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ABSTRACT: Ionic liquids (ILs) provide a promising solution for
CO2 capture and storage to mitigate global warming. However,
identifying and designing the high-capacity IL from the giant
chemical space require expensive and exhaustive simulations and
experiments. Machine learning (ML) can accelerate the process of
searching for desirable ionic molecules through accurate and
efficient property predictions in a data-driven manner. However,
existing descriptors and ML models for the ionic molecule suffer
from the inefficient adaptation of molecular graph structure.
Besides, few works have investigated the explainability of ML
models to help understand the learned features that can guide the
design of efficient ionic molecules. In this work, we develop both
fingerprint-based ML models and graph neural networks (GNNs)
to predict the CO2 absorption in ILs. Fingerprint works on graph structure at the feature extraction stage, while GNNs directly
handle molecule structure in both the feature extraction and model prediction stage. We show that our method outperforms previous
ML models by reaching a high accuracy (MAE of 0.0137, R2 of 0.9884). Furthermore, we take the advantage of GNN representation
and develop a substructure-based explanation method that provides insight into how each chemical fragment within IL molecules
contributes to the CO2 absorption prediction of ML models. We also show that our result agrees with some ground truth on
functional group importance from the theoretical understanding of CO2 absorption in ILs, which can advise on the design of novel
and efficient functional ILs in the future.
KEYWORDS: explainable deep learning, graph neural networks, machine learning, CO2 absorption, ionic liquid, global warming

■ INTRODUCTION
Global warming is a major environmental problem in our
world. Based on the prediction of the Intergovernmental Panel
on Climate Change (IPCC), the average temperature of our
world will increase by about 1.9 °C if we do not take any
action by 2100.1 Among all of the greenhouse gases, CO2
makes the most contribution to global warming to an extent of
about 78.6%.2 How to effectively capture and store CO2 is
crucial for solving the global warming problem. Existing
methods, including physisorption/chemisorption,3,4 membrane
separation5 or molecular sieves,6 carbamation, amine physical
absorption,7 amine dry scrubbing,8 and mineral carbona-
tion,9,10 have been introduced to absorb CO2. However, the
reagents used in these methods suffer from insufficient carbon
dioxide storage capacity, high energy demand in absorption
process, and low thermal stability.11,12 The evaporation and
degradation of reagents may lead the storage process to
become costly.13

Ionic liquids (ILs) are families of molten salt that remains in
liquid state at room temperature. Over the past decades, they
have received significant attention and have been an intensive
research area due to their unique physical and chemical

properties, such as nonvolatility, high chemical stability, high
CO2 solubility, and easy operation at liquid state. These
properties make ILs an ideal candidate for CO2 storage.

14−22

Usually, IL comprises a pair of ions with different charges, and
the combination of ions largely determines the properties of
ILs. However, such combinations of cations and anions as well
as the various selections of cations and anions themselves make
it challenging to exhaust the design space of IL for efficient
CO2 storage through experiments. To efficiently estimate the
CO2 absorption of ILs, researchers have investigated the
quantitative structure−property relationship (QSPR). QSPR
methods aim at building mathematical models for the
prediction of numerical properties based on the structural
information of chemical compounds.23,24 However, traditional
methods used in QSPR such as molecular dynamic (MD) and
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density functional theory (DFT) can be computationally
challenging for ILs due to the complexity of inter- and
intramolecular interactions.25−27

The recent development of machine learning (ML) methods
bears promise for QSPR modeling through accurate and

efficient property predictions of chemical compounds.
Compared with conventional simulation methods like MD or
DFT,28 ML methods have demonstrated similar accuracy but
with less computational cost in various chemical applica-
tions.29−31 Especially, several works have explored applying

Figure 1. Overview of methods in the paper. We first use GC and FP as descriptors. Shallow machine learning models (SVM, RF, XGBoost) and
deep learning models (MLP) are built on top of the descriptors for CO2 solubility prediction. Besides descriptor-based machine learning, GNN-
based models (GCN, GAT, GIN) are employed to perform the solubility prediction. Furthermore, we develop an explanation method (IL
explainer) for ionic molecules that can take in a fine-tuned GNN model, and an IL data point, and return the fragment importance of the molecule.
We finally make the importance explanation for the functional groups within cations across the whole data set.
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ML models to solving ionic liquid problems via various
descriptors of IL molecules. Group contribution theory (GC)
is one of the earliest descriptors for IL molecules.32−35 GC
manually breaks down a molecule into different characteristic
functional groups and counts the existence frequency of each
group. However, this descriptor is highly human experience-
dependent and may lead to the loss of information for
substructures within the group. Another way of finding
molecule descriptors is the quantum chemical descriptor
(QC), which utilizes the calculated properties from DFT to
provide submolecular-level representations for IL mole-
cules.36−38 However, to gain QC descriptors, one needs to
perform expensive and time-consuming QC calculations like
DFT to acquire the properties. ML models like support vector
machine (SVM), random forest (RF), and deep learning
models such as multilayer perceptron (MLP), convolutional
neural network (CNN), and recurrent neural network (RNN)
have been applied on top of the descriptors to perform various
property prediction tasks.39,40 But, both GC and QC
descriptors can lack the modeling of the structural information
of molecules, which confines the performance of ML models.
Other molecular descriptors like extended-connectivity finger-
prints (ECFPs) create a feature vector by iteratively
aggregating the neighbor information of each atom and
hashing that into a vector.41,42 ECFPs directly encode the
structural information of molecules and can be more
expressive. Such molecular fingerprints (FPs) and how
different ML models built upon them perform have not been
well studied for CO2 absorption in ILs.
Recently, GNNs have been shown to be a powerful tool for

molecule feature representation and property prediction, and
have received a significant amount of attention.43−49 At the
feature representation stage, GNNs directly work on the
molecular structure. It treats the molecule as a graph and
utilizes an adjacent matrix to encode the bond edge and
connectivity, as well as a node feature matrix to encode the
atom and related properties. This representation is more
generalizable, stable, and less computationally expensive
compared with GC and QC descriptors. At the model training
and prediction stage, GNN aggregates the node message
through edge during the forward process,46,50,51 and it
outperforms other neural-network-based models on unstruc-
tured graphical data.46 GNNs have been involved in many
areas related to molecules, such as drug discovery, quantum
chemistry, and structural biology.52 However, existing works
using GNNs on ILs tend to focus solely on one family of
anions or cations, which still needs to be expanded and
generalized.53,54

Besides building ML models to obtain accurate and efficient
predictions, how to explain the output from ML models given
certain input data is also an active research area.25,55 In
traditional experimental and computational chemistry, re-
searchers heavily rely on their knowledge and experience in
designing new compounds. On the other hand, as a black box,
the intermediate decision process of the ML models is hard to
unveil. Understanding how ML models make decisions can
provide us with extra insights into how the structure of the
input molecule affects the property of IL and new IL design
from a data-driven perspective. Explainable algorithms have
been developed on GNNs to analyze the importance of each
input edge.56 However, in the IL research area, researchers
usually focus on the prediction performance of GNN on
various properties but ignore the explainability of the GNN

model. Benefiting from graph representation, GNNs have the
potential to provide an explanation of the molecular structure
importance that reaches atom and bond levels.
In this paper, we introduce two categories of methods for

CO2 solubility prediction, namely, descriptor-based machine
learning models and GNNs. Besides, we also develop an
explanation method for IL molecule substructure importance
analysis. For descriptor-based machine learning models, GC
and FP are included as descriptors. We then compare the
expressiveness of FP with GC on different machine learning
models. For the GNN part, we include graph convolutional
networks (GCNs), graph attention networks (GATs), and
graph isomorphism networks (GINs) to perform the CO2
solubility prediction. Moreover, we make two improvements to
data representation and the GNN framework to build an IL
explainer. First, instead of treating cation and anion as two
separate graphs, we treat them as a single undirected graph and
feed the whole graph into one GNN network. Second, we
substitute the final pooling layer of GNN with a global node
that connects with every atom within one data point. Based on
that, we develop an IL molecule explainer by combining the
improved GNN framework with the subgraph-based GNN
explaining methods.56 Benefiting from the two improvements
we make, the IL molecule explainer can provide an importance
score insight into a single atom level within the IL molecule.
We also find that our explanation method can provide a
reasonable fragment importance ranking for the IL molecule in
the prediction task and can be a useful tool to guide the design
of new IL molecules. To the best of our knowledge, this is one
of the first works in applying GNNs and the fragment
importance explanation study that reaches the single atom level
for CO2 absorption in ILs.

■ METHODS
Figure 1 shows the overview of the whole work. IL molecule pairs are
represented in three ways, which are GC, FP, and graph
representation. GC and FP are combined with various machine
learning models such as SVM, RF, XGBoost, and MLP to perform
solubility prediction tasks. For GNNs, we utilize three GNN
frameworks, which are GCN, GAT, and GIN for property prediction.
Furthermore, an explanation method is developed and can provide
both atom-level and fragment-level importance analysis for IL
molecule pair by taking in a fine-tuned GNN model and a target IL
molecule pair.
IL Data Set. The data set contains 10 117 data points of CO2

solubility in various ionic liquid (IL) systems at different temperatures
and pressure,57 which is initially collected and published by Lei et al.14

Each data point includes the SMILES of cation and anion,
temperature, pressure, and the solubility of CO2 (expressed as the
mole fraction of CO2 in ionic liquid). Solubilities of ILs range from
0.0000648 to 0.9516 in mole fraction, the temperatures range from
243.2 to 453.15 K, and the pressures range from 0.00798 to 499.9 bar.
Cations of ILs include imidazolium, pyrrolidinium, pyridinium,
piperidinium, ammonium, phosphonium, and sulfonium. Anions of
ILs contain tetrafluoroborate [BF4], chloride [Cl], dicyanamide
[DCA], nitrate [NO3], hexafluorophosphate [PF6], thiocyanate
[SCN], tricyanomethanide [C(CN)3], hydrogen sulfate [HSO4], bis
(trifluoro methylsulfonyl) amide [Tf2N], methylsulfate [MeSO4], etc.
Following previous works, the data set is randomly split into training
and test sets by the ratio of 80 and 20%, respectively.
Descriptor-Based Machine Learning Models. Descriptor

Engineering. We utilize the Morgan fingerprint as the descriptor
for the IL molecule pairs. Morgan FP is a method for generalizing
molecular signatures with molecule structure information.41 We use
RDKit to generate FP.58 Specifically, for the generation hyper-
parameters, the radius is set to be 3, and the number of bits is 2048
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for each molecule. For a certain ionic molecule pair, we first obtain
the FP for each molecule and then concatenate them into a vector

with a length of 4096. By adding the temperature (K) and pressure
(bar), the length of the final vector is 4098. We also included GC

Figure 2. Illustration of how GNN predicts solubility for ionic molecule pairs. First, the cation and anion are treated as two separate graphs with an
adjacent matrix. Then, we concatenate two molecule graphs diagonally. Further, a global node is added to the graph. Finally, two molecule graphs
with a global node are merged into a single undirected graph. The final graph will be fed into GNN after several layers of message passing; the
message of the global node is extracted and put into the final classification layer to get the solubility result.

Figure 3. Making an explanation of an ionic molecule pair and extracting the fragment importance of 1,3-dimethyl-imidazolium from the edge
mask. To perform the explanation, we feed the molecule graph and a trained GNN model (i.e., GCN, GAT, GIN) into the IL explainer. Then, we
run the explainer to perform the optimization on the mask matrix. Finally, we get an edge importance mask for the input graph. The importance of
the edge between the atom node and the global node is seen as the importance of the atom. After that, we normalize and compute the fragment
importance based on the importance of atoms that the fragment includes.
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descriptor as a baseline method to compare with FP.57 For GC, we
slice all of the ionic molecules into 51 fragments; each molecule pair is
then mapped to a vector with a length of 51, and each element in the
vector counts the existing frequency of each fragment in a certain
molecule pair. After that, temperature and pressure are added to the
vector. The length of the final vector would be 53.

Descriptor-Based Machine Learning Models. We use four ML
models including SVM,59 RF,60 XGBoost,61 and MLP62 to
comprehensively investigate the molecular descriptors. Those models
take input as the descriptors as well as the conditions (i.e.,
temperature, pressure) and predict CO2 solubility. The details and
hyperparameters of the ML models can be found in the Model Details
section in the Supporting Information.
Explainable GNN. In this section, we first introduce molecular

graphs and GNN models for IL CO2 solubility prediction, which is
shown in Figure 2. We then conduct a post hoc interpretability study
on the GNN model by generalizing an explanation for the input
molecule through the GNN model shown in Figure 3.

IL Molecular Graph. Graph representation treats a molecule as a
graph G with a set of nodes V and edges E.46 In our case, given an
ionic molecule, each atom is treated as a node, while bonds are edges.
Further, a node matrix ×H N M , where N denotes the number of
nodes and M denotes the embedding dimension of node features, and
an adjacent matrix ×A N N is used to represent the bond
connectivity of the molecule graph. Atomic number, hybridization,
aromatic, atom degree, and charge are included in atom features.
Bond type, whether the bond belongs in the ring, and whether it is an
aromatic bond are included in edge features. Moreover, each data
point contains a cation and an anion; instead of treating both
molecules separately with two graphs, we treat them as one single
unconnected graph. Mathematically, we concatenate two adjacent
matrices diagonally and two node matrices vertically. The way we
concatenate the matrix is shown in Figure 2. Figure 2 also describes
the whole process of using GNN to predict CO2 solubility.
Furthermore, to accommodate the need for IL explainer development,
we substitute the final pooling layer of the model with a global node.
This node takes the responsibility of outputting the final solubility and
is connected to each node within the molecule graph. The details and
the intuition of adding this global node will be introduced in the
following section.

Graph Neural Network. Graph neural network (GNN) is a deep
learning method that directly works on graph-structured data. Let G
denote a graph, V denotes the set of nodes belonging to graph G, and
E denote a set of edges of the graph G. In the kth layer of GNN, the
model takes a set of node representation { | }h vv

k
v

( 1)
( ) as input,

then performs a feature aggregation as eq 1, and updates every node
feature in the set{ | }h vv

k
v

( 1)
( ) to{ | }h vv

k
v

( )
( ) . Here in eq 1, v

denotes the set of neighbor nodes of node v and fθ denotes an update
function for all of the aggregated features in the layer46,50,51,63,64

= { | }h f h h j( , aggregate( ))v
k

v
k

v
( ) ( 1)

( ) (1)

In this work, three widely used and powerful GNN models are
applied to perform CO2 solubility prediction, which develops different
aggregation and combination operations to learn from molecular
graphs. GCN46 aggregates and updates the node features by summing
up all of the normalized node features of the neighbors for a single
node and multiplying the sum with a learnable weight matrix. The
update function is shown in eq 2

=
{ }

i

k

jjjjjjjjj

y

{

zzzzzzzzz
h

e

d d
hWv

k

j v

j v

j v
v

k( ) T , ( 1)

v( ) (2)

GIN51,63 is introduced to retain the information during the
aggregation process by using an MLP as an update function, as shown
in eq 3. Here, ϵ(k) is a learnable parameter. Different from GCN,
which uses mean pooling as the update function, GIN substitutes
mean pooling with MLP. This change makes the update function

from surjective to injective and thus enhances the expressiveness of
the model

= · +
i

k
jjjjjjj

y

{
zzzzzzzh h hMLP (1 )v

k k k
v

k

j v
j

k( ) ( ) ( ) ( 1)

( )

( 1)

(3)

GAT50,64 improves the expressiveness of GNNs by deploying the
attention mechanism. Graph attention assigns a learnable weight for
each edge when performing feature aggregation on nodes. In this way,
the model can learn the weight on each edge during the training
process and thus weigh each neighbor node with the difference in
importance during the forward process of the model. The update
function and the calculation of attention are given in eqs 4 and 5

= +h W Wv
k

v v h
j

v j h j
( )

, , ,v

v( ) (4)

=
[ ]

[ ]{ }

Re LU h h

Re LU h h

a W

a W

exp( leaky ( ))

exp( leaky ( ))v j
v j

k v v k
,

T

T
v( ) (5)

In this work, we include GCN, GIN, and GAT for CO2 solubility
prediction. All of the GNN models are developed with PyTorch and
PyTorch Geometric.65 Details can be found in the GNN Models
section in the Supporting Information.

IL Explainer. Subgraph-based GNN explaining method provides an
explanation for the importance of edges and nodes in a graph by
optimizing the mask value that is added to the adjacent matrix.56 We
want to develop an explainer for the IL molecule graph based on this
method so that the explainer can provide an importance score that
reaches the atom and fragment levels. Let G denote a computational
graph, and X denotes the node feature information. Consider the CO2
solubility prediction as a graph classification problem, then a
prediction process can be seen as ŷ = Φ(G, X), where Φ is the
GNN model and ŷ is the predicted result of CO2 solubility in a
specific ionic molecule pair. An important question is which fragments
in the IL molecule contribute most to the CO2 absorption in ILs. To
get this insight from trained GNNs in a data-driven manner, we find a
subgraph Gs, where Gs ⊆ G such that Gs is important to the prediction
for ŷ. Mathematically, we can formalize the above process as an
optimization framework below

= | =Y G H Y H Y G Gmax MI( , ) ( ) ( )
G

s s
s (6)

Here, MI denotes mutual information (MI) that can quantify the
change in probability for the prediction ŷ = Φ(G, X) between the
unconditional prediction and the prediction that condition on
subgraph Gs. If we find a subset Gs that maximizes the mutual
information, we can say the subset has importance for the GNN
prediction process. Since the entropy term H(Y) is fixed as Φ is fixed
for a trained GNN, our optimization process is equivalent to

| =H Y G Gmin ( )
G

s
s (7)

However, it can be hard to traverse all of the subgraphs for a whole
molecular graph and compute the MI because the number of the
subgraph grows exponentially with the numbers of the nodes and
edges. To solve the problem, instead of straightly masking off the part
that does not belong to the subgraph, a learnable mask matrix with all
of its element values between 0 and 1 is assigned to each edge in the
graph. Based on that, we further optimize the mask value on each
edge with gradient descent to maximize the mutual information.
Finally, a traversal problem is reduced to an optimization problem
that can be solved with gradient descent. Let σ(M) denote the mask
for the graph adjacent matrix, where M is the original mask ×M n n

, and sigmoid function σ is to map the element in M to (0,1). Finally,
the optimization framework can be written as

| =H Y G A Mmin ( ( ))
G

s
s (8)
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Here, A denotes the adjacent matrix for graph G, and the objective is
to learn a mask σ(M) such that it can minimize the target function
above. In our experiment, to optimize a mask for a single molecule
pair, we run 100 epochs for each pair to let the target function eq 8
converge and use the optimized mask for importance score
computing.

This method provides an explanation of the importance of each
edge (bond) for the molecule graph but could not provide that for
node (atom). Thus, it is still challenging to derive the importance of
fragments in the CO2 solubility prediction of ILs since some of the
fragments may only contain one atom and do not have edges in their
molecule graph. To gain fragment importance from a node
perspective, we leverage the global node added to the cation and
anion pair. Since the global node feature is the representation of the
IL and is connected to all atoms in the molecular graph, we can
consider the importance of edges that are connected between the
global node and atom as the importance of each atom to the
prediction result. We can then use this atom-level importance to
formalize importance analysis for a specific functional group for the
whole data set further. Figure 3 illustrates the explanation process and
how to extract fragment importance score from a single ionic
molecule pair using 1,3-dimethyl-imidazolium as an example.

Following the idea, we developed a score function for quantifying
the importance of a specific functional group with respect to the
whole data set. Let Mmol denote a set of edge mask values (importance
value) that includes all edges between the global node and each atom
node within the same molecule and Mmol denote the mean value of
the set Mmol. Besides, let Mfrag denote a set of edge mask values that
only contain edges between the global node and the atom for a
specific functional group fragment that we are interested in and Mfrag

denotes the mean value of the set Mfrag. We compute the importance
score of a single type of fragment i within a single ionic molecule pair j
as follows

= M Mscore j
i

j
i

j
i

mol( ) frag( ) mol( ) (9)

Further, the importance score of fragment i within the whole data set
scorei is computed as

= == =

N

M M

N
score

score ( )
i j

N
j

i
j
N

j
i

j
i

1 mol( )

frag

1 frag( ) mol( )

frag

frag frag

(10)

where Nfrag denotes the number of ionic molecule pairs within the
whole data set that contain the certain fragment i. By this means, the
score variance is normalized between different IL pairs to an averaged
importance score for each functional group. Our goal is to utilize the
score function above to analyze the ranking of importance of different
functional group fragments in the data set’s IL molecule space. We
collected a set of functional groups that exists in the cations of the
data set and compute the importance ranking of those functional
group. Then, we compare the ranking with the theoretical evidence
for CO2 solubility in IL to test if the IL explainer can provide a
reasonable explanation for the IL molecule.

■ RESULTS AND DISCUSSION
CO2 Solubility Prediction. The result of the CO2

solubility prediction tasks is shown in Table 1. Model
performance is measured by MAE and R2 on the test set.
MAE can quantify the accuracy of the predicted result; the
lower MAE is the more accurate the predicted results are. R2

quantifies the proportion of the variation in the predicted
solubility from the input data, and higher R2 demonstrates
better model performance. The result shows that FP
outperforms GC on SVM, RF, as well as MLP with the
evaluation through MAE and R2. Figure 4 shows that the
model with FP representation also converges much faster than
that with GC representation. After 300 epochs of training, FP
still reaches a higher accuracy than the GC method. Though

Morgan FP does not surpass GC using XGBoost, the
differences between them on MAE and R2 are trivial. The
reason that FP generally outperforms the GC method is that
the GC method can lead to information loss during the
representation process since it manually sliced molecules into a
fragment and ignore the structure details within a fragment. As
for GNN models, GIN is the best-performing model compared
with GCN and GAT. GIN also achieves the best performance
among all of the ML models. First, except for GCN, GAT and
GIN outperform most of the other descriptor-based machine
learning groups. This proves the power of the GNN model.
One possible explanation for the uncompetitive performance
of GCN is that although GCN uses graph representation like
the other two GNN models, the feature aggregation and
update process are much simpler than the other two models;
also, the update function of GCN is a surjective function.
These will lead to a relative loss of information during the
graph convolution process and finally result in a worse
performance. Second, though both FP representation and the

Table 1. Performance of Different Models Combined with
Different Feature Representations on CO2 Solubility
Prediction Task, MAE, and R2 for Different Combinations
Are Reported Herea

model MAE ↓ R2 ↑
SVM + GC 0.0753 0.8240
SVM + FP 0.0655 0.8633
RF + GC 0.0223 0.9774
RF + FP 0.0209 0.9802
XGBoost + GC 0.0182 0.9865
XGBoost + FP 0.0189 0.9847
MLP + GC 0.0170 0.9873
MLP + FP 0.0151 0.9883
GCN 0.0723 0.8197
GAT 0.0253 0.9767
GIN 0.0137 0.9884

aNoted that: to make sure the model converges, we run 300 epochs to
train each model below and finally take the one with the lowest
validation loss as the result (↑: the higher the better,↓: the lower the
better).

Figure 4. Validation loss-epoch curve for both GC and FP.
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GNN model work on the graph structure of the IL molecule,
FP only handles graph structure at the feature representation
stage, while both feature representation and the post-feature-
extraction stage for GNN are all designed to handle graph-
structured data. For these reasons, a GNN with good
expressiveness (here like GIN) is likely to beat the
descriptor-based method on the task related to molecule and
this is also proved by the experimental result in Table 1.
Model Explanation Result Analysis. Theoretical Under-

standing of CO2 Solubility in ILs. Before diving into the
explanation of the machine learning model in a data-driven
manner, it is necessary to check the theories about the CO2
absorption process in ILs. Such theories validate the
explanation results from our IL explainer. However, there are
two major challenges in validating the data-driven explanation
results. First, the existing ground truth with respect to some of
the fragments distributed sparsely in various studies. Second,
the factor that influences the CO2 in solubility in a certain IL
system is complex. One fragment can influence the solubility in
a physical way or chemical way to different extents, which
means the importance of one fragment can be composed of
various mechanisms. In the following section, we summarize
and categorize the theoretical explanation in the literature.

The mechanism of CO2 solvation in IL can be divided into
physical and chemical absorptions depending on the
interaction between CO2 and the ILs. Physical absorption
considers anions play the primary role in CO2 storage.66

However, according to the experimental record, when the
anion is unchanged, the fluorination of the alkyl chain and
ester groups on cations is favorable for improving CO2
solubility.67−69 Another model based on physical absorption
is called the free volume model. This model suggests that ionic
molecules, especially cations with longer alkyl chains, tend to
create more free volume space for trapping CO2 inside the
liquid. Thus, the carbon alkyl chain is favorable for the CO2
storage process as well. Chemical absorption, which depends
on the chemical interaction between CO2 and IL molecules, on
the other hand, usually results in a stronger combination
between CO2 and IL than physical absorption. This is because
the chemical bond is usually stronger than the physical bond.
Generally, the chemical bond is mainly composed of Coulomb
interaction, while the major contribution of physical
interaction is the van der Waals force.69 One of the major
chemical interactions for CO2 and IL is between amine and
CO2. CO2 tends to react with the amine in IL in a similar
manner as aqueous amine by forming a carbamate salt.
Amine−CO2 interaction is one of the most strengthening

Figure 5. (a) Structure for the example molecule; here, we use [PMIM] and [BF4]; (b) the importance hot map for [BMIM] and [BF4]; (c)
fragment importance of cations with respect to the whole data set; and (d) proposed reaction of CO2 with [NH2p‑bim][BF4].
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interactions between IL and CO2. There are also non-amine−
CO2 chemical interactions such as CO2 with superbased-
derived protic ILs,70 phenolic ILs, and carboxylation of
imidazolium acetate by CO2.

71 A more specific version of
reactions for IL and CO2 can be found in the Reactions for IL
and CO2 section in the Supporting Information.

Analyzing the Explanation Result from IL Explainer.
Figure 5 shows the importance analysis result from IL
Explainer. Figure 5a shows an example of the molecular
structure of an IL molecule pair [PMIM] (cation) and [BF4]
(anion). For this IL molecule pair, we use IL Explainer to get a
molecule graph with node importance, as shown in Figure 5b.
Each node (atom) importance is shown through a hot map;
the importance value of each node is mapped to the color
deepness. As for the data set level explanation, with the
importance score function discussed in the IL Explainer
section, we compute the importance score of different
fragments with respect to the data set and rank them according

to the score. Due to the reason that the importance of anion
and cation are usually different according to the experimental
record,66 we only summarize fragments that appear in cations
to make the result more comparable. Finally, we have an
importance ranking of fragments existing in cations with
respect to the whole data set in Figure 5c.
In the following part, the result will be discussed case by

case. First, let us take a look at fragments with medium and low
ranks in the result (Figure 5c). Based on the physical
absorption theories, the type of interaction between most of
the fragments in this region and CO2 belongs to physical
interaction. Specifically, [CH2], [CH3], and [CH] are the
components of the alkyl chain; their contribution is creating
more free volume for CO2 to solve based on the free volume
theory.14,72 Fragments like C(F)F, C(F)(F)F, and OC are also
favorable for improving the CO2 solubility with physical
interaction.69 [OH] can form a hydrogen bond with CO2 to
strengthen their interaction. However, physical interactions are

Figure 6. (a) Summary of the solubility of amine ILs, (b) summary of the temperature of amine ILs, (c) summary of the pressure of amine ILs, and
(d) molecular structures of amine ILs mentioned in the figure.
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weaker than chemical interactions between ILs and CO2. For
this reason, it is hard for the fragments that forms physical
interaction with ILs to reach a high rank among all fragments.
To take a step further, we can see that most of the fragments
with a high ranking tend to form a chemical interaction with
CO2. One of the most interesting results is the amine group;
the amine group is said to have a strong chemical interaction
with CO2. Usually, when amine reacts with CO2, one of the
N−H bonds of nitrogen will be broken and the hydrogen can
be substituted with O−C�O (refer to the mechanism in
Figure 5d). However, in our result, [NH] and [NH2] take up
the top 2 rankings, but [NH3] receives a very low ranking. To
further explore the reason behind it, we combine the data
points related to amine groups and the reaction condition to
find the reason.
Figure 6 contains details of the data points related to the

amine group; there are four kinds of IL pairs that contain the
amine group [m2hea][FOR] (78 data points), [mdea][CL]
(35 data points), [he][FOR] (27 data points), and [hea]-
[FOR] (21 data points). Figure 6a−c includes the max, mean,
min of CO2 solubility, temperature, and pressure of data points
of four kinds of IL molecule pair. Figure 6d shows the type of
amine group that each cation contains, including [NH3] in
[hea] and [he], [NH] in [mdea], and [NH2] in [mh2ea].
[hea], [he], and [mh2ea] share the same anion, and the mean
temperature and pressure are close. Under those conditions,
[mh2ea] shows a higher CO2 solubility than the other two in a
large amount. Considering the major structural difference of
these three cations is the amine group; IL Explainer
successfully captures the information where [NH2 importance
is much higher than NH3]. Besides, although [mdea] is paired
with [Cl] that is different from [FOR] in the other three IL
pairs, it still shows a higher CO2 solution than other NH3-
based IL pairs under similar average pressure and temperature
conditions. Since [mdea] contains [NH] instead of [NH3], we
can see that IL Explainer also detects that [NH] bears higher
importance than [NH3]. Furthermore, if we think about this
problem from an energy perspective, there is still a more
fundamental reason behind it. Figure 5d shows a possible
reaction for [NH2] and CO2. In this reaction, [NH2] plays as a
reactant, while its product contains [NH3]. This reaction takes
place with a heating condition, which means the product is
more stable than the reactant in energy. In this way, we can
understand [NH3] as a more stable structure than [NH2], and
thus, it is harder for [NH3] to react with CO2 when compared
with other amine groups with less hydrogen. The most exciting
finding here is that IL Explainer captures the fact that [NH]
and [NH2] are more important than [NH3] in CO2 absorption
for structure stability reasons from a purely data-driven
manner. This demonstrates the power of IL Explainer in
providing insight into a chemical problem from a data
perspective and the potential on assisting the understanding
and designing of new functional IL molecules in the future.
Besides, IL Explainer is highly scalable. Since the importance
score for each atom within the molecule is accessible, we can
gain the importance of every substructure in the molecule. For
example, by collecting the importance score of the alkyl chain
of different lengths, we can study how the alkyl chain length
affects CO2 solubility in IL. Moreover, IL Explainer can be
extended to periodic systems by considering the periodic
interaction of nodes in the adjacency matrix as well. By this
means, nodes that are neighboring under the periodic
boundary condition are modeled in the interpretable GNN.

■ CONCLUSIONS
To summarize, we develop two categories of ML methods
(descriptor-based ML models and GNNs) for predicting CO2
solubility in ILs and an explanation method to detect the
importance of the functional groups in a data-driven manner.
For descriptor-based ML models, the result shows that FP
outperforms GC in most model-descriptor combinations.
Among all of the experiments in this part, MLP with FP
reaches the best performance of MAE (0.0151) and R2

(0.9883). For the GNN model, we develop GCN, GAT, and
GIN models with a virtual global node. GIN reaches the best
performance with MAE (0.0137) and R2 (0.9884), which
demonstrates the effectiveness of GNNs in learning from
graphical data. Furthermore, for the explanation method, the
IL explainer takes a trained GNN and an IL molecule data
point as the input. By learning a mask to maximize the mutual
information change, we can gain a node-level importance
explanation. Through statistical counting and normalization,
we make a fragment importance rank for cations across the
whole data set. The ranking result shows that fragments that
have physical interaction with CO2 tend to have less
importance than those that have chemical interaction. This
can be explained as the chemical interactions are usually more
powerful compared to the physical interactions. Besides that,
for chemical interaction fragments, we find that amine groups
with different numbers of hydrogen can be differently favorable
for the absorption process. Results have shown that the amine
group with less hydrogen connected to nitrogen could be more
favorable in formalizing a stable chemical interaction with CO2.
The accurate ML models and importance ranking obtained
from explainable GNN can provide insights into designing new
functional ILs in the future.
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