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Abstract

Hypergraphs effectively model higher-order relationships in natural phenomena,
capturing complex interactions beyond pairwise connections. We introduce a novel
hypergraph message passing framework inspired by interacting particle systems,
where hyperedges act as fields inducing shared node dynamics. By incorporating
attraction, repulsion, and Allen-Cahn forcing terms, particles of varying classes
and features achieve class-dependent equilibrium, enabling separability through
the particle-driven message passing. We investigate both first-order and second-
order particle system equations for modeling these dynamics, which mitigate
over-smoothing and heterophily thus can capture complete interactions. The more
stable second-order system permits deeper message passing. Furthermore, we
enhance deterministic message passing with stochastic element to account for
interaction uncertainties. We prove theoretically that our approach mitigates over-
smoothing by maintaining a positive lower bound on the hypergraph Dirichlet
energy during propagation and thus to enable hypergraph message passing to go
deep. Empirically, our models demonstrate competitive performance on diverse
real-world hypergraph node classification tasks, excelling on both homophilic and
heterophilic datasets. Source code is available at the link.

1 Introduction

Hypergraph Neural Networks (HNNs) [20], built upon Graph Neural Networks (GNNs) [29],
have demonstrated remarkable success in modeling higher-order relationships involving multiple
nodes [28]. In complex systems such as social networks [5, 32, 50] and biomolecular interac-
tions [41, 46], hypergraphs can effectively capture complex group dynamics compared to pairwise
graphs.

The multi-node, higher-order nature of hypergraphs naturally lends itself to an analogy with particle
dynamical systems. This is because hypergraph message passing, much like the inherent interactions
in particle motion, fundamentally involves multiple interacting components. Driven by this insight,
we introduce Hypergraph Atomic Message Passing (HAMP), a novel framework that reframes
hypergraph message passing through the lens of interacting particle systems. Our key innovation in
HAMP is the conceptualization of each hyperedge as a dynamic field that governs the shared dynamics
of nodes. As Figure 1 shows, HAMP updates hypergraph embeddings by superimposing the forces
exerted by the hypergraph’s nodes (particles). This framework offers significant advantages, including
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Figure 1: An illustration for HAMP framework. The property p can account for feature or velocity.

the ability to mitigate over-smoothing and facilitate deep message passing on both homophilic and
heterophilic datasets, a claim supported by our experimental findings in Section 6.3.

Particle theory takes various forms, traditionally categorized into first-order and second-order systems.
While first-order systems offer a direct approach to defining evolution, the second-order systems
are inherently more stable, converging towards an asymptotically stable state. Both first-order and
second-order systems exhibit desirable separability properties stemming from the balance between
attractive and repulsive forces [27, 31]. Repulsive forces are crucial for separating distinct features,
while attractive forces encourage particles of the same category to cluster, allowing for the refinement
of essential features. Through this mechanism, we construct the interaction forces within HAMP.

Inspired by particle systems and informed by experimental observations, we identify a critical need
for a delicate balance between attractive and repulsive forces. Excessive attraction often leads to
feature over-smoothing [34, 35], while unchecked repulsion can cause feature explosion [44]. To
address these issues and ensure system stability, we introduce the Allen-Cahn force [1] as a balancing
mechanism. We theoretically demonstrate that the resulting system exhibits favorable separability and
that its solutions converge to an equilibrium state, thereby mitigating both over-smoothing and feature
explosion. Our focus on second-order systems is further motivated by their inherent theoretical
stability, which ensures robustness even with deeper network layers. In practical tasks, ambiguous
cases where distinct states are hard to differentiate often lead to uncertainty [42]. To address this, we
incorporate a stochastic term into HAMP, driven by Brownian motion, which results in a stochastic
differential equation. Our main contributions are summarized as follows:

* We propose HAMP, a novel hypergraph message passing framework based on particle
system theory, filling in the theoretical gap in understanding hypergraph message passing
from the perspective of particle system.

* We design two hypergraph message passing algorithms, HAMP-1 and HAMP-I|, constructed
through first-order and second-order particle dynamical systems.

* Theoretically, we prove that HAMP maintains a strictly positive lower bound on the hyper-
graph Dirichlet energy, effectively resisting over-smoothing.

» Empirically, through numerical experiments, we should that HAMP achieves competitive
results on node classification benchmarks. Notably, on heterophilic hypergraphs, HAMP
consistently outperforms the current state-of-the-art baselines by a margin of 1-3%.

2 Preliminaries

Hypergraphs. A hypergraph is a generalization of a graph in which an edge can join any number
of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. We can denote a
hypergraph as G = {V, £}, with [V| nodes and |€| hyperedges, where V = {v1, ..., vy} is the set
of nodes and £ = {e1, ..., e} is the set of hyperedges. £(7) denotes a set containing all the nodes



sharing at least one hyperedge with node i. The incidence matrix H € RIV!*I€l is a common notation
in hypergraph. Its entries are defined as H; . = 1 if node ¢ belongs to hyperedge e, and 0 otherwise.

Message Passing in Hypergraphs. Neural message passing [23, 3] is the most widely used
propagator for node feature updates in GNNs, which propagates node features while taking into
account their neighboring nodes. Next, we generalize graph message passing to hypergraph, where
multiple nodes interaction reflected in a hyperedge is considered,
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where zg) denotes the feature embedding of hyperedge in the [ layer. @gl) and @él) denote
differentiable permutation invariant functions (e.g., sum, mean, or max) for nodes and hyperedges,
respectively. U(!) denotes a differentiable function such as MLPs.

Neural ODEs. Neural ODEs [18, 10] are essentially ordinary differential equations (ODEs), where
the time derivative of the hidden states are parameterized by a neural network fy,

dx(t) _

dt
where t denotes time, x(t) are the system state, and 6 is learnable parameter. It can be understood
as the continuous limit form of the residual network, e.g, x(t + 7) = fp (x(¢),t) + x(t), where 7

denotes the step size of time. Thus, Neural ODEs model the continuous dynamics system that evolve
hidden states over a continuous range of “depths”, analogous to layers in traditional deep networks.

fo (X(t), t) ) X(O) =X, 2

3 Hypergraph Message Passing based on Particle Dynamics

Viewing HNNs as continuous systems allows for the application of physical models to elucidate and
investigate their properties. A compelling conceptual analogy arises when comparing hypergraph
message passing in deep learning with interacting particle systems studied in statistical physics.
These disparate fields display remarkable structural and dynamical resemblances: the local potential
field-governed interactions among particles in many-body systems are analogous to the aggregation
operations in HNNs. Concurrently, the emergent collective behaviors observed in self-organizing
dynamics demonstrate a functional equivalence to information propagation mechanisms in HNNs.
As message passing delineates the transfer of information between entities, particle systems can
represent this by having particles acting as entities that exchange information through the transition
of specific attributes. Moreover, such particle systems can be endowed with hypergraph structures by
interpreting hyperedges as distinct fields that exert influence over all nodes encompassed by them.

Fields and Hypergraphs. The hypergraph uses hyperedges which reflect the common relationship
among multiple nodes. Such multi-nodal relationships are aptly described using “fields”. Each field
imposes a common dynamic on the nodes under its influence, which is equivalent to a hyperedge
defining a unified information propagation step for its constituent nodes. A node participating in
multiple hyperedges thus receives information from diverse sources due to field superposition. Thus,
hyperedges reflect both the interactions of particles within a specific region and the concurrent
influence of the external environment, which together dictate the propagation dynamics. Based on
these observations, we propose a hypergraph message passing framework for describing information
dynamics. We formalize a composite field for each node i by F; = Y Ff + Fy to encapsulate the

e:i€e
hypergraph structure. This field F; aggregates influences akin to those in a particle system, where F}’
represents the interaction energy for node ¢ with the edge e, and Fy; is the damping energy.

Interaction Force. Interaction force forms a basic association between hypergraph message passing
and particle dynamics. We consider particles identified by their specific attributes p; € R in the
particle system. Then, we define the interaction energy as following

> Ff= % YD (pi—p;) fs(pispjie)(pi —py), e€E. ©)
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If f3(pi,pj,e) > 0, node 7 is attracted by node j. If fg(pi,pj,e) < 0, node 7 is repulsed by
node j. They correspond to two basic interaction forces: attraction and repulsion. Note that in the
previous model similar to Eq. 3, the only interaction is attraction. It relies on an implicit belief that
all the hyperedges only connect similar nodes. But this is not always true in the real world. Hence,
introducing repulsion into hypergraph neural networks is significant.

Damping Force. The specific formulation of the damping term can vary. The inclusion of damping
in neural networks serves two principal purposes. Firstly, it is crucial for ensuring system stability.
If inter-particle repulsive forces do not attenuate adequately with increasing distance, particles risk
unbounded separation or unbounded Dirichlet energy, which could lead to network collapse. A
damping term mitigates this by exerting a dominant influence on the dynamics, especially near
the system’s boundaries. Secondly, the damping term has been demonstrated to promote various
collective dynamics in numerous systems [30, 31]. For damping, we take double-well potential
Fy = ¢(1 — p?)? with the coefficient . The corresponding damping force is given by the Allen-
Cahn force f4(p) = V,Fy = 6(1 — p?)p [38, 19], where & denotes the strength coefficient. This
formulation exhibits favorable separation properties, as will be demonstrated in Section 5.

Hypergraph Dynamics. Interaction term can be formulated using two primary approaches: re-
ductive and non-reductive expressions. Reductive methods, such as those based on convolution
coefficients [22] or attention coefficients [2], often simplify hyperedges into clique-like structures,
which can lead to the loss of crucial high-order information. In contrast, non-reductive expressions,
like star expansion, aim to preserve this high-order information by explicitly connecting each node
to the hyperedges it belongs to. We take the non-reductive expression and Allen-Cahn force to
design interaction force fz and damping force f;. In fact, the particle attribute p can represent
diverse properties, such as features or velocity. This flexibility in defining p naturally allows for the
formulation of both first-order and second-order particle systems.

First-order ODEs. Inspired by the opinions dynamics [33], we have p; — x; € R that interact
with each other according to the first-order system. Taking gradient of composite field F', we have

dXi
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where f3 is a parameterized function. This form has connection with diffusion process of hypergraph.

We defer the detailed analysis to Section 4.

Second-order ODEs. Inspired by the flocking dynamics [33, 15], this is second-order model where
the attribute is the velocity, p; — v; € R<, which is coupled to the feature x; € R<. In this sense,
information can be propagated by the evolution of feature and velocity of nodes,

d i d %
(;; = Z Zf@(xi,xj,e)(vj —v;) + fa(v;), where d); =vV;. 5)
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From ODEs to SDEs. To capture incompleteness and uncertainty within hypergraph data, stochas-
ticity is introduced into the particle system. For instance, such uncertainty can arise when particles
from different classes exhibit similar features. To model this inherent randomness, these stochastic
processes are often described using stochastic differential equations (SDEs). We assume these SDEs
are driven by Brownian motion B;:

dp(t + 7) = VF(p(t))dt + ed B, where E[dB,] = 0 and Cov(dB,) = I, (6)

where I; denotes the d x d identity matrix. In essence, SDEs describe the changes in system state
under infinitesimal time variations. Here, particle states undergo continuous evolution through both
deterministic drift term and stochastic diffusion component. It can describe hypergraph evolution
of neural message passing in more realistic scenario. According to [15, 24], this model can achieve
self-organization in a finite time, which enables the system to adjust its own state in the shortest time.

Hypergraph Message Passing. We introduce a unified hypergraph message passing framework,
called Hypergraph Atomic Message Passing, or HAMP, given in Eq. 6. By instantiating this frame-
work with either a first-order or a second-order system formulation, we obtain two variants: HAMP-I
and HAMP-II, respectively. Detailed implementations of both approaches are provided systematically
in Appendix A to ensure clarity and maintain manuscript focus.



4 Scale Translation of Hypergraph: Diffusion and Particle Dynamics

We examine hypergraph message passing through two complementary lenses—microscopic and
macroscopic. From the microscopic viewpoint, HAMP is cast as a particle-dynamics system, as
previously discussed. From the macroscopic standpoint, message propagation is seen as a diffusion
process, which reveals that the particle-based formulation naturally subsumes diffusion-based models
and overcomes their intrinsic limitations.

Hypergraph Diffusion. Consider node feature space = R? and tangent vector field space
TQ =R Forx,y € Q, 1,9 € TS, and %i,j = —&j,:» we adopt the following inner products:

X,y) = in}’j, [t 9] = Zzhf,j LijVij- @)
%, i>j e€€

Here i ; is a tuple related to node ¢, j and hyperedge e and k7 ; = 0 if H; (H; . = 0. We set h{ ;

to satlsfy >. > h¢; = 1. For any u € T, by the adjoint relation [u, Vx| = (x,divu), where
j e€€
Vx = x; — x;, we can derive (divu); = > > h{ ;u;. Then, the hypergraph diffusion process is
i e€€
dXi .
at = leVXi = Z Z hze,] (Xj — Xi)- (8)
j e€€&

For simplicity, we rewrite Eq. 8 in matrix form ‘fi—’t‘ = —Lx,where L =1—( Z h ;) is a hypergraph

operator. If L is positive semi-definite, we interpret Eq. 8 as a diffusion-type process of hypergraph.
Different parameterizations of k7 ; then yield distinct diffusion equations. For example, applying a

_1 1

forward Euler discretization to Eq. 8 and setting () h{ ;) = Dy, 2 HWD_'H'D, ? recovers the
ee&

simplified HGNN [20] without channel mixing.

Connecting Particle Dynamics. Since Eq. 8 coincides with the self-organized dynamics in particle
system [33], we reinterpret Eq. 8 not as a standard hypergraph diffusion process, but rather as particle
dynamlcs where h7 ; denotes the interaction force between nodes ¢ and j under field e. In fact, Eq. 8
is a special case of Eq. 4 where only attractive forces are considered in the message propagation. As
we show in Section 5, this simplification is atypical in particle systems and leads to over-smoothing.

S Theory of Anti-over-smoothing

For diffusion-type hypergraph networks, we define the hypergraph Dirichlet energy of x € RV >4 ag

E(x) := Z ZHzeH]e

i,j=1e€&
in hypergraph message passing.

— x;||* = tr(x " £x). Furthermore, we will define over-smoothing

Definition 5.1. Let x(Y) denote the hidden features of the I** layer. We define over-smoothing in
HNNs as the exponential convergence to zero of the layer-wise Dirichlet energy as a function of [,
ie., B(x() < C1e~C2!, with positive constants C; and Cs.

Why Do HGNN Cause Over-smoothing? The normalized hypergraph Laplacian matrix is defined
by £ = I— P, where P is the propagation matrix derived from the incidence matrix H. In an HGNN,
the feature at layer [ without activation o evolves according to x() = P!=1x(®e® ...@0-1),
However, this purely diffusive propagation inevitably induces over-smoothing: one can show
E(x(”) < Ce7"1 [9], where ~ is the smallest non-zero positive eigenvalue of £. This over-
smoothing behavior stems from the intrinsic diffusion dynamics. Because £ is symmetric positive
semi-definite, repeated application of P causes node representations to decay exponentially towards
a limiting state—which is zero, thereby eroding discriminative power.

Why Do HAMP Avoid Over-smoothing? We now derive theoretical guarantees for the collective
behavior of models Eq. 4 and Eq. 5. They show that the addition of a repulsive force enforces



a positive lower bound on the Dirichlet energy. Technically, we suppose there exists { fg} such
that Z = {1,--- , N} can be divided into two disjoint groups with Ny, Ny particles respectively:
fa(hi;) >0, for {i,5} € Zy or I and fg(h$ ;) < 0, otherwise. We designate {:cgl)} = {x;li €
7Z,} and {xé.z)} := {x|j € Z»}. Finally, we impose the symmetry fz(h{ ;) = fg(h§,;), which
reflects equal-and-opposite interactions under the same field. Under these conditions, one can show

that the Dirichlet energy of our system admits a strictly positive lower bound, as follows. We leave
the detailed proofs in Appendix B.

Proposition 5.2 (Lo separation of HAMP-I). For Eq. 4, suppose the above assumptions are sat-

N N

isfied. Define the mean value X = % 3 x;, and the second moments Ms(x) := Y x2. Then
i=1 i=1

for sufficiently large N1, No, there exist constants \_, Ay, such that if the initial data satisfies

A(0) := % < Ay, then, there holds that the Lo separation

Ms(?) <A+ (AM0) = A )e M, )

M= o) -z <

with a positive constant y, where Ma(t) 1= M (x(D(2)) + M (x@ (1))

Proposition 5.3 (L separation of HAMP-II, [19]). For Eq. 5, we set0 < S < fg(h; ;) for{i,j} € Th

and 0 < fg(h$ ;) < D otherwise, with k := max{|£(i)|}. If the initial 11D (0) =@ (0)] > 1,
’ i

and if there exists a positive constant 1) such that
a(S — D)kmin{Ny, Na} > § + 7, (10)

Then the system has a bi-cluster flocking.

Proposition 5.4 (Lower bound of the Dirichlet energy). If the hypergraph H is a connected one, for
Eq. 4 with the conditions of Theorem 5.2, or for Eq. 5 with conditions of Theorem 5.1 in [19], there
exists a positive lower bound of the Dirichlet energy.

6 Experiments

6.1 Experiment Setup

We conduct comprehensive experiments to evaluate the proposed models on node classification task.
For more experimental details such as datasets and hyperparameters, please refer to Appendix C.

Datasets. Following ED-HNN[43], the real-world hypergraph benchmarking datasets span diverse
domains, scales, and heterophiilic levels. They can be divided into two groups based on homophily.
The homophilic hypergraphs include academic citation networks (Cora, Citeseer, and Pubmed) and
co-authorship networks (Cora-CA and DBLP-CA). The heterophilic hypergraphs cover legislative
voting records (Congress, House, and Senate) and retail relationships (Walmart).

Baselines. The selected baselines cover two types of hypergraph learning frameworks, compris-
ing both reductive and non-reductive approaches. The reductive methods include HGNN [20],
HCHA [2], HNHN [14], HyperGCN [47], and HyperND [37]. The non-reductive methods include
UniGCNII [26], AllDeepSets [11], AllSetTransformer [11], ED-HNN [43], and HDS?% [48].

6.2 Node Classifications on Hypergraphs

In this section, we evaluate HAMP-1 and HAMP-II on nine real-world hypergraph benchmarks for
the node classification task. Tab. 1 reports the accuracy on both homophilic and heterophilic datasets.
As HDS®? does not provide results on these benchmarks, we reproduce its performance using the
official open-source code and perform hyperparameter tuning following the original paper. For other
baselines, our results are consistent with those reported by ED-HNN. Overall, our models demonstrate
competitive performance across all nine datasets. Notably, the improvement is more pronounced on
heterophilic datasets, with the largest accuracy gain of 3% observed on Walmart dataset.



Table 1: Node Classification on standard hypergraph benchmarks. The accuracy (%) is reported with
a standard deviation from 10 repetitive runs. (Key: Best; Second Best; Third Best.)

Homophilic Cora Citeseer Pubmed Cora-CA DBLP-CA
HGNN 79.39+1.36  72.45+1.16 86.44+0.44 82.64+1.65 91.03+0.20
HCHA 79.14£1.02 72.42+1.42 86.41+0.36 82.55+0.97 90.924+0.22
HNHN 76.36+1.92  72.64+1.57 86.90£0.30 77.19+1.49 86.78+0.29
HyperGCN 78.45+£1.26  71.28+0.82 82.84+8.67 79.484+2.08 89.38+0.25
UniGCNII 78.81+1.05 73.05+£2.21 88.25+0.40 83.60+1.14 91.69+0.19
HyperND 79.20£1.14  72.62+1.49 86.68+0.43 80.62+1.32 90.354+0.26
AllDeepSets 76.88+1.80 70.83+1.63 88.75£0.33 81.97+1.50 91.27+0.27
AllSetTransformer 78.58+£1.47 73.08+£1.20 88.72+0.37 83.63+1.47 91.53+0.23
ED-HNN 80.31£1.35 73.70£1.38 89.03+0.53 83.97+£1.55 91.90+0.19
HDSo% 80.65+1.22 74.874+1.12 88.81+0.43 84.95+£0.98 91.49+0.25
HAMP-I 81.18+1.30 75.22+1.62 89.024+0.38 85.23+1.15 91.66+0.17
HAMP-II 80.80£1.62 75.33+1.61 89.05+0.41 84.89+1.53 91.67£0.23
Heterophilic Congress Senate Walmart House
HGNN 91.26%1.15 48.59+4.52 62.00+0.24  61.394+2.96
HCHA 90.43+1.20 48.62+4.41 62.35+£0.26 61.36%2.53
HNHN 53.35£1.45 50.93+6.33 47.184+0.35 67.8042.59
HyperGCN 55.124+1.96  42.45+3.67 44.744+2.81 48.324+2.93
UniGCNII 04.81+0.81 49.30+4.25 54.45+£0.37 67.25+2.57
HyperND 74.63+£3.62 52.82+3.20 38.104+3.86 51.70+3.37
AllDeepSets 91.80+1.53 48.17+£5.67 64.55£0.33 67.82+2.40
AllSetTransformer 92.16£1.05 51.83+5.22 65.464+0.25 69.33£2.20
ED-HNN 95.00£0.99 64794514 66912041 72454228
HDS°% 90.91+1.52  66.90+£5.52 63.38+0.48  71.30£1.90
HAMP-I 95.0940.79  69.44+6.09 69.904+0.38  72.724+1.77
HAMP-II 95.26+1.34 70.14+6.08 69.94+0.37 72.60+1.23

6.3 Ablation Studies

In this section, we conduct several ablation experiments on real-world datasets to assess our model
design, and provide empirical validation for our theoretical findings. For more ablation experiments,
see Appendix C.2.

Impact of the Number of Layers on HAMP-I and HAMP-II. To assess the effectiveness of
different methods in deep HNNs, we compare three representative baselines with our proposed
HAMP models. Unlike Pubmed, DBLP-CA, Senate, and House, the Cora, Citeseer, and Congress
datasets generally perform better in shallow networks, but worse in deep networks. Therefore, we
focus on these datasets to demonstrate HAMP’s advantages in deep architectures. As shown in Fig. 2,
HAMP-I| consistently outperforms other methods as depth increases, while competitors suffer from
accuracy drops. This ability highlights the potential of HAMP to capture complex representations
and maintain stability, making it a valuable framework for deep HNNs.

Impact of the Repulsion and Allen-Cahn Forces on HAMP-I and HAMP-II. In addition to
the theoretical analysis, we conducted ablation studies to investigate the individual and combined
effects of the repulsion force f; and the Allen-Cahn force f; on both HAMP-I and HAMP-II. The
results given in Tab. 2 show that incorporating the repulsive force significantly improves classification
performance. In HAMP-I, enabling repulsion alone yields notable gains over the baseline, while the
Allen-Cahn term alone offers moderate improvements. Notably, combining both terms consistently
achieves the best accuracy across all datasets. The synergy between the repulsion and Allen-Cahn
terms further boosts performance, confirming that these particle system-inspired mechanisms play
complementary roles: repulsion term prevents feature over-smoothing by separating node embeddings,
whereas Allen-Cahn term balances attraction and repulsion to promote class-dependent equilibrium.
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Figure 2: An empirical analysis of the depth-accuracy correlation in deep neural networks. The
shaded area represents the standard deviation, helping to show the range of accuracy fluctuations.

Table 2: Node Classification on some standard hypergraph benchmarks. The accuracy (%) is reported
from 10 repetitive runs. (Key: fj: repulsion; f4: Allen-Cahn; Best.)

f 5 fa ‘ Cora  Citeseer Pubmed Congress Senate Walmart House
X X | 7567 70.59 87.93 93.47 60.14 69.86 69.88
HAMP-I v X | 7597 70.60 88.23 93.65 61.69 69.73 69.57
X v | 8059 74.67 88.77 94.67 65.63 69.73 71.55
v « | 8118 75.22 89.02 95.09 69.44 69.90 72.72
X X | 77.18 71.75 88.68 94.35 60.14 69.84 70.46
HAMP-II v X | 7740 71.69 88.77 94.63 59.58 69.80 69.63
X | 7950 74.25 88.80 94.12 64.51 69.86 70.96
v « | 8080 75.33 89.05 95.26 70.14 69.94 72.60

Impact of Noise on HAMP-1 and HAMP-II.  Fig. 3 illustrates

the effect of adding stochastic component into deterministic mes- 75 Senate
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6.4 Vertex Representation Visualization Figure 3: Significance plot for

o ) ) noise on Senate dataset.
To more intuitively validate the progressive refinement of vertex

representations in our HAMP methods, we use t-SNE [39] to

visualize the vertex evolution process of HAMP-I and HAMP-II on Congress dataset at different
epochs. As shown in Fig. 4, we visualize the vertices based on the representations obtained at epoch
1, éE, iE, LE and E, where E is the total number of epochs. From Fig. 4, we have the following
three observations:

* When epoch = 1 (subgraphs (a) and (f)), the node feature representations exhibit a chaotic
distribution, and it is difficult to distinguish the number of categories. As training progresses,
the clustering entropy shows a monotonically decreasing trend.

* Subgraphs (e) and (j) show the visualization results at convergence for HAMP-I and HAMP-
I, respectively. The final category boundaries are clearer in HAMP-II than in HAMP-I,
reflecting the geometry refinement enabled by HAMP-II’s deeper message passing.

* Comparing subgraphs (b) and (g), HAMP-I is still in the early stages of categorization,
while HAMP-1I shows a significantly improved clustering effect. Notably, HAMP-II has
successfully distinguished six distinct categories, confirming that HAMP-II achieves faster
cluster than HAMP-1 due to the second-order mechanism.



(a) Atepoch = 1. (e) Atepoch = E.
A

(f) Atepoch=1. (g) Atepoch = %E. (h) At epoch = iE. (i) Atepoch = %E (j) Atepoch = E.

Figure 4: The t-SNE visualization of vertex representation evolution of HAMP-I (the first row) and
HAMP-I1I (the second row) on Congress dataset. The colors represent the class labels.

7 Related Work

Hypergraph Neural Networks. Hypergraph learning was first introduced in [51] as a propaga-
tion process on hypergraph. Since then, hypergraph learning [21, 28] has developed extensively.
As an extension of GNNs, Feng et al. [20] proposed HGNN that effectively captures high-order
interactions by leveraging the vertex-edge-vertex propagation pattern. Further, HGNN™ [22] in-
troduced hyperedge groups and adaptive hyperedge group fusion strategy as a general framework
for modeling high-order multi-modal/multi-type data correlations. Following the spectral theory
of hypergraph [47], SheafHyperGNN [16] introduced the sheaf theory to model data relationships
in hypergraph more finely. Inspired by Transformers [40], several HNNs [2, 11, 12] enhanced the
feature extraction capability for hypergraph through attention mechanism and centrality for positional
encoding. Different from using vertex-vertex propagation pattern, several works [11, 26, 43, 48]
have considered employing multi-phase message passing. Among these, UniGNN [26] presented
a unified framework that that facilitates the processing of all hypergraph data through GNNs. In
contrast, ED-HNN [43] and CoNHD [49] were developed from the perspective of optimization of
hyperedge and node potential. Additionally, HDS®?¢ [48] adopted control-diffusion ODEs to model
the hypergraph dynamic system. By contrast, our method is based on the particle system theory,
employing the first-order and second-order systems to understand and design HNNs.

Collective Dynamics. Watts and Strogatz [45] first mathematically defined a small-world network
and explained the reasons behind the collective dynamics. Many researchers are interested in how
active/passive media made of many interacting agents form complex patterns in mathematical biology
and technology. Battiston et al. [4] showed that higher-order interactions play a crucial role in
understanding these complex patterns. These complex patterns can be seen in animal groups, cell
clusters, granular media, and self-organizing particles, as shown in [7, 25, 31] and other references. In
many of these models, the agents move into groups based on the attractive-repulsive forces [8, 17, 6].
For example, Fang et al. [19] have studied the Cucker-Smale model [13] with Rayleigh friction
and attractive-repulsive coupling, and [27] showed a similar collective phenomenon with stochastic
dynamics. Furthermore, the ACMP [44] was based on Allen-Cahn particle system and incorporated
the repulsive force, providing inspiration for our work in hypergraph learning.

8 Conclusion

In this paper, we introduce a novel hypergraph message passing framework inspired by particle system
theory. We derive both first-order and second-order system equations, yielding two distinct models
for modeling hypergraph message passing dynamics that capture full hyperedge interactions while
mitigating over-smoothing and heterophily. The proposed models further integrate a stochastic term
to model uncertainty in these interactions and can alleviate over-smoothing in deep layers. By casting



HNNS in a physically interpretable paradigm, our model balances high-order interaction modeling
with feature-diversity preservation, offering both theoretical insights and practical advances for
complex system analysis. In future work, we plan to extend the proposed methods to protein-structure
and sequence design for the discovery of novel antibodies and enzymes.
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A Algorithms

Complexity Analysis. Here, we analyze the computational complexity of one layer in HAMP-|
and HAMP-II. Analytically, the time complexity is O (|V||€]c* + |V|c), where [V, |€] and ¢ are the
number of nodes, number of hyperedges and number of hidden dimension, respectively. However, the
incidence matrix H is a sparse matrix, so the time complexity is O ((tr(D,) + tr(D.))c? + [V|c),
where tr(D,) is the sum of the degrees of all nodes and ¢r(D..) is the sum of the number of nodes
contained in all hyperedges. The detailed process of HAMP-I and HAMP-II are shown in Algorithm
1 and Algorithm 2.

Algorithm 1 The HAMP-| Algorithm for Hypergraph Node Classification.

Input: the incidence matrix H, the node feature X, and the node labels Y .

—_

2: Output: the model prediction accuracy .

3: Initialization: the time 7', the step size 7 and all parameters of model .

4: while not converged do

5:  Node feature mapping X = Linearmap(X) ;

6:  Set the initial time ¢ = 0, the initial node representation X (0) = X;

7: whilet < T do

8: Message passing from V to £: Xy_,¢(t) = ©1(X(¢), H) ;

9: Message passing from € to V: Xe_,p(t) = ¥ (X(t), P2 (Xy_e(t), H));
10: Compute particle dynamics as

X(t+71)=X(t)+70 | Xeoy(t) — wX(t)+ 0fa(X(t)) +eB(t)+6X(0) | ;
—_—— ——
Interaction Force Allen-Cahn Force Noise

11: Updatat =t + 7;

12:  end while
13:  Input the node representation into the classifier X°“* = MLP(X(T));
14:  Compute the model prediction labels Y = Softmax(X°“") and compute the loss function ;

15:  Update all parameter by back propagation using the Adam optimizer ;
16: end while

Algorithm 2 The HAMP-II Algorithm for Hypergraph Node Classification.

Input: the incidence matrix H, the node feature X, and the node labels Y .

1:

2: Output: the model prediction accuracy .

3: Inmitialization: the time 7T, the step size 7 and all parameters of model .

4: while not converged do

5:  Node feature mapping X = Linearyy,(X) ;

6:  Set the initial time ¢ = 0, the initial node representation X (0) = X ;

7:  Set the initial velocity V(0) = Linear(X(0)) — X(0);

8: whilet < T do

9: Message passing from V to £: Vy_,¢(t) = ©1(V(t),H);
10: Message passing from € to V: Ve, (t) = ¥ (V(¢), P2 (Vy_e(t), H));
11: Compute the velocity of particle dynamics system as

Vit+7)=V(@t)+ 70 | Veop(t) —w V(@) + 6fa(V(t)) +eB(t)+8V(0) |
——— ——
Interaction Force Allen-Cahn Force Noise

12: Compute the representation by X (¢t + 7) = X(t) + 7V (t + 7);
13: Updatat =t +7;

14:  end while
15 Input the node representation into the classifier X%t = MLP(X(T));
16:  Compute the model prediction labels Y = Softmax(X°“!) and compute the loss function ;

17:  Update all parameter by back propagation using the Adam optimizer ;
18: end while
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Limitations Discussion. Our particle dynamics-based hypergraph message passing framework
assumes a static hypergraph topology. While this assumption is valid for social and biological
hypergraphs with slowly evolving interactions, it may not hold in highly dynamic scenarios like fi-
nancial transaction networks, where hyperedge topologies change abruptly. Consequently, effectively
modeling temporal hypergraphs with evolving structures remains an open challenge.

B Theoretical Results and Proof

Technically, we suppose there exists { f§} such thatZ = {1,--- , N'} can be divided into two disjoint
groups with N1, Ny particles respectively: fg(h ;) > 0, for {i,j} € Z; or Iy and fz(hs ;) < 0,
otherwise. We designate

(e} = {xili e T}, {2} = {x;]j € ). (11)
The model is channel-wise, hence we use x instead of x in the proof.
First, let’s define the relevant notation,

The mean value:

1N
Ti= ; ;. (12)
The deviation values:
The variance of values within each group:
1 1
Dy — ~(1)y2 @2y _ + ~(2)12
var(z'') = N, Z(xl )%, var(z\?) = N, Z(xl ). (14)
The second moments:
N1 N2
Ma(z W) =3V, My(a®) =Y (@P)2. (15)
i=1 i=1
And others: .
My := My(2W) + My(2?) = var(zV) + var(z?). (16)
e, e, +
=R =YY m (a7
jEe ec& jce
k= max{[£(9)]). (18)
D = mkax{i/),i’_}, D™ :=max{D_ }. (19)
e
D = max{ 7 o} 0)

Technically, we set N; = Ny := Njy. This assumption is that N; is comparable to Vs, i.e., there
exists a positive constant x satisfying %Nl < No < kNV;.

We can rewrite Eq. 4 as

i 2 thi % X SR 6~ al) 4 821 (20

ec&(a) ec&(i) j=1
2 2 2 1 2 2 2
()7722}1 () () Zz () g))+5xg)(17(x§))2).
ees(J)J’ 1 eEf(J)Z 1
(21)
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Set the matrix A€ as

€

Ae . — h’i,i
,j e
—h

R

and and designate C4 := IIIEI?{F(Ae)}, where F'(A°) is the Fiedler number of A°.

Lemma B.1 (L, estimate for Ms). There exists a positive constant M35° such that

sup My(t) < Ms°

0<t<o0
Proof. Note that hf”i hs; =, then
d
el (1)
dtM2 Zm i
e, + €= 2
= Z > D Z > D hiy (]
i=1ec&(i) ' €e 1=1ec&(i) jEe
25
1 1
g 2@ P @h?)
2D _ (1) (1) (2) COAMES)
lezhlll Z; ZZ i )xl
ecf i,i’'€e 668 i,j€e
Ny
20 1 1
+ EZ( 21— (V)2
_ _72 Z hf:,r (1) (1) Z Z (2) EU)xgl)
66511 Ee eef i,j€e
20 1 1
+ EZ@E D21 - (2(")?).
i=1
Similarly,
d 2 2 2252
& Q(I( )) 5 4 _] ]
7j=1
1 2 2 1 24 (2
A h13(§) () ZZ ‘ ())é)
2 ecf j,j'€e eeé'j i€e
N2
20 2 9
N = )
=1

Define the total second moment My := My (2™1)) + My(2(?). Tts time derivative is:

d d d
— My = — My(2W) + — My(2?).
a M2 = g M @) + Mo (2)

By discarding the non-positive squared terms (first two sums), we obtain the inequality:

% < NIZZ 22— oM - ZZ oD — o) ®

ecf i,jce eef,'g i€e
No
20 (12 (1)y2y , 20 (2)\2 (2)2
+N1i§:;<wi P @)+ 5 Sl - @),
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(22)

(23)

ENCING

(24)

(25)

(26)

27)



By the Cauchy-Schwarz inequality,

Ny 2 N1
(37 = (Z(d”)?) <N (@)

Then we have

S (1 )+ S (1 )

N1 N, N>
_252 (1)y2 252 (1)y4 252 (2)\2 252 (2)y4

i=1 =1 i=1 i=1

B Sop B () B 2 (St )
ST (& Np 0 7 (V2P ’ (28)

i=1

2 2
M M MY M
=26 [ =2+ =2 | -26||=Z| + |2
N1 NQ Nl N2

(1) (2) (1) @)\ 2
<2 M72+M2 s M, +M2
N1 NQ Nl N2

SELIVA.

—N/ N (MQ) ’
where N’ = min{Ny, No} and N = max{Ny, Na}.
So we have

M2 7N1 Z Z ( (@) _ (1) ) + (! (1) ) Z Z ( n _ (2) +(x§2))2>

ecf i,jEe 668] i€e

sfzm LaPP) + 2 zz( <52>>>+%‘3M2 s

ecfi,jEe ecf i,j€e
(29)

These relations yield a Riccati-type differential inequality:

%Mg <5D~ max{]\lf D3P (@2 + @)2) + 200 - 5(M)?
ecfi,jEe

5D~k 26 1) 30
§7M2+FMQ N//(M2) ( )
5Dk +2§ §
< Mam R
Let y be a solution of the following ODE:
y' = ay —by”. 31)
Then, by phase line analysis, the solution y(¢) to Eq. 31 satisfies
5D k+25)N”
Ma(t) < 9(0) < max {00 (0)} = ma { CZELINE a o} e )

which yields the desired estimate.
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Proposition B.2. For Eq. 4, the distance of the centers of the two clusters is finite.

Proof of Propostion B.2. By Lemma B.1

LS5
~(1) _ =2 _ ey 2
20 -2 = | - S - 3o
j=1
¢ 2(V)2 (2))5 33
<V2,| —
<V2 7, 21 Pt Z
< V2y/Ms®,
where the first inequality used the Cauchy-Schwarz inequality. |
Lemma B.3. Ler u, v be the solution to Eq. 21. Then ||z — z?)||? satisfies
2¢ 4Dy )% —~
@25 (26m Yz _ g2 - HD)T 34
55l = o 2 (B - ) 1o - 2@ - 202 L i, 64

Proof. The time evolution of Z(!) is given by

g*c“):—z S net e - 2) Z S her @ - 2)

i=14'€E(i) V=1 jee)
P I ILACEE
eES?,jEP (35)
__1 e (2 1 e~ (1)
_szj J +ﬁzwl i
ecé ecé
_ 1 e~ (2 e (1)
N
where the first equality uses the relation i @(-1) =0
i=1
Then we have
1d
(1) _ =(2))2 36
SRTAE (36)
=(z 1) _5(2))@(1) _§(2)) (37)
—@V = 7®) |3 (— 2 2 a ) = 3 () + 2
Ny Ny i Ny i Ny 4 i
ec& ecé
(38)
1 1 1 1
(1) _ &2 _ e,— (2) e,— (2) e,— (1) e,— (1) 39
(@M -z )2( N ey el e ) (39)
1 1 1
— (1) _ 5(2) _ (2) A(2) - (2) A(2) Lope— (=) A1)
(70 —z )%( NV @ 27 - e T @ 487+ T (@ + &)
(40)
1
e,—(=(1) 4 (1)
@ ) “n
1 1
— (1) _ 5(2) e~ | %(2) il e—| (1)
=(x x + + ; x
60 -5 | (4 ) DX 20+ | () DT
ecf jee e€f ice
(42)
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(Nl ¥ ) S|l

ecf jee

(e i)E

ecf ice

=5 |73 a - 55 e

ecf jee

vl =33 e

ecf ice ecf jee
2 _ - — (2
=5 | S - T Yy
0 eck ice
We denote
Pes(z x(z) Z
ecé
and
Pes(a ), 72) = 3
ecé

i€e ecf jEe

e—x(1) _ e~ =(2)
DoviTa =3 Y upa®.
ic€e ecf jee

Assume there exist constants ¢,,, ¢,, such that

Pes(zV),2?)) > ¢, (V) — £?).

Then, by Cauchy’s inequality, for any c;, we have

1d

M _ 7(2)2
S 8® =5

1 2
1) _ 722
|2 - =5

2
— 2 pes(z(M 7@z _ 52y 1 £ (1) 2@y (z1) _ 52
N Pes(z\", z'9)(z ')+ OPes(x 39 (z z'\9)

2
Hf(l) — 55(2)H2 + ClHj(l) — 55(2)H2 + F1363(55(1)753(2))(5(1) _ 5(2))
0

(Pes( a >,53<2>))2

2

ice jEe

_ _ 4 e 1 o 2
um<1>—x<2>u2—mz leem P 32 + e 1P o)’

ec& ice j€e

c1Ng

c1Ng

Lemma B.4. Let u, v be the solution to Eq.

1d—~
2dt

where

—\2
Hx(l) —(2)H2 _ M

(o)

(o) _
zxﬁ>>|mwa;;z<zwwﬂ:-zwﬂm
(%)

(%)

(

2¢ 4(D;)?
_ Cl) Hi,(l) _ f'(2)H2 o ( 2 )

ST oE)?+3 @)

ecf | ice jEe

k(M.

21. Then ]\72 satisfies

M2 < OQMQ + 202”33(1 (2)”2,

Coi= —k <CA—D+ (D7) —5>,

and cy is an arbitrary positive constant.

2 482 k
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A(1

Proof. Subtracting Eq. 35 from Eq. 21 gives &, ). Then we have

1
m( Z“?)
L QL0050
~(1) 2(1
:ﬁlZwi i

=1
Z SN DICEE R SRR
ecE(i) |i'€e jee
s L
+ o= @)
s
N (50)
L S S el -5 - Ty P -
Licl eeg(i) |ivee jee
0 A 1) (1) (1)
~(1 1 1)\2
+ — T, 2, (1 x;
N, ; (1= (z;7)7)
N1
1 1 ~ 1 2 1
Z By Y ohe ey - e Z Z > ohey (@7 &)
ec&(i)i'€e i=1 €E(i) jee
Z ~(1) Z Zhe, (2)_£(1) Z 1) (1 (1)))
ec&(i) jEe =

=L+ 1L+ 13+ 14

I, can be defined by

Z“” >0 Y ohal -4

e€&(i) i’ e
A =3 e ) 51)
ec i,i’'€e
1
_ ~(1)ye TAe ~(1)\e
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where c, is a constant larger than 1 related to the repetition of {il(-l)} in all hyperedges.

I5 can be controlled by
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I3 has the below estimate for any constant co > 0:
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Summing them together gives
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This gives an exponential growth estimate or > up to an error term of [|z(1) — (2|2, [ |

Proposition B.5 (L, separation of HAMP-I). For Eq. 4, suppose the above assumptions are satisfied.

N N

Define the mean value X := % > x;, and the second moments Ma(x) := > x7. Then for sufficiently
i=1 i=1

large N1, No, there exist constants A_, A4, such that if the initial data satisfies

M,(0)
A(0) = <\ 67
0= zoE - @O < (©7
then, there holds that the Lo separation
My(t
2(t) <A+ (A0) = A_)e™H, (68)

Alt) ==
W= o - = =
with a positive constant i, where ]/\/Tg(t) i= Mo (x(M (1)) + Ma(xP)(t)).

Proof of Proposition 5.2. Lemma B.3 gives an exponential growth estimate of ||z(") — z(?)||2 up to
an error term of Ms. If Ny is large enough, the coefficient of the error term is small.

Lemma B.4 gives an exponential growth estimate or M up to an error term of [|Z(1) — z(2)||2. If N,
is large enough, the coefficient of the error term is small.

Set
2¢ 4(D5 )2k D~  (D7)?
A= =2 —y, Apz o= =20 = Ay =203, Ay =k [ C4 — — . (69
11 N, 1, Az aN, A o, Ao C 5+ 1o (69)
If Ny is large enough, Eq. 69 is satisfied.
(A1 + A12)? — 4A9 Ayp > 0. (70)
Apply Lemma 4.1 in [27] then we obtain the Ly separation. ]

Remark B.6. We can alternatively prove Theorem 5.2 by the method of [[44] Proposition 2 and 3].

Proposition B.7 (Lower bound of the Dirichlet energy). If the hypergraph H is a connected one, for
Eq. 4 with the conditions of Theorem 5.2, or for Eq. 5 with conditions of Theorem 5.1 in [19], there
exists a positive lower bound of the Dirichlet energy.
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Proof of Proposition 5.4. The relative size between ||z(1) — z(?)||2 and M is an indicator of group

separation in the sense of Lo: if ||[Z(!) — #(?)||? is much larger than M>, then the two groups are
well-separated in average sense. Since the hypergraph is connected, there is a positive bound between
different clusters, hence the Dirichlet energy does not decay to zero.

Remark B.8. The proof for the second-order system Eq. 5 can be proved in a similar way.
Remark B.9. The separability of Eq. 6 which is the Eq. 4 or Eq. 5 with a stochastic term also holds.

C Experiment Details

C.1 Dataset Details

We selected the most common hypergraph benchmark datasets, and the statistics of nine datasets
across different domains are summarized in Tab. 3. The key statistics include the number of nodes,
hyperedges, features, classes, average node degree d,,, average hyperedge size |£|, and CE ho-
mophily [36]. These variations highlight the diversity in dataset scales and structural patterns, which
may influence model performance in hypergraph-related tasks.

Table 3: The summary of data statistics.

Dataset #nodes #hyperedges # features #classes avg.d, avg. || CE homophily

Cora 2708 1579 1433 7 1.767 3.03 0.897
Citeseer 3312 1079 3703 6 1.044 3.200 0.893
Pubmed 19717 7963 500 3 1.756 4.349 0.952
Cora-CA 2708 1072 1433 7 1.693 4.277 0.803
DBLP-CA 41302 22363 1425 6 2411 4.452 0.869
Congress 1718 83105 100 2 427.237 8.656 0.555
House 1290 340 100 2 9.181 34.730 0.509
Senate 282 315 100 2 19.177 17.168 0.498
Walmart 88860 69906 100 11 5.184 6.589 0.530

C.2 Additional Ablation Studies

Impact of Hidden Dimension on HAMP-l and HAMP-Il. We explore the tolerance of our model
to different hidden dimensions, as shown in Tab. 4. For simplicity, we only vary the size of hidden
dimension, while other parameters remain fixed. Overall, these results demonstrate the robustness of
our methods with varying hidden dimensions. It is worth noting that high hidden dimension is key to
achieving the best performance of HAMP.

Table 4: Impact of hidden dimension evaluated on the hypergraph datasets.

HAMP-I | HAMP-II
128 256 512 1024 | 128 256 512 1024

Cora 80.19 80.55 81.18 79.85 | 79.59 79.54 80.80 79.60
Citeseer 73.39 72.89 7522 7240 | 7395 7436 7533 75.19
Pubmed 88.49 88.85 89.02 88.82 | 88.48 88.48 89.05 88.78
Senate 6324 6535 6944 66.62 | 63.52 63.10 70.14 62.96
House 7121 70.62 72.66 72.72 | 68.30 69.47 72.60 7121

Impact of Repulsion, Allen-Cahn Force, and Noise on HAMP-l and HAMP-Il. We summary
ablation studies to investigate the individual and combined effects of repulsion f;, Allen-Cahn

force fy, and noise B; on both HAMP-I and HAMP-II. Tab. 5 reports the average node classification
accuracy with a standard deviation across seven standard hypergraph benchmarks over 10 runs.
Models with the repulsion term enabled outperform their counterparts in some dataset, indicating
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enhanced ability to distinguish node representations in complex hypergraph structures. The synergy
between the repulsion and Allen-Cahn terms further boosts performance, confirming that these particle
system-inspired mechanisms play complementary roles. Overall, these improvement confirm the
validity of the HAMP construction and further highlight the significant advantages of incorporating
particle system theory into the hypergraph message passing learning process.

Table 5: Ablation studies on some standard hypergraph benchmarks. The accuracy (%) is reported
with a standard deviation from 10 repetitive runs. (Key: fg : repulsion; fy: Allen-Cahn; B;: noise.)

Homophilic  fz° fa B: ‘ Cora Citeseer Pubmed Cora-CA
X X X |76.09+£1.22 70.53+1.56 87.98+0.38 83.13+1.26
v X X | 7640+1.56 70.85+1.65 88.25+0.50 83.15+1.36
X v X |8031£141 7483+1.70 88.90+£0.45 84.77+1.16

HAMP-I X X | 7567£1.71 70.59+£1.40 87.93£0.52 82.70£1.01
v v X |8049£1.26 7496+1.56 88.87+£0.40 85.2141.49
X v v |8059£1.25 74.67£1.69 88.77+£0.44 84.59+1.03
v ¢ « | 8118+£130 75.22+1.62 89.02+0.49 85.23+1.15
X X X | 7742+1.44 71.50£1.49 88.68+0.62 83.60+1.45
v X X | 77.08£1.73 7220+1.14 88.59+0.50 82.95+1.35
X v X | 80.13£1.26 7437£1.59 88.86+0.55 84.37+£1.45

HAMP-II X X v | 77.18£1.61 71.75+1.68 88.68+£0.59 82.91+1.28
v v X | 7970£1.36 73.99+1.75 88.82+0.48 84.30+1.32
X v v | 7950+£125 74254128 88.80+0.40 83.31f1.44
v ¢ « | 8080+t1.62 7533+1.61 89.05+0.41 84.89+1.14

Table 6: Node Classification on standard hypergraph benchmarks. The accuracy (%) is reported with
a standard deviation from 10 repetitive runs. (Key: fﬁ_ : repulsion; f;: Allen-Cahn; B;: noise.)

Heterophilic  f5  fa Bt ‘ Congress Senate Walmart House
X X X | 9351£1.08 60.70+8.38 69.64+0.35 70.50+1.45
v X X | 93.70£1.02 60.00£8.66 69.80£0.45 70.56£1.96
X v X | 9479£1.14 66.76+544 69.77£0.28 71.55+1.53

HAMP-I X X « | 9347£1.13 60.14£7.54 69.86+£0.35 69.88+2.48
v v X | 9458+1.25 67.7548.82 69.76+£0.37 71.58+1.87
X Vv | 94.67£1.02 65.63£298 69.73£0.49 71.55+£2.58
v v Vv | 95.09£0.79 69.44+6.09 69.90+0.38 72.72+1.77
X X X | 9479+0.73 58.73+7.03 69.84+0.25 69.85+1.61
v X X | 9402+1.10 61.554598 69.91+0.30 69.35+1.87
X v X | 9419+£1.07 62.82+6.44 69.89+0.31 70.96+2.06

HAMP-II X X | 9435£1.14 60.14£5.10 69.84+0.37 70.46£2.08
v v X | 9458+0.86 61974842 69.92+0.33 71.36+1.68
X v v | 941240.63 64.51+4.19 69.86+0.34 70.96+2.76
v Vv Vv | 9526134 70.14+6.08 69.94+0.37 72.60+1.23

C.3 Time-Memory Tradeoff Analysis

We intuitively reveal the differences of different methods with a single-layer network in the time-
memory trade-off on Walmart dataset. As shown in Fig. 5, HAMP-I and HAMP-II methods demon-
strate a notable trade-off between time efficiency and memory consumption. The experimental results
reveal:

* Memory usage: HAMP-| and HAMP-II maintain memory consumption within 11000-12000
MiB, achieving a 20-26% reduction compared to ED-HNN, while being comparable to
HDS?%.

* Time efficiency: Although the time consumption for HAMP-I and HAMP-II runtime slightly
exceeds ED-HNN (0.1s), it outperforms the baseline HDS?%.
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Figure 5: Time-Memory tradeoff analysis of different methods on Walmart dataset. SD denotes the
standard deviation of time consumption.

C.4 Hyperparameters

To ensure fairness, we follow the same training recipe as ED-HNN. Specifically, we train the model
for 500 epochs using the Adam optimizer with the learning rate of 0.001 and no weight decay during
the training phases. And we apply early stopping with a patience of 50. For the stability, we run 10
trials with different seed and report the results of mean and the standard deviation. All experiments
are implemented on an NVIDIA RTX 4090 GPU with Pytorch.

We explore the parameter space by grid search, where the search ranges for each critical hyperparam-
eter are delineated below:

* Dropout rate in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};

* Layer number of classifier in {1, 2, 3};

* The hidden dimension of classifier in {128, 256, 512};

* Hidden dimension of model in {128, 256, 512, 1024};

* step size of solver in {0.09, 0.1, 0.15, 0.2, 0.25};

* v of repulsive force in {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12,
0.13,0.14, 0.15};

* Initial values of learnable parameters § of damping term in {0, 1, 2, 3,4, 5,6,7, 8,9, 10, 11,
12, 13, 14, 15};

* Initial values of learnable parameters € of noise term in {0, 0.1, 0.3};
Tab. 7 and Tab. 8 summarize the best hyperparameters on standard hypergraph benchmarks using
HAMP-1 and HAMP-II, respectively. For fairness, a linear layer is added to perform feature mapping

when conducting HDS?% experiments. The optimal hyperparameters for node classification on
standard hypergraph benchmarks is achieved by the HDS? algorithm, as demonstrated in Tab. 9.
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Table 7: The best hyperparameters of Node Classification on standard hypergraph benchmarks using
the HAMP-| algorithm.

Dataset model. hd cls. hd and # layers  time step size 0 o dropout €
Cora 512 128, 1 1 0.1 12 0.05 0.4 0
Citeseer 512 512,1 0.6 0.1 6 005 0.2 0
Pubmed 512 256, 1 0.2 0.1 15 0.1 0.5 0
Cora-CA 512 512,2 0.4 0.2 4  0.05 0.9 0
DBLP-CA 256 128,2 1.1 0.1 11 0.12 0.2 0
Congress 128 128,2 14 0.1 1 0.08 0.3 0
House 1024 512,3 1.05 0.15 3 005 0.8 0
Senate 512 256, 2 0.6 0.1 10 0.05 0.7 0
Walmart 256 128,2 1.75 0.25 0 002 0.3 0

Table 8: The best hyperparameters of Node Classification on standard hypergraph benchmarks using
the HAMP-II algorithm.

Dataset model. hd  cls. hd and layers  time step size 0 ¥ dropout €
Cora 512 512, 1 1.9 0.1 5 012 0.3 0.1
Citeseer 512 512,1 1.8 0.15 8 0.13 0.6 0
Pubmed 512 256, 1 0.6 0.09 5 0.09 0.3 0
Cora-CA 512 128,2 0.75 0.25 3 001 0.7 0
DBLP-CA 256 128,2 3.45 0.15 7 0.09 0.3 0
Congress 128 128,2 6.25 0.25 0 0.01 0.3 0
House 512 256, 2 1.6 0.1 8 0.14 0.8 0
Senate 512 256, 2 3 0.2 13 0.05 0.3 0.3
Walmart 256 128,2 2.5 0.25 0 0.02 0.3 0

Table 9: The best hyperparameters of Node Classification on standard hypergraph benchmarks using
the HDS?% algorithm.

Dataset model. hd cls. hd and layers  # layer model.  alpha, alpha. step

Cora 512 256, 2 10 0.05 0.9 20
Citeseer 512 512,1 5 0.05 0.9 20
Pubmed 512 256, 1 12 0.05 0.9 20
Cora-CA 512 512,2 9 0.05 0.9 20
DBLP-CA 256 256, 2 15 0.05 0.9 20
Congress 256 128,2 7 0.25 0.9 5
House 512 256, 2 10 0.05 0.9 20
Senate 512 256, 2 9 0.05 0.9 20
Walmart 256 128,2 6 0.25 0.9 5
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the proposed framework
(HyperMP), theoretical contributions (hypergraph particle dynamics system, anti-over-
smoothing analysis), and experimental scope (hypergraph node classification), which are
consistent with what is presented in the paper (Sections 3, 4, 5, 6, Appendices A, B, C).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the Appendix A, we not only describe the algorithm in detail, but also
discuss its limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper states proposition (Proposition 5.2-5.4) and provides detailed proofs
for the main theoretical results in Appendix B.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the experimental setup, datasets (standard hypergraph
benchmarks), and baselines in Section 6. The appendix C.2 provides dataset details, more
ablation studies, and hyperparameter details. The code has been provided anonymously in
the abstract.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is stated to be open source. We use the same hypergraph benchmark
dataset as ED-HNN. Instructions are assumed to be provided with the code repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings, including optimizer, iterations, and hyperparameter
search ranges, are detailed in the Appendix C.4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Eexcept for Table 2, all other tables report the results as mean and standard
deviation over 10 runs, indicating statistical variability.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the hardware used (NVIDIA RTX 4090 GPU) in Appendix
C.4. Runtimes and memory are reported in the Figure C.3, allowing for estimation of
computational cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves algorithmic development and evaluation on standard
optimization benchmarks. It does not involve human subjects or obviously ethically sensitive
applications, and we assume it conforms to the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on the technical contributions and does not include a specific
discussion of broader positive or negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The paper proposes a new framework/algorithm. Neither the models nor the
standard benchmark data used appear to pose a high risk for misuse necessitating specific
release safeguards beyond standard open-source practices.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:
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13.

14.

15.

Justification: The paper properly cites the sources for existing assets like baseline methods
and data sources. However, the specific licenses and terms of use for these assets are not
explicitly mentioned in the paper text or appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new asset is the source code for the proposed methods, which is
open source. Documentation is assumed to be provided alongside the code in its repository.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: The research does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The research does not involve human subjects, therefore IRB approval is not
applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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