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ABSTRACT

The presence of noise that depends on the latent variable poses a significant iden-
tifiability challenge. Addressing this issue, the standard solution in the literature
assumes that the observational data satisfy the conditional independence property
given the latent variables. However, this assumption might not be valid in prac-
tice. This work relaxes this foundational constraint. Specifically, we consider a
generalized dependency structure in which the observations may exhibit arbitrary
dependencies conditional on the latents. To establish identifiability guarantees,
we introduce a two-step theoretical framework. First, we formulate the problem
as a factor analysis model use perturbation theory to establish the subspace iden-
tifiability of the latent variables. Second, assuming the structural sparsity on the
mixing function, or sufficient variability constraint in the latent space, we estab-
lish component-wise identifiability of each individual latent factor. Using these
identifiability results, we develop an unsupervised approach that reliably uncov-
ers the latent representations. Experiments on synthetic and real data verify our
theoretical claims.

1 INTRODUCTION

Identification of latent variables underpins the true data generating processes, thus inspiring an ex-
tensive line of works on downstream tasks, such as transfer learning (Kiigelgen et al.| 2021; Kong
et al.| 20225 Xie et al.| 2023} [Li et al.| 2024)) and visual reasoning (Chen et al., 2024 ajb; [Kong et al.,
2024). When there exists structured noise depending on the latent variables, which we term as de-
pendent noise, theoretical guarantees of identifiability become significant challenging to establish.
Prior work (Hul [2008) partially addresses this issue but fundamentally assumes that observations
are conditionally independent given the latents. Somce recent works [Zheng et al.| (2025)); |[Fu et al.
(2025)); L1 et al.| (2025c)) extends the conditional independence setup to time-series data. However,
many real-world systems might violate such assumption. For example, in chest X-ray based disease
diagnosis, the goal is to infer a patient’s latent lung-cancer state from the pixel intensities observed in
an image. The patient’s inspiratory level, which may itself depend on disease condition, introduces
noise to pixel intensities. Partitioning the image into anatomical regions reveals that regional inten-
sities remain spatially correlated even with conditioning on disease status. This highlights the need
for a flexible and robust framework to identify the latent variables under generalized dependency
structure, which allows dependencies among observations conditioning on latent variables.

The existence of dependent noise within the generalized dependency structure necessitates explicitly
disentangling the latent variable from noise for identifiability. The existing literature has yet to fully
address this challenge. Several works treats the noise terms as known auxiliaries (Lachapelle et al.,
2024b; [Liang et al., 2023} |[Lachapelle et al., 2023} [Liang et al.l 2023} |Lippe et al., 2023; [Zheng
et al.,[2022; |Yao et al., [2024; [Lachapelle et al.| 2024a; |Li et al., [2025a; [Song et al.| 2024; Rajendran
et al., [2024; |Xu et al.| [2024; Brady et al) [2025). One might argue that noise term can simply be
absorbed into an expanded latent space. The approaches of (Kiigelgen et al., 2021; [Kong et al.,
2022; [Xie et al.l 2023 [Li et al., |2025b; Ng et al., 2025) pursue this route but require partitioning
them into invariant / variant components across environments. Rather than partitioning the latent
variables, a few methods rely on carefully designed structure between latent variable and the noise
term. Specifically, |Sun et al.|(2025)) assumes independence between noise and latent variables, while
(Kong et al.| 2023) requires that the relations between a pair of latent variables have to be sufficiently
distinct. In this paper, we use the term generalized dependency structure to refer to data-generating
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processes in which the observed variables are allowed to have arbitrary dependence conditioning on
the latent variable, without the conditional independence restrictions imposed in [Li et al.[ (2025c));
Fu et al.| (2025).

In contrast to previous methods, we present identifiability theory that uncovers the latent variables
under generalized dependency structure, without requiring pre-specified auxiliary variables, latent
variable partitions and carefully designed structure. Our analysis starts with establishing subspace
identifiability, which separates the noise and latent variables in Theorem [I] through a spectral de-
composition tailored to bounded perturbations. Building upon this foundational result, we introduce
structural sparsity assumption in Theorem [I] which rigorously guarantees the component-wise iden-
tifiability of latent variables. Moreover, we present an alternative result through Theorem [2] which
leverages sufficient variability across multiple domains to ensure component-wise identifiability.
To the best of our knowledge, combining subspace identifiability (Theorem [I)) with either struc-
tural sparsity (Theorem[I)) or sufficient-variability assumptions (Theorem [2) yields the first general
frameworks for reliably identifying latent variables under generalized dependency structures.

Leveraging these theoretical insights, we propose an unsupervised method, which utilizes a varia-
tional inference-based learning objective specifically designed to uncover latent variables. Our ap-
proach effectively models the intricate data-generating processes involving generalized dependency
structures. Extensive experimental evaluations on both synthetic and real-world datasets showcase
significant improvements over existing methods, thereby validating the robustness and effectiveness
of our theoretical and methodological advancements.

2 PROBLEM SETTING

Let x € R¥ denote the K dimensional observation, z € R¥ denote the
latent variable, and € € R™ denote the dependent noise. Also, we assume
p(z) is positive and smooth. Our data generating process is formulated by:

XZQ(Z,E), €= G(Zﬂ?) (D
We assume g to be nonlinear, nonparametric, injective and smooth func-
tions. e denotes another nonlinear, nonparametric, injective and smooth
function. 7 denotes an independent exogenous variable sampled from
N(0,1). Figure 1: Visualiza-
tion of the data gener-

Our primary goal is to identify latent variables z from observed data x. To ations of Eq. EI

achieve this, we first introduce the definition of observational equivalence
as follows:

Definition 1 (Observational Equivalence). Let the true data-generating process for the ob-
served variables x be characterized by {g, e, p,(2z),pc(€)} as specified in Eq.|l| A learned model
{9,é,p5(2),p:(€)} is said to be observationally equivalent to the true model if their induced data
distributions match exactly, i.e.,

pg,e,pz,pé (X) = p@,é,pz,pg (X) (2)

Identifying z allows recovery of g and e up to certain indeterminacies, as we assume the injectivity
of g and e. Also, we assume there exists no latent confounders,

Suppose there exists an invertible and differentiable transformation %, we further define the notions
of subspace identifiability and component-wise identifiability as follows:

Definition 2. (Subspace Identifiability) The mapping h is said to achieve subspace identifiability
if there exists a permutation 7 such that the following transformation holds: z = h(w(z)), where z
denotes the estimation of z.

Definition 3. (Component-wise Identifiability) For an individual component of the latent variable
z" (n € [1, N)), there exists a unique component i (7 € [1, N1) of z matches z™ up to a permutation
7, such that 2 = h™(z™™)). Then 2™ is component-wise identifiable.

In this work, we breakdown the identifiability problem in two steps. First, we provide our findings
on subspace identifiability in Section[d} Subsequently, we present the component-wise identifiability
result in Section
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3 PRELIMINARIES

To situate our identifiability results within the existing literature, we first recapitulate and summarize
the core assumptions from (Hul 2008)), which supports the identifiability of latent variables up to an
invertible transformation. See Appendix [B.1]for the detailed proof of the following.

Consider an alternative data generating process defined by: x’ = ¢'(z,€¢'), € = ¢€'(2z’,7), where
7' is a latent variable, ¢’ is an independent noise term, 7’ is an auxiliary variable, ¢’ is an injective
smooth function, and €’ is an injective and smooth function. x’ can be decomposed into three
disjoint parts x' = (x/y, x5, X{). Hu|(2008) assumes conditional independence of x' given the
latent variable z’ by p(x'|z’) = p(x/y|2’')p(x’z|2")p(x(-|2"). Under this characterization, x" can be
interpreted as three conditionally independent measurements of z’.

Identifying 2z’ necessities disentangling € from z. Without further assumptions, this is impossible
since €’ is inherently generated from z’. To overcome this challenge, we leverage the spectral de-
composition of the integral linear operator:

Definition 4. Consider random variables r and v with supports R and V respectively. The linear
integral operator Ly, maps a function [ € F(V) to another function Ly f € F(R), defined by:

(Lo F)(X) = [, p(EV)F(V) AV, Ve R.

where p(r|v) denotes the conditional density of r given v. We consider L, |, to be well defined and
bounded. With Definition ] established, we impose the following assumptions:

Assumption 1. The operators Ly, |, and Ly, |xr are injective.

Assumption 2. forany z’ # Z/, the set x, : {p(x|2’) # p(x|Z')} has positive probability.

Given Assumptions E} Hul (2008)) arrives at
L e = Lt g Lt o L) 3)

XXy X ;'A|x;B ;/A|z/
where the LHS involves only observable variables, and the RHS explicitly depends on the latent

variable z’. Lx’c |z determines the eigenvalues of Lx/A | ZLx/c ‘Z/L;,llz,, whose diagonal entries cor-
A

respond to the conditional distributions p(x(|z’).

Eq. [3|suggests that each z’ indexing a distinct conditional distribution of p(x(|z’). Under Assump-
tion [2| where p(x(, | z’) are distinct for different values of z’, the eigenvalues are distinct. This
allows a bijective mapping i/ : Z — Z to permute z’ while preserving the values of p(x(. | z’).
Therefore, the latent variable can only be recovered up to such a permutation, i.e., 2/ = h'(z'),
which yields the identifiability up to an invertible transformation 4/'.

This identifiability result foundamentally relies on the conditional independence p(x’|z’) =
p(x4 |2 )p(x’5|2")p(x;|2"), which might be restrictive. Also, &’ might not meet Definition [2| since
it does not have to be differentiable. In what follows, we address to identify z under the generalized
dependency structure accommodating both conditional dependence across observations, as well as
differentiable transformation between the estimated and true latent variables.

4 SUBSPACE IDENTIFIABILITY

Our work builds upon Definition ] Assumptions [I]and 2] Let X’ denote the support of observed
variables x of Eq. E], which can be partitioned into three subsets {Xa,Xp,Xc}. This work al-
lows {Xa,Xp, Xc} remaining dependent conditioning on z. Formally, this implies: p(x|z) #
p(Xa|2z)p(xpb|2)p(xc|z), which consequently violates Eq. As a result, we can only obtain
an,Xb\xcL;:|xc #* an|zbe‘zL;:‘z, where L;:‘xc and L;a|z exist by Assumption A detailed
explanation appears in the proof of Theorem|[I] (Appendix [B.2). To address this setting, we explicitly
define a perturbation operator Per to facility such inequality:

L oLy |zl 1y = Lo xlxe Ly,

1 1
a2 xafxe T Per 4
where Per # () denotes deviations from Ly x, x. L l‘x . Our aim thus becomes to identify z from
Ly 1, L L;llz. Notably, the partition x = (x4, xp, T.) is arbitrary; Our analysis only requires

that there exist these partitions, and is invariant to any relabeling of these partitions.

Xa|zxp |2
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With the problem formulation in Eq. @] at hand, we present subspace identifiability result:

Theorem 1. Consider observed variables x € R¥ and the estimated latent variables z € RY,
suppose that there exist functions § and é satisfying the observational equivalence defined in Eq.
and the following assumptions hold:

i For x = {Xa,Xb, Xc}, we allow the dependencies such that p(x|z) # p(Xa|z)p(xb|2)p(Xc|2);
ii. The operators Ly |5, Lyx,, and Ly, |« are injective;

iii. The operator Ly, . x. L,

1
Xa|Xc

has distinct eigenvalues with cardinality equal to that of Ly, |5,
iv an‘zbe|zL;1|z is self-adjoint.

; o _ ) i i
v p* denotes the i-th eigenvalue of the operator Ly x, |x. L 1‘x . Let k = min; 4; W >0

for some constant oo > 0, and | Per| < k, where | Per| denotes the upper bound of Per;

vi Assurflption results in the existence of an invertible transformation h: Z — Z, such that
z = h(z), where z € Z. We further assume that 3M such that M (L, |5) = M(Ly j,)) =
t(z), where t is a differentiable transformation.

then for h € :}:l and t € T (where H and T are function classes, and HN'T #0), ifh € HNT =
z = h(z) = h(z) = t(z). In other words, z must be subspace identified.

Proof sketch: We detail the proof in the Appendix and this section summarizes the key steps.
As previously described, Assumptions fil and i1 are used to derive Eq. Furthermore, Assump-
tion fi11| implies that, under certain conditions, Ly, |, can possess unique entries. To establish such

uniqueness under perturbation, let p* and p% denote the i-th eigenvalues of an’xbbch*1 and

Xa|Xe
an\zLXb\zL;:w respectively. Applying Weyl’s inequality (Kato} 2013) to Eq. E under Assump-
tion [iv, we obtain |p% — p’| < Per. Then, by Assumption |v| if |Per| < k, all eigenvalues p
remain distinct for any ¢ # j. Hence, | Per| quantifies the permissible perturbation tolerance under

which an|zbe‘zL;;‘z retains unique eigenvalues. The uniqueness of Ly, |, implies that permut-

ing z would not affect the eigenvalues, i.e., there exists an invertible permutation h:Z — Z such

that z = iL(Z). Finally, Assumption [vi| ensures there exists h € H N T that is both invertible and
differentiable, satisfying the requirements of Definition 2}

Remark: Assumption [if characterizes conditional dependencies among X,, Xp, Xc given z. As-
sumptionis adopted by (Hu, [2008) as well. It ensures the existence of the inverse operators L_ !

Xa|z’

L7} and L;:|XC required in Eq. |4 To address the scaling and potential eigenvalue degeneracy of

z|Xc
the operator Ly, |5 L, |ZL>:1|Z’ we introduce Assumption|iiif Furthermore, Assumptionsand are
crucial for controlling the perturbation term Per, thereby ensuring the distinctness of Ly, |,. This
distinctness is essential: if eigenvalues were to coincide, the spectral structure an|zbe|zL71

Xa|Z
would become ambiguous, and identifiability would be lost. The uniqueness of Ly, |, subsequently
enables a permuting of z via a bijection h:2Z— Z. Notably, the bijection h need not coincide with
the transformation h stipulated in Definition [2| Although the smoothness of p(z) and the mixing
function g from Eq. [I] imply that & is differentiable, establishing subspace identifiability requires
that h matches h exactly. To formally guarantee this equivalence, we introduce Assumption

5 COMPONENT-WISE IDENTIFIABILITY

Theorem [1| guarantees that z is not a function of €, hence z and € are disentangled. We now focus
on identifying z in a component-wise manner. Let J,(z) denote the Jacobian of the mixing function
g, and let G € {0, 1}5*N represent a binary adjacency matrix indicating connections from latent
variables z to observed variables x, where G™¢ = 1 suggests the existence of the relationship from
z¢ to x". Hence, G is interpreted as the binarized J,(z). We formally state our first main result
regarding component-wise identifiability as follows:
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Corollary 1. Consider the true model {g, e,p(z),p(€)} and a learned model {§, é,p(z), p(€)} that
satisfy observational equivalence (Definition[l) and subspace identifiability (Theorem|I). Suppose
the following assumptions and regularization conditions hold:

A Latent dimensions of z are independent: p(z) = Hi:’:l p(z");

B For each dimension n € [1, N| of z, there exist {zl}ﬁzl such that:

Gn R Gme
span{Jy(z"),.. }:1 I — RY.., and [Jg(zl)n,;]izl e Rg
C Foreachn € [1, N|, there exists a subset of indices Cy, satisfying (,,cc, G™* = {n};

D Sparsity regularization: \G | <G|
Then, z must correspond component-wise to a permutation of the true latent variables z.

Proof Sketch: The complete proof is deferred to the Appendix Here we highlight key steps.
First, observational equivalence and subspace identifiability (Theorem (1)) imply z = h(z), which
leads to: Jy4(z) = J;(2)Jy(z). By leveraging Assumption [B| along with the sparsity regulariza-
tion condition [D] we can prove that there exists a permutation between z and z. Subsequently,
component-wise identifiability is proven by contradiction: any violation would contradict the struc-
tural sparsity assumption [C]

Remark: Assumptions[A]is commonly employed in recent literature (Kong et al., 2022; [Xie et al.,
2023). Assumption (B is introduced to ensure that the Jacobian spans the appropriate subspace.
Previous works |Zheng et al.| (2022) leverages a similar assumption for their identifiability results
under only the noise-free data generating process. In contrast, Theorem T| forms the basis of Theo-
rem|[I} and their combination demonstrate the component-wise identifiability even under generalized
dependency structure.

To relax Assumption[A]in Theorem [T} we can alternatively allow latent variables z to exhibit depen-
dence via a known auxiliary domain variable u. In other words, we assume conditional indepen-

dence across dimensions of z given u, i.e., p(z|u) = Hivﬂ p(z"|u). Specifically, we modify the
original data-generating process in Eq.[I]to incorporate the domain index u explicitly:

x=g(z€), e=e(zu,1) )

where u denotes the domain index, such that u € [1, 2N + 1]. Under these conditions, we establish
the following identifiability theorem:

Corollary 2. Suppose observational equivalence (Definition holds between the true model
{g9,e,p(z),p(€)} and a learned model {§,¢é,p(2)}, and the subspace identifiability condition in
Theorem|[I]is satisfied. Additionally, assume the following conditions:

a Latent variables are conditionally independent given domain u: p(zju) = HnN:1 p(z"|u);

b There exist 2N + 1 distinct domain values u € [1,2N + 1], such that the 2N vectors w(z,u) —
w(z,ug) (with u # ug) are linearly independent, where the vector w(z, u) is defined as:

w(z,u) = {v(z,u),v'(z,u)}

with

v(z,u) =

(310gp(21IU) a103;10(ZN|11)>

0zl B 0zN

/ _ (9*logp(z!|u) 9*log p(z" |u)

Then {2"|7 € [1,N]} must be a component-wise transformation of a permuted version of true
{z"|n € [1,n]}
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Proof Sketch. See the Appendix for details. Theorem [I| gives an invertible h with z = h(z)
and z = h~'(2). Using change of variables and Assumption% we can obtain log p, (2 | u) =
S 1108 pyiju(z’ | u) + log | det Jj,-1(2)|. Taking second derivatives in (2*,2"), k # v, the left-
hand side vanishes while the right-hand side yields a linear system in {h**)pi-() pi.(k0)yn
where b (%) = 9z' /0zF and h*(:v)" = 9277 /(02FHz"). By Assumption b, the resulting 2 coeffi-
cient vectors are linearly independent, forcing 7% () = 0 and h*(*:*)" = 0 for all i and k # v.
Thus each row and column of Jj,-1 has a single nonzero entry, which yields component-wise iden-
tifiability.

Remark: Distributional variability assumptions similar to Assumption [b]have been widely adopted
in the literature on latent variable identifiability (Kong et al., [2022; [Zhang et al.| 2024)). Intuitively,
this assumption ensures that auxiliary variable u induces sufficient variability across latent dimen-
sions. Building upon Theorem [I] our conclusion of Theorem 2] differs notably from previous works
by explicitly allowing dependencies between z and € in Eq.[5] In other words, our work degenerates
to previous results without Theorem [1|and modeling the dependent noise .

6 APPROACH

Building upon our established identifiability results, we now introduce an unsupervised method
specifically designed for learning z. Our proposed method aims to achieve observational equivalence
by explicitly modeling the data-generating process described in Eq. [T| Details of modeling Eq.[5|and
the corresponding experiments are in Appendix [D] respectively. In particular, we formulate the joint
density corresponding to Eq.[T]as follows:

p(Z,e,X) :pg(X|Z,E)p7(E‘Z)p5(Z) (6)

where parameters 6 denotes the parameters of g. v denotes the

parameters of e, and ¢ parameterizes p(z). The second equa-
tion leverages the fact that x is independent of {z, €} given x I Ds p 1
in Eq.[1] To uncover the latent variables z and € from observed  Lgip 4 Lyip
data x, we introduce two encoders, ¢y (z|x) and g, (e|x) pa- 1 ZA/:A t
rameterized by v and ¢, respectively. 3 4
To the end of learning Eq. [] we bulid our approach upon the Ty q¢
framework of Beta-VAE (Higgins et al.l [2016). The overall ™~ x/
architecture of our framework is illustrated in Figure E} In L ¥
what follows, we detail each part of our proposed model. Re;““

X
6.1 NETWORK DESIGN t

Pe
Learning the log-likelihood in Eq. [f] via variational inference T 1

suggests the architecture for our approach composing of the
following key elements. Specifically, the architecture includes
two encoders: ¢y (z|x) for inferring latent variables z, and
¢4 (€|x) for estimating the posterior of noise term €. These la-
tent representations are then utilized by a decoder py(%|z, €)
to reconstruct the observations x. Additionally, we regularize
the latent variables by constraining their posterior distribu-
tions via the KL divergence to match the learned priors. We
detail each of these modules below.

Figure 2: The overall framework
of our proposed approach consists
of: (1) two encoders g, and gy that
map observations x; to z and ¢, re-
spectively; (2) a decoder that recon-
structs observations X from z and ¢€;
and (3) two prior estimation mod-
ules ps and p., that models the prior
Encoder ¢, (z|x): We parameterize ¢, (2|x) as an isotropic of z and €, respectively. We train
Gaussian characterized by mean i, and covariance o,. To the framework by Lgecon along with
approximate this posterior, we employ a neural network en- LxLp.

coder constructed with an MLP followed by a leaky ReLU

activation:

2 ~N(piz,02), [z, 04 = LeakyReLUMLP(x))  (7)
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Encoder ¢4 (€|x): Similarly, we parameterize g, (€|x) as another isotropic Gaussian distribution:
€ ~N(ie,0¢),  the, 0c = LeakyReLU(MLP(x)) (8)

Prior Estimation p;(z): We estimate the prior ps(z) as a factorized Gaussian across latent dimen-
sions, since we assume the independence of each dimension of z in Assumption [A]of Theorem [T}

N
z) = H ps(z™), z" ~N(0,1) )

Prior Estimation p, (e|z): Direct estimation of the arbitrary density p,(e|z) poses a substantial
challenge. To overcome this, we introduce a transformation-based module leveraging normaliz-
ing flows, representing the prior distribution as a Gaussian transformed via an invertible mapping.
Suppose each component of e is independent conditioning on z, Vm € [1, M], the prior model is

formulated through: 7™ = ¢~ (¢™|2). Using the change-of—variable the prior distribution of €™
is computed as: p,(€™|2) = p(n™) ‘B%Ejn',m" = py(e7tm(em(2)) |25 ’ Aggregating across all
dimensions, the complete prior distribution is glven by:
Am 8671 m
H p(i " (10)
m=1

The normalizing flow transformation é is implemented using a stacked MLP.

Decoder py(x|z,€): The decoder generates the reconstructed observations X from inferred latent
variables z and €. It is implemented using an MLP followed by leaky ReL.U activations:

% = LeakyReLU(MLP(z, €)) (11)

6.2 TRAINING OBJECTIVE

In this work, we extend the learning objective from the Beta-VAE framework (Higgins et al., [2016)
by introducing a modified evidence lower bound (ELBO) The full ELBO objective is defined as:

J5(2)|l,

LRecon Sparsity Regularization
—B1Bznq, (logq (2]x) — logps(z)) — BoEznq,,enq, (l0g q (€1x) —logp,(€l2)) (12)

Lxip

Lerso = Esng,, eng, [l0gpo(X|2, €)]

where A, 51 and 33 are hyperparameters that balance the KL divergence penalties. The reconstruc-
tion term Lgecon, measures the discrepancy between reconstructed observations X and original inputs
x, implemented as a mean squared error loss. The KL divergence terms encourage the learned
posterior distributions to match the assumed priors over z and e. Additionally, we regularize the
decoder using the ¢; norm of the Jacobian matrix J;(z). This encourages the structural sparsity
of learned §. Following standard practice, we use the ¢; norm as a differentiable surrogate for £
sparsity constraints. Please refer to Appendix |C|for the details of network architectures.

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENTS

Experimental Setup To thoroughly evaluate the capability of our approach in learning causal pro-
cesses and accurately identifying latent variables, we perform simulation experiments using ran-
domly generated causal structures with specified sample sizes and variable dimensions. Specifi-
cally, we create a synthetic dataset satisfying our data-generating process described in Eq.[I] (details

in Appendix [C.T).

For evaluation, we utilize the Mean Correlation Coefficient (MCC) as our primary metric, which
quantifies the accuracy of latent variable recovery by computing the mean absolute correlation be-
tween the estimated and true latent variables. MCC scores range from 0 to 1, with higher values
indicating better identifiability.
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Figure 3: (a) Visualization of the correlations between each component of true latent variables
(z%) and their corresponding component of estimated latent variables (%) using our approach. The
green bounding boxes highlight the components that are identified. (b) Mean Correlation Coeffi-
cient (MCC) scores comparing our framework with state-of-the-art approaches, including IndVAE,
MCRL, BetaVAE, iVAE, and SlowVAE, as well as the ablation baselines W/O e and W/O s.

Results We evaluate our method against several state-of-the-art approaches for latent variable iden-
tification. Specifically, we compare our approach to the IndVAE that we build upon (Hul |2008),
which assumes conditional independence among observations given latent variables (see the details
of objective in Sec.[C.3). The Multimodal Causal Representation Learning framework (MCRL) pro-
posed by (Sun et al.,2025)) relies on the assumption that, the noise term € is independent of the latent
variables z. Furthermore, we benchmark against classical representation learning methods such as
Beta-VAE (Higgins et al., 2016), iVAE (Khemakhem et al.| |2020), and SLOW-VAE (Klindt et al.,
2020).

As illustrated in Figure [3(b), our method achieves the highest MCC score among all methods. We
attribute this superior performance to ours capability to effectively handle generalized dependency
structures by accurately disentangling latent variables z from the dependent noise term e. This
fundamental advantage enables our approach to more precisely uncover the true underlying data-
generating process. In addition to this quantitative result, Figure[3[a) provides a visual representation
of the disentanglement between the true latent variables and their estimates.

Ablation Study and Discussion To elucidate the significance of key assumptions underlying our
data generating process, we conduct an ablation study that specifically assesses the impact of gener-
alized dependency structures and structural sparsity. We introduce two ablation baselines for com-
parison: (1) “W/O e”, which removes ¢ = e(z) from Eq. m Accordingly, the likelihood becomes
p(z,€,%x) = p(x|z, €)p(z, €); (2) “W/O s”, which drops the structural sparsity assumption imposed
on g.

We present the results of this ablation study in Figure [3{b). Notably, our proposed method outper-
forms both the “W/O e” and “W/O s” baselines, highlighting the critical role of explicitly modeling
dependent noise and structural sparsity. The substantial performance gap observed between our
approach and the “W/O e” baseline tips the balance towards the necessity of modeling ¢ = e(z)
to accurately capture the dependencies between € and z. Similarly, the diminished performance of
the “W/O s” baseline emphasizes the essential contribution of structural sparsity within the mixing
function g.

7.2 REAL-WORLD EXPERIMENT

Task Setup: To validate our proposed identifiability theories in realistic and complex scenarios, we
apply them to the task of Person Index classification, a subtask of person RelD. In Person Index
classification, the goal is to assign a unique identity index to each individual, based on input im-
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ages. This setup aligns well with our generalized dependency structure setting, as each image of an
individual inherently contains noise, such as varying poses, gaits, or clothes, making it challenging
to disentangle these factors from the underlying identity. Also, different body parts cannot be inde-
pendent conditioning upon the latent person identify index. Consequently, this task serves as a solid
playground for evaluating the robustness and efficacy of our theoretical framework in addressing
real-world complexities.

In our implementation, we first employ a pretrained feature extractor to derive feature represen-
tations of each individual person, denoted as x € R¥. We consider x are generated by the la-
tent variable z € R”, directly associated with each person’s identity index, along with a depen-
dent noise variable ¢ € R, capturing variations such as pose, gait, or clothes. Inspired by the
two-phase training pipeline proposed by (Li et al., 2024} 2025a), we adapt our approach to Per-
son Index classification task as follows. First, we train our approach by optimizing the objective
function detailed in Eq. Subsequently, we introduce a classifier ¢, implemented by a mul-
tilayer perceptron (MLP), to predict the one-hot encoded index label ¢ from the inferred latent
representation z: § = MLP(z) The classifier is optimized using a cross-entropy loss given by:
LEE = —E; [one-hot(y) - log(softmax(¢))] where one-hot(y) denotes the one-hot embedding of the

cls

true person index label. More data preprocessing details can be found in Appendix

Data and Comparing Approaches We conduct our
experiments on the MSMTI17 dataset (Wei et al., Taple 1: Comparison of Top-1 Accuracy
2018)), which comprises images of 4,101 unique indi- oy MSMT17 dataset

viduals. Each individual in the dataset has more than
10 images, resulting in a total of over 120,000 images.

We partition the dataset into three parts: 60% for train- ~ Methods Acc
ing, 20% for validation, and the remaining 20% for ~ AGW (Ye et al.,[2021) 85.5+£1.2
test. TransRelD (He et al.,[2021) | 87.8 = 0.5
. CLIPRelD (L1 et al.,[2023a) | 90.1 + 0.3
For performance comparison, we select several state- GTL [Yang et al (2025) 915+ 1.2

of-the-art methods on the task of Person Index classi-

fication,including GTL (Yang et al}, 2025), AGW (Y ~MCRL (Sunetal 2025) [ 92.6 +0.9
ot all P021), TransReID (He et al, 2021), and NdVAE (Hu,[2008) 93.1+£0.5
CLIPReID (Li of al, 2023a). We also benchmark _ Ours 94.4 £ 0.7

against MCRL (Sun et al., 2025) and IndVAE (Hu,
2008) to evaluate the efficacy of our identifiability re-
sults under generalized dependency structure.

Results & Discussions: Table [I| reports the comparison of Top-1 Accuracy (Acc) among state-of-
the-art methods on the MSMT17 dataset. Our method achieves a superior performance, substantially
surpassing approaches that do not explicitly handle dependent noise, such as IndVAE (Hul, 2008) and
MCRL (Sun et al.;|2025). More specifically, our approach attains the highest accuracy of 94.4+0.7,
significantly improving upon the previous best performance of 93.1 &+ 0.5 obtained by IndVAE.
Furthermore, our proposed method demonstrates notable improvements over leading methods in-
cluding GTL (Yang et al.| 2025), CLIPReID (L1 et al., [2023a)), TransRelD (He et al., [2021), and
AGW (Ye et al.| 2021])), outperforming them by significant margins. These results clearly highlight
the effectiveness and robustness of our proposed framework in accurately addressing generalized
dependency structures in complex real-world scenarios.

8 CONCLUSION

This work introduces a set of novel identifiability guarantees under generalized dependency struc-
tures in which (i) observations can remain dependent given the latent variables and (ii) the noise may
depend on the latents. Our theoretical framework establishes identifiability in two main steps. First,
we rigorously prove the subspace identifiability by leveraging spectral decomposition techniques
grounded in perturbation theory. Building upon this foundation, we further demonstrate component-
wise identifiability. We validate our theoretical contributions through comprehensive experiments
on both synthetic datasets and real-world tasks, showing the efficacy of our findings. While we have
demonstrated the effectiveness of our approach on visual-based task, the lack of other applications
is a limitation of this work.
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A  NOTIONS

Table of notions

Variables
x e R¥ Observations % e R¥ Reconstructions
K The distance between eigenvalues  u € [1,2N + 1] Auxiliary domain variable
zeRY Latent variables zeRY Latent variable estimations
€ True dependent noise term é Estimation of €
n Auxiliary variable n Estimation of n
Indices
{a,b,c} The indices of partitions of x {4, B,C} The indices of partitions of x’
n € [N] The indices of z 7t € [N] The indices of z
1 The index of pa and p 7 The index of pa and p
Operators
L Integral linear operator d Difference operator
PA The eigenvalue of L, |, Ly, \ZL;alz p The eigenvalue of Ly, x, |x. L;allxc
Per Perturbation operator Per The upper bound of Per
True & learned model
g True mixing function g Learned mixing function
e True function of € é Learned function of €
Jg The jacobian matrix of g Jg The jacobian matrix of g
Optimizations
) Parameters of posterior gy (z|x) 10) Parameters of posterior g, (€|x)
1) Parameters of prior ps(z) ~ Parameters of prior p-, (¢|z)
0 Parameters of decoder py (x|z) | * |1 {1 norm on columns of

B PROOF OF THEOREMS

B.1 PREVIOUS RESULTS

In this section, we recapitulate and summarize the previous results from (Hul|2008)) in details.

Consider observed variables x' € RX and the estimated latent variables 2’ € RY, suppose that
there exist functions §' and €' satisfying the observational equivalence defined in Eq. IZI and the
following assumptions hold:

1. Forx! = {x;, X%}, p(x|2)) = p(od) |2 )p(xs |2 (i l2);

2. The operators Lx/A‘z/ and Lx/A |x), are injective;

3.Ve #7,p(xp:2') # p(xe;2');

then z’ must be identified up to an invertible transformation h/'.

14
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Proof: Given Assumption /, we can obtain the following:
! / ! !/ ! ! /
Dxl x!, |xs (X07 XA|XB) = /px’cx;;z’\x’B (X07 XAr2Z |XB)dz

px’c|quz’x’B (XIC|X:47 Z/7 XIB)px’Az’|x33 (X;h Zl|XlB)dz

Il
— S

Pac sz (XO1Xa5 2 )Pty 2t ey, (X 2 X ) dz

Px |x!y 2 (X/C |X:4a Z/)px:4 |z’ x5 (XfA |Z/7 X/B)pz’\x’B (Z/|X/B)dz

Px |x!y 2 (X/C |X/Aa Z/)pr4 |z’ (X/A ‘Z/)pz’|x’B (Z,|X/B)dz

Pat o (X012 )P, o (X4 |2 Par |, (2[5 ) dz (13)

Leveraging this eqation and Definition[d] we can derive the following operator:
(Lx'c;qu\xlg f/)(X{A) = //prq\z’ (X{A|z/)px’c\z/(X/C|Z/)pz’|x35 (z/|xlB)f/(X/B)dxlez

— [ e Al L Lo, )2
= (L, o Ltz Ly, f1) (X4) (14)
The above equation indicates:
Loty 1xty = Lty o Ltz L, (15)

This equivalence holds over some functions space G(Z), given the factorization properties of the
conditional densities established earlier.

Now, integrating over x¢, by using the fact that: [ Ly, .x |x, f'(X¢)dxt = Ly |x;, f' We can
obtain:

Ty 000 = [ ey (< ) )
- / / D s, (K12 Xl Dot (2 [X05) £ (X A
_ / P, 1 (K |2) Lo, ')

= Lx%\z’Lz’\xbf/](Xh) (16)

where the second equation leverages x/;, L xz | z’. By assuming the inejctivity of Ly, |z in
Assumption 2, we can arrive at L Z|x), = Lt Lx/A|x/B . Substitute this to Eq. 15:

X Iz
-1 —1
Lx’c;x’A|x’B X/ |xy Lx:4|z’Lx’C;ZLx14|z/ (17)

where the LHS involves only observable variables, and the RHS explicitly depends on the latent

variable z’. Ly ., determines the eigenvalues of L,/ |z Ly . /LY, ., whose diagonal entries cor-
X432 x/y | Xoi# =X |z

respond to the conditional distributions p(x(-|z’). Each z’ indexing a distinct conditional distribution
of p(x(;|z’). Under Assumption 3, where p(x¢, | z’) are distinct for different values of z’, the eigen-
values are distinct. This allows a bijective mapping i’ : Z — Z to permute z’ while preserving the
values of p(x(, | z’). Therefore, the latent variable can only be recovered up to such a permutation,

i.e., z’ = h/(z'), which yields the identifiability up to an invertible transformation h'.

B.2 PROOF OF THEOREM 1

In this section, we provide a formal proof of Theorem

15
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Theorem 1 Consider observed variables x € RY and the estimated latent variables z € RY,
suppose that there exist functions § and é satisfying the observational equivalence defined in Eq.
and the following assumptions hold:

i For x = {Xa,Xb, Xc}, we allow the dependencies such that p(x|z) # p(Xa|z)p(xb|2)p(Xc|2);

ii. The operators Ly, |z, Lyx,, and Ly, |x, are injective;
iii The operator Ly, , |x. Ly 1|x has distinct eigenvalues with cardinality equal fo that of Ly, |5,
v an\zLXblzL;1|z is self-adjoint.

v p* denotes the i-th eigenvalue of the operator. Let k = min;; > 0 for some constant

lp'—p’|—a
he vt of the 2

a > 0, and |Per| < k, where | Per| denotes the upper bound of Per;
vi There exists an operator M such that M (Lx,,|5) = M (L, 5(,)) = 1(z), where t is a differen-

tiable transformation.

thenforh € Handt € T (HNT #0), ifh € HNT = 2 = h(z) = h(z) = t(z). In other words,
z must be subspace identified.

Proof: Suppose the observational equivalence (Definition |1) holds, our goal is to demonstrate sub-
space identifiability of z from the data generated process in Eq.|l} To such an end, we proceed in
the following steps:

Step 1: Operator Construction and Spectral Decomposition.

Our approach follows the previous results in Sec. and proceeds to decompose the bounded
linear operator Ly, x, |x.. Assumption |i| violates the conditional independence by p(x|z) #

P(Xa|z)p(xp|2z)p(Xc|2), thus introduces a discrepancy between Ly w, |x. and Ly, |5 Lx, |z L7|x, ac-
cording to Eq.[T5] Consequently, we can define the difference operators:

d(Xb) - an,xb|xC - an|zbe\sz|xca

d= /d(Xb) de = an‘xc — an|ZLZ\Xc' (18)
Definition 4] guarantees boundedness of each term in Eq.[I8] while Assumption [if] ensures the exis-
tence of inverse operators L__ | , L Il and L_ | . Leveraging these, we rewrite:
an\zLXb\zL;a|z = (an,Xb\xc - d(xb))(anlxc - d)_l
= an;xb‘xcL_ |x + P@'r, (19)

where Per represents the perturbation term arising from the violation of conditional independence.
Step 2: Eigenvalue Uniqueness.

By Assumption , the operator Ly, x |x. L;1|x has distinct eigenvalues whose cardinality matches
that of Ly, |,. To establish the uniqueness of each eigenvalue in Ly, |, despite the perturbation,

we apply Weyl’s inequality (Katol 2013) to Eq. E 19| under Assumption [i l Let p* denote the i-th
eigenvalue of Ly, x. L and py represent the corresponding eigenvalue in Ly, |,:

loi = p'| < || Per|| < Per, (20)

where || - || is the l2 operator norm, and Per denotes its upper bound. Starting from Eq. [20} we can
obtain:

Xa|Xc’

Iph — p'| < Per, ie., p) € (p' — Per,p' + Per). 21

Suppose, for the sake of contradiction, two distinct eigenvalues, denoted p} and p3, fall within the

same interval (p' — Per, p* + Per). Assumptionfurther suggests that £ = min;«; w >

0 and Per < k, we thus have:

ot =]
2 )

i

lph — p'| < Per <

b3 — p'| < Per < (22)
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Applying the triangle inequality, we obtain:
oA — PRI < lph — 'l + 10k = 'l < |p' = p'| = 2x. (23)
However, inequality 23]implies:

12
w<ﬁ’ (24)

which directly contradicts the definition of x. Thus, each eigenvalue p’, is unique within its respec-
tive interval.

The uniqueness of p’, means that L, is determined by such decomposition. Specifically, permute
z introduces a permute operator P, such that, PLMZP’1 = wam(z>, where h denotes a permute
transformation. Therefore, associated eigenfunctions L, . and L;llz are permuted, but the eigen-

values L, |, remains invariant. Since h is a permute transformation, it has to be invertible. We take
inspirations from the conclusion from Sec. [B.I] the distinct eigenvalues imply the existence of a

re-labeling permutation Z = h(z), where h : Z — Z is bijective, and the eigenvalues p, remain
invariant after such permuted transformation of z.

Step 3: Connecting Bijection h with Differentiable Transformation h.

Definition |Z| requires the invertible transformation A to be differentiable. However, the eigenvalue-
based bijection h alone may not satisfy this differentiability constraint. To resolve this, we invoke
Assumption [vil which guarantees:

M (L, z) = M(bem(z)) = i(2),

for a differentiable function ¢. Thus, defining the function classes H (bijections induced by eigenval-
ues) and 7 (differentiable transformations), if h € HN7T # (0, the observational equivalence implies

that / coincides with  and ¢, yielding: 2z = h(z). Hence, we conclude the subspace identifiability
of z.

B.3 PROOF OF COROLLARY 1

Corollary 1 Consider the true model {g, e, p(z),p(n)} and a learned model {§, é,p(z),p(7})} that
satisfy observational equivalence (Definition[I)) and subspace identifiability (Theorem[I). Suppose
further the following assumptions and regularization conditions hold:

A Latent dimensions of z are independent: p(z) = ngl p(z"™);

B For each dimension n € [1, N| of z, there exist {zl}}g1 " such that:

span{J,(z'),.. El"l =RY.., and [Jg(il)n,:]ﬁlw‘ € RGJY”,:

C Foreachn € [1, N|, there exists a subset of indices Cy, satisfying (,,cc, G™* = {n};
D Sparsity regularization: \G| < |G|

Then, z must correspond component-wise to a permutation of the true latent variables z.

Proof: Theorem || guarantees the existence of an invertible trasnformation A such that z = h(z)
and, since the observational equivalence in Definition |1|indicates x = g(z) = §(z), the chain rule
yields

Jo(2) = J;3(2) Jn(2) (25)

Our goal is to show that h is a composition of a permutation and component-wise diagonal transfor-
mations.

Let us denote J;, by H. According to our assumption, for each index ¢, the set of basis vectors

eef Jg(z(l))@; Ell spans the space ]R’g;“. This means any vector in R?; can be expressed as a
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linear combination of these basis vectors. In particular, Assumption [BJsuggests that, for any standard
basis vector e, with jo € G; . we have

e,HeR, =  H eR} (26)
and therefore .

v(i,j) € G, {i} x supp(H;.) C G. (27)
Because J,(z) and J;(2z) both have full column rank n, H is invertible. By the Leibniz formula,

there exists a permutatlon o with H; ,(; # 0forall i, ie., o(j) € supp(H ) for all j. Combining
this with equation [27) gives

v(4,7) € G, (i,0(5)) € G. (28)
Define the permuted edge set o(G) = {(i,0(5)) : (i,5) € G}. Then o(G) C G. Sparsity regular-
1zat10n@on the estimated Jacobian ensures |G| < \G | = |o(G)|, hence

o(G) = (29)

Suppose, for contradiction, that H(z) is not a composition of a diagonal matrix and a permutation
matrix, i.e., there exist j; # jo such that:

supp(Hy;, ;) Nsupp(Hy, ) # 0. (30

Let j3 be an element in this intersection, so o(j3) € supp(Hj, .) N supp(H;, .). Without loss of
generality, assume j3 # j;. According to Assumption there exists a set C;, containing j; such

that:
N G =i} G
'L'ch'l
Since j3 # ji, it must be that:
js¢ () G (32)
iEle

implying there exists some i3 € C;, such that:

j3 ¢ Gig,:' (33)
However, since j; € Gj, ., we have (i3, 1) € G. Using Eq. we find:
(i3, 0 (j3)) € G. (34)

But from Eq. 29] this means (i3, j3) € G, which contradicts Eq. 33| This contradiction implies our
assumption is false, and therefore H must be a composition of a permutation matrix and a diagonal
matrix.

Together with the equation J, = J;H, we achieve the desired result that ¢ is composed of a permu-
tation and component-wise invertible functions.

B.4 PROOF OF COROLLARY 2

Corollary 2 Suppose observational equivalence (Definition [I) holds between the true model
{g,e,p(z)} and the learned model {§, é, p(z)}, and the subspace identifiability condition in Theo-
rem|[l]is satisfied. Additionally, assume the following conditions:

a Latent variables are conditionally independent given domain u: p(zju) = HnN:1 p(z"|u);

b There exist 2N + 1 distinct domain values u € [1,2N + 1], such that the 2N vectors w(z,u) —
w(z,ug) (with u # ug) are linearly independent, where the vector w(z, ) is defined as:

w(z,u) = {v(z,u),v/(z,u)}

with
dlogp(z'lw)  Dlogp(a"|u)
v(z,u) = ( ol yenns S
logp(z'lu)  0°logp(z"|u)
/ _
o) = (SR o)
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Then {z"|7 € [1,N|} must be a component-wise transformation of a permuted version of true
{z"|n € [1,n]}

Proof: By Theoremthere exists an invertible reparameterization h : Z — Z such that z = h(z)
and z = h~1(2). Applying the change-of-variables formula to the conditional densities (for any
fixed u) gives:

Paju(2 | 0) = pyu(h™!(2) | u) |det Jp-1(2)]. (35)
Taking logarithms yields
l0g Psju(Z | 1) = log pju(z | w) + log|det J,-1(2)], (36)
Under Assumption fa] we have
Zlogpii‘u(ii |u) = Zlogpzi‘u(zi | u) + log’det Jp-1(2)]. (37)
i=1 i=1

Following Hyvirinen et al.| (2024])), take second derivatives with respect to zF and 2 er k # wv.
Since each term on the left-hand side of Eq. |37 depends only on a single coordinate z°, we have
dlog pziju(2' | u)/0z" = 0 for i # k, which implies

o? ~
Ozk Ozv “

=

10g paiju (2’ | u) = 0. (38)
1

For the right-hand side, define fori =1,...,n

~. oz’ ~ . , 9%zt
pik) . 92 piko) . 22
Rr 9%F oz %9
= . 9 % "e, . 82 %
77@(2 ,11) = ﬁlogpzﬂu(z ‘ u)v i (Z 7u) = w logpzi’\u(z | 11) (40)

A direct application of the chain rule gives

log|det J;,-1(2)| = 0. (41)

n . S . 92
7 i,(k) 1.1,(v i i,(k,v
S () 0 ) @ bt ) e

i=1

Fix (k,v) with k # v and evaluate this identity at 2n-+1 distinct values of the conditioning variable,
ul) for j € {0,1,...,2n}. Subtracting the equation at u(®) from that at u) cancels the log-
determinant term (which does not depend on u) and yields, for j = 1,...,2n,

>~ (@ ) =l a0 R0 4 ]2 w D) =l (@ w )R E) = 0. @)
=1

Let
w(z,u) = (773’(z17 u),...,n'(z" ), 7,(z',v),...,7,(z" ) )T. (43)
Under Assumption b} the 2n vectors w(z, u)) — w(z,u®) for j = 1,...,2n are linearly inde-

pendent, so the only solution to the homogeneous linear system Eq. 42|is
W) B = and ROV =0 forallie {1,...,n}andall k # v. (44)

Hence each row of the Jacobian Jj,-1(z) has at most one nonzero entry, and all mixed second
derivatives vanish. Since h~! is invertible, each row must in fact have exactly one nonzero entry;
moreover, two distinct rows cannot share the same nonzero column (otherwise det J;,—1(z) = 0), so
there exists a permutation 7 such that

a7 = hi(z)  fori=1,...,n, )

which shows that z is obtained from z by a permutation of component-wise invertible transforma-
tions.
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B.5 IDENTIFYING €

Corollary Consider the true model {g,e,p(z),p(n)} and a learned model {g,é,p(z),p(7)} that
satisfy observational equivalence (Definition[I) and subspace identifiability (Theorem[I)). Further,
the following assumptions also hold:

1. There exists an smmoth, invertible transformation f between z, € and 2, €. Also, the diago-
nal entries of the jacobian of f coincides with % and %, respectively.

2. For x = {Xa,Xb,Xc}
p(Xale)p(xble)p(xc|€);

we allow the dependencies such that p(x|e)

£

3. The operators Ly, |c, Lejx., and Ly, |x, are injective;

4. The operator Ly, x, |x. Ly

L has distinct eigenvalues with cardinality equal to that of
Xa|Xc
L

Xp|er

5. anIELXbléL;al\e

is self-adjoint.

6. p' denotes the i-th eigenvalue of the operator an,xb|xcL71 Let K

Xa|Xc”

. i F|_ [ [—
min.z; w > 0 for some constant « > 0, and |Per| < k, where |Per| denotes

the upper bound of Per;

7. There exists an operator M such that M(Lx,,|c) = Me(Ly, j, (o)) = te(€), where tc isa
differentiable transformation.

then for he € H. and t. € Te (where H. and T, are function classes, and H. N T, #0), if he €
HeNTe = € = he(e) = he(e) = te(e). In other words, € must be subspace identified. Combinting
with the conclusion from Themorem|I| we can further obtain the block-wise identifiability of z and
€.

Proof: We can arrive at ¢ = h.(¢) by following the same proof strategy as in Sec. Since we
assume there exists an smooth, invertible transformation f between (z, €) and (Z, €):

The Jacobian of f with respect to (z, €) is
0z Oe
Jp = (47)
0z Oe
Theorem [1] gives 2 = h(z), hence 02/d¢ = 0. Analogously, ¢ = h.(e) implies 0¢/0z = 0.

Therefore the Jacobian reduces to

92
Z

Jp= |92 o | (48)
O

which is block-diagonal. This shows that the transformation between (z, €) and (2, €) is block-wise,

i.e., we have block-wise identifiability of z and e.
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C IMPLEMENTATION DETAILS

C.1 SYNTHETIC EXPERIMENT

Synthetic Data Generation Process: Our data generating process for the synthetic experiment is
as follows:
N0, (z1)?),

1= G1(z1,€1) = sinh(z1) X
1
€ = tanh(zs), Zo, € T v«
2 (z2), G2(z2,€2) = T enp(a) < ©
e3 = Laplace(0, |z3), §3(z3,€3) = (23)° X €3

Xm = Gm(Zm, €m), X = g(X) = o(RX) 49)
where m € [1, 3]. We sample 10,000 states drawn from z ~ U (0, 1), R € R3*3 is a fixed full-rank
matrix with sparse, small nonzero off-diagonal entries. X = (X1, X2,%3) |, and & is a smooth strictly
monotone scalar nonlinearity applied coordinate-wise. In practice, we randomly assign the roles of

Xq, Xp, X t0 X1, X2, X3, 80 that (X, Xp, X.) can be any random permutation of (x1, X2, X3).

Table 2: The details of our network architectures for the experiment on MSTM-17 dataset, where

BS means batch size,

N =32, M = 32 and K = 1280.

Configuration Description Output dimensions
Encoder g1
Input: x BS x K
Dense 128 neurons, LeakyReLU BS x 128
Dense 128 neurons, LeakyReLLU BS x 128
Dense Output embeddings BS x 2N
Bottleneck Compute mean and variance of posterior  fiz, 0z
Reparameterization Sequential sampling Z
Encoder gy
Input: x BS x K
Dense 128 neurons, LeakyReLU BS x 128
Dense 128 neurons, LeakyReLU BS x 128
Dense Output embeddings BS x 2M
Bottleneck Compute mean and variance of posterior e, o
Reparameterization Sequential sampling €
Decoder
Input: z, € BS x (N + M)
Dense 128 neurons, LeakyReLLU BS x 128
Dense 128 neurons, LeakyReLU BS x 128
Dense input embeddings BS x K
Prior module
Input Z, € BS x (N + M)
InverseTransformation 7 BS x M
JacobianCompute log |det.J;| BS
Classifier
Input: z BS x N
Dense 256 neurons, LeakyReLU BS x 256
Dense 256 neurons, LeakyReLU BS x 256
Dense output one-hot embeddings BS x 4101

Implementations & Training Details. In our synthetic experiments, we set the dimensions N = 3
and K = 3. The encoders, decoder, and normalizing flow modules were each implemented using
single-layer multilayer perceptrons (MLPs) followed by Leaky ReLU activations.

Our implementation utilized PyTorch 1.11.0. For optimization, we adopted the AdamW optimizer
Loshchilov & Hutter| (2019), which is known for enhancing generalization in deep learning models.
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The hyperparameters were configured as follows: a learning rate of 1 x 10~2 and a batch size of 64.
To guarantee robustness and statistical reliability, each model was trained using 10 different random
seeds. We report the overall performance as the mean + standard deviation computed across these
runs. The loss function employed balances the reconstruction error and the KL-divergence, with
weighting coefficients set to 31 = S = 0.02. All experiments were performed on a single NVIDIA
GeForce RTX 2080 Ti GPU equipped with 11GB of memory.

C.2 REAL-WORLD EXPERIMENT

To obtain a fair comparison, we adopt the approach outlined by |Yang et al.| (2025), employing the
pretrained CLIP model (Radford et al.l [2021) as the visual encoder to generate 1280-dimensional
representations for x. Table [2| summarizes the specific network architectures implemented for our
experiments on the real-world MSTM17 dataset.

To train our framework, we utilize the AdamW optimizer combined with a cosine annealing learning
rate schedule. The initial learning rate is set to 2x 103, with a weight decay parameter of 1 x 1072 to
prevent overfitting. The ELBO loss function incorporates equal weighting coefficients 5; = By =
0.02. We use a batch size of 128, chosen to balance computational efficiency with optimization
stability. The framework is implemented in PyTorch. Training is done for 80 epochs on a multi-
GPU configuration comprising four NVIDIA GeForce RTX 2080 Ti GPUs, collectively providing
44GB of memory.

C.3 THE OBJECTIVE OF INDVAE

In this section, we explain our trained objective for IndVAE, which is designed by taking inspirations
from (Hul 2008) To incorporate with the conditional independence assumption, we consider the k-
th observed variable x* is generated as x* = ¢¥(z, ¢). Accordingly, the log-likelihood of the data
generating process of Eq.[I|can be transformed as follows:

log p(z, €,x) = log pg(x|z, €) + log p,(€|z) + log ps(z)
K

= Z log pg(x"|z, €) + log p, (€|z) + log ps(z) (50)
k=1

Accordingly, the loss function becomes:

K
Le1Bo =Eanq,, inay [Z logpe(X*|2,¢)| +  [|J3(2)]I,
= S~
parsity Regularization
LRecon
—B1Eznq, (logq (2x) — logps(2)) — BoEangy inq, (10g q (€]x) — logpy(€]2)) (51)

Lxip

D ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

D.1 APPROACH

Figure [] visualizes the data-generating process described in Eq.[5} Accord- e'e

ingly, the likelihood for this process, given the known auxiliary variable u, is
expressed as:

p(z, €, x[u) = po(x[z, €)p, (€|, u)p;(z|u) (52) ,
Figure 4: Visu-
. . L alization of the
As a result, we redesign the encoder apd prior modu}e to lea'lrn the distribu-  44¢q generations
tion p-(€|z,u) and ps(z|u), as shown in Eq. while keeping the decoder ¢ Eq. ]}
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Figure 5: Mean Correlation Coefficient (MCC) scores from the multi-domain experiments compar-
ing our framework with state-of-the-art approaches, including IndVAE, MCRL, BetaVAE, iVAE,
and SlowVAE, as well as the baselines W/O e and W/O u.

unchanged. Accordingly, the ELBO is:

Le1Bo =Eanq,, eng, [logpo(%¥|2, )]

LRecon

—B1Eznq, (logq (2]x) — log ps(z|u)) — B2Eznq, inq, (log q (€x) — log p, (€]2, u))

Lxip

(53)

D.2 ADDITIONAL EXPERIMENTS FOR MULTI-DOMAINS

Synthetic Data Generation Process: We adopt the data generation procedure from Kong et al.
(2022); L1 et al.| (2023b) to synthesize data for multi-domain experiments. Specifically, we sample
latent variables z ~ N (j,,021), where domain-specific parameters p,, ~ U(—4,4) and 02 ~
U(0.01,1) are randomly drawn for each domain w. The remainder of the generation process aligns
with Eq. 49| producing data from a total of five domains, i.e., [u| = 5.

Additional Experiments We retain the implementation and training procedures described in Sec-
tion Our approach is evaluated against IndVAE (Hul, [2008)), which assumes conditional inde-
pendence among observations given latent variables, as well as against MCRL (Sun et al.| 2025)),
Beta-VAE (Higgins et al.l [2016), iVAE (Khemakhem et al.| [2020), and SLOW-VAE (Klindt et al.,
2020). Furthermore, we conduct an ablation study involving the "W/O e” and "W/O u” baselines.

Figure [3] illustrates the MCC scores obtained in our multi-domain experiments. Our proposed
method again achieves superior performance compared to all alternative approaches. This perfor-
mance advantage can be traced back to our model’s capability to disentangle latent variables z from
dependent noise terms ¢, achieving the best identifiability under generalized dependency conditions.
The comparative analysis with "W/O e” and "W/O u” highlights the impact of explicitly modeling
e and emphasizes the effectiveness of explicitly modeling u.

D.3 ADDITIONAL ABLATION STUDIES

Ablations for higher dimensional z
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we additionally evaluated the scalability of our method to higher latent dimensions on the synthetic
dataset by varying the latent dimensionality N € {8, 12, 18}, while keeping the network architec-
ture, training protocol, and all other hyperparameters fixed. Table [3]reports the MCC and compares
with IndVAE [Hu| (2008): Even as the latent dimension increases, our method consistently achieves

N IndVAE Ours

8§ 0.64+£0.06 0.80=£0.02
12 0.51£0.03 0.68£0.05
18 047+£0.04 0.61+0.05

Table 3: MCC on the synthetic dataset for increasing latent dimensionality /V.

higher MCC than IndVAE, indicating that the Jacobian-based sparsity regularization remains ef-
fective and that our approach scales well to higher-dimensional latent spaces within the considered
regime.

Ablations for hyperparameter sensitivity

In our implementation on the synthetic dataset, we set the weight of the sparsity regularizer to 1 and
the KL weights to 1 = f2 = 0.02. In this section, we conducted a sensitivity analysis in which
we vary one of these three hyperparameters at a time while keeping the others fixed at their default
values. For all runs we use the same network architecture, batch size, number of epochs, learning
rate, and training protocol as in the main experiments. The numbers reported below are MCC scores
(mean =+ std. over multiple runs) on the synthetic dataset. These results show the default setting
(A, B1, B2) = (1,0.02,0.02) obtains the best results.

Additional real-world experiments

we expand our real-world evaluation beyond the original dataset and consider two additional person
identity classification benchmarks. Specifically, we use the SYSU-MMO1 datasetWu et al/|
and the ROBOTPKU dataset (2017). We only use the RGB modality, since our focus is
not on cross-modal person re-identification. SYSU-MMO1 contains RGB images of 491 identities
from 6 cameras, with a total of 30,071 images. ROBOTPKU contains more than 16,000 RGB
images of 180 identities, captured under dynamic robotic viewpoints. These datasets thus provide
solid playgrounds for our experiments.

For performance comparison, we follow the same person index classification protocol as in our main
experiment and compare against several state-of-the-art methods, including GTL (Yang et al.|[2025),
AGW [2021)), TransReID [2021)), CLIPReID [2023a), LDP-net
, Style (2023), as well as MCRL 2025) and IndVAE 2008).

Tables [5|and [] report the Top-1 classification accuracy (mean = std. over multiple runs).

To further examine the effect of the architecture choice, we replace the MLP in our framework
on the MSTM-17 dataset with a single-layer Gated Recurrent Unit (GRU) |Goodfellow et al.| (2016))
using the same hidden dimension (the classifier architecture and all training and evaluation protocols
remain unchanged, and we set N = M = 32 for fair comparison). The resulting Top-1 accuracies
are: GRU: 94.9 £ 0.4 versus our original MLP-based model: 94.4 + 0.7. The GRU improves
the classification results slightly against the MLP architecture. Overall, our method consistently
outperforms strong baselines across three real-world person identity datasets.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to detect and correct grammatical errors throughout the manuscript. No substantive
edits requiring disclosure.
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Table 4: Sensitivity of MCC to regularization hyperparameters.

Hyperparameter  Value MCC
A 1 0.87 £0.04
0.1 0.82£0.03
0.01 0.70+0.07
10 0.68 £0.05
B1 0.02 0.87+0.04
1 0.73 £0.02
0.001 0.65 £ 0.04
Ba 0.02 0.87+0.04
1 0.82+0.01
0.001 0.78 £0.06

Table 5: Comparison of Top-1 Accuracy on the ROBOTPKU dataset.

Methods Acc

AGW (Ye et al.,[2021) 87.6 £0.8
TransRelD (He et al.l[2021) | 90.2 £ 0.9
CLIPRelID (Lietal.l|2023a) | 91.7+1.1

GTL |Yang et al.|(2025) 93.9£0.5
MCRL (Sun et al,2025) 945+1.0
IndVAE (Hu| 2008) 95.8 + 0.8
Ours 97.0+0.5

Table 6: Comparison of Top-1 Accuracy on the SYSU-MMO1 dataset.

Methods Acc

LDP-net|Zhou et al.|(2023) | 91.7+ 1.1
Style [Fu et al.| (2023) 92.8 +0.8
CLIPRelID (L1 et al.}[2023a) | 94.1 +1.0
GTL |Yang et al.|(2025) 95.7+0.4
MCRL (Sun et al,2025) 96.4 + 0.8
IndVAE (Hu, [2008) 96.8 0.5
Ours 97.6 0.5
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