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Abstract

Building robust, real-world Automatic Speech
Recognition (ASR) datasets for Hindi remains
challenging due to linguistic complexity, ac-
cent variations, and domain-specific vocabu-
lary, particularly in agricultural contexts. This
paper presents KrishiVaani, a conversational
Hindi speech corpus that addresses the issues
mentioned above. Additionally, we provide
a comparative analysis of various LMs and
LLMs for automatic ASR post-correction, aid-
ing in model selection to minimize annotation
effort. We also extend an open-source tool,
VAgyojaka, to accelerate data validation and
verification processes by 6x and 2x, respec-
tively. This enhancement streamlines the cre-
ation of large-scale Hindi speech corpora, en-
suring high-quality data through efficient anno-
tation and error detection. Experimental results
show that using KrishiVaani significantly im-
proves accuracy across diverse speaker accents,
environmental noise levels, and agricultural ter-
minology.

1 Introduction

Advances in speech technology have transformed
human-Al interaction, driving the need for diverse
voice user interfaces (VUIs) (Deshmukh and Chal-
meta, 2024). These VUIs depend on ASR systems
to enable smooth communication in low-resource
languages. This is particularly significant in India,
where many languages pose challenges in written
form (Ghosh et al., 2010). However, linguistic
diversity, accent variation, code-mixing, and envi-
ronmental noise remain major challenges. Despite
progress in ASR, development for low-resource
Indian languages like Hindi is hindered by the lack
of high-quality, domain-specific, real-world speech
data (Adiga et al., 2021; Javed et al., 2024b).

To address this, we introduce the KrishiVaani Hindi
speech corpus, which aims to address the existing
gaps and foster research in Hindi ASR. KrishiV-
aani stands out as a real-world agricultural domain

corpus, capturing speech in noisy environments,
making it a valuable asset. The corpus also en-
compasses diverse vocabulary and conversations
from both urban and rural speakers, enhancing its
linguistic and demographic diversity.

Developing high-quality ASR systems for In-
dian languages requires diverse representation and
real-world speech datasets, yet existing resources
present notable limitations. The Shrutilipi dataset
(Bhogale et al., 2023a), despite offering an exten-
sive 2.35K hours of Hindi speech sourced from All
India Radio (AIR) archives, suffers from OCR er-
rors, misaligned text, and non-transcribed content,
making it challenging for precise audio-text align-
ment. Similarly, Kathbath (Javed et al., 2023) in-
cludes test sets (Kathbath Test-Unknown and Kath-
bath Test-Known) but primarily consists of read
speech from the IndicCorp (Kakwani et al., 2020)
monolingual corpora, failing to capture conversa-
tional and code-switched speech. The Spring-inx
dataset (Gangwar et al., 2023), a comparatively
large resource of Hindi speech, ensures gender
and dialectal diversity, but has limited represen-
tation of code-mixed and code-switched speech
(only 10%). IndicVoice (Javed et al., 2024b) cov-
ers read, extempore, and conversational speech,
but features very short conversational segments
(2-3 minutes) to be considered suitable for dialog-
centric ASR systems. These limitations highlight
the need for better-curated, large-scale datasets
that include spontaneous speech, diverse accents,
longer conversational structures, and robust code-
switching representation. To address these chal-
lenges and ensure high-quality transcriptions, we
incorporate VAgyojaka (Kumar et al., 2022a) an
open-source ASR post-correction tool, which we
have extended to support data validation and data
verification.

ASR systems often use language models (LMs)
(Kumar et al., 2022b; Wang et al., 2022) and/or
large language models (LLMs) (Kumar et al., 2024;



Ma et al., 2023; Li et al., 2024b) for automatic post-
correction. The initial hypotheses generated by
ASR systems can be post-corrected using these LM-
s/LLMs. This minimizes the number of errors to
be corrected by human annotators beforehand. We
leverage this paradigm using different LMs/LLMs
through two approaches: fine-tuning (Li et al.,
2024a; Hu et al., 2024), which requires a large
training dataset, and in-context learning (Ghosh
et al., 2024), which uses a small set of in-domain
examples for correction. By using LMs/LLMs as
automatic ASR post-correctors, we reduce the an-
notation effort. Our approach is tailored to Hindi,
focusing on lexical and multiword interventions
involving both lexical and morphemic-level knowl-
edge, helping in post-correction of ASR results.
This entire corpus creation setup can be seamlessly
extended to other languages as well.

Our contribution can be summarized as follows:

* We develop a speech corpus curation pipeline
leveraging the VAgyojaka tool, significantly
accelerating data validation and verification
by factors of 6x and 2x, respectively.

* We showcase this pipeline to curate KrishiV-
aani, a conversational Hindi speech corpus
for real-world agricultural scenarios.

* We present a comparative analysis of various
smaller LMs (mT3, ByT5) and LLMs (Llama,
ChatGPT) for automatic post-correction in
ASR, minimizing the annotation effort.

* We have released the code, our proposed mod-
els, KrishiVaani dataset!, modified VAgyo-
jaka tool?, and associated annotation guide-
lines to facilitate further research.

2 Pipeline for Corpus Construction

We construct the KrishiVaani speech corpus
through a multi-stage pipeline comprising three
key stages: (i) Data Collection, (ii) Corpus Con-
struction, and (iii) Data Refinement. The complete
pipeline is shown in Figure 1, while the detailed
step-by-step description is provided in Appendix
A.

2.1 Data Collection

We begin by creating a domain-specific keyword
list using Hindi and English dictionaries and

'https://anonymous.4open.science/r/KrishiVaani-2463
Zhttps://github.com/vagyojaka/VAgyojaka

Wikipedia articles. These keywords are used to
query and download Hindi YouTube videos, which
are then converted into mono-channel audio files
with a uniform sampling rate (16 kHz). Since
YouTube metadata often includes English tags, in-
corporating both languages ensures better domain
coverage.

2.2 Speech Corpus Construction

The audio files are segmented and processed
through a series of steps:

Voice Activity Detection (VAD) is applied to trim
silence and identify speech-active segments.
Speaker Diarization and segmentation are per-
formed using pre-trained models to separate and
label speech by speaker.

ASR Transcription is conducted using multiple
Hindi ASR models. We prioritize character-level
accuracy to reduce annotation load.

Forced Alignment links each word in the tran-
script to its temporal location in the audio, which is
crucial in correcting transcripts via the VAgyojaka
Tool.

The aligned, speaker-wise utterances form our
initial audio-text corpus. We further improve tran-
script quality by automatic ASR post-correction
using fine-tuned LMs (e.g., ByT5, mT5).

2.3 Data Refinement

We use the VAgyojaka tool to streamline three post-
processing steps:

Data Curation: Annotators correct ASR outputs,
segment utterances, and ensure diarization quality
following our internal guidelines.

Transcript Post-Processing: Text normalization
and English-to-Hindi transliteration are carried out
with model-assisted verification.

Validation and Verification: A two-layer qual-
ity check ensures correctness and consistency. A
reward-based scheme incentivizes high-quality an-
notations.

We observed that the use of LMs, LLMs, and
the VAgyojaka tool together reduced the annotation
time by nearly half, making this process scalable
for other Indian languages.

3 Experimentation

In this section, we describe the KrishiVaani dataset
and KVWav2Vec, our proposed model, followed by
the various baselines used in our experiments. Ad-
ditionally, we outline the LM/LLM configurations
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Figure 1: Overview of the multi-stage pipeline used to develop the KrishiVaani Hindi speech corpus. The process
begins with domain-specific Data Collection (left), Speech Corpus Construction (center), and Data Refinement
(right) to ensure the generation of a high-quality, domain-specific Hindi speech dataset.
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Figure 2: Performing data validation and data verifica-
tion through the open-source VAgyojaka tool

applied to our fine-tuned and in-context learning
models used for automatic ASR post-correction.

3.1 KrishiVaani Dataset

The KrishiVaani corpus comprises 20 hours of tran-
scribed audio from YouTube videos, primarily fo-
cused on the agriculture domain, while also en-
compassing various other fields. This corpus is
divided into several subsets, including 10 hours
for training and 2 hours for validation data. Apart
from that, there are also test sets having 1 hour
for the KrishiVaani-Known (which shares com-
mon speakers with the training set), 3 hours for
the KrishiVaani-UnKnown (including speakers ab-
sent from training data), and 4 hours for the
out-of-domain (OOD) KrishiVaani-OOD (includ-
ing speech from multiple domains excluding agri-
culture). Notably, the KrishiVaani-OOD dataset
encompasses diverse domains, ensuring broader
applicability and enhancing the dataset’s utility
for domain-agnostic ASR research. To assess
the quality of the KrishiVaani corpus, we trained
KVWav2Vec, an IndicWav2Vec (Javed et al., 2023)

model for the Hindi language. The training dataset
combined 65 hours from IndicVoice (Javed et al.,
2024b) with 10 hours from the KrishiVaani training
split data.

3.2 Baselines

KVWav2Vec is compared against the following
ASR baselines:

1. IndicWav2Vec (Javed et al., 2023): Multilingual
wav2vec 2.0 model fine-tuned on Hindi dataset
with CTC loss.

2. IndicWhisper (Bhogale et al., 2023b): Whisper-
based ASR model fine-tuned on Hindi dataset with
byte-level BPE.

3. SALSA (Mittal et al., 2024): Hybrid model com-
bining Whisper encoder with Llama2-7B(Touvron
et al., 2023) decoder for low-resource Hindi ASR.
4. IndicConformer (Javed et al., 2024a): The
Conformer-based model fine-tuned on Hindi using
subword-character tokenization.

5. SeamlessM4T (Barrault et al., 2023): A
large-scale multilingual ASR and translation model
trained on 4.5M hours of speech.

3.3 LM/LLM Configurations

This section highlights how we apply both fine-
tuning and in-context learning approaches for ASR
post-correction using LMs and LLMs.

1. mT5-small (Xue, 2020): Multilingual encoder-
decoder with subword tokenization.

2. ByTS5-small (Xue et al., 2022): Tokenizer-free
variant of mT5 using UTF-8 bytes.

3. Llama-3-Nanda-10B (Touvron et al., 2023):
Hindi-focused LLM trained on 65B Hindi tokens.
4. ChatGPT-40 mini (Ma et al., 2023): Used



Model IndicWav2Vec | IndicWhisper | IndicConformer | SeamlessM4T | SALSA | KVWav2Vec
KrishiVaani-Known (WER) 23.7 23.42 242 49.94 87.59 22.38
KrishiVaani-Known (CER) 8.50 10.65 10.3 31.23 67.35 8.58
KrishiVaani-UnKnown (WER) 28.57 30.08 26.84 41.5 95.50 26.04
KrishiVaani-UnKnown (CER) 12.69 16.62 12.92 25 75.20 11.98
KrishiVaani-OOD (WER) 22.41 49.78 28.56 42.73 79.09 24.61
KrishiVaani-OOD (CER) 8.51 35.96 17.34 27.73 61.24 9.51

Table 1: Models Comparison across different KrishiVaani datasets

Model KVWav2Vec | ByT5 | mT5 | Llama
KrishiVaani-Known 22.38 2433 | 22.29 | 2637
KrishiVaani-UnKnown 26.04 26.77 | 25.70 37.75
KrishiVaani-OOD 24.61 25.12 | 2435 | 30.08

Table 2: Comparison of different WER (%) scores of
KVWav2Vec with other fine-tuned LMs/LLMs.

for zero-, one-, and few-shot in-context correction;
SBERT embeddings (Joshi et al., 2023) guide se-
lection of examples.

4 Results and Discussions

KrishiVaani-  KrishiVaani-  KrishiVaani-

Experiment Shots

Known UnKnown [010))}

KVWav2Vec - 22.38 26.04 24.61
ChatGPT-40 mini 0-Shot 29.33 31.89 27.65
With Random 1-Shot 28.36 30.26 2643
3-Shot 27.64 30.14 25.65

5-Shot 26.37 28.95 25.27

With SE Similarity ~ 1-Shot 27.64 30.26 26.16
3-Shot 26.81 29.90 25.74

5-Shot 23.59 26.35 22.62

Table 3: Comparative overview of different WER (%)
scores for different settings using in-context learning
through ChatGPT

ByT5-small mT5-small Llama ChatGPT-40 mini
2.29 0.97 10.17 2.03

Table 4: Latency (in seconds) of different models for
ASR post-correction.

In this section, we analyze and compare the per-
formance of KVWav2Vec with various other ASR
baselines. We perform Beam Search Decoding on
the KrishiVaani test sets and calculate the WER and
CER. As established earlier, for Indian languages,
CER serves as a much better metric to quantify
the errors in ASR systems. Referring to Table 1,
we observe that our KVWav2Vec model outper-
forms all existing baselines on the KrishiVaani-
UnKnown dataset and performs on par with them
for the KrishiVaani-Known dataset. Among the
baseline models, IndicWav2Vec achieved the best
performance on the KrishiVaani-OOD dataset, with
KVWav2Vec trailing by a narrow margin. This
shows that KVWav2Vec excels in conversational
ASR when the speaker or domain is familiar.

Table 2 presents a comparative analysis of our
KVWav2Vec hypotheses (before automatic ASR
correction) and our fine-tuned LMs/LLMs after cor-
rection. Smaller models (ByT5, mT5) perform bet-
ter in correction than the larger Llama model. Table
3 shows the performance of in-context learning for
ASR systems using ChatGPT-40 mini as a correc-
tion model. Without context (0-shot), it fails to cor-
rect ASR errors. With random context, it improves
using linguistic knowledge, and with sentence em-
beddings, it even restores missing tokens. The
5-shot settings with sentence embeddings-based
similarity showed improvement on the KrishiVaani-
OOD dataset as ChatGPT’s knowledge extends in
several other domains. However, as compared to
KVWav2Vec, it showed no improvement on the
other two test sets. This is likely due to limited in-
context examples for Indian languages in ChatGPT-
40 mini’s training for that domain. As seen in
Table 4, we summarize the latency of different
LMs/LLMs, indicating that mz5-small performed
the fastest automatic ASR post-correction. It also
points to the fact that smaller models like mT5 not
only achieve significant performance gains but also
are faster than larger LLMs. Hence, we incorporate
mT5 for automatic ASR correction in our pipeline.

5 Conclusion

We have thus demonstrated the effectiveness of our
custom pipeline in curating the KrishiVaani Hindi
speech corpus. KrishiVaani addresses key chal-
lenges in Hindi ASR by providing a high-quality
conversational speech dataset for real-world ap-
plications, particularly agriculture. Our proposed
model KVWav2Vec also shows impressive perfor-
mance for known and unknown scenarios. Our
comparative analysis of various LMs/LLMs for
ASR post-correction offers valuable insights into
model selection for reducing annotation effort. Fur-
thermore, leveraging the VAgyojaka tool signifi-
cantly accelerates the data refinement stage, facili-
tating efficient large-scale corpus creation.



Limitations

The pipeline leverages models like IndicWav2Vec,
ByT5, and Llama-3-Nanda, which are either
trained on large corpora or Hindi-specific datasets.
For languages that lack such pretrained models,
this pipeline may not deliver comparable results
unless similar resources are first developed, lim-
iting its plug-and-play potential across languages.
Moreover, the pipeline is not effective in handling
a code-switched speech dataset. The pipeline can
be modified to handle a code-switched dataset.
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A Detailed Pipeline for KrishiVaani

This section describes the generation of the Kr-
ishiVaani speech corpus through our custom
pipeline. Figure 1 highlights the design of this
multi-stage pipeline involving three stages of data
collection, speech corpus construction, and data re-
finement, respectively. The following subsections
give a detailed overview of each stage:

A.1 Data Collection

This stage gathers the required data to be processed
further. It is sequentially broken down into the fol-
lowing steps:

Domain Words List (1): We generate different
keyword lists (e.g., “khet’” means farming) con-
taining Hindi and English terms from different
dictionaries and Wikipedia articles on these do-
mains. We refine it using a keyword filtering mod-
ule relevant to YouTube Hindi videos®. YouTube
Hindi videos have English keywords associated
with them. Therefore, it is essential to have both
Hindi and English keyword lists.

YouTube Search Engine (2): We use the YouTube
search engine to find the corresponding videos on
these domains from the respective keyword lists.
We de-duplicate the retrieved videos. Our analysis
of these videos revealed that many of these videos
contained missing or inaccurate subtitles. There-
fore, we generated the transcripts for these videos.
Converting Video to Audio (3): We download the
video and convert it into audio using single channel
wayv format and 16 kHz sampling rate.

3We follow YCC licensing.



A.2 Speech Corpus Construction

Once the data collection stage is complete, the
speech corpus construction process begins, involv-
ing the following steps:

Voice Activity Detection (4): We conduct voice
activity detection (VAD) with a limited maximum
duration of 20 sec and average silence detection
using mp3split*. We also use speaker segmentation
from Pyannote to separate the speaker’s audio and
ensure the integrity of speech content as much as
possible.

Diarization (5): For speaker diarization, we seg-
ment and label an audio recording using Pyannote
(Bredin et al., 2020). The goal of this step is to de-
termine "who spoke when" within a multi-speaker
audio stream. This enables cleaner and more reli-
able training data for ASR models.

ASR (6): In this step, we use Hindi ASR to gen-
erate the transcripts of the converted audio files.
We considered multiple ASR models such as In-
dicWhisper (Bhogale et al., 2023b), IndicWav2Vec
(Javed et al., 2023), etc., to maintain flexibility.
Though IndicWhisper showcases a lower Word Er-
ror Rate (WER), we prefer IndicWav2Vec owing
to its lower Character Error Rate (CER). Since In-
dicWav2Vec captures fine-grained details at the
character level, it also helps to reduce further anno-
tation effort.

Forced Alignment (7): This step maps each word
in the utterance to its corresponding audio times-
tamp. We use a pre-trained IndicWav2Vec-Hindi
model based on the Connectionist Temporal Classi-
fication (CTC) criterion (Variani et al., 2018). This
step also benefits the upcoming data curation stage.
Audio-Text Corpus (8): After performing diariza-
tion and forced alignment, we combine the times-
tamps of the speaker(s) and the transcripts to create
the final speaker-wise utterances.

Automatic ASR Correction (9): We use the best
one of different fine-tuned LMs (ByT5 (Xue et al.,
2022), mT5 (Xue, 2020)) and LLMs (Llama (Tou-
vron et al., 2023), ChatGPT) to perform ASR post-
correction. This step enhances both transcript accu-
racy and annotation efficiency. The output of this
step is provided to the data refinement stage.

A.3 Data Refinement

For the entire stage of data refinement, we use the
VAgyojaka tool (Kumar et al., 2022a) for each of
the data curation, data validation, and data verifica-

*http://mp3splt.sourceforge.net/mp3splt, age/ home.php
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Figure 3: The reward system adopted to encourage data
curators and validators. Alongside standard compensa-
tion, we used A as 5% and J as 2% of the total number
of words for enforcing the reward system while curating
the KrishiVaani dataset.

tion steps. Before VAgyojaka, ASR curation was
a time-intensive process, where X hours of speech
data required 8X hours for curation. This time was
spent correcting ASR transcripts, validating forced
alignments, and checking speaker diarization. It
has proven to reduce this workload to 4-6X hours.
Figure 2 displays a snapshot of the VAgyojaka tool.

Data Curation (A): In this step, we collectively
perform transcription correction, utterance align-
ment, and speaker diarization. Due to the absence
of open-source guidelines for data curation in In-
dian languages, we create and use our own set of
guidelines for this purpose. We have used fifteen
annotators (experts in the Hindi language) for data
curation.

Post-Processing of Transcript (10): This step in-
volves normalizing the text by removing punctua-
tion and tags. We also back-transliterate English
words like “Local” as “lokl” using the transliter-
ation model (IndicTXlit (Madhani et al., 2023)),
which linguists further verify. We also check if
any edits are made in the transcripts, depending on
which, they can be sent back to the data curator.
Eventually, we split the audio based on utterance
alignment, which will be used for further validation
and verification.

Data Validation (B): Data validation is a crucial
step in ensuring the quality of the curated data. The
same fifteen annotators carried out the validation,
ensuring that no one validated their own curated
data. The data validator corrects the transcript of
the split audio. We also introduce a reward system
so that annotators can work better as data curators
and validators. As seen in Figure ??, whenever
any data validator makes edits less than a certain
threshold (), the data curator will be rewarded, or
else, the data validator will perform the subsequent



post-correction. If this step achieves less than a
certain threshold (9), the data validator will be re-
warded.

Data Verification (C): The Data verifier examines
the ASR transcript for the split audio and deter-
mines whether to include it in the final dataset.
These verifiers are Hindi language experts with
extensive experience. The verifier also helps in
complying with the reward system.

B Baseline Models Details

1. IndicWav2Vec (Javed et al., 2023), a multi-
lingual ASR model based on wav2vec 2.0, pre-
trained on 17,314 hours of Indian language audio
using self-supervised learning and fine-tuned with
CTC, achieving reduced WER for low-resource
languages like Hindi.

2. IndicWhisper (Bhogale et al., 2023b), a fine-
tuned version of OpenAI’s Whisper trained on
2,150 hours of Hindi audio using multilingual byte-
level BPE tokenization, balancing weak supervi-
sion with competitive WER.

3. SALSA (Mittal et al., 2024), a hybrid ASR
approach integrating Whisper’s encoder-decoder
with a decoder-only LLM (Llama2-7B) (Touvron
et al., 2023) to improve recognition in low-resource
settings through synchronous decoding. It is fine-
tuned on 10 hrs of FLEURS (Conneau et al., 2023)
Hindi dataset.

4. IndicConformer (Javed et al., 2024a), a 130M
parameter conformer-based ASR Hindi model com-
bining convolution and transformer layers to sup-
port Indian languages with a unified subword-
character tokenization strategy.

5. SeamlessM4T (Barrault et al., 2023), a multi-
lingual ASR and translation model covering 100
languages, leveraging 4.5 million hours of pretrain-
ing but with unexplored effectiveness in real-world
low-resource speech settings.

C LM/LLM Models Details

1. mTS: mT5 (Xue, 2020) belongs to the family
T5 models, which is an encoder-decoder based
LM. It is a multilingual version of the TS5 (Raffel
et al., 2020) model. The mT5 model uses a
subword-based tokenization strategy. It follows the
SentencePiece tokenizer (Kudo, 2018), which is
a variant of the BPE tokenizer. We selected the
mT5-small variant as the correction model.

2. ByT5: ByTS5 (Xue et al., 2022) model shares
the same architecture as the mT5 model. It is a

tokenizer-free variant of the mT5 model. Although
mT5 has a standard tokenizer, ByT5 processes
single-character tokens in UTF-8 encoded bytes.
We select the ByT5-small variant as the correction
model.

3. Llama: Llama-3-Nanda-10B-Chat (Tou-
vron et al., 2023) (Nanda) is a Hindi-focused,
instruction-tuned LLM with 10 billion parameters.
Built on the Llama-3 model, it has been extensively
trained on 65 billion Hindi tokens. Unlike general
multilingual models, Nanda prioritizes Hindi,
using a balanced 1:1 Hindi-English dataset during
training to enhance both languages’ capabilities
and make it well-suited for fine-tuned text correc-
tion tasks.

4. ChatGPT: Powered by OpenAl, ChatGPT (Ma
et al., 2023) is an advanced LLM that is used for
multiple downstream tasks, including text correc-
tion. Unlike fine-tuning for the above LMs/LLMs,
we use ChatGPT-40 mini for in-context learning
and transcript correction using zero-shot, 1-shot,
and few-shot learning. We use SBERT (Joshi et al.,
2023) to create sentence embedding for in-context
learning.

D KVWav2Vec Model

We acknowledge the potential bias in evaluating
KVWav2Vec solely on the KrishiVaani dataset.
The primary goal of our study is to investigate
whether fine-tuning the existing IndicWav2Vec
model with a relatively small domain-specific
dataset (KrishiVaani) could effectively support
rapid dataset curation. To demonstrate this, we
selected the best-performing baseline model (In-
dicWav2Vec) and fine-tuned it with KrishiVaani
data, thereby creating distinct test scenarios -
Known, Unknown, and Out-Of-Domain (OOD).
The overarching aim is to minimize human annota-
tion effort and accelerate data creation.

KVWav2Vec primarily serves to evaluate
whether a domain-specific fine-tuned model can ex-
pedite and enhance the data curation process effec-
tively, particularly in conversational and unknown-
speaker scenarios. While not claiming state-of-
the-art performance, we demonstrate its utility in
reducing human annotation effort significantly as
shown in Table 1

We experimented on the IndicWav2Vec model
fine-tuned with IndicVoice (IV) + KrishiVaani (KV)
vs IndicVoice alone, which showed modest but con-



Model KVWav2Vec | Wav2Vec-IV
KrishiVaani-Known 22.38 234
KrishiVaani-UnKnown 26.04 27.69
KrishiVaani-OOD 24.61 22.38

Table 5: Comparison of different WER and CER (%)
scores of KVWav2Vec with IndicVoice (IV) + KrishiV-
aani (KV) and IndicVoice (IV) alone

sistent improvements in both WER and CER across
Known and Unknown test sets.

E LLM-based Post-Correction

We explore both small LMs (ByT5, mT5) and
larger LLMs (Llama, ChatGPT) for automatic ASR
post-correction. Our experiments indicate that
smaller models (e.g., mT5) performed better than
larger LLMs like ChatGPT, guiding our choice
to integrate mT5 into our automatic correction
pipeline. Moreover, the central objective of our
work is to minimize human annotation effort and
accelerate high-quality data creation for conversa-
tional ASR in Hindi.

F Data Annotators

The annotation guideline is mentioned in the Kr-
ishiVaani Github’.

We have developed our in-house team and vol-
unteers who help us in data curation, data valida-
tion, and data verification tasks for the KrishiVaani
Dataset. We have trained them for the task and
made them familiar with the VAgyojaka tool, then
we ask them to do the following tasks. We have
paid 5% per hour for the data curation task and 2.5$
for both data validation and data verification tasks.
All the annotators were from India.

G Compute Infrastructure

Compute details: For all our pre-training and fine-
tuning experiments, we used two NVIDIA A100-
SXM4-80GB GPUs. Each training requires 4-48
hours.

Software and Packages details: We implement
all our models in PyTorch®

VAgyojaka Tool details: We developed the data
validation and data verification task in VAgyojaka
tool using the QT 6 framework’ .

H Prompts

>https://anonymous.4open.science/r/Krishi Vaani-2463/
®https://pytorch.org/
"https://www.qt.io/product/framework



ChatGPT Prompt

Example 1:

You are given an ASR hypothesis of a spoken utterance. The hypothesis may contain misrecognized
words, incorrect word segments, or code-switching mistakes. Your job is to produce the best
possible corrected text, relying on your knowledge of grammar and typical usage

Please correct any errors in

1. Incorrect transliteration of English words

2. Incorrect transliteration of English numbers

3. Incorrect transcription of native Hindi numbers

4. Misrecognition of underrepresented characters

5. Splitting of compound words

6. Incorrect word segmentation

There may be more than two errors in the ASR hypothesis. Output only the final corrected output
(no extra commentary)

Hypothesis: ratha yatra ke lie janabiijhakara vana tyuresta dvara taitalisa minata ki der1 k1 gathai

Predicted Output:

10
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