
ResQ: Mixed-Precision Quantization of Large Language Models
with Low-Rank Residuals

Utkarsh Saxena 1 Sayeh Sharify 2 Kaushik Roy 1 Xin Wang 2

Abstract

Post-training quantization (PTQ) of large lan-
guage models (LLMs) holds the promise in re-
ducing the prohibitive computational cost at infer-
ence time. Quantization of all weight, activation
and key-value (KV) cache tensors to 4-bit without
significantly degrading generalizability is chal-
lenging, due to the high quantization error caused
by extreme outliers in activations. To tackle this
problem, we propose ResQ, a PTQ method that
pushes further the state-of-the-art. By means of
principal component analysis (PCA), it identifies
a low-rank subspace (in practice 1/8 of the hidden
dimension) in which activation variances are high-
est, and keep the coefficients within this subspace
in high precision, e.g. 8-bit, while quantizing the
rest to 4-bit. Within each subspace, invariant ran-
dom rotation is applied to further suppress outliers.
We show that this is a provably optimal mixed pre-
cision quantization scheme that minimizes error.
With the Llama and Qwen2.5 families of mod-
els, we demonstrate that ResQ outperforms recent
uniform and mixed precision PTQ methods on
a variety of benchmarks, achieving up to 33%
lower perplexity on Wikitext than the next best
method SpinQuant, and upto 5× speedup over
16-bit baseline. Code is available here.1

1. Introduction
Growing capabilities of large language models (LLMs)
come with an increasing computational cost at inference
time. LLM inference has two distinct stages: prefilling,
which processes the input prompt and populates the internal

1Department of Electrical and Computer Engineering, Purdue
University, West Lafayette, USA 2d-Matrix, Santa Clara, USA.
Correspondence to: Utkarsh Saxena <saxenau@purdue.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://github.com/utkarsh-dmx/project-r
esq

state called KV (key-value) cache, and generation, where
tokens are generated autoregressively. The prefilling stage
is compute-bound, requiring trillions of floating-point op-
erations (FLOPs), whereas the generation stage is memory-
bound due to iterative accesses and updates of the KV cache.
These high computational costs are further amplified by
modern LLMs’ large sizes – some exceeding 400 billion
parameters – and the increasingly long context lengths that
necessitates large KV caches.

Quantization algorithms are powerful and principled ap-
proaches to address the immense computational demands of
LLMs at both stages of inference. Quantization of weights
reduces parameter storage, KV cache quantization lowers
memory usage of KV cache during generation, whereas
activation quantization decreases the complexity of floating-
point operation. However, effective low-precision quanti-
zation is difficult due to large outliers in activations, which
can be ∼ 20× larger than other values (Dettmers et al.,
2022). While post-training methods like KIVI (Liu et al.,
2024c) and KVQuant (Hooper et al., 2024) achieve 2-bit
KV cache quantization, and techniques like GPTQ (Frantar
et al., 2023) and AWQ (Lin et al., 2024c) optimize very
low-precision weights, quantizing activations below 8-bit
precision remains an open challenge.

Recent LLM activation quantization methods feature two
useful strategies: differential treatment of outliers retain out-
lier channels in high precision, leading to mixed-precision
quantization (e.g., Dettmers et al. 2022; Zhao et al. 2024;
Ashkboos et al. 2024b; Figure 1a), whereas invariant ran-
dom rotation suppress outliers, leading to less difficult
uniform low-precision quantization (e.g., Ashkboos et al.
2024c; Liu et al. 2025; Figure 1b). Both reduce quantization
error and improve signal-to-quantization-noise ratio (Figure
1d,e) locally; yet a notable model performance gap persists
from the 16-bit baseline. For example, SpinQuant (Liu et al.,
2025) at 4-bit, applied to Meta-Llama-3-8B (Meta,
2024b), exhibits ∼ 20% higher perplexity than the 16-bit
floating point baseline, even after nontrivial optimization.

To mend this gap, we introduce ResQ, a novel PTQ method
that combines the strengths of both aforementioned strate-
gies and thereby improve model efficiency with aggressive 4-
bit quantization of activation, weight, and KV cache. Specif-

1

https://github.com/utkarsh-dmx/project-resq
https://github.com/utkarsh-dmx/project-resq
https://github.com/utkarsh-dmx/project-resq

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

(a) Outlier channel detection and mixed-precision quantization

(b) Random rotation and uniform-precision quantization

(c) Static subspace projection, random rotation and mixed-precision quantization (ours)

Quantizer

Quantized Activation Activation

Quantizer

Quantized Activation Activation

Quantizer

Quantized Activation Activation

16

12

14

Q
u
an

ti
za

ti
o

n
 S

N
R

18

20

0 5 10 15 20 25 30

Q
u
an

ti
za

ti
o

n
 S

N
R

10

15

20

25

RTN ResQHadamard Rot.

Outlier Outlier+Rot.

(d) Quantization SNR Attn. Layers

0 5 10 15 20 25 30

(e) Quantization SNR FFN Layers

Activation

rotation

Activation

projection

Activation

Activation

Activation

Figure 1: (a)-(c) Different approaches to quantization including ResQ. Symbol sizes represent magnitudes of values
and colors indicate precisions of quantization (blue: low precision, orange: high precision). (d)-(e) Quantization SNR
comparison of ResQ with other baselines.

ically, by means of principal component analysis (PCA), we
first identify a low-rank subspace that captures highest vari-
ances in activation, and mark the coefficients along this
subspace for high-precision (8-bit) and the complement sub-
space for low-precision (4-bit) quantization. Then, ResQ
employs invariant random rotations within each subspace be-
fore quantization to further suppress outliers (Figure 1c,d,e).
We prove that the above treatment minimizes quantization
error. Similar to SpinQuant, most projection matrices can
be fused into adjacent weights, leading to minimal runtime
computational overhead (Section 4.3). Furthermore, ResQ
can be applied to KV cache quantization as well, and can
be combined with GPTQ (Frantar et al., 2023), resulting in
even better generalizing LLMs.

Outlier-based and rotation-based quantization methods can
be combined. For example, high-precision outliers could
be detected by ℓ∞-norm similar to QUIK (Ashkboos et al.,
2024b), and random rotations applied within both high- and
low-precision quantization groups, as in QuaRot (Ashkboos
et al., 2024c). These methods fare less well than ResQ
(Figure 1d,e) in practice, in support of ResQ’s provably
optimal treatment of outlier quantization. When quantiz-
ing weight, activation and KV cache to 4-bit with only 1/8
channels in 8-bit, ResQ achieves 4-33% lower perplexity
on Wikitext and 0.1-5.4% 0-shot accuracy improvements
over SpinQuant (Liu et al., 2025), the best in practice so far.
Unlike SpinQuant, ResQ does not require gradient-based
optimization, making it a less demanding and faster PTQ
solution. Furthermore, tuning the rank r of ResQ gives rise
to Pareto-optimal solutions as a tradeoff between efficiency
and accuracy. We claim the following contributions.

1. We propose ResQ, a mixed precision weight, activa-
tion, and KV cache quantization method by keeping
low-rank, high-variance components in high precision,
in combination with random rotation-induced outlier
suppression.

2. We theoretically analyze the projection matrices in
ResQ and show that using PCA-based projections min-
imizes quantization error.

3. We conduct extensive experiments on various models
and language tasks and show that ResQ outperforms
related state-of-the-art approaches.

4. We develop CUDA kernels and achieve runtime
speedup on NVIDIA GPUs with our quantized models.

2. Prior Work
2.1. Quantization of LLMs

Quantization reduces model size and accelerates inference
by lowering neural network bit precision (Choi et al., 2018;
Hubara et al., 2021; Yao et al., 2022; Gholami et al., 2022;
Xi et al., 2023; Park et al., 2024). It is broadly catego-
rized into two categories: uniform precision quantization
(UPQ) and mixed precision quantization (MPQ). Uniform
precision quantization (UPQ) applies the same bit-width
across all layers, simplifying implementation but neglecting
layer-specific sensitivity to quantization. Weight-only UPQ
methods reduce storage by compressing weights, using tech-
niques like Hessian-guided rounding (GPTQ, Frantar et al.
2023), adaptive rounding (QuIP, Chee et al. 2023), channel-
wise scaling (AWQ, Lin et al. 2024c), and multi-codebook

2

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

quantization (AQLM, Egiazarian et al. 2024). However,
these methods struggle with batch processing due to sig-
nificant activation memory overhead. Weight-activation
UPQ compresses both weights and activations to address
this. Methods such as SmoothQuant (Xiao et al., 2023)
and OmniQuant (Shao et al., 2024) scale activations and
weights to handle outliers, while RPTQ (Yuan et al., 2023a),
QLLM (Liu et al., 2024a), and QServe (Lin et al., 2025) em-
ploy channel-level strategies like clustering and reordering.
Rotation-based methods such as QuaRot (Ashkboos et al.,
2024c), SpinQuant (Liu et al., 2025) and DuQuant (Lin et al.,
2024b) further enhance robustness in low-precision scenar-
ios. KV cache UPQ reduces memory for large batches or
long contexts. FlexGen (Sheng et al., 2023) employs 4-bit
quantization and memory offloading, while KIVI (Liu et al.,
2024c) uses asymmetric 2-bit quantization for compression,
enabling efficient inference.

Mixed precision quantization (MPQ) optimizes bit-
widths by adapting to the sensitivity of weights and ac-
tivations, achieving better accuracy than UPQ at similar
compression rates. Our proposed method, ResQ, follows
the MPQ approach. Weight-only MPQ has advanced ef-
ficiency for memory-bound applications with minimal ac-
tivation demands. Methods like OWQ (Lee et al., 2024)
and SpQR (Dettmers et al., 2024) mitigate activation out-
liers’ impact by retaining critical features in full precision,
while SqueezeLLM (Kim et al., 2024) employs Dense-and-
Sparse decomposition to efficiently store sensitive weights.
Weight-activation MPQ enhances efficiency by address-
ing activation outliers (e.g. (Guan et al., 2024; Zeng et al.,
2025)). Methods like LLM.int8() (Dettmers et al., 2022)
and QUIK (Ashkboos et al., 2024b) preserve critical acti-
vations with mixed or low-precision decompositions, while
Atom (Zhao et al., 2024) and SliM-LLM (Huang et al.,
2024) optimize quantization through channel reordering and
salience-driven bit allocation. KV cache MPQ reduces
memory usage while preserving precision for critical tokens
using techniques like non-uniform quantization, importance-
aware precision, and salient token compression (Hooper
et al., 2024; Yang et al., 2024b; Dong et al., 2024; He
et al., 2024). Alternatively, GEAR quantizes all tokens’
KV cache and maintains low-rank quantization error (Kang
et al., 2024).

2.2. Low-rank Decomposition

Low-rank decomposition techniques have been widely used
in model compression, reducing dimensionality while main-
taining performance. For instance, SliceGPT (Ashkboos
et al., 2024a) projects weight matrices onto principal com-
ponents for sparsification, while ESPACE (Sakr & Khailany,
2024) reduces activation dimensionality via pre-calibrated
projections, achieving inference-time efficiency. Similarly,
ASVD (Yuan et al., 2023b) introduces an activation-aware

decomposition method that incorporates activation distri-
butions into weight decomposition. Additionally, low-rank
decomposition can be applied to reduce KV cache size.
For example, Eigen Attention (Saxena et al., 2024) and
ASVD (Yuan et al., 2023b) employ low-rank approxima-
tions to reduce memory usage in KV caches during attention
operations. PALU (Chang et al., 2024) introduces learnable
projections to adaptively compress KV caches based on the
compression budget. Finally, Matryoshka KV Cache (Lin
et al., 2024a) refines this with hierarchical orthogonal pro-
jections and knowledge distillation.

3. Quantization
Quantization of weight, activation or KV cache involves
converting component elements to low precision so that
they can be represented using fewer bits for more efficient
compute and storage. The N -bit integer quantization and
dequantization process on matrix X is given as

QN (X) =
⌊X − zX

sX

⌉
· sX + zX , (1)

where ⌊·⌉ is a round-and-clip function; sX and zX the scale
and zero-point; zX = 0, sX = max(|X|)

2N−1−1
for symmetric

quantization or zX = min(X), sX = max(X)−min(X)
2N−1

for
asymmetric quantization.

4. ResQ
In this section, we introduce ResQ, a mixed-precision quan-
tization approach that projects weights, activations, and the
KV cache into an orthogonal space, retaining the low-rank
components in high precision (8-bit) and the rest in low
precision. We describe the quantization scheme, the genera-
tion of the basis space, provide theoretical guarantees, and
outline end-to-end LLM inference deployment procedure.

4.1. Quantization Scheme

Given input activation X ∈ Rn×d and weight W ∈ Rd×d,
they are first projected onto an orthogonal basis defined by
the vectors U ∈ Rd×d. The coefficients of the projections
along this basis are then subject to quantization. We seek
to quantize some coefficients along certain bases at high
precision while those remaining at low precision. Within
Rd, denote bases of a low-rank space of high-precision com-
ponents by Uh ∈ Rd×r and those of its complementary
subspace of low-precision components by Ul ∈ Rd×(d−r).
The rank r controls the amount of components in high pre-
cision (in practice we typically choose r = d/8). We have
UhU

⊤
h + UlU

⊤
l = UU⊤ = I because U is orthogonal.

The quantized activation Xq is thusly

Xq = Q(XU) = [QL(XUl) QH(XUh)] . (2)

3

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Figure 2: Matrix multiplication with mixed precision
operands

Similarly, quantized weights Wq is obtained by project-
ing the inputs space of weights by U⊤ and quantizing the
coefficients,

Wq = Q(U⊤W) =

[
QL(U

⊤
l W)

QH(U⊤
h W)

]
. (3)

And the output of the layer is,

XqWq = QL(XUl)QL(U
⊤
l W)

+QH(XUh)QH(U⊤
h W).

(4)

We make two observations due to orthogonality. First, the
introduction of the projections do not alter the output of the
model at infinite precision. This means that, if quantization
operation is removed from Equation 4, the layer output is
numerically invariant. Second, multiplication between low-
and high-precision components vanishes (Figure 2). This
is efficient because only hardware kernels for quantized
GEMM between operands of same precision are required.

4.2. Projections and Optimality Thereof

Intuitively, the orthogonal basis vectors U should have two
properties: (1) the low-rank space for high-precision quanti-
zation should capture the more important components, and
(2) quantization error in both high- and low-precision groups
should be minimized. We construct U as a combination of
two rotation matrices serving both objectives respectively.
We write Ui = PiRi, i ∈ {h, l}. Therefore,

U = PR = [Pl Ph]

[
Rl 0
0 Rh

]
, (5)

where, Pl,Rl ∈ Rd×(d−r),Ph,Rh ∈ Rd×r. Inspired by
prior work (Ashkboos et al., 2024c; Chee et al., 2023), we
make Rl,Rh random orthogonal matrices because random
rotation reduces outliers, making the rotated matrices easier
to quantize. Furthermore, projection with a random orthogo-
nal matrix increases Gaussianity of activations and weights
within high- and low-precision groups, due to Lemma 4.1,
conducive to the quantizations applied to these groups.

Lemma 4.1. By Central Limit Theorem, the distribution
after multiplication with random orthogonal matrix is ap-
proximately Gaussian (Tseng et al., 2024).

0 2000 4000 0 2000 4000

0 0 0

10

-10

-5

5
20

-20

10

-10

Channel

(a) (b) (c)

0 2000 4000

Channel Channel

INT8

INT4

INT8

INT4

Figure 3: Activation distribution of the baseline and apply-
ing the projection matrices.

To determine P , we minimize the activation quantization
error ∥X −Xq∥F . For activations quantized according to
Equation 2, we have,

∥X −Xq∥F = ∥XUl −QL(XUl)∥F
+ ∥XUh −QH(XUh)∥F .

(6)

Theorem 4.2. For any matrix X quantized to Xq according
to method described in Equation 2, assuming the values to
be quantized in X are normally distributed, we have

E∥X −Xq∥F ≤
√
πlog(d− r)

2L−1 − 1
E∥X∥F

−

[√
πlog(d− r)

2L−1 − 1
−

√
πlog r

2H−1 − 1

]
E∥XPh∥F .

(7)

Full proof of Theorem 4.2 is in Appendix A. Theorem 4.2
bounds the quantization error in Equation 6 from above. To
lower this upper bound of quantization error is thusly to
maximize ∥XPh∥F which happens when Ph comprises of
eigenvectors of the covariance matrix XX⊤ with its largest
eigenvalues. Therefore, the low-rank subspace for high-
precision quantization can be obtained by means of PCA,
while the subspace for low-precision quantization can be ob-
tained using UhU

⊤
h +UlU

⊤
l = PhP

⊤
h + PlP

⊤
l = I (be-

cause Ri is orthogonal). If we construct P by taking eigen-
vectors of XX⊤ arranged in increasing order of eigenval-
ues, the last r columns of such a P would correspond to
Ph and the first d − r columns would correspond to Pl.
The distribution of activation after applying different projec-
tion matrices is shown in Figure 3. Projection of activation
along P sorts the activation coefficients in increasing order
of variance due to increasing eigenvalues of bases vectors.
Consequently, the later r channels of the projected acti-
vations with higher variance are kept in higher precision.
Projection along U = PR smoothes the activations along
low precision and high precision groups further reducing
quantization error (Figure 3) and improving quantization
SNR (Figure 1(d,e)).

4

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Figure 4: Model inference with ResQ incorporating the projection matrices. (a) UA modifies the inputs across blocks
enabling better quantization. (b) UB ,UC enables mixed precision quantization of KV cache. (c) UD projects the activations
and weights of down proj layer.

4.3. Inference Computation with Optimized Projections

Once the projection matrices are obtained, the operation
in Equation 4 requires multiplying the weights and acti-
vations with U . Weights can be projected and quantized
offline. The projection operation on an activation can be
merged to the weight of a previous linear layer. Based on
the architecture of decoder based LLMs, we introduce four
different kinds of projections (Figure 4) : UA ∈ Rdh×dh ,
UB ,UC ∈ Rdhead×dhead , UD ∈ RdFFN×dFFN where dh is hid-
den dimension of LLM, dhead is the attention head dimen-
sion and dFFN the hidden dimension of feedforward network
(FFN).

Projections at block boundaries Input activations to
attention and FFN are projected via UA. Projection
is handled by right-multiplying the weight matrix of fi-
nal linear layer in each block (o proj in attention and
down proj in FFN) by UA. Thus, projections of ac-
tivations is handled at no additional inference cost. To
maintain numerical invariance, the first linear layer of
each block (q proj|k proj|v proj in attention and
up proj|gate proj in FFN) is pre multiplied with U⊤

A

(Figure 4a). Similarly, the weights of the embedding layer
and the final head are modified to manage projection of the
residual stream.

Projections within the attention block UB ,UC ensures
that activations within attention block are projected (Fig-
ure 4b). Post-multiplication of value projection layer by UB

ensures that value vectors in KV cache are projected and
quantized optimally. Consequently, the weights of o proj
layer need to be pre multiplied by U⊤

B to ensure numerical
invariance. UC ensures that the quantization of key in KV
cache is handled optimally. To achieve that, it is required

to project both the query and key using the same projection
matrix UC . The attention dot product remains invariant
under projected inputs,

qprojK
⊤
proj = (qUC)(U

⊤
C K⊤) = qK⊤, (8)

where q and K are query and key after rotary embedding
(RoPE), respectively. Because UC cannot be merged into
the previous linear layer due to presence of RoPE, the pro-
jection is explicitly computed at runtime, but made more
efficient by applying uniform precision quantization to UC

and corresponding input activations.

Projections within the feedforward block UD ensure im-
proved quantization of activation within FFNs (Figure 4c).
U⊤

D is left-multiplied with weights of down proj, but due
to the presence of activation functions within the block, UD

cannot be merged to weights of preceding linear layers and
is computed at runtime. UD is applied to the hidden di-
mension of the FFNs (dFFN) which is typically 3× to 4×
the embedding dimension in most LLMs. In this scenario,
matrix multiplication with UD is extremely expensive in
computation and storage. To minimize the overhead, we
choose UD to be a hadamard matrix to leverage fast and ef-
ficient hadamard transform kernel. And, we choose weights
and activations for down proj layer to be uniformly quan-
tized to low precision.

5. Experiments
5.1. Setup

Models, tasks, datasets and baselines We conduct exper-
iments on Llama 2 (Touvron et al., 2023), Llama 3 (Meta,
2024b), and the recently released Llama 3.2 (Meta, 2024a)

5

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 1: Comparison of perplexity score on Wikitext, average 0-shot common sense reasoning accuracy and average
0-shot MMLU accuracy. Results of all techniques were obtained using their official codebase. Our work ResQ and QUIK
(Ashkboos et al., 2024b) keep 1/8 channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are
uniformly quantized to W/A/KV = 4-bit. All techniques except RTN employ GPTQ (Frantar et al., 2023) for weight
quantization. ↑ higher is better, ↓: lower is better. Full results in Appendix D, Tables 10 and 11.

Family Method W/A/KV Meta-Llama-3-8B Meta-Llama-3-70B
Wiki (↓) Avg. 0-shot (↑) MMLU (↑) Wiki (↓) Avg. 0-shot (↑) MMLU (↑)

16-bit baseline 16/16/16 6.1 67.1 63.1 2.9 73.1 75.9
RTN 4/4/4 218.9 39.3 23.6 452.7 45.5 23.2

GPTQ 4/4/4 166.3 39.8 23.3 11.6e3 34.9 25.5
SmoothQuant+ 4/4/4 78.2 42.5 24.7 - - -

QUIK 4.5/4.5/4.5 14.2 51.6 32.7 8.0 58.2 51.1
QuaRot 4/4/4 7.8 62.1 53.2 5.7 67.6 65.3

SpinQuant 4/4/4 7.4 63.8 56.2 6.2 65.7 59.4

Llama 3

ResQ 4.5/4.5/4.5 7.1 63.9 57.2 4.1 71.1 73.9

Family Method W/A/KV Llama-3.2-1B Llama-3.2-3B
Wiki (↓) Avg. 0-shot (↑) MMLU (↑) Wiki (↓) Avg. 0-shot (↑) MMLU (↑)

16-bit baseline 16/16/16 9.8 54.9 36.9 7.8 62.7 54.8
RTN 4/4/4 329.1 38.1 23.8 268.8 38.7 25.7

GPTQ 4/4/4 108.9 38.0 24.9 178.3 40.3 24.8
SmoothQuant+ 4/4/4 228.9 38.0 24.1 96.1 39.0 25.9

QUIK 4.5/4.5/4.5 21.8 44.3 25.1 15.8 48.8 31.1
QuaRot 4/4/4 14.3 49.0 25.5 10.1 56.1 42.0

SpinQuant 4/4/4 13.6 48.8 25.6 9.2 57.9 44.2

Llama 3.2

ResQ 4.5/4.5/4.5 12.4 50.1 29.4 8.8 59.0 49.8

Family Method W/A/KV Qwen2.5-3B Qwen2.5-72B
Wiki (↓) Avg. 0-shot (↑) MMLU (↑) Wiki (↓) Avg. 0-shot (↑) MMLU (↑)

16-bit baseline 16/16/16 8.0 63.8 66.1 3.9 73.4 84.3
RTN 4/4/4 39033.0 35.1 23.4 45412.7 34.3 24.0

GPTQ 4/4/4 9977.8 35.1 23.2 37967.2 34.5 23.3
SmoothQuant+ 4/4/4 73306.7 34.8 23.9 - - -

QUIK 4.5/4.5/4.5 15.5 51.2 39.4 8.3 61.9 69.3
QuaRot 4/4/4 68.8 47.7 28.9 4.9 70.3 80.1

Qwen2.5

ResQ 4.5/4.5/4.5 9.0 61.1 61.2 4.6 72.0 81.5

Table 2: Comparison of performance of quantization approaches on generative tasks. Our work ResQ and QUIK (Ashkboos
et al., 2024b) keep 1/8 of channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are uniformly
quantized to W/A/KV = 4-bit.

GSM8K 5-shot (↑) LongBench (↑)Model Method W/A/KV flexible extract strict match qmsum samsum repobench-p
16-bit baseline 16/16/16 51.0 50.6 23.9 44.8 66.4

QUIK 4.5/4.5/4.5 2.3 0.0 10.5 25.2 37.6
QuaRot 4/4/4 27.6 27.1 22.0 43.8 60.6

SpinQuant 4/4/4 29.8 29.6 23.0 43.9 62.6
Meta-Llama-3-8B

ResQ 4.5/4.5/4.5 33.6 33.2 23.1 44.1 62.3
16-bit baseline 16/16/16 25.1 24.9 23.1 43.0 64.4

QUIK 4.5/4.5/4.5 2.5 0.0 15.9 31.7 30.9
QuaRot 4/4/4 10.1 9.1 20.6 39.5 56.8

SpinQuant 4/4/4 11.6 11.4 21.7 41.9 59.1
Llama-3.2-3B

ResQ 4.5/4.5/4.5 17.1 16.7 21.7 43.0 61.5

and Qwen2.5 (Yang et al., 2024a) models. We also include
multi-modal language models belonging to Qwen2 VL fam-
ily (Wang et al., 2024) for our evaluations. We benchmark
our approach against GPTQ (Frantar et al., 2023), QuaRot
(Ashkboos et al., 2024c), QUIK (Ashkboos et al., 2024b),
SpinQuant (Liu et al., 2025) and SmoothQuant+, a stronger
baseline created by combining SmoothQuant (Xiao et al.,
2023) with GPTQ following Sharify et al. 2024. We evalu-

ate the quantization approaches on a range of tasks which
measure the language modeling ability: perplexity on Wiki-
text (Merity et al., 2017), common sense reasoning ability:
average 0-shot accuracy on Arc-c/e (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),
Openbook QA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi
et al., 2021), language understanding: 0-shot accuracy on

6

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 3: MMMU accuracy (higher is better) of vision lan-
guage models when quantized using various approaches.
For 4-bit data structures, our work ResQ and QUIK (Ashk-
boos et al., 2024b) keep 1/8 of channels in 8-bit.

Model
W/A/KV (bit) Method Qwen2-VL

-2B-Instruct
Qwen2-VL

-7B-Instruct

16/16/16 Baseline 39.6 51.6

4/4/4
RTN 25.0 26.7

GPTQ 27.7 24.9
QuaRot 24.0 24.5

4.5/4.5/4.5 QUIK 26.3 28.9
ResQ 29.7 47.0

4/8/4
RTN 24.9 25.2

GPTQ 23.4 24.3
QuaRot 26.5 24.5

4.5/8/4.5 QUIK 28.4 26.4
ResQ 34.0 48.8

MMLU (Hendrycks et al., 2021), mathematical understand-
ing: 5-shot GSM8K (Cobbe et al., 2021), dialogue summa-
rization: samsum (Gliwa et al., 2019) and qmsum (Zhong
et al., 2021) from LongBench (Bai et al., 2024), code com-
pletion: repobench-p (Liu et al., 2024b) from LongBench,
and multi-modal understanding: MMMU (Yue et al., 2024).

Implementation details We implement ResQ using the
HuggingFace Transformers library (Wolf et al., 2020) with
PyTorch (Paszke et al., 2019). We share a single UA across
all layers, while UB , UC and UD are generated per layer.
Following SpinQuant (Liu et al., 2025), we use per-token
asymmetric quantization for activations, per-channel sym-
metric quantization for weights, and per-head asymmetric
quantization for the KV cache. We fuse the projection ma-
trices UA,UB ,UD into weights and apply GPTQ (Frantar
et al., 2023) for weight quantization. To efficiently imple-
ment on-the-fly projections, UD is a Hadamard matrix and
UC and its activations are quantized to 8-bit. The entire pro-
cess, including obtaining projections and quantization, runs
on a single NVIDIA A100 GPU; for Meta-Llama-3-8B,
it takes 35 minutes. Additional details are in Appendix C.

5.2. Main Results

Language modeling, understanding, and reasoning tasks
We evaluate ResQ on tasks that test language modelling abil-
ity (perplexity on Wikitext), common sense reasoning ability
(average 0-shot accuracy on the eight tasks listed in section
5.1) and language understanding (average 0-shot accuracy
on MMLU). The results are presented in Table 1. We see
that ResQ reduces the gap to 16-bit performance and outper-
forms the quantization baselines across all tasks on all mod-
els. Particularly, on Llama 3/3.2 family of models, ResQ
outperforms SpinQuant by achieving 4-33% lower Wikitext
perplexity, 0.1-5.4% better average 0-shot accuracy and a
1-14.5% better accuracy on MMLU benchmark without any
additional training. For the Qwen-2.5 model family, all

Table 4: Wikitext perplexity comparison of ResQ and base-
line which keeps 1/8 channels with high l∞-norm in 8-bit
(and remaining in low precision) and uses rotation to reduce
quantization error within high precision and low precision
groups.

W/A/KV (bit) Method Meta-Llama
-3-8B

Llama
-3.2-3B

4.5/4.5/4.5 outlier+rot 7.2 9.0
ResQ 7.1 8.8

4.5/8/4.5 outlier+rot 6.6 8.3
ResQ 6.5 8.2

3.6/8/3.6 outlier+rot 7.7 9.9
ResQ 7.5 9.8

2.75/8/8 outlier+rot 12.6 16.0
ResQ 12.1 15.7

3.6/3.6/3.6 outlier+rot 14.7 18.7
ResQ 14.6 17.5

other baselines fail to achieve competitive results, and ResQ
significantly outperforms them. Compared with QUIK, an-
other mixed precision quantization approach, ResQ achieves
42-50% better Wikitext perplexity, 5.8-12.3% better average
zero shot accuracy and 4.3-24.5% better MMLU accuracy
over all models. Complete results on Llama and Qwen2.5
family of models are provided in Appendix D. Additionally,
we provide comparison between baselines at W/A/KV =
4/8/4 bits for Llama families in Appendix E. Among all the
set of results, ResQ maintains superior performance.

Generative tasks We also test ResQ on tasks that require
auto-regressive token generation including the GSM8K
mathematical understanding benchmark, dialogue summa-
rization benchmarks (qmsum and samsum) and code com-
pletion benchmark (repobench-p, Table 2). The goal of
choosing these tasks is to evaluate the generation ability
on a wide variety of domains. On the challenging GSM8K
benchmark where QUIK fails to produce meaningful re-
sults, ResQ outperforms SpinQuant by 3.8% and 5.5% on
the 8B and 3B parameter model respectively, closing the
gap to the 16-bit baseline. On LongBench evaluation tasks,
ResQ demonstrates competitive performance and outper-
forms SpinQuant without any additional training.

Multi-modal understanding We benchmark the quantiza-
tion approaches on vision language models (VLMs) by quan-
tizing Qwen2 VL family and evaluating their performance
on MMMU (Table 3, Yue et al. 2024). Only the language
model is quantized while the vision encoder remains in 16-
bit as the language model has many more parameters (over
10× for Qwen2-VL-7B-Instruct). ResQ outperforms
baselines on both 2B and 7B models, achieving superior
accuracy and demonstrating its generalizability. Results for
individual MMMU tasks are provided in Appendix F.

Comparison against outliers with rotation baseline A
stronger baseline can be created combining existing quanti-

7

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 5: Comparison of perplexity score on Wikitext, aver-
age 0-shot common sense reasoning accuracy and average
MMLU accuracy at W/A/KV = 4-bit. ResQ keeps 1/8 chan-
nels with high eigen value in 6-bit, 1/8 channels with low
eigen value in 2-bit and the rest in 4-bit for average bit-width
of 4-bit. Complete results are provided in Appendix G.

Model Method Wiki (↓) Avg. 0-shot (↑) MMLU(↑)

Qwen2.5-3B
QuaRot 68.8 47.7 28.9

SpinQuant 70.6 48.6 32.8
ResQ 9.8 59.1 52.2

Qwen2.5-7B
QuaRot 4e3 38.4 24.1

SpinQuant 3e3 38.6 24.3
ResQ 34.2 56.2 58.0

Qwen2.5-14B
QuaRot 6.8 67.1 70.9

SpinQuant 6.6 67.4 70.1
ResQ 6.5 67.5 71.3

Qwen2.5-32B
QuaRot 6.1 67.8 77.0

SpinQuant 6.0 67.9 77.6
ResQ 5.9 69.1 77.9

Qwen2.5-72B
QuaRot 4.9 70.3 80.1
ResQ 4.9 71.1 80.1

Table 6: Impact of different projections in ResQ. Evaluated
by removing components and observing Wikitext perplexity.

ResQ
Removed Projections

UD UA UB UC
UC ,
UB

Llama-2-7b-hf 5.8 1550 2500 5.8 5.9 5.9
Meta-Llama-3-8B 7.1 1607 37.4 7.2 7.3 7.4
Llama-3.2-3B 8.8 279.2 39.0 9.0 9.2 9.4

zation approaches. Like QUIK, one can find channels which
consistently contain outliers and keep them in 8-bit while
keep the remaining channels in low precision. And, the
quantization of high/low precision groups can be improved
using random rotations introduced in QuaRot. Compared
with such a baseline which keeps channels with high l∞-
norm in 8-bit, ResQ’s unique approach involves keeping
coefficients along bases with high eigenvalues in 8-bit. We
see in Table 4 that ResQ consistently outperforms such a
strong baseline across various precisions of W/A/KV high-
lighting ResQ’s PCA driven theoretically optimal approach
of choosing high precision components.

Iso-bitwidth comparison We also perform iso-bitwidth
comparison of ResQ with SpinQuant and QuaRot at
W/A/KV of 4-bit. To enable 4-bits with ResQ, we keep
1/8 channels corresponding to highest eigen values in P
in 6-bit, 1/8 channels corresponding to lowest eigen values
in P in 2-bit and remaining in 4-bit. Within each quan-
tization group, we apply random orthogonal rotations to
minimize quantization error. As shown in Table 5, even
at same bitwidth of 4-bit, ResQ achieves improved perfor-
mance on Qwen2.5 family of models. Complete results are
provided in Table 14.

Training rotation matrix R To further improve the per-

formance of ResQ, the random rotation matrix R can be
optimized to minimize final task loss similar to SpinQuant
(Liu et al., 2025) albeit at higher computational cost for
quantizing the model. We keep identical training hyperpa-
rameters as SpinQuant, and learn the rotation R for models
upto 8B parameters. The evaluation results are provided
in Table 15 in Appendix H. We see upto 5% improvement
in Wikitext perplexity, upto 0.6% increase in average 0-
shot reasoning accuracy and upto 1.1% increase in MMLU
accuracy.

5.3. Hardware Performance

We implement the mixed-precision quantization using
CUDA 11.8 and PyTorch. The weights are quantized into
INT4 and INT8 components offline while online quanti-
zation of activations into INT4 and INT8 components is
handled in a single kernel call. We use CUTLASS (Thakkar
et al., 2023) to perform INT4 and INT8 GEMM oper-
ations on TensorCore. Further, for KV cache compres-
sion, we implement online quantization and packing for
memory efficiency. For efficient implementation of online
hadamard transform involved in activation quantization in
down proj layer, we use the fast hadamard transform li-
brary (fas, 2023).

Prefill speedup On an NVIDIA RTX 3090 GPU, we achieve
a 1.61× to 3.03× speedup with ResQ over the 16-bit base-
line for a single decoder block across various language
models (Figure 5). Speedups are higher for larger models
and shorter sequences. Compared to INT4, ResQ is only
14% slower on average, showing minimal overhead from
mixed-precision and on-the-fly projections.

Memory usage We evaluate end to end memory usage on
NVIDIA RTX 3090 (24GB) for different sequence lengths
in Table 7. ResQ consumes 1.84× - 3.08× lower memory
than the FP16 baseline. Notably, Qwen2.5-14B model
leads to out of memory (OOM) error while ResQ is able to
support its inference upto sequence length of 8192 tokens.
Compared with the INT4 baseline QuaRot, the memory
used by ResQ is 4-11% higher.

Multi GPU inference We evaluate end-to-end batched infer-
ence latency on a GPU server with 3 NVIDIA A100 (82 GB)
GPUs running Meta-Llama-3-70B. ResQ’s weight, ac-
tivation, and KV cache quantization enable the 70B model
to fit on a single GPU, while FP16 requires model paral-
lelism across all three GPUs. This allows ResQ to support
data-parallel inference, unlike FP16. In Table 8, we show
time to first token (i.e. end to end prefill latency) at different
sequence lengths and batch sizes. Compared to FP16 base-
line, ResQ achieves upto 4.98× improvement in end to end
latency under batched inference setting. This improvement
stems from two factors, first is computational complexity re-
duction achieved in ResQ due to weight and activation quan-

8

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Llama-3.2-3B Meta-

Llama-3-8B
Qwen2.5-32B Meta-

Llama-3-70B
Qwen2.5-72B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
ee

d
u
p

Figure 5: Speedup of ResQ and INT4 kernel on single
decoder block on NVIDIA RTX 3090 over 16-bit floating
point baseline for batch size of 1.

Table 7: Memory usage (in GB) for different sequence
lengths on NVIDIA RTX 3090.

Model seq len FP16 QuaRot ResQ
(Compression) (Compression)

Meta-Llama-3-8B
8192 21.9 11.4 (1.92×) 11.9 (1.84×)
2048 16.7 6.8 (2.45×) 7.2 (2.31×)
512 15.4 5.6 (2.75×) 6.1 (2.54×)

Llama-2-7B-hf
8192 18.1 6.2 (2.91×) 6.8 (2.66×)
2048 13.9 4.2 (3.30×) 4.7 (2.95×)
512 12.9 3.7 (3.48×) 4.2 (3.08×)

Qwen2.5-14B
8192 OOM 19.5 21.3
2048 OOM 14.0 14.9
512 OOM 12.6 13.5

nsamples

A
v

g
.
M

M
L

U
 a

cc
.

Llama-3-8b
Llama-3.2-3b

Meta-Llama-3-8B
Llama-3.2-3B

W
ik

it
ex

t
P

P
L

/channel_dim

4/4/4, down_proj: INT4
4/4/4, down_proj: INT8
3/3/3, down_proj: INT8

16-bit

Figure 6: Ablation study on changing rank of high precision
subspace for Llama-3.2-3B (left) and changing number
of calibration samples (right).

tization, and, second is the memory compression achieved
in ResQ due to weight and kv cache quantization which
enables serving the 70B parameter model on a single GPU
device.

5.4. Ablation Studies

Projection bases We evaluate the impact of different projec-
tions employed in ResQ by removing them and evaluating
performance in Table 6. We see that removing UD or UA

has a catastrophic impact on perplexity highlighting their
importance. UB and UC which aid in quantization of KV
cache have less severe impact when removed independently.

Table 8: Time to first token (in ms) for Meta-Llama-3-70B
on GPU server with 3 NVIDIA A100 GPUs.

batch size seq len FP16 ResQ Improv.
over FP16

3 10240 20783 4242 4.90×
3 8192 16373 3361 4.87×
3 4096 7871 1609 4.89×
3 2048 3888 806 4.82×
6 2048 7733 1560 4.96×
9 2048 11493 2309 4.98×

But removing both of them leads to a non trivial increase
in perplexity (particularly for Meta-Llama-3-8B and
Llama-3.2-3B which employ grouped query attention).

Rank of high-precision subspace ResQ allows for seam-
less trade-off between accuracy and performance by modu-
lating the rank r of high precision subspace (Figure 6-left).
Increasing the rank improves perplexity albeit at the cost of
increased computations in high precision.

Calibration dataset size We change number of Wikitext
calibration samples used to obtain projections and evaluate
performance in Figure 6-right. For Meta-Llama-3-8B,
MMLU accuracy increases with increasing samples and
saturates beyond 128 samples. For Llama-3.2-3B, the
trend is unclear with 512 samples achieving best perfor-
mance.

Calibration dataset We evaluate the sensitivity of ResQ’s
projections to the calibration dataset. While the random
rotation matrix R is data-independent, the PCA-based pro-
jection matrix P depends on the data. We obtain P using
samples from Alpaca (Taori et al., 2023), PTB (Marcus
et al., 1993), and C4 (Raffel et al., 2020), and Table 16 in
Appendix I shows minimal performance variation, demon-
strating the robustness of ResQ’s calibration.

6. Conclusion
We introduce ResQ, a novel mixed-precision, accelerator-
friendly PTQ technique toward 4-bit quantization of large
language models. ResQ projects weight, activation, and
KV cache tensors to subspaces spanned by principal compo-
nents, quantizing a low-rank (1/8 of hidden dimension) high-
variance subspace to 8-bit and the rest to 4-bit. ResQ out-
performs both uniform- and mixed-precision quantization
methods. We demonstrate the effectiveness of ResQ across
a variety of tasks—including language modeling, language
understanding, common-sense reasoning, language genera-
tion and multi modal understanding—using the Llama and
Qwen models. Compared to SpinQuant, the strongest base-
line, ResQ achieves up to 33% lower perplexity on the
WikiText dataset without requiring any additional training
and offers up to 5× speedup over the 16-bit baseline.

9

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Impact Statement
ResQ is a significant step forward towards efficiently serv-
ing LLMs in resource-constrained, on-device scenarios, po-
tentially expanding the application space for these models.
Although our approach aims to make LLMs more accessible
and widely used, it does not address the potential risks of
misuse for malicious purposes. To mitigate these risks, a
strong commitment to user data protection, clear ethical
guidelines, and transparency mechanisms is essential.

Acknowledgements
The authors would like to thank Wanzin Yazar and Tristan
Webb for infrastructure and technical assistance and Zifei
Xu and Sakshi Choudhary for helpful discussions. The
authors also thank Amogh Joshi for providing access to
personal NVIDIA RTX 3090. This work was supported by
the Center for the Co-Design of Cognitive Systems (CO-
COSYS), a DARPA sponsored JUMP center of Semicon-
ductor Research Corporation (SRC), Intel, SRC AIHW Pro-
gram.

References
Dao-ailab/fast-hadamard-transform. https://github
.com/Dao-AILab/fast-hadamard-transfo
rm, 2023. Accessed: 2025-01-2.

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. SliceGPT: Compress large language
models by deleting rows and columns. In 12th Interna-
tional Conference on Learning Representations, 2024a.

Ashkboos, S., Markov, I., Frantar, E., Zhong, T., Wang, X.,
Ren, J., Hoefler, T., and Alistarh, D. QUIK: Towards
end-to-end 4-bit inference on generative large language
models. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp.
3355–3371. Association for Computational Linguistics,
2024b.

Ashkboos, S., Mohtashami, A., Croci, M., Li, B., Cameron,
P., Jaggi, M., Alistarh, D., Hoefler, T., and Hensman, J.
QuaRot: Outlier-free 4-bit inference in rotated llms. In
38th Annual Conference on Neural Information Process-
ing Systems, 2024c.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. LongBench: A
bilingual, multitask benchmark for long context under-
standing. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3119–3137. Association for
Computational Linguistics, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. PIQA: Reason-
ing about physical commonsense in natural language. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F.,
Wang, P.-S., Huang, N.-C., Ceze, L., Abdelfattah, M. S.,
and Wu, K.-C. Palu: Compressing kv-cache with low-
rank projection. arXiv:2407.21118, 2024.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. QuIP:
2-bit quantization of large language models with guaran-
tees. In 37th Annual Conference on Neural Information
Processing Systems, pp. 4396–4429, 2023.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J.,
Srinivasan, V., and Gopalakrishnan, K. PACT: Parame-
terized clipping activation for quantized neural networks.
arXiv:1805.06085, 2018.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 2924–2936, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dettmers, T., Svirschevski, R. A., Egiazarian, V.,
Kuznedelev, D., Frantar, E., Ashkboos, S., Borzunov, A.,
Hoefler, T., and Alistarh, D. SpQR: A sparse-quantized
representation for near-lossless llm weight compression.
In 12th International Conference on Learning Represen-
tations, 2024.

Dong, S., Cheng, W., Qin, J., and Wang, W. QAQ:
Quality adaptive quantization for llm kv cache.
arXiv:2403.04643, 2024.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. In Pro-
ceedings of the 41st International Conference on Machine
Learning, pp. 12284–12303. PMLR, 2024.

10

https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.-A.
OPTQ: Accurate post-training quantization for generative
pre-trained transformers. In 11th International Confer-
ence on Learning Representations, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H.,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, 07
2024. URL https://zenodo.org/records/1
2608602.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for effi-
cient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Gliwa, B., Mochol, I., Biesek, M., and Wawer, A. SAM-
Sum Corpus: A human-annotated dialogue dataset for
abstractive summarization. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
70–79, 2019.

Guan, Z., Huang, H., Su, Y., Huang, H., Wong, N., and Yu,
H. APTQ: Attention-aware post-training mixed-precision
quantization for large language models. In Proceedings
of the 61st ACM/IEEE Design Automation Conference,
pp. 1–6, 2024.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. ZipCache: Accurate and efficient kv cache quanti-
zation with salient token identification. In 38th Annual
Conference on Neural Information Processing Systems,
2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, S., Keutzer, K., and Gholami, A. KVQuant:
Towards 10 million context length llm inference with kv
cache quantization. In 38th Annual Conference on Neural
Information Processing Systems, pp. 1270–1303, 2024.

Huang, W., Qin, H., Liu, Y., Li, Y., Liu, X., Benini, L.,
Magno, M., and Qi, X. SliM-LLM: Salience-driven
mixed-precision quantization for large language models.
arXiv:2405.14917, 2024.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small calibra-
tion sets. In Proceedings of the 38th International Con-

ference on Machine Learning, pp. 4466–4475. PMLR,
2021.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. GEAR: An efficient kv cache compres-
sion recipefor near-lossless generative inference of llm.
arXiv:2403.05527, 2024.

Kim, S., Hooper, C. R. C., Gholami, A., Dong, Z., Li, X.,
Shen, S., Mahoney, M. W., and Keutzer, K. SqueezeLLM:
Dense-and-sparse quantization. In Proceedings of the
41st International Conference on Machine Learning, pp.
23901–23923. PMLR, 2024.

Lee, C., Jin, J., Kim, T., Kim, H., and Park, E. OWQ:
Outlier-aware weight quantization for efficient fine-
tuning and inference of large language models. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 13355–13364, 2024.

Li, J., Li, F., and Todorovic, S. Efficient riemannian opti-
mization on the stiefel manifold via the cayley transform.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum
?id=HJxV-ANKDH.

Li, M., Lin, Y., Zhang, Z., Cai, T., Guo, J., Li, X., Xie, E.,
Meng, C., Zhu, J.-Y., and Han, S. SVDQuant: Absorb-
ing outliers by low-rank component for 4-bit diffusion
models. In 13th International Conference on Learning
Representations, 2025.

Lin, B., Zeng, Z., Xiao, Z., Kou, S., Hou, T., Gao,
X., Zhang, H., and Deng, Z. MatryoshkaKV: Adap-
tive kv compression via trainable orthogonal projection.
arXiv:2410.14731, 2024a.

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L., Song,
L., Sun, Z., and Wei, Y. DuQuant: Distributing outliers
via dual transformation makes stronger quantized llms.
In 38th Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87–100, 2024c.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C., and
Han, S. QServe: W4a8kv4 quantization and system co-
design for efficient llm serving. Proceedings of Machine
Learning and Systems, 2025.

Liu, J., Gong, R., Wei, X., Dong, Z., Cai, J., and Zhuang,
B. QLLM: Accurate and efficient low-bitwidth quanti-
zation for large language models. In 12th International
Conference on Learning Representations, 2024a.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Liu, T., Xu, C., and McAuley, J. RepoBench: Benchmarking
repository-level code auto-completion systems. In 12th
International Conference on Learning Representations,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for kv cache. In Proceedings of the
41st International Conference on Machine Learning, pp.
32332–32344. PMLR, 2024c.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. SpinQuant: Llm quantization with learned rotations.
In 13th International Conference on Learning Represen-
tations, 2025.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313–330,
1993. URL https://aclanthology.org/J93
-2004/.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In 5th International Conference
on Learning Representations, 2017.

Meta. Llama 3.2: Revolutionizing edge AI and vision with
open, customizable models, 2024a. URL https://ai
.meta.com/blog/llama-3-2-connect-202
4-vision-edge-mobile-devices/.

Meta. Introducing Meta Llama 3: The most capable openly
available LLM to date., 2024b. URL https://ai.m
eta.com/blog/meta-llama-3/.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 2381–2391, 2018.

Park, G., Kim, M., Lee, S., Kim, J., Kwon, B., Kwon, S. J.,
Kim, B., Lee, Y., Lee, D., et al. LUT-GEMM: Quantized
matrix multiplication based on luts for efficient inference
in large-scale generative language models. In 12th Inter-
national Conference on Learning Representations, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sakr, C. and Khailany, B. Espace: Dimensionality reduction
of activations for model compression. In 38th Annual
Conference on Neural Information Processing Systems,
2024.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., and Choi,
Y. Social iqa: Commonsense reasoning about social
interactions. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473,
2019.

Saxena, U., Saha, G., Choudhary, S., and Roy, K. Eigen
Attention: Attention in low-rank space for kv cache com-
pression. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pp. 15332–15344,
2024.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. OmniQuant:
Omnidirectionally calibrated quantization for large lan-
guage models. In 12th International Conference on Learn-
ing Representations, 2024.

Sharify, S., Saxena, U., Xu, Z., Yazar, W., Soloveychik, I.,
and Wang, X. Post training quantization of large language
models with microscaling formats. In NeurIPS Efficient
Natural Language and Speech Processing Workshop, pp.
241–258. PMLR, 2024.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flex-
Gen: High-throughput generative inference of large lan-
guage models with a single gpu. In Proceedings of the
40th International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford al-
paca: An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca,
2023.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H., Yan,
E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A., Nicely,
M., Merrill, D., Blasig, D., Qiao, F., Majcher, P., Springer,
P., Hohnerbach, M., Wang, J., and Gupta, M. CUTLASS,
January 2023. URL https://github.com/NVIDI
A/cutlass.

12

https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa,
C. QuIP# even better llm quantization with hadamard
incoherence and lattice codebooks. In Proceedings of the
41st International Conference on Machine Learning, pp.
48630–48656. PMLR, 2024.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., Fan, Y., Dang, K., Du, M.,
Ren, X., Men, R., Liu, D., Zhou, C., Zhou, J., and Lin,
J. Qwen2-VL: Enhancing vision-language model’s per-
ception of the world at any resolution. arXiv:2409.12191,
2024.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest,
Q., and Rush, A. M. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv:1910.03771,
2020.

Xi, H., Li, C., Chen, J., and Zhu, J. Training transformers
with 4-bit integers. In 37th Annual Conference on Neural
Information Processing Systems, pp. 49146–49168, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. SmoothQuant: Accurate and efficient post-training
quantization for large language models. In Proceedings of
the 40th International Conference on Machine Learning,
pp. 38087–38099. PMLR, 2023.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv:2412.15115, 2024a.

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. No Token Left Behind: Reli-
able kv cache compression via importance-aware mixed
precision quantization. arXiv:2402.18096, 2024b.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. ZeroQuant: Efficient and affordable post-
training quantization for large-scale transformers. In 36th
Annual Conference on Neural Information Processing
Systems, pp. 27168–27183, 2022.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y.,
Sun, G., Wu, Q., Wu, J., and Wu, B. RPTQ: Reorder-
based post-training quantization for large language mod-
els. arXiv:2304.01089, 2023a.

Yuan, Z., Shang, Y., Song, Y., Wu, Q., Yan, Y., and
Sun, G. ASVD: Activation-aware singular value de-
composition for compressing large language models.
arXiv:2312.05821, 2023b.

Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G.,
Stevens, S., Jiang, D., Ren, W., Sun, Y., et al. MMMU: A
massive multi-discipline multimodal understanding and
reasoning benchmark for expert agi. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9556–9567, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791–4800,
2019.

Zeng, C., Liu, S., Xie, Y., Liu, H., Wang, X., Wei, M.,
Yang, S., Chen, F., and Mei, X. ABQ-LLM: Arbitrary-bit
quantized inference acceleration for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 22299–22307, 2025.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems,
6:196–209, 2024.

Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, M., Jha, R.,
Hassan, A., Celikyilmaz, A., Liu, Y., Qiu, X., et al. QM-
Sum: A new benchmark for query-based multi-domain
meeting summarization. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pp. 5905–5921, 2021.

13

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

A. Proof of Theorem 4.2
We begin the proof by introducing the following lemma.

Lemma A.1. For any tensor R quantized following the quantization described in equation 1, assuming the values of R
follows a normal distribution, we have

E∥R−Q(R)∥F ≤
√

π log [size(R)]

2n−1 − 1
E∥R∥F (9)

where size(R) denotes the number of elements in R.

Proof of lemma A.1 can be found in (Li et al., 2025). From this lemma we obtain that the quantization error ∥R−Q(R)∥F
is bounded by the magnitude of the tensor quantized ∥R∥F . Now for our use case of mixed precision quantization where
the low-precision component is quantized to L bits and high precision component is quantized to H bits, we write the
quantization error again below,

E∥X −Xq∥F = E∥XUl −QL(XUl)∥F
+ E∥XUh −QH(XUh)∥F .

(10)

The random rotation matrices R ensure that XUl and XUh are normally distributed by Lemma 4.1. Applying Lemma A.1
to the quantization error in equation 10, we get,

∥X −Xq∥F ≤
√

log(size(XUl))π

2L−1 − 1
E||XUl||F

+

√
log(size(XUh))π

2H−1 − 1
E||XUh||F

=

√
log(size(XPl))π

2L−1 − 1
E||XPl||F

+

√
log(size(XPh))π

2H−1 − 1
E||XPh||F

=

√
log(size(XPl))π

2L−1 − 1
E||tr(XPlP

⊤
l X⊤)||F

+

√
log(size(XPh)π

2H−1 − 1
E||tr(XPhP

⊤
h X⊤)||F

(11)

We know size(XPl) = d− r and size(XPh) = r since r components are in high precision. With PlP
⊤
L + PhP

⊤
h = I ,

we have

∥X −Xq∥F ≤
√

log(d-r)π
2L−1 − 1

(E∥X∥F − E∥XPh∥F)

+

√
log(r)π

2H−1 − 1
E∥XPh∥F

=

√
log(d-r)π

2L−1 − 1
E∥X∥F

− (

√
log(d-r)π

2L−1 − 1
−

√
log(r)π

2H−1 − 1
)E∥XPh∥F

(12)

Since
√

log(d-r)π
2L−1−1

−
√

log(r)π
2H−1−1

> 0 the quantization error is reduced by maximizing ∥XPh∥F

B. Distribution of activations
The distribution of activations after projection by U is shown in Figure 7. The formulation of U ensures that the final r
channels in the activation map comprise of coefficients along bases with maximum activation variance. Consequently, keep
those channels in high precision minimizes quantization error. The remaining channels are more amenable to quantization
due to the application of random rotations which suppress outlier values.

14

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

(a) Baseline Attn Input (b) ResQ Attn Input (c) Baseline FNN Input (d) ResQ FFN Input

Figure 7: Input activation distributions of attention and FFN layers, for baseline (a and c) and ResQ (b and d).

Table 9: Time taken (in NVIDIA A100 GPU hours) to quantize the model. All approaches use GPTQ (Frantar et al., 2023)
for weight quantization. SpinQuant uses 4 GPUs to optimize rotation matrices.

QuaRot ResQ SpinQuant
Llama-3.2-1B 4m 7m 13m
Llama-3.2-3B 8m 16m 38m
Meta-Llama-3-8B 17m 35m 1h41m
Llama-2-7b-hf 15m 33m 1h37m
Llama-2-13b-hf 23m 1h 3h42m

C. Additional implementation details
In this work, obtaining the projection matrices and quantization of weights for all the models is performed on a single
NVIDIA A100 80GB GPUs. Time taken by ResQ compared with other approaches is shown in Table 9. Evaluation
on various benchmarks for all the models is also done on a single NVIDIA A100 GPU with the sole exception of
Meta-Llama-3-70b which requires 4 GPUs for evaluation. We use lm evaluation harness version 0.4.5 (Gao
et al., 2024) and LongBench (Bai et al., 2024) for all the evaluation tasks. For Arc-c/e, Hellaswag, OpenBook QA, PIQA
tasks we report acc norm while for BoolQ, SIQA and Winogrande we report acc.

For calibration data, we use 512 randomly choses samples for Wikitext to obtain the projection matrices. While for GPTQ
we use 128 randomly choses samples from Wiktiext following the original work Frantar et al. 2023.

The KV cache, as well as the weights and activations of all Linear layers (except mlp.down proj), are quantized to
4-bit precision, with 1

8 of channels retained in 8-bit precision. While, the weights and activations within down proj are
uniformly quantized to 4-bit precision. Following Ashkboos et al. 2024c and Liu et al. 2025, we keep query vector in 16-bit.

D. Complete results of main result tables
Detailed results of Table 1 in the main paper, including more models and task-by-task performance, are shown in Tables 10
(Llama families) and 11 (Qwen2.5 family). As expected, ResQ achieves superior performance to baselines across the series
of common sense reasoning and MMLU tasks.

E. Additional quantization results: W/A/KV = 4/8/4 bits of precision
This section presents additional comparisons between baselines and ResQ for the Llama family when quantized to W/A/KV =
4/8/4 bits of precision. Across various MMLU tasks and perplexity evaluations on WikiText, ResQ consistently outperforms
all baselines. For 0-shot common sense reasoning tasks, except for Meta-Llama-3-8B, ResQ achieves the best average
performance. In the case of Meta-Llama-3-8B, ResQ is the second-best method, with QuaRot performing marginally
better by less than 0.2%.

15

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 10: Comparison of perplexity on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including ARC-
challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and 0-shot massive multitask
language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2,
Llama 3 and Llama 3.2 families. Results of all techniques were obtained using their official codebase. Our work ResQ and
QUIK (Ashkboos et al., 2024b) keep 1/8 channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are
uniformly quantized to W/A/KV = 4-bit. All techniques except RTN use GPTQ (Frantar et al., 2023). (↓): lower is better,
(↑): higher is better.

Llama 2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-2-7b-hf

16-bit 5.5 46.3 74.6 77.8 75.9 44.2 79.2 46.1 69.1 64.1 38.9 45.9 46.0 33.4 41.1
RTN 1766.2 26.3 27.8 54.8 29.4 25.8 51.0 35.0 48.7 37.4 24.5 24.7 22.9 22.2 23.6

GPTQ 9600.0 24.8 31.4 55.4 30.6 25.6 55.8 34.2 53.3 38.9 24.7 24.5 22.7 23.2 23.8
SmoothQuant+ 15.4 29.3 47.1 56.8 48.6 31.8 65.5 37.2 52.4 46.1 25.0 24.5 24.1 23.4 24.2

QUIK 7.5 39.8 63.7 68.9 68.3 37.8 72.9 42.1 62.4 57.0 26.9 29.6 28.8 25.8 27.8
QuaRot 6.1 41.5 71.4 73.2 73.2 40.6 76.9 43.6 65.6 60.7 31.2 35.1 34.6 28.2 32.3

SpinQuant 6.0 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0 33.9 38.5 37.5 29.5 34.8
ResQ 5.8 44.0 72.6 75.3 74.0 41.0 77.9 43.9 66.9 62.0 35.9 40.9 42.2 32.2 37.7

Llama-2-13b-hf

16-bit 4.9 49.1 77.4 80.5 79.4 45.2 80.7 47.2 72.1 66.5 47.9 59.3 61.0 42.4 52.7
RTN 3543.9 22.8 29.8 40.2 26.6 27.8 51.4 35.6 50.6 33.5 23.7 25.0 23.1 22.6 23.6

GPTQ 3120.0 23.6 31.1 38.7 27.2 26.8 53.6 35.8 49.8 33.8 25.0 25.4 23.7 25.1 24.8
SmoothQuant+ 11.2 34.5 55.6 62.9 62.5 32.4 70.1 38.7 55.6 51.0 25.7 26.1 27.3 27.3 26.6

QUIK 6.8 43.7 68.0 71.3 73.3 40.0 75.7 45.1 64.6 60.2 34.7 40.6 39.8 31.8 36.7
QuaRot 5.4 46.9 74.9 76.6 75.8 42.6 79.1 45.5 69.0 63.8 43.8 53.6 54.0 39.4 47.7

SpinQuant 5.2 49.0 76.3 78.2 77.1 42.8 79.3 46.3 69.5 64.8 43.5 53.1 55.4 39.1 47.8
ResQ 5.1 49.1 76.1 79.7 77.9 43.6 79.1 46.6 69.9 65.2 45.3 56.0 58.0 41.0 50.1

Llama 3 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Meta-Llama-3-8B

16-bit 6.1 53.2 77.1 81.1 79.2 44.8 80.9 47.0 73.4 67.1 55.0 70.6 73.2 53.7 63.1
RTN 218.9 25.3 34.9 44.2 38.3 27.8 56.5 36.8 50.8 39.3 24.7 25.1 23.3 21.4 23.6

GPTQ 166.3 24.7 37.7 44.3 36.8 27.0 57.6 36.4 53.8 39.8 24.7 23.9 22.8 21.8 23.3
SmoothQuant+ 78.2 27.5 42.0 50.7 44.9 28.8 59.0 35.9 50.9 42.5 25.4 25.5 24.5 23.4 24.7

QUIK 14.2 33.6 56.4 60.5 61.5 33.2 68.7 39.9 59.0 51.6 30.0 34.0 34.8 32.1 32.7
QuaRot 7.8 45.1 70.4 73.8 74.7 42.6 76.6 45.1 68.5 62.1 47.8 59.1 61.4 44.3 53.2

SpinQuant 7.4 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8 49.8 63.3 65.0 46.8 56.2
ResQ 7.1 49.2 75.0 72.5 76.5 43.0 78.3 45.8 71.0 63.9 50.6 64.4 65.8 48.1 57.2

Meta-Llama-3-70B

16-bit 2.9 64.2 85.9 85.3 84.9 48.6 84.4 50.8 80.6 73.1 67.6 81.5 86.8 68.4 76.1
RTN 452.7 32.6 50.3 54.2 41.3 31.6 64.8 35.9 53.2 45.5 24.5 23.8 22.3 22.1 23.2

GPTQ 11655.0 25.9 26.0 37.9 26.2 28.6 50.4 34.3 49.9 34.9 27.1 24.3 24.0 26.5 25.5
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK 8.0 44.5 68.9 60.7 75.0 36.4 76.1 43.2 60.4 58.2 46.6 56.4 58.0 43.6 51.1
QuaRot 5.7 53.7 74.5 81.6 81.1 46.6 81.0 46.8 75.2 67.6 55.7 72.5 75.8 57.3 65.3

SpinQuant 6.2 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7 50.7 67.0 68.1 51.9 59.4
ResQ 4.1 61.4 84.3 83.9 83.5 46.0 83.1 48.6 78.3 71.1 64.9 79.9 84.9 66.1 74.0

Llama 3.2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-3.2-1B

16-bit 9.8 36.5 60.6 63.4 63.6 37.4 74.5 42.8 60.1 54.9 34.8 41.1 39.9 32.0 36.9
RTN 329.1 22.4 29.9 53.4 31.4 29.4 54.8 34.9 48.5 38.1 24.8 25.2 22.4 22.7 23.8

GPTQ 108.9 24.7 32.7 52.3 30.7 23.6 54.3 34.4 51.1 38.0 24.7 25.1 25.5 24.5 24.9
SmoothQuant+ 228.9 23.3 30.1 52.9 31.3 26.6 54.2 34.5 51.2 38.0 23.9 24.1 25.0 23.5 24.1

QUIK 21.8 27.4 46.0 55.0 46.0 26.4 62.4 38.6 52.6 44.3 25.6 25.6 24.6 24.5 25.1
QuaRot 14.3 30.0 51.4 59.1 54.0 34.2 66.7 39.6 57.1 49.0 25.4 26.9 25.4 24.4 25.5

SpinQuant 13.6 32.3 51.8 59.3 55.4 30.4 67.7 38.6 54.7 48.8 25.4 27.6 24.2 25.3 25.6
ResQ 12.4 34.0 54.2 57.0 57.3 31.2 69.4 41.0 56.8 50.1 28.3 30.5 31.3 27.6 29.4

Llama-3.2-3B

16-bit 7.8 46.2 71.7 73.1 73.7 43.4 77.4 47.2 69.1 62.7 48.9 62.9 62.3 45.2 54.8
RTN 268.8 23.5 35.4 46.2 35.6 28.2 56.3 33.6 50.6 38.7 25.1 25.6 27.0 24.9 25.7

GPTQ 178.3 27.0 27.0 48.8 44.4 27.8 59.1 37.1 51.5 40.3 24.9 24.5 25.7 24.0 24.8
SmoothQuant+ 96.1 25.3 33.1 47.8 37.7 25.2 56.2 35.8 50.9 39.0 25.4 26.6 26.4 25.3 25.9

QUIK 15.8 32.9 50.1 52.6 59.1 33.2 68.7 40.3 53.0 48.8 29.0 33.2 31.9 30.3 31.1
QuaRot 10.1 38.6 59.0 65.9 66.5 35.8 74.4 43.1 65.2 56.1 38.5 47.3 46.7 35.3 42.0

SpinQuant 9.2 38.9 64.8 68.0 69.1 39.4 74.9 45.1 62.9 57.9 37.0 49.4 50.5 39.9 44.2
ResQ 8.8 43.1 65.6 68.8 70.5 38.4 75.1 45.6 64.8 59.0 44.7 57.0 56.5 41.0 49.8

F. Complete results of the MMMU benchmark
This section presents task-by-task results for the MMMU benchmark across six subjects—Art & Design, Business, Science,
Health & Medicine, Humanities & Social Science, and Tech & Engineering—for the Qwen2 VL family when quantized
to W/A/KV = 4/4/4 bits and W/A/KV = 4/8/4 bits of precision. On average, ResQ consistently outperforms all baselines
across different models. Notably, the advantage of ResQ becomes more pronounced with larger models. For instance,
for Qwen2-VL-7B-Instruct at W/A/KV = 4/8/4 bits of precision, ResQ achieves an average accuracy score of 48.8,
significantly outperforming the next-best method, QUIK, which scores 26.4, representing an ∼ 85% relative improvement.

16

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 11: Comparison of perplexity score on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including
ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and 0-shot massive multitask
language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Qwen2.5
family. Results of all techniques were obtained using their official codebase. Our work ResQ and QUIK (Ashkboos et al.,
2024b) keep 1/8 channels in 8-bit and remaining in 4-bit for W/A/KV = 4.5-bit. Other baselines are uniformly quantized to
W/A/KV = 4-bit. All techniques except RTN use GPTQ (Frantar et al., 2023). (↓): lower is better, (↑): higher is better, ∗: In
cases where Hadamard matrix does not exist at the MLP dimension, random orthogonal rotation is used instead.

Qwen2.5 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Qwen2.5-0.5B

16-bit 13.1 31.9 58.4 62.1 52.1 35.0 69.7 44.3 57.1 51.3 42.2 53.2 55.5 41.5 48.1
RTN 23204.3 26.2 27.0 39.3 26.0 24.0 50.7 34.5 51.5 34.9 24.8 24.0 22.8 24.3 23.9

GPTQ 16302.3 23.7 26.9 39.0 26.5 26.4 50.2 33.4 49.6 34.5 24.1 24.8 23.5 23.0 23.9
SmoothQuant+ 10053.9 25.9 26.3 39.9 27.2 25.4 47.1 35.9 49.6 34.7 24.5 24.7 21.5 22.1 23.2

QUIK 38.6 24.5 38.6 48.0 36.9 28.4 58.1 36.4 51.9 40.4 26.3 25.9 23.6 24.2 25.0
QuaRot∗ 219.9 25.4 36.6 45.0 28.9 28.6 54.1 32.9 51.7 37.9 24.4 24.0 23.0 23.5 23.7

ResQ 29.6 27.1 44.2 53.2 38.8 28.0 61.9 34.4 51.3 42.4 26.1 27.5 25.3 26.0 26.2

Qwen2.5-1.5B

16-bit 9.3 45.1 72.1 72.9 67.7 40.2 76.3 48.8 63.7 60.8 53.5 65.5 70.6 52.8 60.6
RTN 14518.9 23.1 27.2 43.9 26.8 25.6 51.3 33.4 52.5 35.5 23.8 24.5 23.8 22.7 23.7

GPTQ 25769.7 23.9 26.9 43.9 26.1 27.6 49.7 32.1 51.5 35.2 24.6 24.7 23.7 23.8 24.2
SmoothQuant+ 31655.9 25.0 26.2 39.9 26.0 26.0 50.8 32.1 49.0 34.4 25.5 24.4 22.7 22.4 23.8

QUIK 6613.5 21.8 31.9 40.9 27.9 27.4 52.8 35.2 48.6 35.8 24.6 24.0 21.9 21.7 23.1
QuaRot 6599.9 23.6 37.3 46.2 28.6 27.0 56.3 35.2 52.4 38.3 24.5 24.3 23.0 22.4 23.5
ResQ 12.5 38.7 64.1 65.7 61.4 37.8 71.6 42.7 60.1 55.3 43.2 54.4 54.9 41.5 48.5

Qwen2.5-3B

16-bit 8.0 47.4 73.0 77.5 73.6 42.0 78.7 49.9 68.4 63.8 56.6 71.0 76.3 60.6 66.1
RTN 39033.0 25.6 25.8 41.7 26.3 27.4 49.5 33.1 51.4 35.1 24.5 24.4 22.8 21.9 23.4

GPTQ 9977.8 26.0 26.7 41.5 26.7 28.2 51.5 31.9 48.3 35.1 24.3 23.8 22.8 21.8 23.2
SmoothQuant+ 73306.7 25.4 24.5 41.0 26.4 29.8 48.4 32.4 50.4 34.8 25.6 24.7 23.1 22.4 23.9

QUIK 15.5 36.1 55.4 61.4 57.2 36.2 67.1 40.8 55.3 51.2 36.4 42.8 42.4 36.1 39.4
QuaRot 68.8 32.4 53.1 51.6 49.2 33.4 66.7 39.3 56.4 47.7 28.1 32.0 28.9 26.6 28.9
ResQ 9.0 45.3 70.5 72.7 70.2 42.4 76.8 46.7 64.4 61.1 53.1 66.5 70.5 54.8 61.2

Qwen2.5-7B

16-bit 6.8 51.2 77.6 84.7 78.9 47.2 80.0 54.8 73.2 68.4 62.6 76.7 82.6 70.1 73.0
RTN 24382.1 24.5 26.3 37.8 26.0 29.0 51.0 34.1 50.1 34.9 24.9 24.3 23.4 24.9 24.4

GPTQ 13593.7 25.2 25.6 37.8 26.3 28.2 52.4 34.4 48.9 34.8 24.4 24.3 22.8 22.6 23.5
SmoothQuant+ 19088.7 26.3 25.2 39.8 26.4 27.6 52.7 33.5 52.0 35.4 25.1 25.4 22.6 24.1 24.3

QUIK 260.3 29.5 42.4 51.7 36.3 28.2 59.6 34.5 49.6 41.5 24.3 26.9 23.1 23.8 24.6
QuaRot∗ 4035.9 25.9 41.0 39.1 29.1 27.6 57.9 35.7 50.6 38.4 24.8 24.4 24.4 22.7 24.1

ResQ 8.2 49.0 74.7 81.4 75.7 45.0 78.9 49.4 68.2 65.3 57.8 74.4 79.3 64.5 69.0

Qwen2.5-14B

16-bit 5.3 58.8 79.4 85.4 82.9 45.4 81.9 55.3 75.8 70.6 69.9 81.9 86.2 76.5 78.6
RTN 2715 21.6 32.7 51.5 29.6 25.8 52.6 33.2 51.7 37.3 25.3 23.2 26.0 25.3 24.9

GPTQ 5100.3 23.8 29.1 47.7 30.1 27.6 51.3 34.6 51.2 36.9 25.1 24.7 25.1 24.3 24.8
SmoothQuant+ 1375.7 27.0 26.3 38.0 26.8 29.2 51.6 32.4 49.3 35.1 25.9 24.5 22.2 22.2 23.7

QUIK 10.5 45.0 67.1 64.7 68.9 37.6 74.8 43.9 59.3 57.6 48.9 61.1 64.7 51.5 56.6
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 49.9 70.7 67.1 60.9 75.1 80.2 67.3 70.9
ResQ 6.2 57.6 82.1 84.9 81.1 44.8 80.5 51.7 70.6 69.2 65.2 78.4 83.4 71.5 74.6

Qwen2.5-32B

16-bit 5.0 55.7 78.0 87.4 84.1 44.4 82.3 56.4 75.2 70.4 73.1 83.6 89.6 81.2 81.9
RTN 1847.4 24.3 35.3 51.4 31.9 27.0 52.8 34.1 51.4 38.5 24.5 25.1 25.3 24.3 24.8

GPTQ 3891.1 25.4 35.4 48.5 31.8 27.0 53.8 35.8 50.5 38.5 25.9 24.8 23.6 24.0 24.6
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK 9.6 41.0 64.6 74.9 72.0 39.6 75.8 44.5 60.2 59.1 54.7 66.8 71.3 58.8 62.9
QuaRot 6.1 54.5 76.1 85.1 81.5 44.2 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ 5.6 55.1 78.4 86.0 82.5 45.4 81.1 53.9 74.0 69.5 70.3 82.3 87.9 78.9 79.8

Qwen2.5-72B

16-bit 3.9 62.6 83.2 89.2 86.0 46.6 83.6 58.4 77.7 73.4 77.2 86.9 90.6 82.4 84.3
RTN 45412.7 25.9 26.3 38.0 25.9 25.2 50.0 34.2 48.7 34.3 25.5 24.2 23.0 23.2 24.0

GPTQ 37967.2 25.4 25.8 38.1 25.6 26.6 51.2 34.2 49.4 34.5 25.1 24.0 21.9 22.2 23.3
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK 8.3 45.1 68.1 77.2 77.2 39.0 77.4 45.6 65.6 61.9 60.2 74.3 77.5 65.3 69.3
QuaRot 4.9 55.8 81.1 87.5 84.0 45.2 81.7 52.5 74.5 70.3 71.4 84.2 87.7 77.1 80.1
ResQ 4.6 58.4 80.9 88.4 84.9 48.2 82.6 55.5 77.0 72.0 72.8 84.6 89.0 79.5 81.5

G. Complete results of iso-bitwidth comparison
This section presents detailed results for Table 5 in the main paper for Qwen2.5 family of models. The task-by-task results
are provided in Table 14. As expected, ResQ achieves superior performance. For Qwen2.5-72B, SpinQuant baseline is
missing because of lack of big enough GPU cluster to enable training rotations.

H. Complete results when training rotation matrix R

In Table 15, we provide results on Wikitext perplexity, task-by-task accuracy on 0-shot reasoning benchmarks and task-by-
task accuracy on MMLU benchmark when training rotation matrix R in ResQ. The rotation matrix is trained using Cayley
SGD (Li et al., 2020) for 100 training steps at batch size 8 and learning rate of 1.5. The training data involves samples

17

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 12: Accuracy on eight 0-shot common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag,
Openbook QA, PIQA, SIQA, and WinoGrande and 0-shot massive multitask language understanding tasks across four
subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2, Llama 3 and Llama 3.2 families when
quantized toW/A/KV = 4/8/4 bits. Results of all techniques were obtained using their official codebase. Our work ResQ and
QUIK (Ashkboos et al., 2024b) keep 1/8 of channels in 8-bit. All techniques except RTN use GPTQ (Frantar et al., 2023).
(↓): lower is better, (↑): higher is better.

Llama 2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-2-7b-hf

16-bit 5.5 46.3 74.6 77.8 75.9 44.2 79.2 46.1 69.1 64.1 38.9 45.9 46.0 33.4 41.1
RTN 7.2 41.5 65.9 71.9 71.8 39.4 76.5 42.7 65.7 59.4 27.6 28.4 31.6 29.0 29.2

GPTQ 11.8 42.5 71.3 69.9 73.6 43.2 77.4 44.9 68.9 61.5 28.0 32.3 32.1 28.4 30.2
SmoothQuant+ 6.8 41.9 69.1 70.7 72.9 40.2 77.1 32.7 66.9 58.9 28.1 30.0 28.6 27.1 28.5

QUIK 5.7 43.9 73.4 77.3 74.2 44.6 78.2 44.3 68.9 63.1 35.8 39.3 40.1 30.4 36.4
QuaRot 5.7 43.6 73.6 75.4 74.8 42.6 77.6 45.1 67.9 62.6 36.3 43.3 41.5 31.3 38.1

SpinQuant 5.7 43.5 73.3 75.4 74.8 42.6 77.5 45.0 68.4 62.6 37.0 42.0 43.4 31.8 38.5
ResQ 5.6 46.3 74.5 77.1 75.0 42.8 78.9 45.6 68.8 63.6 39.1 45.9 47.9 34.9 42.0

Llama-2-13b-hf

16-bit 4.9 49.1 77.4 80.5 79.4 45.2 80.7 47.2 72.1 66.5 47.9 59.3 61.0 42.4 52.7
RTN 6.9 41.8 65.2 70.8 66.5 37.8 76.0 42.5 63.9 58.0 37.5 42.8 43.8 31.8 39.0

GPTQ 6.2 46.2 73.2 76.0 73.4 43.2 78.2 44.4 69.6 63.0 35.9 42.1 39.0 30.8 36.9
SmoothQuant+ 5.6 45.0 71.5 76.8 73.4 44.6 76.7 31.9 67.6 60.9 32.8 42.7 40.6 32.4 37.1

QUIK 5.0 47.5 76.4 78.9 78.4 42.8 80.4 46.8 72.5 65.5 46.1 57.0 58.2 40.0 50.3
QuaRot 5.0 48.6 77.0 78.9 78.2 44.2 80.3 46.3 72.2 65.7 46.5 56.8 58.0 40.1 50.4

SpinQuant 5.0 48.3 76.4 80.4 78.1 43.8 79.8 46.7 71.1 65.6 46.7 57.1 58.3 40.1 50.5
ResQ 5.0 49.0 77.1 80.6 78.9 45.4 79.9 47.2 72.3 66.3 47.6 58.2 59.9 41.7 51.9

Llama 3 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Meta-Llama-3-8B

16-bit 6.1 53.2 77.1 81.1 79.2 44.8 80.9 47.0 73.4 67.1 55.0 70.6 73.2 53.7 63.1
RTN 8.5 47.8 72.3 72.1 75.3 43.0 78.2 44.8 71.5 63.1 46.3 59.5 61.9 45.7 53.4

GPTQ 7.5 47.1 71.1 72.2 72.7 42.6 78.2 45.7 72.8 62.8 40.4 60.3 61.6 46.2 52.1
SmoothQuant+ 8.3 44.8 71.2 75.4 73.6 40.0 79.0 43.6 68.1 62.0 42.1 53.6 54.1 38.5 47.1

QUIK 6.7 50.0 75.7 80.1 77.4 45.8 80.0 45.1 74.8 66.1 52.1 65.7 68.1 49.8 58.9
QuaRot 6.7 51.6 78.5 80.0 77.7 45.2 79.8 46.4 73.1 66.5 51.6 66.8 68.5 48.7 58.9

SpinQuant 6.6 50.0 77.2 80.3 77.9 44.0 80.7 46.6 72.8 66.2 52.5 67.2 68.1 49.5 59.3
ResQ 6.5 54.3 78.6 77.2 78.4 44.0 79.2 46.3 73.2 66.4 53.6 68.6 70.0 52.0 61.0

Meta-Llama-3-70B

16-bit 2.9 64.2 85.9 85.3 84.9 48.6 84.4 50.8 80.6 73.1 67.6 81.5 86.8 68.4 76.1
RTN 16499 26.5 25.7 37.8 26.4 29.0 51.1 34.6 53.0 35.5 25.4 25.9 22.5 22.7 24.1

GPTQ 8586.4 26.5 24.9 38.1 26.4 29.4 51.9 34.9 49.4 35.2 25.7 23.6 22.5 23.4 23.8
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK 3.7 60.3 82.0 83.5 83.5 45.4 82.4 47.8 78.1 70.4 65.2 79.0 84.1 65.2 73.4
QuaRot 3.6 60.0 84.3 84.9 83.9 49.2 83.9 49.4 78.8 71.8 64.3 80.0 85.8 66.7 74.2

SpinQuant - - - - - - - - - - - - - - -
ResQ 3.3 63.0 84.7 84.4 84.4 48.2 84.2 50.1 80.8 72.5 68.2 86.0 80.8 66.8 75.4

Llama 3.2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-3.2-1B

16-bit 9.8 36.5 60.6 63.4 63.6 37.4 74.5 42.8 60.1 54.9 34.8 41.1 39.9 32.0 36.9
RTN 16.6 30.6 46.7 61.9 55.2 32.4 66.7 38.0 56.7 48.5 25.1 26.7 26.1 25.2 25.8

GPTQ 15.3 32.8 50.9 61.6 54.8 31.6 67.4 39.1 55.8 49.2 24.1 26.2 23.9 24.3 24.6
SmoothQuant+ 20.6 30.0 47.7 50.2 50.8 31.2 66.3 37.5 54.1 46.0 24.9 26.6 25.5 23.9 25.2

QUIK 11.6 35.0 57.9 62.3 59.4 35.4 71.7 41.9 56.9 52.6 28.2 31.5 29.6 27.2 29.1
QuaRot 11.1 34.1 58.8 52.3 59.8 36.4 72.3 41.2 58.6 51.7 28.3 30.6 29.5 26.4 28.7

SpinQuant 11.1 34.2 55.6 61.8 60.0 35.0 72.1 40.8 57.6 52.1 26.1 27.7 27.4 24.0 26.3
ResQ 10.4 34.8 58.0 62.2 61.1 34.4 72.3 41.8 60.1 53.1 31.3 36.0 36.2 31.0 33.6

Llama-3.2-3B

16-bit 7.8 46.2 71.7 73.1 73.7 43.4 77.4 47.2 69.1 62.7 48.9 62.9 62.3 45.2 54.8
RTN 17.8 36.6 51.3 55.3 64.3 36.6 73.5 42.1 62.4 52.8 38.5 46.7 46.6 35.0 41.7

GPTQ 14.1 37.0 59.9 57.3 62.9 36.8 74.3 41.9 64.4 54.3 37.1 47.7 46.2 36.5 41.9
SmoothQuant+ 12.7 37.0 54.5 53.3 61.9 34.8 71.2 41.6 63.2 52.2 31.4 37.6 40.7 32.4 35.5

QUIK 8.6 42.1 65.9 71.8 71.7 40.0 76.0 44.6 66.7 59.8 45.2 57.2 57.8 40.7 50.2
QuaRot 8.4 43.4 68.9 69.5 71.2 40.6 76.8 46.0 67.2 60.5 45.0 56.1 56.0 40.0 49.3

SpinQuant 8.4 43.5 67.8 70.6 71.9 41.6 76.9 44.9 68.5 60.7 46.1 56.7 57.1 39.4 49.8
ResQ 8.1 44.4 69.4 72.4 72.2 41.8 76.3 45.2 69.1 61.3 48.2 61.1 59.8 44.5 53.4

of sequence length 2048 taken from Wikitext. For complete training hyperparameters, we guide the interested readers to
official implementation of SpinQuant (Liu et al., 2025).

I. Complete results with different calibration datasets
In Table 16, we provide results on wikitext perplexity, task-by-task accuracy on 0-shot reasoning benchmarks and task-by-
task accuracy on MMLU benchmarks when obtaining ResQ projection matrix P using different calibration datasets. We
find no clear consensus on the optimality of one particular dataset. The performance results for different datasets show no

18

https://github.com/facebookresearch/SpinQuant

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 13: Accuracy (higher is better) on 0-shot massive multi-discipline multimodal understanding and reasoning tasks
across six subjects: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech &
Engineering for the Qwen2 VL Instruct family when quantized to W/A/KV = 4/4/4 bits and W/A/KV = 4/8/4 bits. Results
of all techniques were obtained using their official codebase. Our work ResQ and QUIK (Ashkboos et al., 2024b) keep 1/8
of channels in 8-bit. All techniques except RTN use GPTQ (Frantar et al., 2023).

Qwen2-VL-2B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 56.7 36.0 37.3 50.8 26.0 31.0 39.6

4/4/4
RTN 28.3 18.7 26.0 26.7 21.3 29.1 25.0

GPTQ 28.3 27.3 27.0 29.0 26.7 27.6 27.7
QuaRot 24.2 23.3 20.7 26.7 26.0 22.9 24.0

4.5/4.5/4.5 QUIK 25.8 26.0 26.7 29.2 26.0 24.3 26.3
ResQ 38.3 21.3 28.7 45.0 21.3 23.3 29.7

4/8/4
RTN 27.5 21.3 27.3 24.2 21.3 27.6 24.9

GPTQ 24.2 23.3 24.0 18.3 21.3 29.5 23.4
QuaRot 20.0 24.7 30.0 26.7 26.0 31.4 26.5

4.5/8/4.5 QUIK 33.3 28.7 32.0 32.5 26.0 18.1 28.4
ResQ 37.5 32.0 32.7 47.5 26.7 27.6 34.0

Qwen2-VL-7B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 68.3 41.3 54.7 68.3 38.7 38.1 51.6

4/4/4
RTN 24.2 28.0 29.3 22.5 29.3 27.1 26.7

GPTQ 21.7 26.0 25.3 28.3 24.7 23.3 24.9
QuaRot 21.7 21.3 28.7 25.0 20.7 29.5 24.5

4.5/4.5/4.5 QUIK 30.8 30.0 32.0 26.7 28.0 26.2 28.9
ResQ 65.0 39.3 45.3 61.7 34.0 36.7 47.0

4/8/4
RTN 23.3 28.7 27.3 25.0 22.7 24.3 25.2

GPTQ 20.8 23.3 30.0 19.2 24.0 28.6 24.3
QuaRot 20.8 26.0 30.0 19.2 24.7 26.2 24.5

4.5/8/4.5 QUIK 25.0 23.3 31.3 26.7 25.3 26.7 26.4
ResQ 67.5 39.3 51.3 64.2 36.7 33.8 48.8

significant fluctuations.

J. Artifact licenses
According to their licenses, all language models used in the paper fall under acceptable use case. The licenses for the models
are linked for perusal: Llama-2-7b-hf, Llama-2-13b-hf, Meta-Llama-3-8B, Meta-Llama-3-70B,
Llama-3.2-1B, Llama-3.2-3B, Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-32B, Qwen2.5-72B, Qwen2-VL-7B-Instruct, and Qwen2-VL-2B-Instruct.

19

https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-2-13b-hf/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
https://huggingface.co/meta-llama/Meta-Llama-3-70B/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.2-3B/blob/main/LICENSE.txt
https://huggingface.co/Qwen/Qwen2.5-0.5B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-14B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/blob/main/LICENSE

ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals

Table 14: Comparison of ResQ, QuaRot, SpinQuant at iso-bitwidth of W/A/KV = 4/4/4. ResQ keeps 1/8 channels
with high eigen value in 6-bit, 1/8 channels with low eigen value in 2-bit and remaining in 4-bit for average bit-width
of 4-bit. Evaluations include perplexity on Wikitext, accuracy on eight 0-shot common sense reasoning tasks including
ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and WinoGrande, and on 0-shot massive
multitask language understanding tasks across four subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the
Qwen2.5 model family. (↓): lower is better, (↑): higher is better.

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Qwen2.5-3B
QuaRot 68.8 32.4 53.1 51.6 49.2 33.4 66.7 39.3 56.4 47.7 28.1 32.0 28.9 26.6 28.9

SpinQuant 70.6 33.3 56.4 51.8 49.5 33.0 66.7 41.0 57.1 48.6 30.1 37.2 33.9 30.1 32.8
ResQ 9.8 44.1 70.2 70.2 67.3 41.0 73.7 45.4 61.1 59.1 45.8 58.4 58.9 45.9 52.2

Qwen2.5-7B
QuaRot 4035.9 25.9 41.0 39.1 29.1 27.6 57.9 35.7 50.6 38.4 24.8 24.4 24.4 22.7 24.1

SpinQuant 3395.4 25.5 44.2 39.5 29.3 27.0 58.8 35.3 49.4 38.6 25.0 23.8 24.2 24.3 24.3
ResQ 34.2 42.6 60.2 75.4 59.4 41.6 63.1 44.6 62.8 56.2 49.3 63.6 68.6 50.4 58.0

Qwen2.5-14B
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 49.9 70.7 67.1 60.9 75.1 80.2 67.3 70.9

SpinQuant 6.6 54.2 81.2 82.1 77.9 44.6 78.4 50.8 70.0 67.4 59.6 75.3 78.9 66.7 70.1
ResQ 6.5 55.6 81.3 79.2 79.2 43.6 79.9 51.4 70.2 67.5 61.6 75.3 80.1 68.2 71.3

Qwen2.5-32B
QuaRot 6.1 54.3 78.6 83.0 81.0 43.4 79.8 50.6 71.7 67.8 67.4 80.5 85.2 75.1 77.0

SpinQuant 6.0 54.5 76.1 85.1 81.5 44.2 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ 5.9 55.9 79.7 85.8 81.6 44.8 80.3 51.6 73.4 69.1 68.4 80.6 86.4 76.2 77.9

Qwen2.5-72B
QuaRot 4.9 55.8 81.1 87.5 84.0 45.2 81.7 52.5 74.5 70.3 71.4 84.2 87.7 77.1 80.1
ResQ 4.9 58.8 81.9 87.2 84.1 46.0 82.2 53.2 75.5 71.1 71.3 84.2 87.4 77.4 80.1

Table 15: Comparison of ResQ and ResQ+training rotation R, evaluating perplexity on Wikitext, accuracy on eight 0-shot
common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA, and
WinoGrande, and on 0-shot massive multitask language understanding tasks across four subjects: STEM, Humanities, Social
Sciences, and MMLU-other, for the Meta-Llama-3-8B, Llama-2-7b-hf, Qwen2.5-7B, and Llama-3.2-1B
models. (↓): lower is better, (↑): higher is better.

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Meta-Llama-3-8B
ResQ 7.1 49.2 75.0 72.5 76.5 43.0 78.3 45.8 71.0 63.9 50.6 64.4 65.8 48.1 57.2

ResQ + training R 7.0 48.1 76.1 76.7 76.4 44.2 77.8 45.7 70.6 64.5 51.0 65.9 67.4 48.9 58.3

Llama-2-7b-hf
ResQ 5.8 44.0 72.6 75.3 74.0 41.0 77.9 43.9 66.9 62.0 35.9 40.9 42.1 32.1 37.7

ResQ + training R 5.8 44.9 71.6 74.9 74.5 42.0 77.6 44.6 67.4 62.2 35.4 42.7 40.4 33.4 38.0

Qwen2.5-7B
ResQ 8.2 49.0 74.7 81.4 75.7 45.0 78.9 49.4 68.2 65.3 57.8 74.4 79.3 64.5 69.0

ResQ + training R 8.0 50.0 75.2 80.9 76.1 44.0 78.7 52.3 69.2 65.8 59.0 74.0 79.0 65.0 69.0

Llama-3.2-1B
ResQ 12.4 34.0 54.2 57.0 57.3 31.2 69.4 41.0 56.8 50.1 28.3 30.5 31.3 27.6 29.4

ResQ + training R 11.7 32.9 53.9 57.5 58.2 33.6 70.1 39.4 55.6 50.1 29.0 30.8 30.6 28.0 29.6

Table 16: Performance of ResQ with different calibration datasets, evaluating perplexity on Wikitext, accuracy on eight
0-shot common sense reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA,
SIQA, and WinoGrande, and on 0-shot massive multitask language understanding tasks across four subjects: STEM,
Humanities, Social Sciences, and MMLU-other, for the Llama-3.2-3B, Meta-Llama-3-8B, Qwen2.5-3B, and
Qwen2.5-7B models. (↓): lower is better, (↑): higher is better.

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-3.2-3B

Wikitext 8.8 43.1 65.6 68.8 70.5 38.4 75.1 45.6 64.8 59.0 44.7 57.0 56.5 41.0 49.8
C4 8.8 42.1 66.7 68.9 70.6 41.2 75.4 45.3 64.2 61.7 43.9 55.5 55.0 40.2 48.6

PTB 8.8 41.8 65.8 70.2 70.0 39.2 74.9 46.1 65.2 59.1 43.5 54.8 53.1 38.9 47.6
Alpaca 8.8 43.1 65.9 66.6 70.4 38.8 75.5 44.9 66.2 58.9 43.6 54.8 53.9 39.6 48.0

Meta-Llama-3-8B

Wikitext 7.1 49.2 75.0 72.5 76.5 43.0 78.3 45.8 71.0 63.9 50.6 64.4 65.8 48.1 57.2
C4 7.1 48.0 76.3 76.6 76.4 42.4 78.5 46.0 68.1 64.0 50.8 64.6 66.7 47.1 57.3

PTB 7.1 48.1 73.3 78.1 76.4 42.6 77.6 45.2 70.3 63.9 49.6 63.5 65.0 47.0 56.3
Alpaca 7.1 47.8 73.1 76.8 76.9 42.8 77.8 45.1 71.0 63.9 50.4 65.5 67.0 47.3 57.5

Qwen2.5-3B

Wikitext 9.0 45.3 70.5 72.7 70.2 42.4 76.8 46.7 64.4 61.1 53.1 66.5 70.5 54.8 61.2
C4 9.0 44.2 70.4 71.6 70.6 40.6 76.3 46.9 65.0 60.7 51.8 65.5 68.2 52.7 59.6

PTB 9.1 42.4 68.5 70.5 69.7 40.6 75.5 46.3 64.5 59.7 51.2 65.6 68.4 52.8 59.5
Alpaca 9.0 46.2 72.5 74.5 70.4 38.6 76.4 46.6 65.4 61.3 52.2 65.1 71.1 55.3 60.9

Qwen2.5-7B

Wikitext 8.2 49.0 74.7 81.4 75.7 45.0 78.9 49.4 68.2 65.3 57.8 74.4 79.3 64.5 69.0
C4 8.2 50.4 75.9 82.2 75.9 42.8 78.6 52.3 67.5 65.7 58.4 72.7 79.0 64.1 68.5

PTB 8.0 47.8 74.5 81.8 76.3 45.6 77.2 52.7 66.5 65.3 58.1 74.0 78.7 64.4 68.8
Alpaca 8.9 50.3 75.0 82.0 75.8 43.2 78.2 52.9 68.1 65.7 58.8 73.3 78.8 62.9 68.4

20

