and Jĝ(ẑ) both have full column rank n, H is invertible. By the Leibniz formula,
there exists a permutation σ with Hi,σ(i) ̸= 0 for all i, i.e., σ(j) ∈ supp

(
Hj,:

)
for all j. Combining

this with equation 27 gives
∀(i, j) ∈ G, (i, σ(j)) ∈ Ĝ. (28)

Define the permuted edge set σ(G) = {(i, σ(j)) : (i, j) ∈ G}. Then σ(G) ⊂ Ĝ. Sparsity regular-
ization D on the estimated Jacobian ensures |Ĝ| ≤ |G| = |σ(G)|, hence

σ(G) = Ĝ. (29)

Suppose, for contradiction, that H(z) is not a composition of a diagonal matrix and a permutation
matrix, i.e., there exist j1 ̸= j2 such that:

supp(Hj1,:) ∩ supp(Hj2,:) ̸= ∅. (30)

Let j3 be an element in this intersection, so σ(j3) ∈ supp(Hj1,:) ∩ supp(Hj2,:). Without loss of
generality, assume j3 ̸= j1. According to Assumption C, there exists a set Cj1 containing j1 such
that: ⋂

i∈Cj1

Gi,: = {j1}. (31)

Since j3 ̸= j1, it must be that:
j3 /∈

⋂
i∈Cj1

Gi,:, (32)

implying there exists some i3 ∈ Cj1 such that:

j3 /∈ Gi3,:. (33)

However, since j1 ∈ Gi3,:, we have (i3, j1) ∈ G. Using Eq. 28, we find:

(i3, σ(j3)) ∈ Ĝ. (34)

But from Eq. 29, this means (i3, j3) ∈ G, which contradicts Eq. 33. This contradiction implies our
assumption is false, and therefore H must be a composition of a permutation matrix and a diagonal
matrix.

Together with the equation Jg = JĝH, we achieve the desired result that t is composed of a permu-
tation and component-wise invertible functions.

B.4 PROOF OF COROLLARY 2

Corollary 2 Suppose observational equivalence (Definition 1) holds between the true model
{g, e, p(z)} and the learned model {ĝ, ê, p(ẑ)}, and the subspace identifiability condition in Theo-
rem 1 is satisfied. Additionally, assume the following conditions:

a Latent variables are conditionally independent given domain u: p(z|u) =
∏N
n=1 p(z

n|u);
b There exist 2N + 1 distinct domain values u ∈ [1, 2N + 1], such that the 2N vectors w(z,u)−

w(z,u0) (with u ̸= u0) are linearly independent, where the vector w(z,u) is defined as:

w(z,u) = {v(z,u),v′(z,u)}
with

v(z,u) =

(
∂ log p(z1|u)

∂z1
, . . . ,

∂ log p(zN |u)
∂zN

)
v′(z,u) =

(
∂2 log p(z1|u)

(∂z1)2
, . . . ,

∂2 log p(zN |u)
(∂zN )2

)

18
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Then {ẑn̂|n̂ ∈ [1, N ]} must be a component-wise transformation of a permuted version of true
{zn|n ∈ [1, n]}
Proof: By Theorem 1 there exists an invertible reparameterization h : Z → Z such that ẑ = h(z)
and z = h−1(ẑ). Applying the change-of-variables formula to the conditional densities (for any
fixed u) gives:

pẑ|u(ẑ | u) = pz|u
(
h−1(ẑ) | u

) ∣∣det Jh−1(ẑ)
∣∣. (35)

Taking logarithms yields

log pẑ|u(ẑ | u) = log pz|u(z | u) + log
∣∣det Jh−1(ẑ)

∣∣, (36)

Under Assumption a, we have

n∑
i=1

log pẑi|u(ẑ
i | u) =

n∑
i=1

log pzi|u(z
i | u) + log

∣∣det Jh−1(ẑ)
∣∣. (37)

Following Hyvärinen et al. (2024), take second derivatives with respect to ẑk and ẑv for k ̸= v.
Since each term on the left-hand side of Eq. 37 depends only on a single coordinate ẑi, we have
∂ log pẑi|u(ẑ

i | u)/∂ẑk = 0 for i ̸= k, which implies

∂2

∂ẑk ∂ẑv

n∑
i=1

log pẑi|u(ẑ
i | u) = 0. (38)

For the right-hand side, define for i = 1, . . . , n

h̃i,(k) :=
∂zi

∂ẑk
, h̃i,(k,v)

′
:=

∂2zi

∂ẑk ∂ẑv
, (39)

η′i(z
i,u) :=

∂

∂zi
log pzi|u(z

i | u), η′′i (z
i,u) :=

∂2

∂zi2
log pzi|u(z

i | u) (40)

A direct application of the chain rule gives

n∑
i=1

(
η′′i (z

i,u) h̃i,(k) h̃i,(v) + η′i(z
i,u)h̃i,(k,v)′

)
+

∂2

∂ẑk ∂ẑv
log

∣∣det Jh−1(ẑ)
∣∣ = 0. (41)

Fix (k, v) with k ̸= v and evaluate this identity at 2n+1 distinct values of the conditioning variable,
u(j) for j ∈ {0, 1, . . . , 2n}. Subtracting the equation at u(0) from that at u(j) cancels the log-
determinant term (which does not depend on u) and yields, for j = 1, . . . , 2n,

n∑
i=1

([
η′′i (z

i,u(j))− η′′i (z
i,u(0))

]
h̃i,(k) h̃i,(v) +

[
η′i(z

i,u(j))− η′i(z
i,u(0))

]
h̃i,(k,v)′

)
= 0. (42)

Let
w(z,u) :=

(
η′′1 (z

1,u), . . . , η′′n(z
n,u), η′1(z

1,u), . . . , η′n(z
n,u)

)⊤
. (43)

Under Assumption b, the 2n vectors w(z,u(j)) − w(z,u(0)) for j = 1, . . . , 2n are linearly inde-
pendent, so the only solution to the homogeneous linear system Eq. 42 is

h̃i,(k) h̃i,(v) = 0 and h̃i,(k,v)′ = 0 for all i ∈ {1, . . . , n} and all k ̸= v. (44)

Hence each row of the Jacobian Jh−1(ẑ) has at most one nonzero entry, and all mixed second
derivatives vanish. Since h−1 is invertible, each row must in fact have exactly one nonzero entry;
moreover, two distinct rows cannot share the same nonzero column (otherwise det Jh−1(ẑ) = 0), so
there exists a permutation π such that

ẑπ(i) = hi(zi) for i = 1, . . . , n, (45)

which shows that ẑ is obtained from z by a permutation of component-wise invertible transforma-
tions.
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B.5 IDENTIFYING ϵ

Corollary Consider the true model {g, e, p(z), p(η)} and a learned model {ĝ, ê, p(ẑ), p(η̂)} that
satisfy observational equivalence (Definition 1) and subspace identifiability (Theorem 1). Further,
the following assumptions also hold:

1. There exists an smmoth, invertible transformation f between z, ϵ and ẑ, ϵ̂. Also, the diago-
nal entries of the jacobian of f coincides with ∂ẑ

∂z and ∂ϵ̂
∂ϵ , respectively.

2. For x = {xa,xb,xc}, we allow the dependencies such that p(x|ϵ) ̸=
p(xa|ϵ)p(xb|ϵ)p(xc|ϵ);

3. The operators Lxa|ϵ, Lϵ|xc
, and Lxa|xc

are injective;

4. The operator Lxa,xb|xc
L−1
xa|xc

has distinct eigenvalues with cardinality equal to that of
Lxb|ϵ;

5. Lxa|ϵLxb|ϵL
−1
xa|ϵ is self-adjoint.

6. ρi denotes the i-th eigenvalue of the operator Lxa,xb|xc
L−1
xa|xc

. Let κ =

mini ̸=j
|ρi−ρj |−α

2 ≥ 0 for some constant α > 0, and |Per | < κ, where |Per | denotes
the upper bound of Per ;

7. There exists an operator Mϵ such that Mϵ(Lxb|ϵ) = Mϵ(Lxb|h̃ϵ(ϵ)) = tϵ(ϵ), where tϵ is a
differentiable transformation.

then for h̃ϵ ∈ H̃ϵ and tϵ ∈ Tϵ (where H̃ϵ and Tϵ are function classes, and H̃ϵ ∩ Tϵ ̸= ∅), if hϵ ∈
H̃ϵ ∩ Tϵ ⇒ ϵ̂ = hϵ(ϵ) = h̃ϵ(ϵ) = tϵ(ϵ). In other words, ϵ must be subspace identified. Combinting
with the conclusion from Themorem 1, we can further obtain the block-wise identifiability of z and
ϵ.

Proof: We can arrive at ϵ̂ = hϵ(ϵ) by following the same proof strategy as in Sec. B.2. Since we
assume there exists an smooth, invertible transformation f between (z, ϵ) and (ẑ, ϵ̂):

(ẑ, ϵ̂) = f(z, ϵ). (46)

The Jacobian of f with respect to (z, ϵ) is

Jf =


∂ẑ

∂z

∂ẑ

∂ϵ

∂ϵ̂

∂z

∂ϵ̂

∂ϵ

 . (47)

Theorem 1 gives ẑ = h(z), hence ∂ẑ/∂ϵ = 0. Analogously, ϵ̂ = hϵ(ϵ) implies ∂ϵ̂/∂z = 0.
Therefore the Jacobian reduces to

Jf =

∂ẑ

∂z
0

0
∂ϵ̂

∂ϵ

 , (48)

which is block-diagonal. This shows that the transformation between (z, ϵ) and (ẑ, ϵ̂) is block-wise,
i.e., we have block-wise identifiability of z and ϵ.
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C IMPLEMENTATION DETAILS

C.1 SYNTHETIC EXPERIMENT

Synthetic Data Generation Process: Our data generating process for the synthetic experiment is
as follows:

ϵ1 = N (0, (z1)
2), g̃1(z1, ϵ1) = sinh(z1)× ϵ1

ϵ2 = tanh(z2), g̃2(z2, ϵ2) =
1

1 + exp(z2)
× ϵ2

ϵ3 = Laplace(0, |z3|), g̃3(z3, ϵ3) = (z3)
2 × ϵ3

x̃m = g̃m(zm, ϵm), x = g(x̃) = σ(Rx̃) (49)
where m ∈ [1, 3]. We sample 10,000 states drawn from z ∼ U(0, 1), R ∈ R3×3 is a fixed full-rank
matrix with sparse, small nonzero off-diagonal entries. x̃ = (x̃1, x̃2, x̃3)

⊤, and σ is a smooth strictly
monotone scalar nonlinearity applied coordinate-wise. In practice, we randomly assign the roles of
xa,xb,xc to x1,x2,x3, so that (xa,xb,xc) can be any random permutation of (x1,x2,x3).

Table 2: The details of our network architectures for the experiment on MSTM-17 dataset, where
BS means batch size, N = 32, M = 32 and K = 1280.

Configuration Description Output dimensions

Encoder qψ
Input: x BS ×K
Dense 128 neurons, LeakyReLU BS × 128
Dense 128 neurons, LeakyReLU BS × 128
Dense Output embeddings BS × 2N
Bottleneck Compute mean and variance of posterior µz, σz

Reparameterization Sequential sampling ẑ

Encoder qϕ
Input: x BS ×K
Dense 128 neurons, LeakyReLU BS × 128
Dense 128 neurons, LeakyReLU BS × 128
Dense Output embeddings BS × 2M
Bottleneck Compute mean and variance of posterior µϵ, σϵ
Reparameterization Sequential sampling ϵ̂

Decoder
Input: ẑ, ϵ̂ BS × (N +M)
Dense 128 neurons, LeakyReLU BS × 128
Dense 128 neurons, LeakyReLU BS × 128
Dense input embeddings BS ×K

Prior module
Input ẑ, ϵ̂ BS × (N +M)
InverseTransformation η̂ BS ×M
JacobianCompute log |detJê| BS

Classifier
Input: ẑ BS ×N
Dense 256 neurons, LeakyReLU BS × 256
Dense 256 neurons, LeakyReLU BS × 256
Dense output one-hot embeddings BS × 4101

Implementations & Training Details. In our synthetic experiments, we set the dimensions N = 3
and K = 3. The encoders, decoder, and normalizing flow modules were each implemented using
single-layer multilayer perceptrons (MLPs) followed by Leaky ReLU activations.

Our implementation utilized PyTorch 1.11.0. For optimization, we adopted the AdamW optimizer
Loshchilov & Hutter (2019), which is known for enhancing generalization in deep learning models.
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The hyperparameters were configured as follows: a learning rate of 1× 10−3 and a batch size of 64.
To guarantee robustness and statistical reliability, each model was trained using 10 different random
seeds. We report the overall performance as the mean ± standard deviation computed across these
runs. The loss function employed balances the reconstruction error and the KL-divergence, with
weighting coefficients set to β1 = β2 = 0.02. All experiments were performed on a single NVIDIA
GeForce RTX 2080 Ti GPU equipped with 11GB of memory.

C.2 REAL-WORLD EXPERIMENT

To obtain a fair comparison, we adopt the approach outlined by Yang et al. (2025), employing the
pretrained CLIP model (Radford et al., 2021) as the visual encoder to generate 1280-dimensional
representations for x. Table 2 summarizes the specific network architectures implemented for our
experiments on the real-world MSTM17 dataset.

To train our framework, we utilize the AdamW optimizer combined with a cosine annealing learning
rate schedule. The initial learning rate is set to 2×10−3, with a weight decay parameter of 1×10−2 to
prevent overfitting. The ELBO loss function incorporates equal weighting coefficients β1 = β2 =
0.02. We use a batch size of 128, chosen to balance computational efficiency with optimization
stability. The framework is implemented in PyTorch. Training is done for 80 epochs on a multi-
GPU configuration comprising four NVIDIA GeForce RTX 2080 Ti GPUs, collectively providing
44GB of memory.

C.3 THE OBJECTIVE OF INDVAE

In this section, we explain our trained objective for IndVAE, which is designed by taking inspirations
from (Hu, 2008) To incorporate with the conditional independence assumption, we consider the k-
th observed variable xk is generated as xk = gk(z, ϵ). Accordingly, the log-likelihood of the data
generating process of Eq. 1 can be transformed as follows:

log p(z, ϵ,x) = log pθ(x|z, ϵ) + log pγ(ϵ|z) + log pδ(z)

=

K∑
k=1

log pθ(x
k|z, ϵ) + log pγ(ϵ|z) + log pδ(z) (50)

Accordingly, the loss function becomes:

LELBO =Eẑ∼qψ, ϵ̂∼qϕ

[
K∑
k=1

log pθ(x̂
k|ẑ, ϵ̂)

]
︸ ︷︷ ︸

LRecon

+ ∥Jĝ(ẑ)∥1︸ ︷︷ ︸
Sparsity Regularization

−β1Eẑ∼qψ
(
log q (ẑ|x)− log pδ(z)

)
− β2Eẑ∼qψ,ϵ̂∼qϕ

(
log q (ϵ̂|x)− log pγ(ϵ̂|ẑ)

)︸ ︷︷ ︸
LKLD

(51)

D ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

D.1 APPROACH

Figure 4: Visu-
alization of the
data generations
of Eq. 5.

Figure 4 visualizes the data-generating process described in Eq. 5. Accord-
ingly, the likelihood for this process, given the known auxiliary variable u, is
expressed as:

p(z, ϵ,x|u) = pθ(x|z, ϵ)pγ(ϵ|z,u)pδ(z|u) (52)

As a result, we redesign the encoder and prior module to learn the distribu-
tion pγ(ϵ|z,u) and pδ(z|u), as shown in Eq. 52, while keeping the decoder
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Figure 5: Mean Correlation Coefficient (MCC) scores from the multi-domain experiments compar-
ing our framework with state-of-the-art approaches, including IndVAE, MCRL, BetaVAE, iVAE,
and SlowVAE, as well as the baselines W/O e and W/O u.

unchanged. Accordingly, the ELBO is:

LELBO =Eẑ∼qψ, ϵ̂∼qϕ
[
log pθ(x̂

k|ẑ, ϵ̂k)
]︸ ︷︷ ︸

LRecon

−β1Eẑ∼qψ
(
log q (ẑ|x)− log pδ(z|u)

)
− β2Eẑ∼qψ,ϵ̂∼qϕ

(
log q (ϵ̂|x)− log pγ(ϵ̂|ẑ,u)

)︸ ︷︷ ︸
LKLD

(53)

D.2 ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

Synthetic Data Generation Process: We adopt the data generation procedure from Kong et al.
(2022); Li et al. (2023b) to synthesize data for multi-domain experiments. Specifically, we sample
latent variables z ∼ N (µu, σ

2
uI), where domain-specific parameters µu ∼ U(−4, 4) and σ2

u ∼
U(0.01, 1) are randomly drawn for each domain u. The remainder of the generation process aligns
with Eq. 49, producing data from a total of five domains, i.e., |u| = 5.

Additional Experiments We retain the implementation and training procedures described in Sec-
tion C.1. Our approach is evaluated against IndVAE (Hu, 2008), which assumes conditional inde-
pendence among observations given latent variables, as well as against MCRL (Sun et al., 2025),
Beta-VAE (Higgins et al., 2016), iVAE (Khemakhem et al., 2020), and SLOW-VAE (Klindt et al.,
2020). Furthermore, we conduct an ablation study involving the ”W/O e” and ”W/O u” baselines.

Figure 5 illustrates the MCC scores obtained in our multi-domain experiments. Our proposed
method again achieves superior performance compared to all alternative approaches. This perfor-
mance advantage can be traced back to our model’s capability to disentangle latent variables z from
dependent noise terms ϵ, achieving the best identifiability under generalized dependency conditions.
The comparative analysis with ”W/O e” and ”W/O u” highlights the impact of explicitly modeling
e and emphasizes the effectiveness of explicitly modeling u.

D.3 ADDITIONAL ABLATION STUDIES

Ablations for higher dimensional z
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we additionally evaluated the scalability of our method to higher latent dimensions on the synthetic
dataset by varying the latent dimensionality N ∈ {8, 12, 18}, while keeping the network architec-
ture, training protocol, and all other hyperparameters fixed. Table 3 reports the MCC and compares
with IndVAE Hu (2008): Even as the latent dimension increases, our method consistently achieves

N IndVAE Ours

8 0.64± 0.06 0.80± 0.02
12 0.51± 0.03 0.68± 0.05
18 0.47± 0.04 0.61± 0.05

Table 3: MCC on the synthetic dataset for increasing latent dimensionality N .

higher MCC than IndVAE, indicating that the Jacobian-based sparsity regularization remains ef-
fective and that our approach scales well to higher-dimensional latent spaces within the considered
regime.

Ablations for hyperparameter sensitivity

In our implementation on the synthetic dataset, we set the weight of the sparsity regularizer to 1 and
the KL weights to β1 = β2 = 0.02. In this section, we conducted a sensitivity analysis in which
we vary one of these three hyperparameters at a time while keeping the others fixed at their default
values. For all runs we use the same network architecture, batch size, number of epochs, learning
rate, and training protocol as in the main experiments. The numbers reported below are MCC scores
(mean ± std. over multiple runs) on the synthetic dataset. These results show the default setting
(λ, β1, β2) = (1, 0.02, 0.02) obtains the best results.

Additional real-world experiments

we expand our real-world evaluation beyond the original dataset and consider two additional person
identity classification benchmarks. Specifically, we use the SYSU-MM01 dataset Wu et al. (2017)
and the ROBOTPKU dataset Liu et al. (2017). We only use the RGB modality, since our focus is
not on cross-modal person re-identification. SYSU-MM01 contains RGB images of 491 identities
from 6 cameras, with a total of 30,071 images. ROBOTPKU contains more than 16,000 RGB
images of 180 identities, captured under dynamic robotic viewpoints. These datasets thus provide
solid playgrounds for our experiments.

For performance comparison, we follow the same person index classification protocol as in our main
experiment and compare against several state-of-the-art methods, including GTL (Yang et al., 2025),
AGW (Ye et al., 2021), TransReID (He et al., 2021), CLIPReID (Li et al., 2023a), LDP-net Zhou
et al. (2023), Style Fu et al. (2023), as well as MCRL (Sun et al., 2025) and IndVAE (Hu, 2008).
Tables 5 and 6 report the Top-1 classification accuracy (mean ± std. over multiple runs).

To further examine the effect of the architecture choice, we replace the MLP in our framework
on the MSTM-17 dataset with a single-layer Gated Recurrent Unit (GRU) Goodfellow et al. (2016)
using the same hidden dimension (the classifier architecture and all training and evaluation protocols
remain unchanged, and we set N = M = 32 for fair comparison). The resulting Top-1 accuracies
are: GRU: 94.9 ± 0.4 versus our original MLP-based model: 94.4 ± 0.7. The GRU improves
the classification results slightly against the MLP architecture. Overall, our method consistently
outperforms strong baselines across three real-world person identity datasets.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to detect and correct grammatical errors throughout the manuscript. No substantive
edits requiring disclosure.
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Table 4: Sensitivity of MCC to regularization hyperparameters.

Hyperparameter Value MCC
λ 1 0.87± 0.04

0.1 0.82± 0.03
0.01 0.70± 0.07
10 0.68± 0.05

β1 0.02 0.87± 0.04
1 0.73± 0.02

0.001 0.65± 0.04
β2 0.02 0.87± 0.04

1 0.82± 0.01
0.001 0.78± 0.06

Table 5: Comparison of Top-1 Accuracy on the ROBOTPKU dataset.

Methods Acc
AGW (Ye et al., 2021) 87.6± 0.8
TransReID (He et al., 2021) 90.2± 0.9
CLIPReID (Li et al., 2023a) 91.7± 1.1
GTL Yang et al. (2025) 93.9± 0.5

MCRL (Sun et al., 2025) 94.5± 1.0
IndVAE (Hu, 2008) 95.8± 0.8
Ours 97.0± 0.5

Table 6: Comparison of Top-1 Accuracy on the SYSU-MM01 dataset.

Methods Acc
LDP-net Zhou et al. (2023) 91.7± 1.1
Style Fu et al. (2023) 92.8± 0.8
CLIPReID (Li et al., 2023a) 94.1± 1.0
GTL Yang et al. (2025) 95.7± 0.4

MCRL (Sun et al., 2025) 96.4± 0.8
IndVAE (Hu, 2008) 96.8± 0.5
Ours 97.6± 0.5
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