ResQ: Mixed-Precision Quantization of Large Language Models
with Low-Rank Residuals

Utkarsh Saxena' Sayeh Sharify?> Kaushik Roy' Xin Wang?

Abstract

Post-training quantization (PTQ) of large lan-
guage models (LLMs) holds the promise in re-
ducing the prohibitive computational cost at infer-
ence time. Quantization of all weight, activation
and key-value (KV) cache tensors to 4-bit without
significantly degrading generalizability is chal-
lenging, due to the high quantization error caused
by extreme outliers in activations. To tackle this
problem, we propose ResQ, a PTQ method that
pushes further the state-of-the-art. By means of
principal component analysis (PCA), it identifies
a low-rank subspace (in practice 1/s of the hidden
dimension) in which activation variances are high-
est, and keep the coefficients within this subspace
in high precision, e.g. 8-bit, while quantizing the
rest to 4-bit. Within each subspace, invariant ran-
dom rotation is applied to further suppress outliers.
We show that this is a provably optimal mixed pre-
cision quantization scheme that minimizes error.
With the Llama and Qwen2.5 families of mod-
els, we demonstrate that ResQ outperforms recent
uniform and mixed precision PTQ methods on
a variety of benchmarks, achieving up to 33%
lower perplexity on Wikitext than the next best
method SpinQuant, and upto 5x speedup over
16-bit baseline. Code is available here.!

1. Introduction

Growing capabilities of large language models (LLMs)
come with an increasing computational cost at inference
time. LLM inference has two distinct stages: prefilling,
which processes the input prompt and populates the internal

"Department of Electrical and Computer Engineering, Purdue
University, West Lafayette, USA zd-Matrix, Santa Clara, USA.
Correspondence to: Utkarsh Saxena <saxenau@purdue.edu>.

Proceedings of the 42™¢ International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

"https://github.com/utkarsh-dmx/project-r
esqg

state called KV (key-value) cache, and generation, where
tokens are generated autoregressively. The prefilling stage
is compute-bound, requiring trillions of floating-point op-
erations (FLOPs), whereas the generation stage is memory-
bound due to iterative accesses and updates of the KV cache.
These high computational costs are further amplified by
modern LLMs’ large sizes — some exceeding 400 billion
parameters — and the increasingly long context lengths that
necessitates large KV caches.

Quantization algorithms are powerful and principled ap-
proaches to address the immense computational demands of
LLMs at both stages of inference. Quantization of weights
reduces parameter storage, KV cache quantization lowers
memory usage of KV cache during generation, whereas
activation quantization decreases the complexity of floating-
point operation. However, effective low-precision quanti-
zation is difficult due to large outliers in activations, which
can be ~ 20x larger than other values (Dettmers et al.,
2022). While post-training methods like KIVI (Liu et al.,
2024c) and KVQuant (Hooper et al., 2024) achieve 2-bit
KV cache quantization, and techniques like GPTQ (Frantar
et al., 2023) and AWQ (Lin et al., 2024c) optimize very
low-precision weights, quantizing activations below 8-bit
precision remains an open challenge.

Recent LLM activation quantization methods feature two
useful strategies: differential treatment of outliers retain out-
lier channels in high precision, leading to mixed-precision
quantization (e.g., Dettmers et al. 2022; Zhao et al. 2024;
Ashkboos et al. 2024b; Figure 1a), whereas invariant ran-
dom rotation suppress outliers, leading to less difficult
uniform low-precision quantization (e.g., Ashkboos et al.
2024c; Liu et al. 2025; Figure 1b). Both reduce quantization
error and improve signal-to-quantization-noise ratio (Figure
1d,e) locally; yet a notable model performance gap persists
from the 16-bit baseline. For example, SpinQuant (Liu et al.,
2025) at 4-bit, applied to Meta-Llama—-3-8B (Meta,
2024b), exhibits ~ 20% higher perplexity than the 16-bit
floating point baseline, even after nontrivial optimization.

To mend this gap, we introduce ResQ, a novel PTQ method
that combines the strengths of both aforementioned strate-
gies and thereby improve model efficiency with aggressive 4-
bit quantization of activation, weight, and KV cache. Specif-

https://github.com/utkarsh-dmx/project-resq
https://github.com/utkarsh-dmx/project-resq
https://github.com/utkarsh-dmx/project-resq

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Activation X Activation X

ofefe]e Quantizer

O Bonoe -1k

(a) Outlier channel detection and mixed-precision quantization

Activation X

Activation XR
.[o[o-- R [A B AR R R RN)

.m. . Activation e |@|° |@(@]| |0
rotation

(b) Random rotation and uniform-precision quantization

Quantizer
e —

Quantized Activation Xq = RTN e Hadamard Rot. ResQ
[e OUtliEr = Outlier+Rot.
25
@
=4
@ 20
[=
L
g 15
Quantized Activation X, q b=
[+
S 10
3 w

0 5 10 15 20 25 30

(d) Quantization SNR Attn. Layers

20
14
g8 S—— ———
c A
216
Activation X U=p R4|0 Activation XU Quantized Activation X, N 14
=, =
<JeJe]e]e ORé‘. - [+]o [0 [®]e |@)] Quantizer g’lz
. .[' Om- o |- Activation cle|@® 0.‘|.
projection

(c) Static subspace projection, random rotation and mixed-precision quantization (ours)

0 5 10 15 20 25 30
(e) Quantization SNR FFN Layers

Figure 1: (a)-(c) Different approaches to quantization including ResQ. Symbol sizes represent magnitudes of values
and colors indicate precisions of quantization (blue: low precision, orange: high precision). (d)-(e) Quantization SNR

comparison of ResQ with other baselines.

ically, by means of principal component analysis (PCA), we
first identify a low-rank subspace that captures highest vari-
ances in activation, and mark the coefficients along this
subspace for high-precision (8-bit) and the complement sub-
space for low-precision (4-bit) quantization. Then, ResQ
employs invariant random rotations within each subspace be-
fore quantization to further suppress outliers (Figure 1c,d,e).
We prove that the above treatment minimizes quantization
error. Similar to SpinQuant, most projection matrices can
be fused into adjacent weights, leading to minimal runtime
computational overhead (Section 4.3). Furthermore, ResQ
can be applied to KV cache quantization as well, and can
be combined with GPTQ (Frantar et al., 2023), resulting in
even better generalizing LLMs.

Outlier-based and rotation-based quantization methods can
be combined. For example, high-precision outliers could
be detected by ¢,-norm similar to QUIK (Ashkboos et al.,
2024b), and random rotations applied within both high- and
low-precision quantization groups, as in QuaRot (Ashkboos
et al., 2024¢). These methods fare less well than ResQ
(Figure 1d,e) in practice, in support of ResQ’s provably
optimal treatment of outlier quantization. When quantiz-
ing weight, activation and KV cache to 4-bit with only 1/s
channels in 8-bit, ResQ achieves 4-33% lower perplexity
on Wikitext and 0.1-5.4% 0-shot accuracy improvements
over SpinQuant (Liu et al., 2025), the best in practice so far.
Unlike SpinQuant, ResQ does not require gradient-based
optimization, making it a less demanding and faster PTQ
solution. Furthermore, tuning the rank r of ResQ gives rise
to Pareto-optimal solutions as a tradeoff between efficiency
and accuracy. We claim the following contributions.

1. We propose ResQ, a mixed precision weight, activa-
tion, and KV cache quantization method by keeping
low-rank, high-variance components in high precision,
in combination with random rotation-induced outlier
suppression.

2. We theoretically analyze the projection matrices in
ResQ and show that using PCA-based projections min-
imizes quantization error.

3. We conduct extensive experiments on various models
and language tasks and show that ResQ outperforms
related state-of-the-art approaches.

4. We develop CUDA kernels and achieve runtime
speedup on NVIDIA GPUs with our quantized models.

2. Prior Work
2.1. Quantization of LLMs

Quantization reduces model size and accelerates inference
by lowering neural network bit precision (Choi et al., 2018;
Hubara et al., 2021; Yao et al., 2022; Gholami et al., 2022;
Xi et al., 2023; Park et al., 2024). It is broadly catego-
rized into two categories: uniform precision quantization
(UPQ) and mixed precision quantization (MPQ). Uniform
precision quantization (UPQ) applies the same bit-width
across all layers, simplifying implementation but neglecting
layer-specific sensitivity to quantization. Weight-only UPQ
methods reduce storage by compressing weights, using tech-
niques like Hessian-guided rounding (GPTQ, Frantar et al.
2023), adaptive rounding (QulP, Chee et al. 2023), channel-
wise scaling (AWQ, Lin et al. 2024c), and multi-codebook

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

quantization (AQLM, Egiazarian et al. 2024). However,
these methods struggle with batch processing due to sig-
nificant activation memory overhead. Weight-activation
UPQ compresses both weights and activations to address
this. Methods such as SmoothQuant (Xiao et al., 2023)
and OmniQuant (Shao et al., 2024) scale activations and
weights to handle outliers, while RPTQ (Yuan et al., 2023a),
QLLM (Liu et al., 2024a), and QServe (Lin et al., 2025) em-
ploy channel-level strategies like clustering and reordering.
Rotation-based methods such as QuaRot (Ashkboos et al.,
2024c), SpinQuant (Liu et al., 2025) and DuQuant (Lin et al.,
2024b) further enhance robustness in low-precision scenar-
ios. KV cache UPQ reduces memory for large batches or
long contexts. FlexGen (Sheng et al., 2023) employs 4-bit
quantization and memory offloading, while KIVI (Liu et al.,
2024c) uses asymmetric 2-bit quantization for compression,
enabling efficient inference.

Mixed precision quantization (MPQ) optimizes bit-
widths by adapting to the sensitivity of weights and ac-
tivations, achieving better accuracy than UPQ at similar
compression rates. Our proposed method, ResQ, follows
the MPQ approach. Weight-only MPQ has advanced ef-
ficiency for memory-bound applications with minimal ac-
tivation demands. Methods like OWQ (Lee et al., 2024)
and SpQR (Dettmers et al., 2024) mitigate activation out-
liers’ impact by retaining critical features in full precision,
while SqueezeLLM (Kim et al., 2024) employs Dense-and-
Sparse decomposition to efficiently store sensitive weights.
Weight-activation MPQ enhances efficiency by address-
ing activation outliers (e.g. (Guan et al., 2024; Zeng et al.,
2025)). Methods like LLM.int8() (Dettmers et al., 2022)
and QUIK (Ashkboos et al., 2024b) preserve critical acti-
vations with mixed or low-precision decompositions, while
Atom (Zhao et al., 2024) and SIiM-LLM (Huang et al.,
2024) optimize quantization through channel reordering and
salience-driven bit allocation. KV cache MPQ reduces
memory usage while preserving precision for critical tokens
using techniques like non-uniform quantization, importance-
aware precision, and salient token compression (Hooper
et al., 2024; Yang et al., 2024b; Dong et al., 2024; He
et al., 2024). Alternatively, GEAR quantizes all tokens’
KV cache and maintains low-rank quantization error (Kang
etal., 2024).

2.2. Low-rank Decomposition

Low-rank decomposition techniques have been widely used
in model compression, reducing dimensionality while main-
taining performance. For instance, SliceGPT (Ashkboos
et al., 2024a) projects weight matrices onto principal com-
ponents for sparsification, while ESPACE (Sakr & Khailany,
2024) reduces activation dimensionality via pre-calibrated
projections, achieving inference-time efficiency. Similarly,
ASVD (Yuan et al., 2023b) introduces an activation-aware

decomposition method that incorporates activation distri-
butions into weight decomposition. Additionally, low-rank
decomposition can be applied to reduce KV cache size.
For example, Eigen Attention (Saxena et al., 2024) and
ASVD (Yuan et al., 2023b) employ low-rank approxima-
tions to reduce memory usage in KV caches during attention
operations. PALU (Chang et al., 2024) introduces learnable
projections to adaptively compress KV caches based on the
compression budget. Finally, Matryoshka KV Cache (Lin
et al., 2024a) refines this with hierarchical orthogonal pro-
jections and knowledge distillation.

3. Quantization

Quantization of weight, activation or KV cache involves
converting component elements to low precision so that
they can be represented using fewer bits for more efficient
compute and storage. The /N-bit integer quantization and
dequantization process on matrix X is given as

X—ZX

SX

Qv(x) = | |- sx+2x, (1)

where | -] is a round-and-clip function; sx and zx the scale

X .
I;ZX_(LP for symmetric

max(X)—min(X)
2N —1

and zero-point; zx = 0, sx =

quantization or zy = min(X), sx = for

asymmetric quantization.

4. ResQ

In this section, we introduce ResQ, a mixed-precision quan-
tization approach that projects weights, activations, and the
KV cache into an orthogonal space, retaining the low-rank
components in high precision (8-bit) and the rest in low
precision. We describe the quantization scheme, the genera-
tion of the basis space, provide theoretical guarantees, and
outline end-to-end LLM inference deployment procedure.

4.1. Quantization Scheme

Given input activation X € R"*¢ and weight W € R4*4,
they are first projected onto an orthogonal basis defined by
the vectors U € R*?, The coefficients of the projections
along this basis are then subject to quantization. We seek
to quantize some coefficients along certain bases at high
precision while those remaining at low precision. Within
R?, denote bases of a low-rank space of high-precision com-
ponents by Uj, € R?*" and those of its complementary
subspace of low-precision components by U; € R4*(4=7),
The rank r controls the amount of components in high pre-
cision (in practice we typically choose r = 4/g). We have
UhUhT + UlUlT = UU" = I because U is orthogonal.
The quantized activation X is thusly

X, =Q(XU) = [QL(XU;) Qu(XUy)]. (2

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

T
q Wq - QL(XUI) QL(Ul W)

+I

Low precision
matmul (4-bit)

High precision
matmul (8-bit)

Figure 2: Matrix multiplication with mixed precision
operands

Similarly, quantized weights W, is obtained by project-
ing the inputs space of weights by U T and quantizing the
coefficients,

_ T _ | QLU W)
Wq - Q(U W) - [Q (Ul};rw)] (3)
And the output of the layer is,
X, W, = QuXU)QLUW) @

+ Qu(XUn)Qu (U, W).

We make two observations due to orthogonality. First, the
introduction of the projections do not alter the output of the
model at infinite precision. This means that, if quantization
operation is removed from Equation 4, the layer output is
numerically invariant. Second, multiplication between low-
and high-precision components vanishes (Figure 2). This
is efficient because only hardware kernels for quantized
GEMM between operands of same precision are required.

4.2. Projections and Optimality Thereof

Intuitively, the orthogonal basis vectors U should have two
properties: (1) the low-rank space for high-precision quanti-
zation should capture the more important components, and
(2) quantization error in both high- and low-precision groups
should be minimized. We construct U as a combination of
two rotation matrices serving both objectives respectively.
We write U; = P;R;,i € {h,l}. Therefore,

0 R, &)

U-PR- (PP [Rl 0 } |
where, P, R, € R>(d=") P, R, € R, Inspired by
prior work (Ashkboos et al., 2024c; Chee et al., 2023), we
make R;, R;, random orthogonal matrices because random
rotation reduces outliers, making the rotated matrices easier
to quantize. Furthermore, projection with a random orthogo-
nal matrix increases Gaussianity of activations and weights
within high- and low-precision groups, due to Lemma 4.1,
conducive to the quantizations applied to these groups.

Lemma 4.1. By Central Limit Theorem, the distribution
after multiplication with random orthogonal matrix is ap-
proximately Gaussian (Tseng et al., 2024).

X XP INT§ 10 XU INT§
10 5] INT4
0 04
-10 51
-10 |
0 2000 4000 0 2000 4000 0 2000 4000

Channel Channel Channel

@ (b) (c)

Figure 3: Activation distribution of the baseline and apply-
ing the projection matrices.

To determine P, we minimize the activation quantization
error || X — X,|| p. For activations quantized according to
Equation 2, we have,

X — Xyllr = | XU, — QL(XU)||r

(6)

+ | XU, — Qu(XUy)||p.
Theorem 4.2. For any matrix X quantized to X4 according
to method described in Equation 2, assuming the values to
be quantized in X are normally distributed, we have

wlog(d — r)
Bl X — Xqllr < ﬁE”XHF
rlog(d—r) +/wlogr (7
S| 2L-t—1 2H-1
E| X Pyllr.

Full proof of Theorem 4.2 is in Appendix A. Theorem 4.2
bounds the quantization error in Equation 6 from above. To
lower this upper bound of quantization error is thusly to
maximize || X Py|| 7 which happens when P}, comprises of
eigenvectors of the covariance matrix X X | with its largest
eigenvalues. Therefore, the low-rank subspace for high-
precision quantization can be obtained by means of PCA,
while the subspace for low-precision quantization can be ob-
tained using U, U, + U,U," = P,P,] + P,P," = I (be-
cause R; is orthogonal). If we construct P by taking eigen-
vectors of X X T arranged in increasing order of eigenval-
ues, the last » columns of such a P would correspond to
Py, and the first d — r columns would correspond to P,.
The distribution of activation after applying different projec-
tion matrices is shown in Figure 3. Projection of activation
along P sorts the activation coefficients in increasing order
of variance due to increasing eigenvalues of bases vectors.
Consequently, the later » channels of the projected acti-
vations with higher variance are kept in higher precision.
Projection along U = P R smoothes the activations along
low precision and high precision groups further reducing
quantization error (Figure 3) and improving quantization
SNR (Figure 1(d,e)).

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

gate_proj

Um.form

Mixed
precision precision
& quant quant

Merged and
mlxed precision uml'orm precision
weights weights

Merged and

On-the-fl;
H:dan‘iarﬁ On-the-fly Merged
projection projection projections

Figure 4: Model inference with ResQ incorporating the projection matrices. (a) U4 modifies the inputs across blocks
enabling better quantization. (b) U, U enables mixed precision quantization of KV cache. (c) Up projects the activations

and weights of down_proj layer.

4.3. Inference Computation with Optimized Projections

Once the projection matrices are obtained, the operation
in Equation 4 requires multiplying the weights and acti-
vations with U. Weights can be projected and quantized
offline. The projection operation on an activation can be
merged to the weight of a previous linear layer. Based on
the architecture of decoder based LLLMs, we introduce four
different kinds of projections (Figure 4) : U € R *dn,
Up,Ug € R¥wwxda {7, € R Xdm where dj, is hid-
den dimension of LLM, d},q is the attention head dimen-
sion and dggy the hidden dimension of feedforward network
(FFN).

Projections at block boundaries Input activations to
attention and FFN are projected via U,. Projection
is handled by right-multiplying the weight matrix of fi-
nal linear layer in each block (o_pro7j in attention and
down_proj in FFN) by U,4. Thus, projections of ac-
tivations is handled at no additional inference cost. To
maintain numerical invariance, the first linear layer of
each block (g_projlk_projlv_proj in attention and
up_projl|gate_proj in FFN) is pre multiplied with UX
(Figure 4a). Similarly, the weights of the embedding layer
and the final head are modified to manage projection of the
residual stream.

Projections within the attention block Upg, U ensures
that activations within attention block are projected (Fig-
ure 4b). Post-multiplication of value projection layer by Up
ensures that value vectors in KV cache are projected and
quantized optimally. Consequently, the weights of o_proj
layer need to be pre multiplied by Ug to ensure numerical
invariance. U ensures that the quantization of key in KV
cache is handled optimally. To achieve that, it is required

to project both the query and key using the same projection
matrix Ue. The attention dot product remains invariant
under projected inputs,

qPFOjKIIOJ (qUC)(UgKT) = qKTv (8)
where g and K are query and key after rotary embedding
(ROPE), respectively. Because U cannot be merged into
the previous linear layer due to presence of RoPE, the pro-
jection is explicitly computed at runtime, but made more
efficient by applying uniform precision quantization to U¢
and corresponding input activations.

Projections within the feedforward block Up ensure im-
proved quantization of activation within FFNs (Figure 4c).
U}, is left-multiplied with weights of down_proj, but due
to the presence of activation functions within the block, Up
cannot be merged to weights of preceding linear layers and
is computed at runtime. Up is applied to the hidden di-
mension of the FFNs (dgpn) which is typically 3x to 4x
the embedding dimension in most LLMs. In this scenario,
matrix multiplication with Up is extremely expensive in
computation and storage. To minimize the overhead, we
choose Up to be a hadamard matrix to leverage fast and ef-
ficient hadamard transform kernel. And, we choose weights
and activations for down_proj layer to be uniformly quan-
tized to low precision.

S. Experiments
5.1. Setup

Models, tasks, datasets and baselines We conduct exper-
iments on Llama 2 (Touvron et al., 2023), Llama 3 (Meta,
2024b), and the recently released Llama 3.2 (Meta, 2024a)

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 1: Comparison of perplexity score on Wikitext, average 0-shot common sense reasoning accuracy and average
0-shot MMLU accuracy. Results of all techniques were obtained using their official codebase. Our work ResQ and QUIK
(Ashkboos et al., 2024b) keep !/s channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are
uniformly quantized to W/A/KV = 4-bit. All techniques except RTN employ GPTQ (Frantar et al., 2023) for weight
quantization. 1 higher is better, |: lower is better. Full results in Appendix D, Tables 10 and 11.

. Meta-Llama—-3-8B Meta-Llama-3-70B
Family Method WIAKY ¥k () Ava, 0-shot () MMLU (1) | Wiki (1) Avg. 0-shot () MMLU (1)
16-bit baseline | 16/16/16 6.1 67.1 631 | 29 73.1 759
|~ RIN | 4474 1 2189 393 236 | ¢ 4527 4550 232
GPTQ 4/4/4 166.3 39.8 233 11.6e3 34.9 25.5
Llama 3 SmoothQuant+ 4/4/4 78.2 42.5 24.7 - - -
QUIK 4.5/4.5/45 | 142 516 32.7 8.0 582 51.1
QuaRot 4/4/4 78 62.1 532 57 67.6 65.3
SpinQuant 4/4/4 74 63.8 56.2 6.2 65.7 59.4
ResQ 45/45/45 | 171 63.9 572 4.1 71.1 739
. Llama-3.2-1B Llama-3.2-3B
Family Method WIAKY ¥k () Avg, 0-shot () MMLU () | Wiki (1) Avg. 0-shot (1) MMLU (1)
16-bit baseline | 16/16/16 98 549 369 | 78 62.7 548
| RIN | 4/414 1 32901 381 238 | 2688 387 257
GPTQ 4/4/4 108.9 38.0 24.9 1783 403 24.8
Llama 3.2 | SmoothQuant+ | 4/4/4 228.9 38.0 24.1 96.1 39.0 259
: QUIK 454545 | 21.8 443 25.1 15.8 48.8 31.1
QuaRot 4/4/4 143 49.0 25.5 10.1 56.1 420
SpinQuant 4/4/4 13.6 488 25.6 9.2 57.9 442
ResQ 45/45/45 | 12.4 50.1 29.4 8.8 59.0 49.8
. Qwen2.5-3B Qwen2.5-72B
Family Method WIAKY I S§ika () Avg, O-shot () MMLU (7) | Wiki (1) Avg. 0-shot () MMLU ()
16-bit baseline | 16/16/16 8.0 63.8 661 | 39 734 843
| RIN | 4/474 1 739033.0 " 35.1 234 | 454127 343 240
GPTQ 4/4/4 9977.8 35.1 232 37967.2 345 233
Qwen2.5 | SmoothQuant+ | 4/4/4 | 73306.7 34.8 239 . ; -
QUIK 4545145 | 155 512 39.4 8.3 61.9 69.3
QuaRot 4/4/4 68.8 477 28.9 49 703 80.1
ResQ 4.5/45/45 | 9.0 61.1 61.2 4.6 72.0 81.5

Table 2: Comparison of performance of quantization approaches on generative tasks. Our work ResQ and QUIK (Ashkboos
et al., 2024b) keep !/s of channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are uniformly
quantized to W/A/KV = 4-bit.

Model Method W/A/KV _GSMBK 5-shot (1) LongBench (1)
flexible extract ~ strict match | gqmsum samsum repobench-p
16-bit baseline 16/16/16 51.0 50.6 239 44.8 66.4
| QUIK | 4545457 23« 0.0 | 1 105~ 252 376
Meta-Llama-3-8B QuaRot 4/4/4 27.6 27.1 22.0 43.8 60.6
SpinQuant 4/4/4 29.8 29.6 23.0 439 62.6
ResQ 4.5/4.5/4.5 33.6 33.2 23.1 44.1 62.3
16-bit baseline 16/16/16 25.1 24.9 23.1 43.0 64.4
|~ QUIK | 454545 25 T« 00 | 1 159 7317 309
Llama—-3.2-3B QuaRot 4/4/4 10.1 9.1 20.6 39.5 56.8
SpinQuant 4/4/4 11.6 114 21.7 41.9 59.1
ResQ 4.5/4.5/4.5 17.1 16.7 21.7 43.0 61.5

and Qwen2.5 (Yang et al., 2024a) models. We also include ate the quantization approaches on a range of tasks which
multi-modal language models belonging to Qwen2 VL fam- measure the language modeling ability: perplexity on Wiki-
ily (Wang et al., 2024) for our evaluations. We benchmark text (Merity et al., 2017), common sense reasoning ability:
our approach against GPTQ (Frantar et al., 2023), QuaRot average 0-shot accuracy on Arc-c/e (Clark et al., 2018),
(Ashkboos et al., 2024c¢), QUIK (Ashkboos et al., 2024b), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),
SpinQuant (Liu et al., 2025) and SmoothQuant+, a stronger Openbook QA (Mihaylov et al., 2018), PIQA (Bisk et al.,
baseline created by combining SmoothQuant (Xiao et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi
2023) with GPTQ following Sharify et al. 2024. We evalu- et al., 2021), language understanding: 0-shot accuracy on

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 3: MMMU accuracy (higher is better) of vision lan-
guage models when quantized using various approaches.
For 4-bit data structures, our work ResQ and QUIK (Ashk-
boos et al., 2024b) keep 1/8 of channels in 8-bit.

Table 4: Wikitext perplexity comparison of ResQ and base-
line which keeps 1/s channels with high I,-norm in 8-bit
(and remaining in low precision) and uses rotation to reduce
quantization error within high precision and low precision
groups.

Model
W/A/KV (bit) | Method Qwen2-VL Qwen2-VL
-2B-Instruct | -7B-Instruct
16/16/16 Baseline 39.6 51.6
”””””” RTN |~ 250 [~ 267
4/4/4 GPTQ 27.7 24.9
QuaRot 24.0 24.5
QUIK 26.3 28.9
4.5/4.514.5 ResQ 29.7 47.0
RTN 249 25.2
4/8/4 GPTQ 23.4 24.3
QuaRot 26.5 24.5
QUIK 28.4 26.4
4IBAS 1 Res 340 48.8

MMLU (Hendrycks et al., 2021), mathematical understand-
ing: 5-shot GSMS8K (Cobbe et al., 2021), dialogue summa-
rization: samsum (Gliwa et al., 2019) and gqmsum (Zhong
et al., 2021) from LongBench (Bai et al., 2024), code com-
pletion: repobench-p (Liu et al., 2024b) from LongBench,
and multi-modal understanding: MMMU (Yue et al., 2024).

Implementation details We implement ResQ using the
HuggingFace Transformers library (Wolf et al., 2020) with
PyTorch (Paszke et al., 2019). We share a single U 4 across
all layers, while U, U¢c and Up are generated per layer.
Following SpinQuant (Liu et al., 2025), we use per-token
asymmetric quantization for activations, per-channel sym-
metric quantization for weights, and per-head asymmetric
quantization for the KV cache. We fuse the projection ma-
trices U4, Up, Up into weights and apply GPTQ (Frantar
et al., 2023) for weight quantization. To efficiently imple-
ment on-the-fly projections, Up is a Hadamard matrix and
U¢ and its activations are quantized to 8-bit. The entire pro-
cess, including obtaining projections and quantization, runs
on a single NVIDIA A100 GPU; for Meta-Llama-3-8B,
it takes 35 minutes. Additional details are in Appendix C.

5.2. Main Results

Language modeling, understanding, and reasoning tasks
We evaluate ResQ on tasks that test language modelling abil-
ity (perplexity on Wikitext), common sense reasoning ability
(average 0-shot accuracy on the eight tasks listed in section
5.1) and language understanding (average 0-shot accuracy
on MMLU). The results are presented in Table 1. We see
that ResQ reduces the gap to 16-bit performance and outper-
forms the quantization baselines across all tasks on all mod-
els. Particularly, on Llama 3/3.2 family of models, ResQ
outperforms SpinQuant by achieving 4-33% lower Wikitext
perplexity, 0.1-5.4% better average 0-shot accuracy and a
1-14.5% better accuracy on MMLU benchmark without any
additional training. For the Qwen-2.5 model family, all

WIAIKV (bit) | Method | St Tiana | Tione
4.5/4.5/45 Ou;{h;rgm Y,i ZLS
4.5/8/4.5 Out;;:;amt 2:2 g:;
3.6/8/3.6 Ou;{h;rgm iy o8
2.75/8/8 Ouilzarm 24 187
3.6/3.6/3.6 Oug;rgm ij; i?;

other baselines fail to achieve competitive results, and ResQ
significantly outperforms them. Compared with QUIK, an-
other mixed precision quantization approach, ResQ achieves
42-50% better Wikitext perplexity, 5.8-12.3% better average
zero shot accuracy and 4.3-24.5% better MMLU accuracy
over all models. Complete results on Llama and Qwen2.5
family of models are provided in Appendix D. Additionally,
we provide comparison between baselines at W/A/KV =
4/8/4 bits for Llama families in Appendix E. Among all the
set of results, ResQ maintains superior performance.

Generative tasks We also test ResQ on tasks that require
auto-regressive token generation including the GSM8K
mathematical understanding benchmark, dialogue summa-
rization benchmarks (qmsum and samsum) and code com-
pletion benchmark (repobench-p, Table 2). The goal of
choosing these tasks is to evaluate the generation ability
on a wide variety of domains. On the challenging GSM8K
benchmark where QUIK fails to produce meaningful re-
sults, ResQ outperforms SpinQuant by 3.8% and 5.5% on
the 8B and 3B parameter model respectively, closing the
gap to the 16-bit baseline. On LongBench evaluation tasks,
ResQ demonstrates competitive performance and outper-
forms SpinQuant without any additional training.

Multi-modal understanding We benchmark the quantiza-
tion approaches on vision language models (VLMs) by quan-
tizing Qwen2 VL family and evaluating their performance
on MMMU (Table 3, Yue et al. 2024). Only the language
model is quantized while the vision encoder remains in 16-
bit as the language model has many more parameters (over
10x for Qwen2-VL-7B-Instruct). ResQ outperforms
baselines on both 2B and 7B models, achieving superior
accuracy and demonstrating its generalizability. Results for
individual MMMU tasks are provided in Appendix F.

Comparison against outliers with rotation baseline A
stronger baseline can be created combining existing quanti-

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 5: Comparison of perplexity score on Wikitext, aver-
age 0-shot common sense reasoning accuracy and average
MMLU accuracy at W/A/KV = 4-bit. ResQ keeps /8 chan-
nels with high eigen value in 6-bit, 1/8 channels with low
eigen value in 2-bit and the rest in 4-bit for average bit-width
of 4-bit. Complete results are provided in Appendix G.

Model \ Method \ Wiki () \ Avg. 0-shot (1) \ MMLU(T)
QuaRot 68.8 47.7 28.9
Qwen?2.5-3B | SpinQuant 70.6 48.6 32.8
ResQ 9.8 59.1 52.2
QuaRot 4e3 384 24.1
Qwen?2.5-7B | SpinQuant 3e3 38.6 243
ResQ 34.2 56.2 58.0
QuaRot 6.8 67.1 70.9
Qwen2.5-14B | SpinQuant 6.6 67.4 70.1
ResQ 6.5 67.5 71.3
QuaRot 6.1 67.8 77.0
Qwen2.5-32B | SpinQuant 6.0 67.9 77.6
ResQ 5.9 69.1 77.9
QuaRot 4.9 70.3 80.1
Quenz.5-728 | ResQ 49 711 80.1

Table 6: Impact of different projections in ResQ. Evaluated
by removing components and observing Wikitext perplexity.

ResQ Uy U | U | U Uc,
Up
Llama-2-7b-hf 5.8 1550 | 2500 | 5.8 | 5.9 59

Meta-Llama-3-8B | 7.1 1607 | 374 | 72 | 73 | 74
Llama-3.2-3B 88 | 2792|390 | 90 | 92| 94

zation approaches. Like QUIK, one can find channels which
consistently contain outliers and keep them in 8-bit while
keep the remaining channels in low precision. And, the
quantization of high/low precision groups can be improved
using random rotations introduced in QuaRot. Compared
with such a baseline which keeps channels with high /.-
norm in 8-bit, ResQ’s unique approach involves keeping
coefficients along bases with high eigenvalues in 8-bit. We
see in Table 4 that ResQ consistently outperforms such a
strong baseline across various precisions of W/A/KV high-
lighting ResQ’s PCA driven theoretically optimal approach
of choosing high precision components.

Iso-bitwidth comparison We also perform iso-bitwidth
comparison of ResQ with SpinQuant and QuaRot at
W/A/KV of 4-bit. To enable 4-bits with ResQ, we keep
1/8 channels corresponding to highest eigen values in P
in 6-bit, 1/8 channels corresponding to lowest eigen values
in P in 2-bit and remaining in 4-bit. Within each quan-
tization group, we apply random orthogonal rotations to
minimize quantization error. As shown in Table 5, even
at same bitwidth of 4-bit, ResQ achieves improved perfor-
mance on Qwen2.5 family of models. Complete results are
provided in Table 14.

Training rotation matrix R To further improve the per-

formance of ResQ, the random rotation matrix R can be
optimized to minimize final task loss similar to SpinQuant
(Liu et al., 2025) albeit at higher computational cost for
quantizing the model. We keep identical training hyperpa-
rameters as SpinQuant, and learn the rotation R for models
upto 8B parameters. The evaluation results are provided
in Table 15 in Appendix H. We see upto 5% improvement
in Wikitext perplexity, upto 0.6% increase in average 0-
shot reasoning accuracy and upto 1.1% increase in MMLU
accuracy.

5.3. Hardware Performance

We implement the mixed-precision quantization using
CUDA 11.8 and PyTorch. The weights are quantized into
INT4 and INT8 components offline while online quanti-
zation of activations into INT4 and INT8 components is
handled in a single kernel call. We use CUTLASS (Thakkar
et al., 2023) to perform INT4 and INT8 GEMM oper-
ations on TensorCore. Further, for KV cache compres-
sion, we implement online quantization and packing for
memory efficiency. For efficient implementation of online
hadamard transform involved in activation quantization in
down_proj layer, we use the fast hadamard transform li-
brary (fas, 2023).

Prefill speedup On an NVIDIA RTX 3090 GPU, we achieve
a 1.61x to 3.03x speedup with ResQ over the 16-bit base-
line for a single decoder block across various language
models (Figure 5). Speedups are higher for larger models
and shorter sequences. Compared to INT4, ResQ is only
14% slower on average, showing minimal overhead from
mixed-precision and on-the-fly projections.

Memory usage We evaluate end to end memory usage on
NVIDIA RTX 3090 (24GB) for different sequence lengths
in Table 7. ResQ consumes 1.84x - 3.08x lower memory
than the FP16 baseline. Notably, Qwen2 .5-14B model
leads to out of memory (OOM) error while ResQ is able to
support its inference upto sequence length of 8192 tokens.
Compared with the INT4 baseline QuaRot, the memory
used by ResQ is 4-11% higher.

Multi GPU inference We evaluate end-to-end batched infer-
ence latency on a GPU server with 3 NVIDIA A100 (82 GB)
GPUs running Meta-Llama-3-70B. ResQ’s weight, ac-
tivation, and KV cache quantization enable the 70B model
to fit on a single GPU, while FP16 requires model paral-
lelism across all three GPUs. This allows ResQ to support
data-parallel inference, unlike FP16. In Table 8, we show
time to first token (i.e. end to end prefill latency) at different
sequence lengths and batch sizes. Compared to FP16 base-
line, ResQ achieves upto 4.98 x improvement in end to end
latency under batched inference setting. This improvement
stems from two factors, first is computational complexity re-
duction achieved in ResQ due to weight and activation quan-

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

B seq_len: 512 o o

35 B seq_len: 8192

3.0

2.5

Speedup

=
[

0.5

Llama-3.2-3B Qwen2.5-32B Qwen2.5-72B

Llama-3-8B Llama-3-70B

Figure 5: Speedup of ResQ and INT4 kernel on single
decoder block on NVIDIA RTX 3090 over 16-bit floating
point baseline for batch size of 1.

Table 7: Memory usage (in GB) for different sequence
lengths on NVIDIA RTX 3090.

QuaRot ResQ
Model seq len | FP16 (Compression) | (Compression)
8192 | 219 114 (1.92x%) 11.9 (1.84%)
Meta-Llama-3-8B | 2048 16.7 6.8 (2.45%) 7.2 (2.31x)
512 15.4 5.6 (2.75%) 6.1 (2.54%)
8192 18.1 6.2 (2.91x) 6.8 (2.66%)
Llama-2-7B-hf 2048 13.9 4.2 (3.30%) 4.7 (2.95%)
512 12.9 3.7 (3.48x%) 4.2 (3.08x%)
8192 | OOM 19.5 21.3
Qwen2.5-14B 2048 | OOM 14.0 14.9
512 OOM 12.6 13.5
J_‘/‘—‘\o T —*—4/4/4, down_proj: INT4
1056 13 \-\ e SSWR:SES} INT8
o
§0.54 § 1z A
3‘ —e—Meta-Llama-3-8B % 11 \\
S052 —e-Llama-3.2-3B 2 \
- = -
= $10 "
Z 050 ~ - :
048 Y. o
0 100 200 300 400 500 0.2 0.4 0.6 0.8
nsamples r/channel_dim

Figure 6: Ablation study on changing rank of high precision
subspace for Llama-3.2-3B (left) and changing number
of calibration samples (right).

tization, and, second is the memory compression achieved
in ResQ due to weight and kv cache quantization which
enables serving the 70B parameter model on a single GPU
device.

5.4. Ablation Studies

Projection bases We evaluate the impact of different projec-
tions employed in ResQ by removing them and evaluating
performance in Table 6. We see that removing Up or U4
has a catastrophic impact on perplexity highlighting their
importance. Up and U which aid in quantization of KV
cache have less severe impact when removed independently.

Table 8: Time to first token (in ms) for Meta-Llama-3-70B
on GPU server with 3 NVIDIA A100 GPUs.

. Improv.
batch size | seqlen | FP16 | ResQ over FP16
3 10240 | 20783 | 4242 4.90%
3 8192 | 16373 | 3361 4.87x
3 4096 7871 1609 4.89%
3 2048 3888 806 4.82x%
6 2048 7733 1560 4.96 x
9 2048 11493 | 2309 4.98 %

But removing both of them leads to a non trivial increase
in perplexity (particularly for Meta—-Llama—-3-8B and
Llama-3.2-3B which employ grouped query attention).

Rank of high-precision subspace ResQ allows for seam-
less trade-off between accuracy and performance by modu-
lating the rank r of high precision subspace (Figure 6-left).
Increasing the rank improves perplexity albeit at the cost of
increased computations in high precision.

Calibration dataset size We change number of Wikitext
calibration samples used to obtain projections and evaluate
performance in Figure 6-right. For Meta-Llama—-3-8B,
MMLU accuracy increases with increasing samples and
saturates beyond 128 samples. For L1lama-3.2-3B, the
trend is unclear with 512 samples achieving best perfor-
mance.

Calibration dataset We evaluate the sensitivity of ResQ’s
projections to the calibration dataset. While the random
rotation matrix R is data-independent, the PCA-based pro-
jection matrix P depends on the data. We obtain P using
samples from Alpaca (Taori et al., 2023), PTB (Marcus
et al., 1993), and C4 (Raffel et al., 2020), and Table 16 in
Appendix I shows minimal performance variation, demon-
strating the robustness of ResQ’s calibration.

6. Conclusion

We introduce ResQ, a novel mixed-precision, accelerator-
friendly PTQ technique toward 4-bit quantization of large
language models. ResQ projects weight, activation, and
KV cache tensors to subspaces spanned by principal compo-
nents, quantizing a low-rank (1/8 of hidden dimension) high-
variance subspace to 8-bit and the rest to 4-bit. ResQ out-
performs both uniform- and mixed-precision quantization
methods. We demonstrate the effectiveness of ResQ across
a variety of tasks—including language modeling, language
understanding, common-sense reasoning, language genera-
tion and multi modal understanding—using the Llama and
Qwen models. Compared to SpinQuant, the strongest base-
line, ResQ achieves up to 33% lower perplexity on the
WikiText dataset without requiring any additional training
and offers up to 5x speedup over the 16-bit baseline.

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Impact Statement

ResQ is a significant step forward towards efficiently serv-
ing LLMs in resource-constrained, on-device scenarios, po-
tentially expanding the application space for these models.
Although our approach aims to make LLMs more accessible
and widely used, it does not address the potential risks of
misuse for malicious purposes. To mitigate these risks, a
strong commitment to user data protection, clear ethical
guidelines, and transparency mechanisms is essential.

Acknowledgements

The authors would like to thank Wanzin Yazar and Tristan
Webb for infrastructure and technical assistance and Zifei
Xu and Sakshi Choudhary for helpful discussions. The
authors also thank Amogh Joshi for providing access to
personal NVIDIA RTX 3090. This work was supported by
the Center for the Co-Design of Cognitive Systems (CO-
COSYS), a DARPA sponsored JUMP center of Semicon-
ductor Research Corporation (SRC), Intel, SRC AIHW Pro-
gram.

References

Dao-ailab/fast-hadamard-transform. https://github
.com/Dao—-AlILab/fast-hadamard-transfo
rm, 2023. Accessed: 2025-01-2.

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. SliceGPT: Compress large language
models by deleting rows and columns. In 12th Interna-
tional Conference on Learning Representations, 2024a.

Ashkboos, S., Markov, L., Frantar, E., Zhong, T., Wang, X.,
Ren, J., Hoefler, T., and Alistarh, D. QUIK: Towards
end-to-end 4-bit inference on generative large language
models. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp.
3355-3371. Association for Computational Linguistics,
2024b.

Ashkboos, S., Mohtashami, A., Croci, M., Li, B., Cameron,
P., Jaggi, M., Alistarh, D., Hoefler, T., and Hensman, J.
QuaRot: Outlier-free 4-bit inference in rotated llms. In
38th Annual Conference on Neural Information Process-
ing Systems, 2024c.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. LongBench: A
bilingual, multitask benchmark for long context under-
standing. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3119-3137. Association for
Computational Linguistics, 2024.

10

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. PIQA: Reason-
ing about physical commonsense in natural language. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432-7439, 2020.

Chang, C.-C., Lin, W.-C,, Lin, C.-Y., Chen, C.-Y., Hu, Y.-F,,
Wang, P.-S., Huang, N.-C., Ceze, L., Abdelfattah, M. S.,
and Wu, K.-C. Palu: Compressing kv-cache with low-
rank projection. arXiv:2407.21118, 2024.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. QulP:
2-bit quantization of large language models with guaran-
tees. In 37th Annual Conference on Neural Information
Processing Systems, pp. 43964429, 2023.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. L.-].,
Srinivasan, V., and Gopalakrishnan, K. PACT: Parame-
terized clipping activation for quantized neural networks.
arXiv:1805.06085, 2018.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 2924-2936, 2019.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers

at scale. Advances in Neural Information Processing
Systems, 35:30318-30332, 2022.

Dettmers, T., Svirschevski, R. A., Egiazarian, V.,
Kuznedelev, D., Frantar, E., Ashkboos, S., Borzunov, A.,
Hoefler, T., and Alistarh, D. SpQR: A sparse-quantized
representation for near-lossless llm weight compression.
In 12th International Conference on Learning Represen-
tations, 2024.

Dong, S., Cheng, W., Qin, J., and Wang, W. QAQ:
Quality adaptive quantization for 1lm kv cache.
arXiv:2403.04643, 2024.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. In Pro-
ceedings of the 41st International Conference on Machine
Learning, pp. 12284-12303. PMLR, 2024.

https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.-A.
OPTQ: Accurate post-training quantization for generative
pre-trained transformers. In 11th International Confer-
ence on Learning Representations, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H,,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, 07
2024. URL https://zenodo.org/records/1
2608602.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for effi-
cient neural network inference. In Low-Power Computer
Vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Gliwa, B., Mochol, 1., Biesek, M., and Wawer, A. SAM-
Sum Corpus: A human-annotated dialogue dataset for
abstractive summarization. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP), pp.
70-79, 2019.

Guan, Z., Huang, H., Su, Y., Huang, H., Wong, N., and Yu,
H. APTQ: Attention-aware post-training mixed-precision
quantization for large language models. In Proceedings
of the 61st ACM/IEEE Design Automation Conference,
pp. 1-6, 2024.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. ZipCache: Accurate and efficient kv cache quanti-
zation with salient token identification. In 38th Annual

Conference on Neural Information Processing Systems,
2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, S., Keutzer, K., and Gholami, A. KVQuant:
Towards 10 million context length Ilm inference with kv
cache quantization. In 38th Annual Conference on Neural
Information Processing Systems, pp. 1270-1303, 2024.

Huang, W., Qin, H., Liu, Y., Li, Y., Liu, X., Benini, L.,
Magno, M., and Qi, X. SIiM-LLM: Salience-driven
mixed-precision quantization for large language models.
arXiv:2405.14917, 2024.

Hubara, 1., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small calibra-
tion sets. In Proceedings of the 38th International Con-

11

ference on Machine Learning, pp. 4466-4475. PMLR,
2021.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. GEAR: An efficient kv cache compres-
sion recipefor near-lossless generative inference of 1lm.
arXiv:2403.05527, 2024.

Kim, S., Hooper, C. R. C., Gholami, A., Dong, Z., Li, X.,
Shen, S., Mahoney, M. W., and Keutzer, K. SqueezeLLM:
Dense-and-sparse quantization. In Proceedings of the

41st International Conference on Machine Learning, pp.
23901-23923. PMLR, 2024.

Lee, C., Jin, J., Kim, T., Kim, H., and Park, E. OWQ:
Outlier-aware weight quantization for efficient fine-
tuning and inference of large language models. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 13355-13364, 2024.

Li, J,, Li, F.,, and Todorovic, S. Efficient riemannian opti-
mization on the stiefel manifold via the cayley transform.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum
?1d=HJxV-ANKDH.

Li, M., Lin, Y., Zhang, Z., Cai, T., Guo, J., Li, X., Xie, E.,
Meng, C., Zhu, J.-Y., and Han, S. SVDQuant: Absorb-
ing outliers by low-rank component for 4-bit diffusion
models. In [3th International Conference on Learning
Representations, 2025.

Lin, B., Zeng, Z., Xiao, Z., Kou, S., Hou, T., Gao,
X., Zhang, H., and Deng, Z. MatryoshkaKV: Adap-
tive kv compression via trainable orthogonal projection.
arXiv:2410.14731, 2024a.

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L., Song,
L., Sun, Z., and Wei, Y. DuQuant: Distributing outliers
via dual transformation makes stronger quantized llms.
In 38th Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C,, Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87-100, 2024c.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C., and
Han, S. QServe: W4a8kv4 quantization and system co-
design for efficient 1lm serving. Proceedings of Machine
Learning and Systems, 2025.

Liu, J., Gong, R., Wei, X., Dong, Z., Cai, J., and Zhuang,
B. QLLM: Accurate and efficient low-bitwidth quanti-
zation for large language models. In /2th International
Conference on Learning Representations, 2024a.

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Liu, T., Xu, C., and McAuley, J. RepoBench: Benchmarking
repository-level code auto-completion systems. In /2th
International Conference on Learning Representations,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for kv cache. In Proceedings of the
41st International Conference on Machine Learning, pp.
32332-32344. PMLR, 2024c.

Liu, Z., Zhao, C., Fedorov, 1., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. SpinQuant: LIm quantization with learned rotations.
In 13th International Conference on Learning Represen-
tations, 2025.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313-330,
1993. URL https://aclanthology.org/J93
-2004/.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In 5th International Conference
on Learning Representations, 2017.

Meta. Llama 3.2: Revolutionizing edge Al and vision with
open, customizable models, 2024a. URL https://ai
.meta.com/blog/llama-3-2-connect—-202
4-vision—-edge-mobile-devices/.

Meta. Introducing Meta Llama 3: The most capable openly
available LLM to date., 2024b. URL https://ai.m
eta.com/blog/meta-1lama-3/.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 2381-2391, 2018.

Park, G., Kim, M., Lee, S., Kim, J., Kwon, B., Kwon, S. J.,
Kim, B, Lee, Y., Lee, D., et al. LUT-GEMM: Quantized
matrix multiplication based on luts for efficient inference
in large-scale generative language models. In 12¢h Inter-
national Conference on Learning Representations, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text

transformer. Journal of machine learning research, 21
(140):1-67, 2020.

12

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99-106,
2021.

Sakr, C. and Khailany, B. Espace: Dimensionality reduction
of activations for model compression. In 38th Annual
Conference on Neural Information Processing Systems,
2024.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., and Choi,
Y. Social iga: Commonsense reasoning about social
interactions. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 44634473,
2019.

Saxena, U., Saha, G., Choudhary, S., and Roy, K. Eigen
Attention: Attention in low-rank space for kv cache com-
pression. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pp. 15332-15344,
2024.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P, Qiao, Y., and Luo, P. OmniQuant:
Omnidirectionally calibrated quantization for large lan-
guage models. In /2th International Conference on Learn-
ing Representations, 2024.

Sharify, S., Saxena, U., Xu, Z., Yazar, W., Soloveychik, I.,
and Wang, X. Post training quantization of large language
models with microscaling formats. In NeurIPS Efficient
Natural Language and Speech Processing Workshop, pp.
241-258. PMLR, 2024.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, 1., and Zhang, C. Flex-
Gen: High-throughput generative inference of large lan-
guage models with a single gpu. In Proceedings of the

40th International Conference on Machine Learning, pp.
31094-31116. PMLR, 2023.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford al-
paca: An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca,
2023.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H., Yan,
E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A., Nicely,
M., Merrill, D., Blasig, D., Qiao, F., Majcher, P., Springer,
P., Hohnerbach, M., Wang, J., and Gupta, M. CUTLASS,
January 2023. URL https://github.com/NVIDI
A/cutlass.

https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, 1., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I, Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P, Yan, Z., Zarov, 1., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa,
C. QulP# even better 1lm quantization with hadamard
incoherence and lattice codebooks. In Proceedings of the

41st International Conference on Machine Learning, pp.
48630-48656. PMLR, 2024.

Wang, P, Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., Fan, Y., Dang, K., Du, M.,
Ren, X., Men, R., Liu, D., Zhou, C., Zhou, J., and Lin,
J. Qwen2-VL: Enhancing vision-language model’s per-
ception of the world at any resolution. arXiv:2409.12191,
2024.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest,
Q., and Rush, A. M. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv:1910.03771,
2020.

Xi, H., Li, C., Chen, J., and Zhu, J. Training transformers
with 4-bit integers. In 37th Annual Conference on Neural
Information Processing Systems, pp. 49146—-49168, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. SmoothQuant: Accurate and efficient post-training
quantization for large language models. In Proceedings of

the 40th International Conference on Machine Learning,
pp- 38087-38099. PMLR, 2023.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C,, Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv:2412.15115, 2024a.

13

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. No Token Left Behind: Reli-
able kv cache compression via importance-aware mixed
precision quantization. arXiv:2402.18096, 2024b.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. ZeroQuant: Efficient and affordable post-
training quantization for large-scale transformers. In 36¢h

Annual Conference on Neural Information Processing
Systems, pp. 27168-27183, 2022.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y.,
Sun, G., Wu, Q., Wu, J., and Wu, B. RPTQ: Reorder-
based post-training quantization for large language mod-
els. arXiv:2304.01089, 2023a.

Yuan, Z., Shang, Y., Song, Y., Wu, Q., Yan, Y., and
Sun, G. ASVD: Activation-aware singular value de-
composition for compressing large language models.
arXiv:2312.05821, 2023b.

Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G.,
Stevens, S., Jiang, D., Ren, W., Sun, Y., et al. MMMU: A
massive multi-discipline multimodal understanding and
reasoning benchmark for expert agi. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9556-9567, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791-4800,
2019.

Zeng, C., Liu, S., Xie, Y., Liu, H., Wang, X., Wei, M.,
Yang, S., Chen, F., and Mei, X. ABQ-LLM: Arbitrary-bit
quantized inference acceleration for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 22299-22307, 2025.

Zhao, Y., Lin, C.-Y,, Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate 1lm

serving. Proceedings of Machine Learning and Systems,
6:196-209, 2024.

Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, M., Jha, R.,
Hassan, A., Celikyilmaz, A., Liu, Y., Qiu, X., et al. QM-
Sum: A new benchmark for query-based multi-domain
meeting summarization. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pp. 5905-5921, 2021.

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

A. Proof of Theorem 4.2

We begin the proof by introducing the following lemma.

Lemma A.1. For any tensor R quantized following the quantization described in equation 1, assuming the values of R
follows a normal distribution, we have

E|R — Q(R)|r < V7 I8bEA R by ©)

=T 1

where size(R) denotes the number of elements in R.

Proof of lemma A.1 can be found in (Li et al., 2025). From this lemma we obtain that the quantization error |R — Q(R)||r
is bounded by the magnitude of the tensor quantized || R|| z. Now for our use case of mixed precision quantization where
the low-precision component is quantized to L bits and high precision component is quantized to H bits, we write the
quantization error again below,

E|X — X,llr = E|XU — QL(XU)|Ir

10
+E|XUn — Qu(XU)| - (10

The random rotation matrices R ensure that X U; and X Uy}, are normally distributed by Lemma 4.1. Applying Lemma A.1
to the quantization error in equation 10, we get,

1% = X, < I g
10g2(iif?(flﬂ))ﬂE||XB||F
| (a1
logQ(i;Zj(i(fh))ﬂEHXPhHF
= Ve g jw(X PR X) e
O T g x P T X)

We know size(X P;) = d — r and size(X P},) = 7 since r components are in high precision. With PP + P, P,/ = 1,
we have

vlog(d-r)m
1X = Xqllr < 55— (ElX |l — E[| X Py[[r)

= 9L-1_1
log(r
+ S OB X Pyl
12
log(d-r)w 12
= VTR X |5
Viog(d-r)m Viog(nm
- (oL—1 _ 1 - 9H-1 _ 1)E||XP}1HF
. +/log(d-r)m 4/ 1 T
Since % Lof(l 1)1 -3 H(,)gl(i)l > 0 the quantization error is reduced by maximizing || X Py || r

B. Distribution of activations

The distribution of activations after projection by U is shown in Figure 7. The formulation of U ensures that the final r
channels in the activation map comprise of coefficients along bases with maximum activation variance. Consequently, keep
those channels in high precision minimizes quantization error. The remaining channels are more amenable to quantization
due to the application of random rotations which suppress outlier values.

14

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

6

10 | \ ‘ 10 4
3 2 2 2| sty e
S 0 nﬂtLﬁmuMm -ww 5: i % g P s oo o sk oo
g ‘” S) S-
=] = =
il 5" 54
> . =
B = =
5-10 S-5 S —Min/Max
< < <.8 0 P

-15 10 -10 25/75 Percentile

1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Channel Channel Channel
Channel
(a) Baseline Attn Input (b) ResQ Attn Input (c) Baseline FNN Input (d) ResQ FEN Input

Figure 7: Input activation distributions of attention and FFN layers, for baseline (a and c¢) and ResQ (b and d).

Table 9: Time taken (in NVIDIA A100 GPU hours) to quantize the model. All approaches use GPTQ (Frantar et al., 2023)
for weight quantization. SpinQuant uses 4 GPUs to optimize rotation matrices.

QuaRot | ResQ | SpinQuant
Llama—-3.2-1B 4m 7m 13m
Llama-3.2-3B 8m 16m 38m
Meta-Llama-3-8B 17m 35m 1h41m
Llama-2-7b-hf 15m 33m 1h37m
Llama-2-13b-hf 23m 1h 3h42m

C. Additional implementation details

In this work, obtaining the projection matrices and quantization of weights for all the models is performed on a single
NVIDIA A100 80GB GPUs. Time taken by ResQ compared with other approaches is shown in Table 9. Evaluation
on various benchmarks for all the models is also done on a single NVIDIA A100 GPU with the sole exception of
Meta-Llama-3-70b which requires 4 GPUs for evaluation. We use lm_evaluation_harness version 0.4.5 (Gao
et al., 2024) and LongBench (Bai et al., 2024) for all the evaluation tasks. For Arc-c/e, Hellaswag, OpenBook QA, PIQA
tasks we report acc_norm while for BoolQ, SIQA and Winogrande we report acc.

For calibration data, we use 512 randomly choses samples for Wikitext to obtain the projection matrices. While for GPTQ
we use 128 randomly choses samples from Wiktiext following the original work Frantar et al. 2023.

The KV cache, as well as the weights and activations of all Linear layers (except m1lp.down_proJj), are quantized to
4-bit precision, with % of channels retained in 8-bit precision. While, the weights and activations within down_proj are
uniformly quantized to 4-bit precision. Following Ashkboos et al. 2024¢ and Liu et al. 2025, we keep query vector in 16-bit.

D. Complete results of main result tables

Detailed results of Table 1 in the main paper, including more models and task-by-task performance, are shown in Tables 10
(Llama families) and 11 (Qwen2.5 family). As expected, ResQ achieves superior performance to baselines across the series
of common sense reasoning and MMLU tasks.

E. Additional quantization results: W/A/KV = 4/8/4 bits of precision

This section presents additional comparisons between baselines and ResQ for the Llama family when quantized to W/A/KV =
4/8/4 bits of precision. Across various MMLU tasks and perplexity evaluations on WikiText, ResQ consistently outperforms
all baselines. For 0-shot common sense reasoning tasks, except for Meta-L1lama-3-8B, ResQ achieves the best average
performance. In the case of Meta—-L1lama—3-8B, ResQ is the second-best method, with QuaRot performing marginally
better by less than 0.2%.

15

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 10: Comparison of perplexity on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including ARC-
challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and 0-shot massive multitask
language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2,
Llama 3 and Llama 3.2 families. Results of all techniques were obtained using their official codebase. Our work ResQ and
QUIK (Ashkboos et al., 2024b) keep 1/8 channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are
uniformly quantized to W/A/KV = 4-bit. All techniques except RTN use GPTQ (Frantar et al., 2023). ({): lower is better,
(1): higher is better.

Llama 2 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
(€] G) @ @ ™ @) (@) (G @) @ [SD) (G @ (G
16-bit 5.5 46.3 74.6 77.8 75.9 442 79.2 46.1 69.1 64.1 38.9 45.9 46.0 334 411
" RIN || 1 17662 | 263 278 548 294 ~ 258 510 350 487 374 245 247 229 222 236
GPTQ 9600.0 24.8 314 554 30.6 25.6 55.8 342 533 38.9 247 245 22.7 232 238
Llama-2-Tb-hf SmoothQuant+ 15.4 29.3 47.1 56.8 48.6 31.8 655 372 524 46.1 25.0 245 24.1 234 242
QUIK 7.5 39.8 63.7 68.9 68.3 37.8 729 421 62.4 57.0 26.9 29.6 28.8 258 278
QuaRot 6.1 415 714 73.2 73.2 40.6 769 436 65.6 60.7 312 35.1 34.6 282 323
SpinQuant 6.0 43.6 71.3 73.8 732 40.4 76.0 441 65.4 61.0 339 385 37.5 295 348
ResQ 5.8 44.0 72.6 75.3 74.0 41.0 779 439 66.9 62.0 35.9 40.9 42.2 322 377
16-bit 4.9 49.1 774 80.5 79.4 45.2 80.7 472 72.1 66.5 47.9 593 61.0 424 527
" RIN || 3 35439 | 228 298 402 266 278 514 356 506 335 | 237 250 231 226 23.6
GPTQ 3120.0 23.6 31.1 38.7 272 26.8 536 358 49.8 33.8 25.0 254 23.7 25.1 24.8
Llama-2-13b-hf SmoothQuant+ 11.2 345 55.6 62.9 62.5 324 70.1 38.7 55.6 51.0 25.7 26.1 27.3 273 266
QUIK 6.8 43.7 68.0 71.3 733 40.0 757 451 64.6 60.2 34.7 40.6 39.8 31.8 367
QuaRot 5.4 46.9 74.9 76.6 75.8 42.6 79.1 45.5 69.0 63.8 438 53.6 54.0 394 477
SpinQuant 5.2 49.0 76.3 78.2 77.1 42.8 793 463 69.5 64.8 435 53.1 554 39.1 47.8
ResQ 5.1 49.1 76.1 79.7 77.9 43.6 79.1 46.6 69.9 65.2 45.3 56.0 58.0 41.0 50.1
Llama 3 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
(€3] (G 4] (6] @ (4] (@) M (G m (6] [§D) (€] (6] (G
16-bit 6.1 53.2 77.1 81.1 79.2 44.8 809 47.0 734 67.1 55.0 70.6 73.2 537 63.1
" RIN || 2189 | 253 349 442 383 278 565 368 508 393 | 247 251 233 214 236
GPTQ 166.3 24.7 37.7 443 36.8 27.0 576 364 53.8 39.8 24.7 239 22.8 21.8 233
Meta-Tlama—3-8B SmoothQuant+ 78.2 27.5 42.0 50.7 44.9 28.8 59.0 359 509 425 254 255 245 234 247
QUIK 14.2 33.6 56.4 60.5 61.5 332 68.7 399 59.0 51.6 30.0 34.0 34.8 321 327
QuaRot 7.8 45.1 70.4 73.8 74.7 42.6 76.6 45.1 68.5 62.1 47.8 59.1 61.4 443 532
SpinQuant 7.4 48.0 754 75.8 75.4 43.8 775 450 69.2 63.8 49.8 63.3 65.0 46.8 56.2
ResQ 7.1 49.2 75.0 72.5 76.5 43.0 783 458 71.0 63.9 50.6 64.4 65.8 481 572
16-bit 2.9 64.2 85.9 853 84.9 48.6 844 508 80.6 73.1 67.6 81.5 86.8 68.4 76.1
" RIN || 4527] 326 503 542 413 316 648 359 532 455 | 245 238 223 221 232
GPTQ 11655.0 25.9 26.0 379 26.2 28.6 504 343 49.9 349 27.1 243 24.0 265 255
SmoothQuant+ - - - - - - - - - - - - - - -
Meta-Llama-3-70B QUIK 8.0 45 689 607 750 364 761 432 604 582 | 466 564 580 436 SLI
QuaRot 5.7 53.7 745 81.6 81.1 46.6 810 468 75.2 67.6 55.7 725 75.8 573 653
SpinQuant 6.2 52.0 773 81.7 75.6 43.8 788 434 72.8 65.7 50.7 67.0 68.1 519 594
ResQ 4.1 61.4 84.3 83.9 83.5 46.0 83.1 48.6 78.3 71.1 64.9 79.9 84.9 66.1 74.0
Llama 3.2 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
[€3) @ () [SD) () () M M [S) M [GD) () M [GD) ™
16-bit 9.8 36.5 60.6 63.4 63.6 37.4 745 428 60.1 54.9 34.8 41.1 39.9 320 369
" RIN || 3201 | 224 299 534 314 0 294 548 349 485 381 | 248 252 224 227 238
GPTQ 108.9 24.7 327 523 30.7 23.6 543 344 51.1 38.0 24.7 25.1 25.5 245 249
Llama—3.2-1B SmoothQuant+ 2289 233 30.1 529 31.3 26.6 542 345 51.2 38.0 239 24.1 25.0 235 241
: QUIK 21.8 274 46.0 55.0 46.0 26.4 624 386 52,6 443 25.6 25.6 24.6 245 251
QuaRot 14.3 30.0 514 59.1 54.0 34.2 66.7 39.6 57.1 49.0 254 26.9 254 244 255
SpinQuant 13.6 323 51.8 59.3 55.4 304 67.7 386 54.7 48.8 254 27.6 24.2 253 25.6
ResQ 12.4 34.0 54.2 57.0 57.3 31.2 694 41.0 56.8 50.1 28.3 30.5 31.3 27.6 294
16-bit 7.8 46.2 71.7 73.1 73.7 43.4 774 472 69.1 62.7 48.9 62.9 62.3 452 548
" RIN | 2688 | 235 354 462 356 282 563 336 506 387 | 251 256 270 249 257
GPTQ 178.3 27.0 27.0 48.8 44.4 27.8 59.1 37.1 515 40.3 249 245 25.7 240 248
Llama—3.2-3B SmoothQuant+ 96.1 253 33.1 47.8 37.7 252 56.2 35.8 50.9 39.0 254 26.6 264 253 259
: QUIK 158 329 50.1 52.6 59.1 332 68.7 403 53.0 488 29.0 332 31.9 303 311
QuaRot 10.1 38.6 59.0 65.9 66.5 35.8 744 431 65.2 56.1 385 47.3 46.7 353 420
SpinQuant 9.2 38.9 64.8 68.0 69.1 39.4 749 451 62.9 57.9 37.0 49.4 50.5 399 442
ResQ 8.8 43.1 65.6 68.8 70.5 384 751 456 64.8 59.0 4.7 57.0 56.5 41.0 498

F. Complete results of the MMMU benchmark

This section presents task-by-task results for the MMMU benchmark across six subjects—Art & Design, Business, Science,
Health & Medicine, Humanities & Social Science, and Tech & Engineering—for the Qwen2 VL family when quantized
to W/A/KYV = 4/4/4 bits and W/A/KYV = 4/8/4 bits of precision. On average, ResQ consistently outperforms all baselines
across different models. Notably, the advantage of ResQ becomes more pronounced with larger models. For instance,
for Qwen2-VL-7B-Instruct at W/A/KV = 4/8/4 bits of precision, ResQ achieves an average accuracy score of 48.8,
significantly outperforming the next-best method, QUIK, which scores 26.4, representing an ~ 85% relative improvement.

16

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 11: Comparison of perplexity score on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including
ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and 0-shot massive multitask
language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Qwen2.5
family. Results of all techniques were obtained using their official codebase. Our work ResQ and QUIK (Ashkboos et al.,
2024b) keep 1/s channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are uniformly quantized to
W/A/KV = 4-bit. All techniques except RTN use GPTQ (Frantar et al., 2023). (|): lower is better, (1): higher is better, *: In
cases where Hadamard matrix does not exist at the MLP dimension, random orthogonal rotation is used instead.

Qwen2.5 family

Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method ‘Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
(€] M M) Q)))) [§) 6] [S) M [§) (G)
16-bit 13.1 31.9 58.4 62.1 52.1 35.0 69.7 443 57.1 51.3 422 53.2 55.5 415 481
[RIN || 232043 | 262 270 393 260 240 507 345 515 349 [248 240 228 243 239
GPTQ 16302.3 23.7 26.9 39.0 26.5 26.4 502 334 49.6 345 24.1 24.8 235 23.0 239
Qwen2.5-0.5B | SmoothQuant+ 10053.9 259 26.3 39.9 27.2 254 47.1 359 49.6 347 245 24.7 215 22.1 232
QUIK 38.6 245 38.6 48.0 36.9 284 58.1 36.4 51.9 404 26.3 259 23.6 242 250
QuaRot* 219.9 254 36.6 45.0 28.9 28.6 54.1 329 51.7 37.9 24.4 24.0 23.0 235 237
ResQ 29.6 27.1 44.2 53.2 38.8 28.0 619 344 51.3 424 26.1 27.5 25.3 260 26.2
16-bit 9.3 45.1 72.1 729 67.7 40.2 763 488 63.7 60.8 535 65.5 70.6 528 60.6
[RIN || 145189 | 231 272 439 268 256 513 334 525 355 | 238 245 238 227 237
GPTQ 25769.7 239 26.9 439 26.1 27.6 497 321 51.5 352 24.6 24.7 23.7 23.8 242
Qwen2.5-1.5B | SmoothQuant+ 31655.9 25.0 26.2 39.9 26.0 26.0 508 32.1 49.0 34.4 25.5 24.4 22.7 224 238
QUIK 6613.5 21.8 31.9 40.9 27.9 27.4 528 352 48.6 35.8 24.6 24.0 21.9 21.7 231
QuaRot 6599.9 23.6 37.3 46.2 28.6 27.0 563 352 524 38.3 24.5 243 23.0 224 235
ResQ 125 38.7 64.1 65.7 61.4 37.8 71.6 42.7 60.1 55.3 43.2 54.4 54.9 41.5 485
16-bit 8.0 474 73.0 71.5 73.6 42.0 787 499 68.4 63.8 56.6 71.0 76.3 60.6 66.1
[RIN]| 390330 | 256 258 417 263 274 495 331 514 351 | 245 244 228 219 234
GPTQ 9977.8 26.0 26.7 41.5 26.7 28.2 515 319 48.3 35.1 243 23.8 22.8 21.8 232
Qwen2.5-3B SmoothQuant+ 73306.7 25.4 24.5 41.0 26.4 29.8 484 324 50.4 34.8 25.6 24.7 23.1 224 239
QUIK 15.5 36.1 55.4 61.4 57.2 36.2 67.1 40.8 55.3 51.2 36.4 42.8 424 36.1 394
QuaRot 68.8 324 53.1 51.6 49.2 334 66.7 393 564 477 28.1 32.0 28.9 266 289
ResQ 9.0 453 70.5 72.7 70.2 424 76.8 46.7 64.4 61.1 53.1 66.5 70.5 548 61.2
16-bit 6.8 51.2 71.6 84.7 78.9 472 80.0 548 73.2 68.4 62.6 76.7 82.6 70.1 73.0
[RIN || 243821 | 245 263 378 260 290 51.0 341 501 349 [249 243 234 249 244
GPTQ 13593.7 25.2 25.6 37.8 26.3 28.2 524 344 48.9 34.8 24.4 243 22.8 22,6 235
Qwen2.5-7B SmoothQuant+ 19088.7 26.3 252 39.8 26.4 27.6 527 335 52.0 354 25.1 254 22.6 24.1 243
QUIK 260.3 29.5 424 51.7 36.3 28.2 59.6 345 496 415 243 26.9 23.1 23.8 246
QuaRots* 4035.9 25.9 41.0 39.1 29.1 27.6 579 357 50.6 38.4 24.8 24.4 24.4 227 241
ResQ 8.2 49.0 74.7 81.4 75.7 45.0 789 494 68.2 65.3 57.8 744 79.3 645 69.0
16-bit 53 58.8 79.4 85.4 829 454 819 553 75.8 70.6 69.9 81.9 86.2 765 78.6
[T RIN | 2715 | 21,6 327 515 0 296 258 526 332 517 373 | 253 232 260 253 249
GPTQ 5100.3 23.8 29.1 47.7 30.1 27.6 513 346 51.2 36.9 25.1 24.7 25.1 243 248
Qwen2.5-14B | SmoothQuant+ 1375.7 27.0 26.3 38.0 26.8 29.2 51.6 324 49.3 35.1 25.9 24.5 222 222 237
QUIK 10.5 45.0 67.1 64.7 68.9 37.6 748 439 59.3 57.6 48.9 61.1 64.7 515 56.6
QuaRot 6.8 54.8 79.6 79.9 8.7 44.0 795 499 70.7 67.1 60.9 75.1 80.2 673 709
ResQ 6.2 57.6 82.1 84.9 81.1 44.8 80.5 51.7 70.6 69.2 65.2 78.4 83.4 715 74.6
16-bit 5.0 55.7 78.0 87.4 84.1 44.4 823 56.4 75.2 70.4 73.1 83.6 89.6 812 819
[RIN || 1 184747 | 243~ 353 514 319 270 528 341 514 385 | 245 2501 253 243 248
GPTQ 3891.1 25.4 35.4 48.5 31.8 27.0 538 358 50.5 38.5 25.9 24.8 23.6 240 246
Qwen2.5-32B SmoothQuant+ - - - - - - - - - - - - - - -
QUIK 9.6 41.0 64.6 74.9 72.0 39.6 75.8 445 60.2 59.1 54.7 66.8 71.3 588 629
QuaRot 6.1 54.5 76.1 85.1 81.5 442 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ 5.6 55.1 78.4 86.0 82.5 454 81.1 539 74.0 69.5 70.3 82.3 87.9 789 798
16-bit 3.9 62.6 83.2 89.2 86.0 46.6 83.6 584 71.1 73.4 77.2 86.9 90.6 824 843
[RIN || 454127 1259 263 380 259 252 500 342 487 343 | 255 242 230 232 240
GPTQ 37967.2 25.4 25.8 38.1 25.6 26.6 512 342 49.4 345 25.1 24.0 21.9 222 233
Qwen2.5-72B SmoothQuant+ - - - - - - - - - - - - - - -
QUIK 8.3 45.1 68.1 712 712 39.0 774 456 65.6 61.9 60.2 74.3 71.5 653 69.3
QuaRot 4.9 55.8 81.1 87.5 84.0 452 81.7 525 74.5 70.3 71.4 84.2 87.7 77.1 80.1
ResQ 4.6 58.4 80.9 88.4 84.9 48.2 82.6 555 770 720 72.8 84.6 89.0 795 815

G. Complete results of iso-bitwidth comparison

This section presents detailed results for Table 5 in the main paper for Qwen2.5 family of models. The task-by-task results
are provided in Table 14. As expected, ResQ achieves superior performance. For Qwen2.5-72B, SpinQuant baseline is
missing because of lack of big enough GPU cluster to enable training rotations.

H. Complete results when training rotation matrix R

In Table 15, we provide results on Wikitext perplexity, task-by-task accuracy on 0-shot reasoning benchmarks and task-by-
task accuracy on MMLU benchmark when training rotation matrix R in ResQ. The rotation matrix is trained using Cayley
SGD (Li et al., 2020) for 100 training steps at batch size 8 and learning rate of 1.5. The training data involves samples

17

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 12: Accuracy on eight 0-shot common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag,
Openbook QA, PIQA, SIQA, and WinoGrande and 0-shot massive multitask language understanding tasks across four
subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2, Llama 3 and Llama 3.2 families when
quantized toW/A/KV = 4/8/4 bits. Results of all techniques were obtained using their official codebase. Our work ResQ and
QUIK (Ashkboos et al., 2024b) keep 1/8 of channels in 8-bit. All techniques except RTN use GPTQ (Frantar et al., 2023).
(J): lower is better, (1): higher is better.

Llama 2 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
) @) M @) @) M M (@) (G M M @™ M (@))
16-bit 55 463 74.6 77.8 759 442 792 46.1 69.1 64.1 389 45.9 46.0 334 411
[RIN || 72] 415 659 719 718 394 765 427 657 594 | 276 284 316 290 292
GPTQ 11.8 42.5 71.3 69.9 73.6 432 774 449 689 615 28.0 323 32.1 284 302
Llama—2-Tb-hf SmoothQuant+ 6.8 41.9 69.1 70.7 72.9 40.2 77.1 327 669 589 28.1 30.0 28.6 27.1 28.5
QUIK 5.7 439 73.4 773 742 44.6 782 443 689 63.1 358 39.3 40.1 304 364
QuaRot 5.7 43.6 73.6 754 74.8 42.6 776 451 679 626 36.3 433 415 313 381
SpinQuant 5.7 435 73.3 754 74.8 42.6 775 450 684 626 37.0 42.0 434 31.8 385
ResQ 5.6 46.3 74.5 77.1 75.0 42.8 789 45.6 68.8 63.6 39.1 45.9 479 349 420
16-bit 4.9 49.1 77.4 80.5 79.4 45.2 80.7 472 72.1 66.5 47.9 593 61.0 424 527
[RIN | 69 | 418 652 708 665 378 760 425 639 580 | 375 = 428 438 318 390
GPTQ 6.2 46.2 732 76.0 734 432 782 444 69.6 63.0 359 421 39.0 308 36.9
Llama—2-13b-hf SmoothQuant+ 5.6 45.0 715 76.8 734 44.6 76.7 319 676 609 32.8 427 40.6 324 371
QUIK 5.0 47.5 76.4 78.9 78.4 42.8 804 468 725 655 46.1 57.0 582 40.0 503
QuaRot 5.0 48.6 71.0 78.9 78.2 44.2 80.3 463 722 657 46.5 56.8 58.0 40.1 50.4
SpinQuant 5.0 483 76.4 80.4 78.1 43.8 798 46.7 71.1 65.6 46.7 57.1 58.3 40.1 50.5
ResQ 5.0 49.0 77.1 80.6 78.9 454 799 472 723 66.3 47.6 58.2 59.9 417 519
Llama 3 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
) @) M (@) @) M M (@) (G @) M [§D)) M M
16-bit 6.1 532 771 81.1 79.2 44.8 809 470 734 67.1 55.0 70.6 732 537 631
[RIN || 85 | 478 723 721 753 430 782 448 715 631 | 463 595 619 457 534
GPTQ 75 47.1 71.1 722 72.7 42.6 782 457 72.8 62.8 40.4 60.3 61.6 462 521
Meta-Llama-3-8B SmoothQuant+ 83 44.8 71.2 754 73.6 40.0 790 43.6 68.1 62.0 42.1 53.6 54.1 385 471
QUIK 6.7 50.0 757 80.1 774 45.8 80.0 451 748 66.1 521 65.7 68.1 498 589
QuaRot 6.7 51.6 78.5 80.0 71.7 452 79.8 464 73.1 66.5 51.6 66.8 68.5 487 589
SpinQuant 6.6 50.0 772 80.3 779 44.0 80.7 46.6 72.8 66.2 52.5 672 68.1 495 593
ResQ 6.5 54.3 78.6 77.2 78.4 44.0 792 463 732 66.4 53.6 68.6 70.0 520 610
16-bit 29 64.2 85.9 853 84.9 48.6 844 508 80.6 73.1 67.6 81.5 86.8 68.4 76.1
[T RIN | 16499 ~ | 265 ~ 257 378 264 290 5I.I 346 530 355 | 254 259 225 227 241
GPTQ 8586.4 26.5 249 38.1 264 29.4 519 349 494 352 25.7 23.6 225 234 238
Meta-Llama—3-70p | SmoothQuant+ - - - - - - - - - - - - - - -
QUIK 3.7 60.3 82.0 83.5 83.5 454 824 478 78.1 70.4 65.2 79.0 84.1 652 734
QuaRot 3.6 60.0 84.3 84.9 839 49.2 839 494 78.8 71.8 64.3 80.0 85.8 66.7 742
SpinQuant - - - - - - - - - - - - - - -
ResQ 33 63.0 84.7 84.4 84.4 48.2 842 50.1 80.8 725 68.2 86.0 80.8 668 754
Llama 3.2 family
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
) @) m @) @) @) [G] M M M M M @) M M
16-bit 9.8 36.5 60.6 63.4 63.6 374 745 428 60.1 549 34.8 41.1 399 320 369
[RIN] 166 | 306 467 619 552 324 667 380 567 485 | 251 267 261 252 258
GPTQ 153 32.8 50.9 61.6 54.8 31.6 674 39.1 55.8 49.2 24.1 26.2 239 243 246
Llama-3.2-1B SmoothQuant+ 20.6 30.0 47.7 50.2 50.8 312 663 375 54.1 46.0 249 26.6 25.5 239 252
: QUIK 11.6 35.0 579 62.3 59.4 354 717 419 569 526 282 315 29.6 272 29.1
QuaRot 111 34.1 58.8 523 59.8 36.4 723 412 586 517 28.3 30.6 29.5 264 287
SpinQuant 11.1 342 55.6 61.8 60.0 35.0 72.1 40.8 576 521 26.1 21.7 274 240 263
ResQ 10.4 34.8 58.0 62.2 61.1 344 723 418 60.1 53.1 31.3 36.0 36.2 31.0 336
16-bit 78 46.2 71.7 73.1 73.7 43.4 774 472 69.1 62.7 48.9 62.9 623 452 548
[RIN | 178 | 366 513 553 643 366 735 421 624 528 | 385 467 466 350 417
GPTQ 14.1 37.0 599 573 629 36.8 743 419 644 543 37.1 47.7 46.2 365 419
Llama—3.2-3B SmoothQuant+ 12.7 37.0 54.5 533 61.9 34.8 712 416 632 522 314 37.6 40.7 324 355
: QUIK 8.6 42.1 65.9 71.8 71.7 40.0 76.0 44.6 66.7 59.8 45.2 572 57.8 407 502
QuaRot 8.4 43.4 68.9 69.5 71.2 40.6 76.8 46.0 672 60.5 45.0 56.1 56.0 40.0 493
SpinQuant 8.4 435 67.8 70.6 71.9 41.6 76.9 449 68.5 60.7 46.1 56.7 57.1 394 498
ResQ 8.1 444 69.4 724 722 41.8 763 452 69.1 61.3 48.2 61.1 59.8 45 534

of sequence length 2048 taken from Wikitext. For complete training hyperparameters, we guide the interested readers to
official implementation of SpinQuant (Liu et al., 2025).
I. Complete results with different calibration datasets

In Table 16, we provide results on wikitext perplexity, task-by-task accuracy on 0-shot reasoning benchmarks and task-by-
task accuracy on MMLU benchmarks when obtaining ResQ projection matrix P using different calibration datasets. We
find no clear consensus on the optimality of one particular dataset. The performance results for different datasets show no

18

https://github.com/facebookresearch/SpinQuant

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 13: Accuracy (higher is better) on 0-shot massive multi-discipline multimodal understanding and reasoning tasks
across six subjects: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech &
Engineering for the Qwen2 VL Instruct family when quantized to W/A/KYV = 4/4/4 bits and W/A/KYV = 4/8/4 bits. Results
of all techniques were obtained using their official codebase. Our work ResQ and QUIK (Ashkboos et al., 2024b) keep 1/s
of channels in 8-bit. All techniques except RTN use GPTQ (Frantar et al., 2023).

Qwen2-VL-2B-Instruct
0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

W/A/KV (bit) | Method

16/16/16 | Baseline | 56.7 360 373 508 260 310 396
77777777777 RTN || 283 187 260 267 213 201 250
4/4/4 GPTQ 283 273 270 290 267 276 277
QuaRot 242 233 207 267 260 229 240
QUIK 25.8 260 267 292 260 243 263
4545451 ResQ 383 213 287 450 203 233 297
RTN 275 213 213 242 213 276 249
4/8/4 GPTQ 242 233 240 183 203 295 234
QuaRot 200 247 300 267 260 314 265
issus | QUK 333 287 320 325 260 181 284
S/8/4. ResQ 35 20 327 415 267 276 340

Qwen2-VL-7B-Instruct
0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

W/A/KV (bit) | Method

16/16/16 Baseline 68.3 41.3 54.7 68.3 38.7 38.1 516
77777777777 RTN || 242 280 203 225 293 271 267

4/4/4 GPTQ 21.7 26.0 253 28.3 24.7 233 249

QuaRot 21.7 21.3 28.7 25.0 20.7 29.5 245

QUIK 30.8 30.0 32.0 26.7 28.0 262 289

4.5/4.5/4.5 ResQ 65.0 39.3 45.3 61.7 34.0 36.7 47.0

RTN 233 28.7 273 25.0 22.7 243 252

4/8/4 GPTQ 20.8 233 30.0 19.2 24.0 286 243

QuaRot 20.8 26.0 30.0 19.2 24.7 262 245

4.5/8/4.5 QUIK 25.0 23.3 31.3 26.7 253 267 264

' ’ ResQ 67.5 39.3 51.3 64.2 36.7 33.8 488

significant fluctuations.

J. Artifact licenses

According to their licenses, all language models used in the paper fall under acceptable use case. The licenses for the models
are linked for perusal: Llama-2-7b-hf, Llama-2-13b-hf, Meta-Llama-3-8B, Meta-Llama-3-70B,
Llama-3.2-1B, Llama-3.2-3B, OQwen2.5-0.5B, OQwen2.5-1.5B, OQwen2.5-3B, Qwen2.5-7B,
Qwen?2.5-14B, Qwen2.5-32B, Qwen2.5-72B, Qwen2-VL-7B-Instruct, and Qwen2-VL-2B-Instruct.

19

https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-2-13b-hf/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
https://huggingface.co/meta-llama/Meta-Llama-3-70B/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.2-3B/blob/main/LICENSE.txt
https://huggingface.co/Qwen/Qwen2.5-0.5B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-14B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/blob/main/LICENSE

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 14: Comparison of ResQ, QuaRot, SpinQuant at iso-bitwidth of W/A/KV = 4/4/4. ResQ keeps 1/8 channels
with high eigen value in 6-bit, 1/8 channels with low eigen value in 2-bit and remaining in 4-bit for average bit-width
of 4-bit. Evaluations include perplexity on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including
ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and on 0-shot massive
multitask language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the
Qwen2.5 model family. (|): lower is better, (1): higher is better.

Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
[€3) (@) () M m D) D) ())) M) ()) M
QuaRot 68.8 324 53.1 51.6 49.2 334 66.7 393 564 477 28.1 32.0 28.9 26.6 289
Qwen2.5-3B | SpinQuant 70.6 333 56.4 51.8 49.5 33.0 66.7 41.0 57.1 48.6 30.1 37.2 339 30.1 3238
ResQ 9.8 44.1 70.2 70.2 67.3 41.0 737 454 61.1 59.1 45.8 58.4 58.9 459 522
QuaRot 4035.9 25.9 41.0 39.1 29.1 27.6 579 357 50.6 384 24.8 24.4 24.4 227 24.1
Qwen2.5-7B | SpinQuant 3395.4 25.5 44.2 39.5 29.3 27.0 588 353 49.4 38.6 25.0 23.8 24.2 243 243
ResQ 34.2 42.6 60.2 75.4 59.4 41.6 63.1 44.6 62.8 56.2 49.3 63.6 68.6 504 58.0
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 499 70.7 67.1 60.9 75.1 80.2 673 70.9
Qwen2.5-14B | SpinQuant 6.6 54.2 81.2 82.1 779 44.6 784 50.8 70.0 67.4 59.6 75.3 78.9 66.7 70.1
ResQ 6.5 55.6 81.3 79.2 79.2 43.6 799 514 70.2 67.5 61.6 75.3 80.1 682 713
QuaRot 6.1 54.3 78.6 83.0 81.0 43.4 79.8 50.6 71.7 67.8 67.4 80.5 85.2 751 77.0
Qwen2.5-32B | SpinQuant 6.0 54.5 76.1 85.1 81.5 44.2 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ 59 55.9 79.7 85.8 81.6 44.8 803 51.6 73.4 69.1 68.4 80.6 86.4 762 719
QuaRot 49 55.8 81.1 87.5 84.0 452 81.7 525 74.5 70.3 71.4 84.2 87.7 77.1 80.1
Qwen2.5-72B | ResQ 49 588 819 872 841 460 82 532 755 71| 713 842 874 714 801

Table 15: Comparison of ResQ and ResQ+training rotation R, evaluating perplexity on Wikitext, accuracy on eight 0-shot
common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and
WinoGrande, and on 0-shot massive multitask language understanding tasks across four subjects: STEM, Humanities, Social
Sciences, and MMLU-other, for the Meta-Llama—-3-8B, Llama—-2-7b-hf, Qwen2.5-7B, and L1lama-3.2-1B
models. (]): lower is better, (1): higher is better.

Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.

[€3) [S) () (G M (D) [§) QD) () @ () @) [GD) [GD)
Meta-Llama-3-8B ResQ] 7.1 49.2 75.0 725 76.5 43.0 783 458 71.0 639 50.6 64.4 65.8 48.1 572
ResQ + training R 7.0 48.1 76.1 76.7 76.4 44.2 778 457 70.6 64.5 51.0 65.9 67.4 489 583

Llama-2-Th-hf ResQ] 5.8 44.0 72.6 753 74.0 41.0 779 439 66.9 62.0 359 40.9 42.1 32.1 37.7
ResQ + training R 5.8 44.9 71.6 74.9 74.5 42.0 77.6 44.6 674 622 354 4.7 40.4 334 380
ResQ 8.2 49.0 74.7 814 75.7 45.0 789 494 68.2 65.3 57.8 74.4 79.3 645 69.0
QuenZ.5-7B ResQ + training R 8.0 50.0 75.2 80.9 76.1 44.0 787 523 69.2 65.8 59.0 74.0 79.0 65.0 69.0
Llama—3.2-1B ResQ 124 34.0 54.2 57.0 573 31.2 694 410 568 50.1 28.3 30.5 31.3 276 294
: ResQ + training R 11.7 329 539 575 58.2 33.6 701 394 55.6 50.1 29.0 30.8 30.6 28.0 29.6

Table 16: Performance of ResQ with different calibration datasets, evaluating perplexity on Wikitext, accuracy on eight
0-shot common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA,
SIQA, and WinoGrande, and on 0-shot massive multitask language understanding tasks across four subjects: STEM,
Humanities, Social Sciences, and MMLU-other, for the L1ama—-3.2-3B, Meta—-Llama—-3-8B, Qwen2.5-3B, and
Qwen?2.5-7B models. (]): lower is better, (1): higher is better.

Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks
Model Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. | humanities Other SocialS STEM Avg.
[©) (@) Q) (@) @ (@) [§) M [S) M @ [S) [S) (G [S)
Wikitext 8.8 43.1 65.6 68.8 70.5 384 75.1 456 64.8 59.0 44.7 57.0 56.5 41.0 498
Llama-3.2-3B C4 8.8 42.1 66.7 68.9 70.6 41.2 754 453 64.2 61.7 439 55.5 55.0 402 486
PTB 8.8 41.8 65.8 70.2 70.0 39.2 749 46.1 65.2 59.1 435 54.8 53.1 389 476
Alpaca 8.8 43.1 65.9 66.6 70.4 38.8 755 449 66.2 589 43.6 54.8 53.9 39.6 480
Wikitext 7.1 49.2 75.0 72.5 76.5 43.0 783 458 71.0 639 50.6 64.4 65.8 481 572
Meta-Tlama—3-8B C4 71 48.0 76.3 76.6 76.4 424 785 46.0 68.1 64.0 50.8 64.6 66.7 47.1 573
PTB 7.1 48.1 733 78.1 76.4 42.6 776 452 70.3 63.9 49.6 63.5 65.0 470 563
Alpaca 71 47.8 73.1 76.8 76.9 42.8 718 451 710 639 50.4 65.5 67.0 473 5715
Wikitext 9.0 453 70.5 72.7 70.2 42.4 76.8 46.7 644 611 53.1 66.5 70.5 548 61.2
Owen2.5-3B C4 9.0 44.2 70.4 71.6 70.6 40.6 763 469 650 60.7 51.8 65.5 68.2 527 59.6
PTB 9.1 42.4 68.5 70.5 69.7 40.6 755 463 64.5 59.7 51.2 65.6 68.4 528 595
Alpaca 9.0 46.2 72.5 74.5 70.4 38.6 764 46.6 654 613 522 65.1 71.1 553 609
Wikitext 82 49.0 74.7 81.4 75.7 45.0 789 494 682 653 57.8 74.4 79.3 645 69.0
Owen2.5-7B Cc4 82 50.4 75.9 82.2 75.9 42.8 78.6 523 67.5 65.7 58.4 727 79.0 64.1 68.5
PTB 8.0 47.8 74.5 81.8 76.3 45.6 772 527 66.5 65.3 58.1 74.0 78.7 644 68.8
Alpaca 89 50.3 75.0 82.0 75.8 432 782 529 68.1 65.7 58.8 73.3 78.8 629 684

20

