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ABSTRACT

As deep neural networks become more widely-used, it is important to understand
their inner workings. Toward this goal, modular interpretations are appealing be-
cause they offer flexible levels of abstraction aside from standard architectural
building blocks (e.g., neurons, channels, layers). In this paper, we consider the
problem of assessing how functionally interpretable a given partitioning of neu-
rons is. We propose two proxies for this: importance which reflects how crucial
sets of neurons are to network performance, and coherence which reflects how
consistently their neurons associate with input/output features. To measure these
proxies, we develop a set of statistical methods based on techniques that have con-
ventionally been used for the interpretation of individual neurons. We apply these
methods on partitionings generated by a spectral clustering algorithm which uses
a graph representation of the network’s neurons and weights. We show that de-
spite our partitioning algorithm using neither activations nor gradients, it reveals
clusters with a surprising amount of importance and coherence. Together, these
results support the use of modular interpretations, and graph-based partitionings
in particular, for interpretability.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art performance in a variety of applications, but
this success contrasts with the challenge of making them more intelligible. As these systems become
more advanced and widely-used, there are a number of reasons we may need to understand them
more effectively. One reason is to shed light on better ways to build and train them. A second reason
is the importance of transparency, especially in settings which involve matters of safety, trust, or
justice (Lipton, 2018). More precisely, we want methods for analyzing a trained network that can
be used to construct semantic and faithful descriptions of its inner mechanisms. We refer to this as
mechanistic transparency.

Toward this goal, we consider modularity as an organizing principle to achieve mechanistic trans-
parency. In the natural sciences, we often try to understand things by taking them apart. Aside from
subdivision into the standard architectural building blocks (e.g., neurons, channels, layers), are there
other ways a trained neural network be meaningfully “taken apart”? We aim to analyze a network
via a partitioning of its neurons into disjoint sets with the hope of finding that these sets are “mod-
ules” with distinct functions. Since there are many choices for how to partition a network, we would
like metrics for anticipating how meaningful a given partition might be.

Inspired by the field of program analysis (Fairley, 1978), we apply the concepts of “dynamic” and
“static” analysis to neural networks. Dynamic analysis includes performing forward passes and/or
computing gradients, while static analysis only involves analyzing architecture and parameters. In
a concurrent submission (Anonymous et al., 2021), we use spectral clustering to study the extent
to which networks form clusters of neurons that are highly connected internally but not externally
and find that in many cases, networks are structurally clusterable. This approach is static because
the partitioning is produced according to the network’s weights only, using neither activations nor
gradients. Here, we build off of this concurrent submission by working to bridge graph-based clus-
terability and functional modularity.

To see how well neurons within each cluster share meaningful similarities, we introduce two proxies:
importance and coherence. Importance refers to how crucial clusters are to the network’s perfor-
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mance overall and lends insight into how well a partition identifies clusters that are individually key
to the network’s function. Coherence refers to how consistently the neurons within a cluster cor-
respond in their activations to particular features in data. We analyze coherence both with respect
to input features and output labels. To measure these proxies, we utilize dynamic interpretability
methods that have been conventionally used for single-neuron analysis to the study of these parti-
tions. We conduct a set of experiments and hypothesis tests in networks scaling from the MNIST to
the ImageNet level. In doing so, we show that spectral clustering is capable of identifying function-
ally important and coherent clusters of neurons. This new finding the and methods we present for
combining spectral clustering with dynamic methods supports the use of modular decompositions
of neurons toward mechanistic transparency.

Our key contributions are threefold:

1. Introducing two proxies, importance and coherence, to assess whether a given
partitioning of a network exhibits modularity.
2. Quantifying these two proxies with interpretability methods equipped with
statistical hypothesis testing procedures.
3. Applying our methods on the partitions produced by the spectral clustering
technique of Anonymous et al. (2021) on a range of networks, and finding evi-
dence of modularity among these clusters.

2 GENERATING PARTITIONINGS WITH SPECTRAL CLUSTERING

In our concurrent submission, we introduce and study in-depth a procedure to partition a neural
network into disjoint clusters of neurons (Anonymous et al., 2021) based only on its weights. We
found that trained networks are more clusterable than randomly initialized ones, and they are also
often more clusterable than similar networks with identical weight distributions. The experimental
procedure consists of three steps: (1) “Graphification” - transforming the network into an undirected
edge-weighted graph; (2) Spectral clustering - obtaining a partitioning via spectral clustering of the
graph.

Graphification: To perform spectral clustering, a network must be represented as an undirected
graph with non-negative edges. For MLPs (multilayer perceptrons), each graph vertex corresponds
to a neuron in the network including input and output neurons. If two neurons have a weight connect-
ing them in the network, their corresponding vertices are connected by an edge giving its absolute
value. For CNNs (convolutional neural networks), a vertex corresponds to a single feature map
(which we also refer to as a “neuron”) in a convolutional layer. Here, we do not use input, output, or
fully-connected layers. If two feature maps are in adjacent convolutional layers, their corresponding
vertices are connected with an edge giving the L1 norm for the corresponding 2 dimensional kernel
slice. If convolutional layers are separated by a batch normalization layer (Ioffe & Szegedy, 2015),
we multiply weights by γ/(σ+ ε) where γ is the scaling factor, σ is the moving standard deviation,
and ε is a small constant.

Spectral Clustering: We run normalized spectral clustering on the resulting graph (Shi & Malik,
2000) to obtain a partition of the neurons into clusters. For all experiments, we set the number of
clusters to 12 unless explicitly mentioned otherwise. We choose 12 because (1) it is computationally
tractable, (2) it is larger than the number of classes in MNIST and CIFAR-10, and (3) it is small
compared to the number of neurons in the layers of all of our networks. However, in Appendix A.6,
we show results for k = 8 and k = 18 for a subset of experiments and find no major differences. We
use the scikit-learn implementation (Pedregosa et al., 2011) with the ARPACK eigenvalue solver
(Borzı̀ & Borzı̀, 2006). Refer to appendix A.1 for a complete description of the algorithm.

3 EVALUATION OF MODULARITY USING IMPORTANCE AND COHERENCE

Clusters of neurons produced by spectral clustering span more than one layer. However, layers at
different depths of a network tend to develop different representations. To control for these differ-
ences, we study the neurons in clusters separately per layer. We call these sets of neurons within the
same cluster and layer “sub-clusters.” In our experiments, we compare these sub-clusters to other
sets of random units of the same size and same layer. When discussing these experiments, we refer
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to the sub-clusters from the clustering algorithm as “true sub-clusters” and the sets composed of
random neurons as “random sub-clusters.” Random sub-clusters form the natural control condition
to test whether the specific partitioning of neurons exhibits importance or coherence compare to
alternative partitions, while taking account location and size.

As outlined in the Introduction, we study importance: how crucial each sub-cluster is to the network;
input coherence: how well neurons in a sub-cluster associate with similar input features; and output
coherence, how well they associate with particular output labels, as proxies for modularity. In this
section, we present two types of experiments. First, we use visualization techniques on sub-clusters
to measure input and output coherence, and second, we use “lesion tests” based on dropping out
neurons in a sub-cluster to measure output coherence and importance.

These techniques are scalable, and we experiment with a wide range of networks. For small-scale
experiments, we train and analyze MLPs with four hidden layers of 256 neurons each and small
convolutional networks with 3 layers of 64 neurons each followed by a dense layer of 128 neurons
trained on the MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017) datasets. At a
mid scale, we train and analyze VGG-style CNNs containing 13 convolutional layers using the archi-
tectures from Simonyan & Zisserman (2014) trained on CIFAR-10 (Krizhevsky et al., 2009) using
the procedure from Liu & Deng (2015). Finally, for the ImageNet (Krizhevsky et al., 2009) scale,
we analyze pretrained ResNet18, ResNet50, (He et al., 2016) VGG-16, and VGG-19 (Simonyan &
Zisserman, 2014) models.

In our concurrent submission (Anonymous et al., 2021) we show that in some cases, weight pruning
and dropout can each be used to promote graph-based clusterability. We use pruning in small MLPs
but no other networks. We use dropout for MLPs in correlation-based visualization experiments
in subsection 3.1.1 but no other MLPs. Also, for the mid-sized VGG-CNNs, we experiment both
with versions that are unregularized and which are regularized using dropout and L2 regularization
as done in Liu & Deng (2015). Complete training details including testing accuracies are in the
appendix A.2.

3.1 FEATURE VISUALIZATION

3.1.1 CORRELATION-BASED VISUALIZATION

First, we introduce here a simple method to provide visual examples and build intuition. In later
subsections, we present a quantitative approach with statistical hypothesis testing. A simple way
to visualize a sub-cluster is to identify what input features each of its neurons respond to and then
use these to create an aggregated visualization. We do this for small MLPs in which we construct
visualizations of neurons using their correlations with the input pixels across the test dataset. We use
their post-ReLU activations, and consider the activation of a convolutional feature map to be its L1

norm. Instead of linear correlation, we use the Spearman correlation (which is the linear correlation
of ranks) because it is able to capture relationships which tend to monotonically increase even if
they are nonlinear.

After obtaining visualizations for each neuron in a sub-cluster, we do not directly take their average
to visualize the entire sub-cluster. To see why, consider two neurons which are highly anticorrelated
across the testing set. These neurons are highly coherent, but averaging together their visualizations
would obscure this by cancellation. To fix this problem, we align the signs of the visualizations for
individual neurons using a variant of an algorithm from Watanabe (2019). To visualize a sub-cluster,
for a number of iterations (we use 20), we iterate over its neurons, and calculate for each the sum
of cosines between its visualization and each of the other neurons’ visualizations in vector form.
If this sum is negative, we flip the sign of this neuron’s visualization. Refer to appendix A.3 for
a complete algorithmic description. After this procedure, we take the mean of the visualizations
within a sub-cluster.

To see how much meaningful input coherence these sub-clusters exhibit, we compare them to ran-
dom sub-clusters (recall each of these are randomly selected sets of neurons of the same size from
the same layer as a true sub-cluster). Figure 1a-b shows results from MLPs trained on MNIST
and Fashion-MNIST. Here, these MLPs are trained with dropout which we found to be helpful for
clearer visualizations. In the first row of each image are visualizations for true sub-clusters, and
the bottom four rows show visualizations for random ones. The true sub-clusters in the top row
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produce more coherent visualizations with better-defined and higher-contrast features compared to
the random ones in the bottom 4 rows.

Next, we hypothesized that if we trained a network on a task that lent itself well to parallel process-
ing, spectral clustering would capture specialized modules. To test this, we designed “halves-same”
and “halves-diff” tasks for small MLPs based on the MNIST and Fashion-MNIST datasets. For
the halves-same tasks, two images of the same class were resized to have half their original width
and concatenated side-by-side in order to create a composite image of the same size as the origi-
nals. We gave these images the same label as their component halves. For the halves-diff tasks,
this was done with two images from random classes, and the resulting image was labeled with the
sum of their labels modulo 10. Example images from each of the the halves-same/diff MNIST and
Fashion-MNIST datasets are shown in figure 3. We expected that the halves-diff task would be more
economical to compute in a modular way by separately recognizing the two halves and computing
their modular sum. In appendix A.3, we show that our networks can compute this modular sum.

Figure 1c-d shows these visualizations for MLPs trained with dropout on halves-same MNIST and
without dropout on halves-diff MNIST. We did not use dropout to train the halves-diff networks
because it resulted in poor accuracy. This is likely because while amenable to image classification,
dropout is not amenable to modulo arithmetic. Columns are arranged from left to right in the order
of the layer in which they appear in the network. Visualizations for the halves-same networks tend
to result in similar left and right halves, but in the early (leftmost) layers of the networks trained on
the halves-diff tasks, there is a tendency for true sub-clusters to be selective to one half.

(a)

(b)

(c)

(d)

Figure 1: Sub-cluster visualizations for small MLPs: (a) MNIST, (b) Fashion-MNIST, (c) halves-
same MNIST, (d) halves-diff MNIST. In each image, the top row gives visualizations of true sub-
clusters and the bottom four for random ones of the same size. Columns are ordered left to right
according to layer order. Pixel values are scaled from black to white for each column independently.
All except (d) were trained with dropout.

This method of understanding input coherence has the advantage of being able to provide intuitive
visual examples and efficiently construct interpretable features for MLPs. However, it was not as
effective for CNNs. In appendix A.3 we detail this process, and in figure 4, we show visualizations
for small CNNs in which we find less evidence of coherence among sub-clusters. To expand on
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the intuitive visual examples offered here, in the following section, we introduce a more versatile,
scalable method along with hypothesis testing procedures for obtaining quantitative results.

3.1.2 INPUT CONSTRUCTION

Another way to visualize neurons in a network is to use gradient-based optimization to create an
input image which maximizes the activation of a neuron, or in our case, a sub-cluster of them. Pat-
terns in the resulting visualizations can suggest what features the neurons respond to. We visualize
sub-clusters with this method (Olah et al., 2017) using the Lucid1 package. Implementation details
are in appendix A.8. Figure 5 gives example visualizations.

To obtain quantitative results, we used two techniques. First, we analyzed the value of the maxi-
mization objective for each image we produced, which we call the “score.” This gives of one notion
of how coherent a sub-cluster may be with respect to input features, because if a single image can
activate an entire sub-cluster well, this suggests that the neurons comprising it can be activated by
similar features. Second, we analyze the entropy of the softmax outputs of the network when these
images are passed through it. If the entropy of the softmax distribution is low, this suggests that a
cluster is coherent with respect to outputs.

We then test the null hypothesis that these sub-clusters are equally coherent as random sets of neu-
rons. For each sub-cluster in a network with at least three neurons and at most 80% of the neurons
in a layer, we compare its visualization’s score and output entropy to those of 9 random sub-clusters.
We then obtain one-sided p values by taking the percentiles for the true sub-cluster’s score and en-
tropy relative to the random sub-clusters’ score and entropy. We take right-sided p values for scores
and left-sided p values for output entropies so that lower p values indicate greater input/output co-
herence in both cases. We then use two different methods to combine all sub-cluster p values to
obtain a combined p value for the entire network for either score or entropy. Both are presented
here, but full details for both are in appendix A.4.

Fisher Method: First, we center the sub-cluster p values around 0.5 to obtain a granular approxima-
tion of the uniform distribution under the null, and then use the Fisher Method. The test statistic for
a set of sub-cluster p values p1...pn is −2

∑n
i=1 log pi which takes a chi squared distribution with

2n degrees of freedom under the null hypothesis.

Chi Squared Method: Second, since there are only a set number, m, of values which the p values
can take (in our case m = 10), we perform a Chi Squared categorical test to see whether their
distribution among these discrete values is nonuniform. The test statistic is

∑m
i=1

(xi−µi)
2

µi
in which

each xi gives an observed count and each µi gives a expected one. It will have a chi squared
distribution with m− 1 degrees of freedom under the null hypothesis.

These methods test for different things. The Fisher method indicates how low the p values for sub-
clusters tend to be across a network and tests whether the true sub-clusters are consistently more
coherent than random ones. However, the distribution of sub-cluster p values may be nonuniform
but in a way that the Fisher Method is not designed to detect. For example, they may tend to be
very high or follow a U-shaped distribution. The Chi Squared method adds additional resolution by
detecting cases like this.

The top section of table 1 summarizes these results. For each network which we perform this test
on, we provide the Fisher and Chi Squared categorical p values for both the score (input coherence)
and output entropy (output coherence). For the non-ImageNet networks, we report results for each
measure (separately) as a median across 5 networks. We find strong evidence of significant levels
of input coherence in the VGG family of networks, and find that the unregularized VGGs trained
on CIFAR-10 also seems to exhibit a significant amount of output coherence. In Appendix A.8, we
also present experiments for understanding variance of activations in true and random sub-clusters.

3.2 LESION TESTS

Another set of tools that has been used for understanding both biological (Gazzaniga & Ivry, 2013)
and artificial (Zhou et al., 2018; Casper et al., 2020) neural systems involves disrupting neurons dur-

1https://github.com/tensorflow/lucid
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Visualization Score: Input Coherence Softmax Entropy: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST 0.575 0.810 0.377 0.365
CNN MNIST 0.671 0.328 0.504 0.135
VGG CIFAR (Unreg) 3.45× 10−4 8.79× 10−9 2.00× 10−7 1.29× 10−23

VGG CIFAR 0.035 3.19× 10−5 0.891 0.082
VGG-16 ImageNet 2.54× 10−4 1.41× 10−7 0.118 0.281
VGG-19 ImageNet 0.003 5.69× 10−4 0.633 0.888
ResNet50 ImageNet 0.355 0.437 0.435 0.812

Accuracy Change: Importance Classwise Range: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST 1.34× 10−8 4.40× 10−14 0.968 0.035
MLP Fashion 7.73× 10−6 1.76× 10−11 0.513 0.003
CNN MNIST 0.013 0.035 0.480 0.561
CNN Fashion 0.025 0.483 0.738 0.283
VGG CIFAR (Unreg) 2.25× 10−11 4.30× 10−44 3.19× 10−10 3.47× 10−33

VGG CIFAR 7.17× 10−6 1.55× 10−17 5.49× 10−6 7.93× 10−26

ResNet-18 ImageNet 0.002 1.51× 10−5 0.112 0.001
VGG-16 ImageNet 9.81× 10−13 1.56× 10−40 1.000 1.62× 10−23

Table 1: Combined p values for feature visualization and lesion experiments: Each p value is a
combination of p values for all of a network’s sub-clusters created with the Fisher or Chi Squared
method. For ImageNet networks, the values reflect results for single networks, but for all others,
values (separately) give a median across 5 independently trained replicates. We do not ascribe
any particular epistemic significance to the threshold of 0.05 (also note that significance thresholds
normally need to be adjusted when taking a median of p values) but we bold all p values less than
it. In Appendix A.7, we present corrections for multiple comparisons. In Appendix A.6, we show
results for k = 8 and k = 18. Feature Visualization (Top): Results indicate tests for visualizations
produced with Lucid. Lesions (Bottom): Results indicate tests involving lesions of sub-clusters.
Due to computational demands, we limit our analysis here at the ImageNet scale to ResNet-18 and
VGG-16 models.

ing inference. Whereas the images produced with feature visualization were optimized to maximally
activate a sub-cluster, we perform a dual type of experiment with “lesion” tests in which we analyze
network outputs when a sub-cluster is dropped out. When lesioning a sub-cluster, we set all weights
incoming to the constituent neurons to 0, while leaving the rest of the network untouched. Refer
to figure 6 for example plots of the accuracy drops for a small MLP and CNN trained on Fashion-
MNIST. We then determine the damage to the network’s overall and per-class testing accuracy. This
allows us to evaluate both importance and output coherence.

Importance Importance allows us to identify which sub-clusters are key to the network and there-
fore of particular interest for scrutiny. To systematically quantify the importance of a network’s
sub-clusters in aggregated way, we combine the right-sided p values of all the network’s true sub-
clusters using the Fisher and Chi Squared categorical methods discussed above 3.1.2 and described
in detail in appendix A.4. Note that these experiments are analogous to those in 3.1.2 The bottom
section of table 1 gives results for these. We find strong evidence across the networks which we train
that spectral clustering reveals important sub-clusters.

There is generally significant diversity among sub-clusters in their size, importance, and importance
relative to random sub-clusters. To demonstrate this, we construct an example descriptive taxonomy,
in which we consider three criteria for identifying particularly important sub-clusters. First, the sub-
cluster should be at least 5% of the neurons of the layer. Second, the drop in accuracy under lesion
should be greater than 1 percentage point; and third, the drop should not simply be due to the
number of damaged neurons. To evaluate the third criterion, we generate random sub-clusters with
the same number of neurons as the true sub-cluster from the same layer, and collect the distribution
of accuracy drops. We say that this criterion is met if the accuracy drop for the true sub-cluster is
greater than all of 20 random sub-clusters, i.e its p value is smaller than 1/20.
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In figure 2, we plot sub-cluster size versus accuracy drop for an MLP trained on Fashion-MNIST
and a VGG trained on CIFAR-10 that has been clustered into 8 clusters (we use 8 for the sake of
visualization here, but we use 12 clusters for all quantitative experiments). Many sub-clusters are
too small to be counted as important, and many are significantly impactful compared to random
sub-clusters but not practically significant. However, some clearly are practically important for the
functioning of the network.

Figure 2: Plot of different sub-clusters of two networks. Important sub-clusters are labeled first
by their layer number and then their cluster number. The horizontal axis shows the proportion
of their layer’s neurons in the sub-cluster, and the vertical axis shows the reduction in accuracy
from lesioning it. ‘Important’ means that the sub-cluster makes up at least 5% of the layer, that
the drop in accuracy is greater than one percentage point, and that it was more important than all
of 20 random sub-clusters it was compared against—that is to say, statistically significant. ‘Sig-
but-not-diff’ means that the drop in accuracy is statistically significant but less than 1 percentage
point, ‘Diff-but-not-sig’ means that the lesioning damage was more than 1 percentage point but not
statistically significant, ‘Prunable’ means that the drop in the accuracy is smaller than all random
shuffles and smaller than 1 percentage point, ‘Complete’ means that the sub-cluster contains the
whole layer, ‘Small’ means that the sub-cluster consists of less than 5% of the layer, and ‘Other’
means that the drop in accuracy is not statistically significant and less than 1 percentage point. Both
of the networks are partitioned into 8 clusters. The data is based on two tables which are included
in appendix A.9. Note that the ‘Complete‘ category appears only in the right plot, and only a single
point is shown although there are 8 such sub-clusters. Refer to appendix A.9 for additional details.)

Coherence To measure the output coherence using lesions, we analyze the accuracy changes for
each of the output classes. For ten classes, we define d = (d0, d1, . . . , d9), where di is the change
in the i-th class accuracy due to the lesioning of a sub-cluster. In order to obtain a measurement
independent of the overall importance, we divide these class-wise accuracy changes by their mean,
d′ = d/d̄, and the then take their range ∆ = max d′ −min d′. We refer to this as the (normalized)
class-wise range. We compare true and random sub-clusters to obtain a right-sided p value for each
sub-cluster based on the p values of the true ∆. We then combine these for the entire network using
the Fisher and Chi Squared categorical methods as discussed above and detailed in appendix A.4.

These results are in the bottom section of table 1. The Chi Squared p values demonstrate that
spectral clustering usually identifies sub-clusters with a significantly different distribution of impor-
tances compared to random sub-clusters. Meanwhile, the Fisher tests suggests that at least in VGG
networks trained on CIFAR-10, the sub-clusters exhibit more output coherence. Interestingly, for
VGG-16s trained on ImageNet, the opposite seems to be the case. The Fisher p value is high, sug-
gesting that the p values for its individual sub-clusters tend to be high. However, the Chi Squared p
value is low, suggesting nonuniformity among the sub-cluster p values. Together, these indicate the
the clusters are consistently less coherent than random ones.
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4 RELATED WORK

The most closely-related work to this is our paper under concurrent submission (Anonymous et al.,
2021) which uses the same spectral clustering-based approach to establish that deep networks are
in many cases clusterable and investigates in depth methods can be used to control the development
of clusterability. Both of these works inherit insights from network science involving clustering in
general (Girvan & Newman, 2002; Newman & Girvan, 2004), and spectral clustering (Shi & Malik,
2000; von Luxburg, 2007) in particular.

Our experiments in which we combine spectral clustering with correlation-based visualization
(Watanabe, 2019), feature visualization (Olah et al., 2017), and lesions (Zhou et al., 2018) high-
light the usefulness of combining multiple interpretability methods in order to build an improved
set of tools for more rigorously understanding systems. In a similar way, other dynamic techniques
for interpretability such as analysis of selectivity (Madan et al., 2020), network “dissection” (Bau
et al., 2017; Mu & Andreas, 2020), earth-mover distance (Testolin et al., 2020), or intersection
information (Panzeri et al., 2017) could also be combined with static graph-based partitionings un-
der a similar framework. There already exist examples of interpretability methods being used for
the identification of unexpected adversarial weaknesses (Carter et al., 2019; Mu & Andreas, 2020).
We expect that developing more powerful tools like these for scrutinizing networks will be helpful
toward building more robust systems.

This work adds to a growing body of research focused on modularity and compositionality in neural
systems (e.g. Lake et al. (2015; 2017); Csordás et al. (2020); You et al. (2020)). This paradigm
is useful both for interpretability and for building better models. Neural circuits with distributed,
non-modular representations pose a litany of challenges including non-interpretability, less useful
representations, poorer generalization, catastrophic forgetting, and biological implausibility. One
limitation of this work is a focus on clustering in models which have fairly monolithic architectures
(e.g. all neurons/filters in one layer being connected to all neurons/filters in the next). However, there
exists a body of research focused specifically on developing more modular networks which either
have an explicitly-modular architecture (Alet et al., 2018; Parascandolo et al., 2018; Goyal et al.,
2019) or are trained in a way that promotes modularity via regularization or parameter isolation
(Kirsch et al., 2018; De Lange et al., 2019).

5 DISCUSSION

In this work, we introduce an approach for evaluating whether a partitioning of a network exhibits
modular characteristics. Key to this is analyzing proxies: importance as a means of understanding
what parts of a network are crucial for performance, input/output coherence as measures for how
specialized these parts are. We measure these proxies using statistical hypothesis testing procedures
based on interpretability techniques which have conventionally been used for analyzing individual
neurons. Though we analyze partitions produced by spectral clustering, a static method, we find that
these clusters exhibit a significant amount of importance compared to random clusters. We also show
that our networks in the VGG family also tend to exhibit a significant level of input coherence, and
in some cases, output coherence. By and large, these findings, and those of a concurrent submission
(Anonymous et al., 2021), support the analysis of modules, and in particular graph-based clusters of
neurons, for developing a better understanding of neural networks’ inner-workings.

Building a framework for evaluating modularity in neural networks can can guide the development
of new interpretability methods which examine networks at the module level. Toward this goal,
compositionality, how modules are combined and interact together, can be another proxy of mod-
ularity. For evaluating this, some of our methods can be extended to study dependencies between
clusters. In appendix A.10, we present exploratory lesion-based experiments for studying cluster
interactions and constructing dependency graphs.

While we make progress here toward mechanistic transparency, neural systems are still complex, and
more insights are needed to develop richer understandings. The ultimate goal would be to master the
process of building compositional systems which lend themselves to simple and faithful semantic
interpretations. We hope that using modularity as an organizing principle to achieve mechanistic
transparency and expanding our interpretability toolbox with combined static and dynamic methods
will lead to a richer understanding of networks and better tools for building them to be reliable.
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A APPENDIX

A.1 SPECTRAL CLUSTERING ALGORITHM

The spectral clustering algorithm on the graph G = (V,E) produces a partition of its vertices, in
which there are stronger connections within sets of vertices than between them (Shi & Malik, 2000).
It does so by approximately minimizing the n-cut (normalized cut) of a partition. For disjoint, non-
empty sets X1, ...Xk where ∪ki=1Xi = V , it is defined by (von Luxburg, 2007) as:

n-cut(X1, ..., Xk) :=
1

2

k∑
i=1

W (Xi, Xi)

vol(Xi)

where A := (wij)i,j=1..n is the adjacency matrix of the graph G; for two sets of vertices X,Y ⊆ V ,
we define W (X,Y ) :=

∑
vi∈X,vj∈Y wij ; the degree of a vertex vi ∈ V is di =

∑n
j=1 wij ; and the

volume of a subset X ⊆ V is vol(X) :=
∑
i∈X di.

Algorithm 1: Normalized spectral clustering according to (Shi & Malik, 2000), implemented
in scikit-learn (Pedregosa et al., 2011), description taken from von Luxburg (2007).
Input : Weighted adjacency matrix W ∈ Rn×n, number k of clusters to construct

1 Compute the unnormalized Laplacian L.
2 Compute the first k generalized eigenvectors u1, ..., uk of the generalized eigenproblem
Lu = λDu.

3 Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
4 For i = 1, .., n, let yi ∈ Rk be the vector corresponding to the ith row of U .
5 Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters C1, ..., Ck,

Output: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

A.2 NETWORK TRAINING DETAILS

We use Tensorflow’s implementation of the Keras API Abadi et al. (2015); Chollet et al. (2015).
When training all networks, we use the Adam algorithm (Kingma & Ba, 2014) with the standard
Keras hyperparameters: learning rate 0.001, β1 = 0.9, β2 = 0.999, no amsgrad. The loss function
was categorical cross-entropy.

Small MLPs (MNIST and Fashion-MNIST): We train MLPs with 4 hidden layers, each of width
256, for 20 epochs of Adam (Kingma & Ba, 2014) with batch size 128. We then prune on a poly-
nomial decay schedule (Zhu & Gupta, 2017) up to 90% weight-sparsity for an additional 20 epochs
after initial training. Initial and final sparsities were chosen due to their use in the TensorFlow Model
Optimization Tutorial.2 In cases where we use dropout (for correlation visualization experiments in-
cluding halves-diff tasks), we apply it after each fully-connected layer with a rate of 0.5. All MLPs
achieved a testing accuracy on the MNIST and Fashion-MNIST datasets of at least 97% and 86%
respectively except for the ones trained on the Halves-diff datasets which all achieved an accuracy
of at least 92% and 71% respectively.

Small CNNs (MNIST and Fashion-MNIST): These networks had 3 convolutional layers with 64
3 × 3 channels each with the second and third hidden layers being followed by max pooling with
a 2 by 2 window. There was a final fully-connected hidden layer with 128 neurons. We train them
with a batch size of 64 for 10 epochs with no dropout or pruning. All small CNNs achieved a testing
accuracy on the MNIST and Fashion-MNIST datasets of at least 99% and 89% respectively except
for the ones trained on the Halves-diff datasets which all achieved an accuracy of at least 89% and
67% respectively.

Mid-sized VGG CNNs (CIFAR-10): We implement a version of VGG-16 described by Simonyan
& Zisserman (2014); Liu & Deng (2015). We train these with Adam, and L2 regularization with

2URL: https://web.archive.org/web/20190817115045/https://www.tensorflow.
org/model_optimization/guide/pruning/pruning_with_keras
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a coefficient of 5 × 10−5 for 200 epochs with a batch size of 128. Training was done with data
augmentation which consisted of random rotations between 0 and 15 degrees, random shifts both
vertically and horizontally of up to 10% of the side length, and random horizontal flipping. In cases
where we use dropout, we use a per-layer dropout rate as specified in Liu & Deng (2015). All of
these networks achieved testing accuracies of at least 87%.

Large CNNs (ImageNet): We experimented with VGG-16 and 19 (Simonyan & Zisserman, 2014)
and ResNet-18, and 50 (He et al., 2016) networks. Weights were obtained from the Python
image-classifiers package, version 1.0.0.

A.3 CORRELATION-BASED VISUALIZATION

Algorithm 2: Sign Alignment Algorithm (Similar to Watanabe (2019))
Result: Set of sign-aligned neuron visualizations.
Input Neuron visualizations V1:n for iter in num iters do

for vi in V do
Calculate sum of cosines, c =

∑
j 6=i

vi·vj√
vi·vi

√
vj ·vj

if c < 0 then
vi ← −vi

end
end

end

Algorithm 2 gives the sign alignment algorithm we use which is based on a a similar one from
Watanabe (2019).

Figure 3 shows examples from the ‘halves‘ and ‘stack’ datasets which we use for MLPs and CNNs
respectively to test whether a parallelizable task can cause a network to develop clusters that cohere
with one portion of the inputs or another. Details of the halves dataset experiments are detailed
in Section 3. Analogous experiments for CNNs were done but with “stack” datasets. For CNNs
with max pooling, object detection is insensitive to spatial location, so we design stack-same and
stack-diff datasets in an analogous way using channels instead of image-halves.

Visualizations for sub-clusters in the halves datasets are provided in section 3. However, here in
figure 4 are visualization results for Small CNNs for the stack-same/diff datasets. Unlike for the
small MLPs, these visualizations do show obvious coherence among clusters, which was part of our
motivation for the subsequent input construction experiments.

For constructing all correlation-based visualizations, we use the Spearman correlation which is de-
fined as the linear (Pearson) correlation of ranks. This measures how one series of values of values
can be expressed as a monotonically increasing function of another. We used this rather than linear
correlation because of the nonlinear nature of deep networks.

Networks can Compute Modular Sums: A network an do this for M values by using an interme-
diate layer of M2 neurons, each of which serve as a detector of one of the possible combinations
of inputs. Consider a ReLU MLP with 2M inputs, a single hidden layer with M2 neurons, and
then M outputs. Suppose that it is given the task of mapping datapoints in which the input nodes
numbered i and M + j are activated with value 1 to an output in which the mod (i+ j,M)th node
is active with value 1. It could do so if each hidden neuron with a ReLU activation detected one
of the M2 possible input combinations via a bias of -1 and two weights of 1 connecting it to each
of the input nodes in the combination is detects. A single weight from each hidden neuron to its
corresponding output point would allow the network to compute the modular sum. In our networks,
we haveM = 10 classes, and all MLPs and CNNs have a dense layer with> 102 neurons preceding
the output layer. Thus, they are capable of computing a modular sum in the halves and stack-diff
tasks we give to them.
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Figure 3: Examples images from halves/stack datasets: (Left) Samples from ‘halves’ datasets, and
(Right) samples from ‘stack’ datasets, all of class 3. Each row has 10 images from the respective
dataset. The first row is MNIST halves/stack-same, second is MNIST halves/stack-diff, third is
Fashion halves/stack-same, and fourth is Fashion halves/stack-diff.

Figure 4: Sub-cluster visualizations for small CNNs trained on stack-same/diff MNIST: (Left)
stack-same MNIST, (Right) stack-diff MNIST. The top rows give visualizations for true sub-clusters
and the bottom four for random ones. Columns are ordered left to right according to layer order.

A.4 HYPOTHESIS TESTING

Here, we provide details for the hypothesis testing methods used for input construction and lesion
experiments in Section 3. In each of these experiments, for all sub-clusters in a network, we obtain
quantities for the true sub-clusters and random sub-clusters. We compare these values to get a p
value in the form of a percentile for each true-cluster comparing it to the random ones. We then
obtain a single combined p value for a network overall using two methods. Both methods involve
constructing a test statistic which has a chi squared distribution under the null hypothesis that true-
sub-clusters have the same properties as random ones.

Fisher Method: This measures how low p values for the true sub-clusters are overall across a
network. In our case, because we use 9 random sub-clusters, the p values for sub-clusters take
values in {0.1, 0.2...1.0}. To obtain a granular approximation of the uniform distribution under
the null, we subtract 0.05 from them to center their distribution around 0.5 so that they give a
granular approximation to the continuous Uniform(0, 1) distribution under the null hypothesis that
visualizations for true sub-clusters are as good as random. Then we obtain the Fisher method test
statistic

−2

n∑
i=1

log pi

Which for n and p values has a chi squared distribution on 2n degrees of freedom under the null.
We then conduct a right-sided test with respect to this distribution. The fact that we use a granular
approximation of the uniform distribution makes this test conservative because when −2 times the
sum of the logs of the p values is taken during the calculation of the test-statistic, the smallest p
values will pull the test statistic toward the heavy tail of the Chi Squared distribution while the
largest ones will pull it toward zero.

Chi Squared Categorical Method: This measures how nonuniform the distribution of p values
were for sub-clusters were across a network. The p values fall into discrete bins, so a standard Chi
Squared categorical test can be used to test to see whether the assortment across the sub-clusters for
a network is consistent with randomness or not. The test statistic is

m∑
i=1

(xi − µi)2

µi
.
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Here, this is a sum over m discrete values which results can take, and each xi gives the count of
observations of each value while µi gives the expected count under the null. This test statistic will
take a Chi Squared distribution on m− 1 degrees of freedom under the null hypothesis. We conduct
a right-sided test with respect to this distribution.

A.5 COHERENCE IN UNTRAINED NETWORKS

In most cases, we find that trained networks, exhibit significant levels of importance and/or coher-
ence. However, in order to get a sense of how much importance and coherence result from the
training process, it is also natural to ask to what extent untrained, randomly-initialized networks
exhibit these. Here, we present the results for experiments with feature visualization as done in table
1a. We do not do this for lesion tests though because in expectation, any untrained network will
have accuracy at the random guess baseline whether intact or lesioned. Table 2 shows these results
for untrained CIFAR-10 scale VGGs. Here, the p values for input coherence are not indicative of
any sort of interesting phenomenon which contrasts with the corresponding input coherence values
from table 1 which are very low. These suggest that the training process promotes input coherence
in these networks. For output coherence, the p values here are lower than the regularized VGGs but
higher than the unregularized VGGs from table 1.

Visualization Score: Input Coherence Softmax Entropy: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
VGG (Untrained) 0.519 0.358 0.002 0.006

Table 2: Results of Lesion tests for randomly initialized mid-sized VGG networks: As in Table
1, each cell gives a median for 5 independent networks, and values less than 0.05 are bolded.

A.6 LESION TESTS WITH ALTERNATE CHOICES OF k

In all quantitative experiments in the main paper, we present results for k = 12 clusters. However,
to test the robustness of result to the choice of k, we present here in table 3, replicates of table 1b
with 8 (50% more) and 18 (50% fewer) clusters. Overall, results are very similar with no apparent
systematic differences. In table 3a, there are only 3 values which are different from table 1b by
whether they are below the threshold of 0.05, and similarly, there is only 1 such value in 3b.

k = 8 Accuracy Change: Importance Classwise Range: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST 1.59× 10−6 1.05× 10−13 0.304 0.098
MLP Fashion 1.88× 10−5 8.85× 10−10 0.586 0.002
CNN MNIST 0.008 0.028 0.570 0.587
CNN Fashion 0.005 0.005 0.700 0.582
VGG CIFAR (Unreg) 1.24× 10−8 1.59× 10−35 2.17× 10−9 6.07× 10−32

VGG CIFAR 3.99× 10−7 7.08× 10−29 7.97× 10−9 1.80× 10−38

ResNet-18 ImageNet 0.130 0.001 0.086 0.021
VGG-16 ImageNet 3.36× 10−5 6.08× 10−8 0.998 0.006

k = 18 Accuracy Change: Importance Classwise Range: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST 1.23× 10−7 1.21× 10−16 0.370 0.027
MLP Fashion 5.67× 10−5 6.31× 10−11 0.115 0.019
CNN MNIST 0.042 0.088 0.503 0.569
CNN Fashion 0.035 0.328 0.372 0.866
VGG CIFAR (Unreg) 2.58× 10−13 1.42× 10−40 1.84× 10−15 1.49× 10−54

VGG CIFAR 4.07× 10−5 1.63× 10−17 4.69× 10−8 2.72× 10−33

ResNet-18 ImageNet 4.08× 10−4 7.50× 10−8 0.411 0.001
VGG-16 ImageNet 2.94× 10−16 1.41× 10−65 1.000 3.34× 10−57

Table 3: Combined p values for lesion experiments with k = 8 (top) and k = 18 (bottom): Table
1b replicated with alternate choices of the number of clustering centers for the same networks.
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Visualization Score: Input Coherence Softmax Entropy: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST
CNN MNIST
VGG CIFAR (Unreg)

√ √ √ √

VGG CIFAR
√ √

VGG-16 ImageNet
√ √

VGG-19 ImageNet
√ √

ResNet50 ImageNet

Accuracy Change: Importance Classwise Range: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST

√ √

MLP Fashion
√ √ √

CNN MNIST
√

CNN Fashion
VGG CIFAR (Unreg)

√ √ √ √

VGG CIFAR
√ √ √ √

ResNet-18 ImageNet
√ √ √

VGG-16 ImageNet
√ √ √

Table 4: Significance of results in table 1, using the Benjamini-Hochberg procedure to ensure that
the false discovery rate per group—that is, the expectation under the data-generating distribution of
the proportion of results declared significant that came from the null distribution—is below 0.05,
where all the Fisher tests are grouped together and all the chi squared tests are separately grouped
together.

A.7 MULTIPLE COMPARISON ADJUSTMENT

In table 1, we report various p values that summarize the degree to which statistics of sub-clusters
vary from those of random groups of neurons within a network. For each network, one can use the p
value to test whether the sub-cluster statistics are drawn from the same distribution of the statistics
of random groups of neurons. However, when testing multiple networks, one might want to ensure
that the experiment and significance-testing procedure are unlikely to generate false positives. In
order to do this, a more complicated procedure to decide significance must be used.

The Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) controls the false discovery
rate: that is, the expected proportion of rejections of the null hypothesis that are false positives,
where the expectation is taken under the data-generating distribution. It relies on all experiments
being independent, and therefore it was run separately on the Fisher combined p values and on the
Chi squared p values. Results that are declared significant under this procedure when the maximum
acceptable false discovery rate is 1/20 is shown in table 4.

The Holm-Bonferroni method (Holm, 1979) controls the family-wise error rate: that is, the prob-
ability under the data-generating distribution that any null hypotheses are falsely rejected. Results
that are declared significant by the Holm-Bonferroni method run on the whole of table 1 capping the
family-wise error rate at 1/20 are shown in table 5.

A.8 INPUT CONSTRUCTION

All visualizations were created using the Lucid3 package. The optimization objective for visualizing
sub-clusters was the mean post-ReLU activation for all neurons inside the cluster (it was a mean of
means for convolutional feature maps). For small MLPs, small CNNs, and mid-sized CNNs, we
generated images using random jittering and scaling, and for ImageNet models, we used Lucid’s
default transformations which consist of padding, jittering, rotation, and scaling with default hy-
perparameters. For all networks, we used the standard pixel-based parameterization of the image
and no regularization on the Adam optimizer. For visualizations in small MLPs and CNNs, we
used versions of these networks trained on 3-channel versions of their datasets in which the same

3https://github.com/tensorflow/lucid
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Visualization Score: Input Coherence Softmax Entropy: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST
CNN MNIST
VGG CIFAR (Unreg)

√ √ √ √

VGG CIFAR
√ √

VGG-16 ImageNet
√ √

VGG-19 ImageNet
√

ResNet50 ImageNet

Accuracy Change: Importance Classwise Range: Output Coherence
Network Fisher Combined p Chi Squared p Fisher Combined p Chi Squared p
MLP MNIST

√ √

MLP Fashion
√ √

CNN MNIST
CNN Fashion
VGG CIFAR (Unreg)

√ √ √ √

VGG CIFAR
√ √ √ √

ResNet-18 ImageNet
√ √

VGG-16 ImageNet
√ √ √

Table 5: Significance of results in table 1, using the Holm-Bonferroni method to ensure that the
family-wise error rate—that is, the probability under the data-generating distribution that any result
is falsely declared significant— is less than 1/20.

inputs were stacked thrice because Lucid requires networks to have 3-channel inputs. However, we
show grayscaled versions of these in figure 5. Refer to the main text (section 3.1.2) for quantitative
analysis of the optimization objective values.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Example feature visualizations for true and random sub-clusters: In the left column
are shown true sub-cluster visualizations, and in the right column are visualizations of sub-clusters
of random neurons of the same size in the same layer. (a) MLP, MNIST; (b) CNN, MNIST; (c)
CNN-VGG, CIFAR-10; (d) VGG-16, ImageNet; (e) VGG-19, ImageNet; (f) ResNet-50, ImageNet.

Importantly these feature visualizations, while designed to maximally activate a sub-cluster, will
not necessarily highly activate all of the neurons inside of it. In order to get a sense of how much
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variance there is among these activations, we analyze two properties of the distribution of sub-cluster
activations when a visualization is passed through the network.

First, we perform the same tests as for score and entropy in table 1, but with the variance among
neuron activations. The “Activational Variance” columns in table 6 show these p values. Here,
low Fisher p values reflect a low variance for unit activations in a true sub-cluster compared to the
variance for unit activations in random sub-clusters. In table 6, there is significant evidence that some
of the networks at the CIFAR-10 and ImageNet scale have lower variance among the activations of
true sub-clusters than random ones when a sub-cluster’s visualization is passed through the network.
This suggests that in the networks for which this is the case, neurons in true sub-clusters are more
consistently activated by the same visualizations than those in random sub-clusters.

Second, we directly analyze the empirical coefficients of variation (CoVs) for the distributions of
true sub-clusters. The CoV is the standard deviation of a distribution divided by its mean: σ̂/µ̂. As
such, a high CoV means that the distribution has a high standard deviation relative to the mean. For
each sub-cluster of a network, we take the CoV of the distribution of post-ReLU activations. Then,
for each network, we take the distribution of CoVs of its subclusters, and find the first quartile,
median, and third quartile. For each training condition, we train five networks, rank the five by their
median CoV, take the median network under this ranking, and report that network’s CoV quartiles in
the final three columns of table 6. We find that in some cases the CoVs are relatively low, including
the ImageNet models which indicates relatively consistent activations. In other networks though,
many of the CoVs are above 1.

Activational Variance Activational Coefs of Variation
Network Fisher Combined p Chi Squared p Quartile 1 Median Quartile 3
MLP MNIST 0.124 0.295 1.399 1.539 1.877
CNN MNIST 0.485 0.328 0.614 0.691 0.787
VGG CIFAR (Unreg) 0.061 4.39× 10−4 0.929 1.214 3.690
VGG CIFAR 0.023 0.003 0.866 1.153 1.384
VGG-16 ImageNet 0.091 0.327 0.424 0.528 0.748
VGG-19 ImageNet 7.44× 10−4 1.13× 10−4 0.367 0.453 0.561
ResNet50 ImageNet 0.016 0.002 0.650 0.753 0.810

Table 6: Combined p values testing for differences in variance and coefficient of variation
quartiles in feature visualization experiments: Compare to table 1a. In the activational variance
columns, p values are shown comparing true sub-cluster activations to random sub-cluster activa-
tions. As in table 1a, p values for non-ImageNet networks are medians among 5 trials, and p values
less than 0.05 are bolded. In the coefficients of variance columns, quartiles for the CoVs for true
sub-clusters are shown.

A.9 LESION TESTS

Section 3.2 presents the lesion test experiments. Example accuracy-change profiles for an MLP and
small CNN in the Fashion datasets are shown here in figure 6. Table 7 and Table 8 show data on
the importance of sub-clusters in the single lesion experiments, and is plotted in figure 2. “Acc.
diff.” means the difference in accuracy between the actual network and the network with that sub-
cluster lesioned, while “Acc. diff. dist.” shows the mean and standard deviation of the distribution
of accuracy differentials between the actual network and one with a random set of neurons lesioned.

The “Proportion” column denotes the proportion of the layer’s neurons that the sub-cluster repre-
sents. ‘Important’ means that the sub-cluster makes up at least 5% of the layer, that the drop in
accuracy is greater than one percentage point, and that it was more important than all of 20 random
sub-clusters it was compared against. ‘Sig-but-not-diff’ means that the drop in accuracy is signifi-
cant but less than 1 percentage point, ‘Diff-but-not-sig’ means that the lesioning damage was more
than 1 percentage point but not significant, ‘Prunable’ means that the drop in the accuracy is smaller
than all random shuffles and smaller than 1 percentage point, ‘Complete’ means that the sub-cluster
contains the whole layer, ‘Small’ means that the sub-cluster consists of less than 5% of the layer,
and ‘Other’ means that the drop in accuracy is not statistically significant and less than 1 percentage
point.
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One detail not included in the main paper is that for the sake of computational efficiency, two mea-
sures were used for lesion experiments in the ImageNet models we used (ResNet-18 and VGG-16).
First, we used a downsampled version of the ImageNet2012 dataset (Krizhevsky et al., 2012) with
10,000 instead of 50,000 images. Second, we omitted sub-clusters with fewer than 5 neurons or
more than 90% of the neurons in the layer (this is different from the thresholds of 3 units and 80%
we used for input construction experiments).

Figure 6: Example accuracy change profiles for lesion tests: (Top) Fashion-MNIST MLP and
(Bottom) Fashion-MNIST Small CNN. Each subplot corresponds to a sub-cluster in the network.
For the sake of visualization here, 4 clusters were used instead of the normal 12 which was used in all
quantitative experiments. The accuracies for each class plus the overall accuracies in the rightmost
points are plotted. Green lines indicate the performance of the unperturbed network, red lines give
results when lesioning true sub-clusters, and grey lines show results for lesioning 20 random sub-
clusters.

A.10 EXPLORING THE “COMPOSABILITY” PROXY WITH DOUBLE LESION TEST

Given the lesion test presented in the main text, we know which sub-clusters are important, and it
would be ideal to understand how the important sub-clusters depend on each other. To do this, we
conduct experiments where we lesion two different important sub-clusters, which we’ll call X and
Y , in different layers. First, we measure the loss in accuracy when both are lesioned, which we’ll
call `(X ∪ Y ). We then compare `(X ∪ Y ) to the loss in accuracy `(X ∪ Y ′) if we take a random
subset Y ′ of neurons of size |Y | from the same layer as Y , and check if `(X ∪ Y ) is larger than 50
random samples of `(X ∪ Y ′). This tests if the damage from lesioning Y is statistically significant
given how many neurons are contained in Y , and given that we are already lesioning X . We also
calculate δ(Y,X) := `(X ∪ Y ) − `(X), which is the additional damage from lesioning Y given
that X has been lesioned. If `(X ∪ Y ) is statistically significantly different to the distribution of
`(X∪Y ′), and if δ(Y,X) is larger than one percentage point, we say that sub-cluster Y is important
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Table 7: Table of sub-clusters of an MLP network trained on Fashion-MNIST using pruning
and dropout. The network is partitioned into 8 clusters.

Layer Label Acc. diff. p value Proportion Type Acc. diff. dist.

1 0 0 0.476 0.005 small −0.00009± 0.00021
1 1 −0.2484 0.048 0.404 important −0.00751± 0.0048
1 2 −0.0685 0.048 0.154 important −0.00179± 0.00222
1 3 −0.0016 0.429 0.111 other −0.00124± 0.00105
1 5 0 0.429 0.005 small −0.00011± 0.00035
1 6 −0.1761 0.048 0.313 important −0.00453± 0.00315
1 7 0 0.476 0.01 small −0.00006± 0.00039
2 0 −0.0134 0.048 0.473 important −0.00362± 0.00296
2 1 0 0.476 0.008 small 0.00002± 0.00025
2 2 −0.0023 0.048 0.027 small 0.000005± 0.00038
2 3 −0.006 0.048 0.113 sig-but-not-diff −0.00045± 0.00114
2 6 −0.0014 0.476 0.188 other −0.00126± 0.00147
2 7 0.0014 1 0.191 prunable −0.00143± 0.00131
3 0 −0.0343 0.048 0.617 important 0.0005± 0.00331
3 4 0.0005 0.905 0.023 small −0.00002± 0.0003
3 7 −0.0129 0.048 0.359 important 0.00202± 0.00186
4 0 −0.0379 0.143 0.563 diff-but-not-sig −0.02009± 0.02002
4 3 0.0002 1 0.004 small −0.00005± 0.00017
4 4 −0.0017 0.095 0.113 other −0.00089± 0.00086
4 7 −0.2048 0.048 0.32 important −0.00445± 0.00138

Table 8: Table of sub-clusters of an VGG network trained on CIFAR-10 using dropout. The
network is partitioned into 8 clusters.

Layer Label Acc. diff. p value Proportion Type Acc. diff. dist.

1 7 −0.8043 0.048 1 complete −0.80430
2 5 0 0.857 0.016 small −0.00532± 0.00708
2 7 −0.8043 0.143 0.984 diff-but-not-sig −0.80470± 0.00166
3 1 −0.8043 0.048 1 complete −0.80430
4 1 −0.8043 0.048 1 complete −0.80430
5 1 −0.8043 0.048 1 complete −0.80430
6 1 −0.8043 0.048 1 complete −0.80430
7 1 −0.8043 0.048 0.617 important −0.12236± 0.03685
7 5 0 1 0.383 prunable −0.03632± 0.01111
8 0 0 1 0.586 prunable −0.02803± 0.01497
8 1 0 0.238 0.002 small −0.00005 0.00020
8 5 −0.8043 0.048 0.412 important −0.00752± 0.00451
9 3 0 1 0.822 prunable −0.21835± 0.12462
9 5 −0.8043 0.048 0.178 important −0.00200± 0.00146
10 2 0 1 0.924 prunable −0.62427± 0.15113
10 6 −0.8043 0.048 0.076 important −0.00143± 0.00289
11 2 0 0.143 0.002 small −0.00001± 0.00004
11 4 0 1 0.662 prunable −0.05353± 0.03084
11 6 −0.8043 0.048 0.336 important −0.00387± 0.00240
12 4 −0.8043 0.048 1 complete −0.80430
13 4 -0.8043 0.048 1 complete −0.80430

conditioned on sub-cluster X . Similarly, we test if X is important conditioned on Y by comparing
`(X∪Y ) to the distribution of `(X ′∪Y ), and by determining the size of δ(X,Y ). Table 9 shows the
δ values and importances of different pairs of sub-clusters for an MLP trained on Fashion-MNIST
with pruning and dropout, when the number of cluster is set to 8 for visualization.

By examining the importances of sub-clusters conditioned on each other, we can attempt to construct
a dependency graph of sub-clusters by determining which sub-clusters send information to which
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Figure 7: Four cases of dependency between sub-clusters. These cases characterize how informa-
tion can flow from a sub-cluster X to a sub-cluster Y , where X is in an earlier layer than Y . U and
V are two other sub-clusters, which reside in the same layer as X and Y respectively. All of these
sub-clusters are individually “important”. Given the importance configuration of (X|Y, Y |X), we
conjecture what is the relationship in terms of information flow between the sub-clusters.

(a) X|Y : ×
Y |X: ×

(b) X|Y :
√

Y |X: ×

(c) X|Y : ×
Y |X:

√ (d) X|Y :
√

Y |X:
√

others. Consider a pair of sub-clusters (X,Y ) where X is in an earlier layer than Y , and where both
are individually important (refer to figure 7 for an elaborated visual illustration).

• If X is not important conditioned on Y , and Y is not important conditioned on X , we
reason that all of the information from X is sent to Y (since otherwise lesioning X would
damage accuracy even conditioned on Y being lesioned), and that the only information
that Y receives is sent via X (since otherwise lesioning Y would damage accuracy even
conditioned on X being lesioned).

• If X is not important conditioned on Y but Y is important conditioned on X , then we
reason that X sends information to Y and also to other sub-clusters.

• If Y is not important conditioned on X but X is important conditioned on Y , we reason
that Y receives information from X and other sub-clusters.

• We can draw no conclusion if both X and Y are important conditioned on the other.

These assumptions, together with data shown in figure 9, let us draw some edges in a dependency
graph of sub-clusters, which is shown in figure 8. Note that sub-clusters of cluster 0 seem to send
information to each other, which is what we would expect if modules were internally connected.
The same holds for the sub-cluster of cluster 7.
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Table 9: Dependency information of pairs of “important” sub-clusters of an MLP trained on
Fashion-MNIST with dropout. X and Y represent sub-clusters, X being the one earlier in the
network. They are numbered by first their layer and then their cluster number. The network is
partitioned into 8 cluster.

X Y X|Y Y|X δ(X,Y) δ(Y,X)
1-1 2-0

√ √
-0.261 -0.026

1-1 3-0
√ √

-0.237 -0.023
1-1 3-7

√
× -0.249 -0.014

1-1 4-7
√ √

-0.244 -0.201
1-2 2-0

√ √
-0.095 -0.04

1-2 3-0
√ √

-0.092 -0.058
1-2 3-7

√
× -0.054 +0.001

1-2 4-7
√ √

-0.088 -0.224
1-6 2-0

√
× -0.157 0.006

1-6 3-0
√

× -0.194 -0.052
1-6 3-7

√ √
-0.180 -0.017

1-6 4-7
√ √

-0.153 -0.182
2-0 3-0 × × -0.125 -0.146
2-0 3-7

√ √
-0.125 -0.124

2-0 4-7 ×
√

-0.101 -0.292
3-0 4-7

√ √
-0.502 -0.673

3-7 4-7 ×
√

-0.010 -0.202

1-1 1-2 1-6

2-0

3-03-7

4-7

Figure 8: A plot of the edges of the sub-cluster dependency graph for an MLP trained on
Fashion-MNIST and partitioned with 8 clusters. We derive this from data shown in figure 9.
Sub-clusters are identified first by their layer number, then by their module number.
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Figure 9: Dependency information for all pairs of sub-clusters for an MLP trained on Fashion-
MNIST and partitioned with 8 clusters. Best viewed in color and zoomed in on a screen. Sub-
clusters are numbered by their layer and cluster. They are also labeled by their importance: IMP
stands for “important”, SMA stands for “small”, SIG stands for “sig-but-not-diff”, DIFF stands for
“diff-but-not-sig”, PRU stans for “prunable” and OTH stands for “other”, terms which are defined
at the beginning of Appendix A.9. Cells on the diagonal are labeled by the accuracy damage in
percents caused by zeroing out the corresponding sub-cluster in the single lesion experiments, and
have bolded text, while cells off the diagonal are labeled by 100×δ(first, second). Cells contain stars
if the damage caused by lesioning the first is statistically significant at the p < 0.05 level conditional
on the second being lesioned, and question marks if the damage caused by lesioning the first was less
than the damage caused by lesioning each of 50 random sets of neurons (i.e., p = 1.00), conditional
on the second being lesioned. Note that this plot includes sub-clusters in the same layer, where the
meaning is questionable since there can be no direct dependency.
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