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ABSTRACT

The success of Graph Neural Networks (GNNs) in modeling unstructured data has
heightened the demand for explainable AI (XAI) methods that provide transpar-
ent, interpretable rationales for their predictions. A prominent line of work lever-
ages the Information Bottleneck (IB) principle, which frames explanation as op-
timizing for representations that maximize predictive information I(Z;Y ) while
minimizing input dependence I(X;Z). We show that explicit IB-based losses
in GNN explainers provide little benefit beyond standard training: the fitting and
compression phases of IB emerge naturally, whereas the variational bounds used
in explicit objectives are too loose to meaningfully constrain mutual information.
To address this, we propose BottleneckMLP, an architectural module that implic-
itly enforces the IB principle. By injecting Gaussian noise inversely scaled by
node importance, followed by architectural compression, BottleneckMLP ampli-
fies the reduction of I(X;Z) while increasing I(Z;Y ). This yields embeddings
where important nodes remain structured and clustered, while unimportant nodes
drift toward Gaussianized, high-entropy distributions, consistent with progressive
information loss under IB. BottleneckMLP integrates seamlessly with current ex-
plainers, as well as subgraph recognition tasks, replacing explicit IB terms and
consistently improving predictive performance and explanation quality across di-
verse datasets.

1 INTRODUCTION

Graph-structured data appears in a wide range of domains, including drug design Liu et al. (2023),
healthcare Zitnik et al. (2018), social networks Bian et al. (2020), and recommendation systems
Chen et al. (2022). Graph Neural Networks (GNNs) have emerged as powerful models for learning
from such data, achieving state-of-the-art results in tasks such as node/graph classification Bacciu
et al. (2019); Kipf & Welling (2017), link prediction Zhang & Chen (2018), and graph regression
Zhang et al. (2024); yet, GNNs remain black-box models. Recent research has focused on develop-
ing explainability methods Dai et al. (2024); Li et al. (2023b); Yuan et al. (2022), which are essential
to build trust and ensure reliability in sensitive applications such as healthcare and scientific discov-
ery.

Most GNN explainability methods are post-hoc Bajaj et al. (2021a); Baldassarre & Azizpour (2019);
Luo et al. (2020a), applying an explainer to a pre-trained black-box model. Recent work instead ex-
plores ante-hoc approaches Luong et al. (2024); Miao et al. (2022); Seo et al. (2024a), which train
the explainer and classifier jointly to avoid spurious correlations. These intrinsically interpretable
GNNs aim to balance accuracy with interpretability, encouraging reliance on ground-truth explana-
tory features. We focus on ante-hoc graph classification explainers, and additionally show that
BottleneckMLP generalizes to post-hoc node classification and subgraph recognition tasks.

The Information Bottleneck (IB) principle Tishby et al. (2000); Tishby & Zaslavsky (2015) formal-
izes the following tradeoff: the optimal representation Z should capture minimal but sufficient in-
formation from X to predict Y . The IB principle is pertinent to graph data, where rich structure and
feature dependencies make learning compact, task-relevant representations challenging. Previous
work in GNN explainers (ante-hoc Miao et al. (2022), post-hoc Chen et al. (2024), prototype-based
Seo et al. (2024b)) have included information bottleneck losses to encourage the learned represen-
tation to be sufficient yet minimal.
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In this work, we argue that explicitly minimizing I(X;Z) via auxiliary explicit IB losses (‘IB Loss’)
is ineffective. We formalize GNN explanation as an IB problem, noting that cross-entropy training
alone induces the information curve: deeper layers naturally compress X (input graph G), retaining
only the information in Z (explanatory subgraph GS) needed for predicting Y . We reconstruct
the information plane for GNNs and show consistency with IB theory and empirical findings in
representation learning Tishby & Zaslavsky (2015). Our method surpasses IB-based explainers
without such terms, improving accuracy and explanation quality. Our key contributions are fourfold:

(1) Ineffectiveness of Explicit IB in Graph Settings We show that explicit IB loss terms are
ineffective for explanation in the graph setting, as structural dependencies violate the i.i.d.
assumptions underlying IB theory.

(2) BottleneckMLP: A General Implicit Architectural IB Module We propose Bottle-
neckMLP, a model-agnostic architectural primitive that implicitly enforces the IB principle
without variational bounds or auxiliary losses. By injecting importance-scaled Gaussian
noise and applying architectural compression (via an MLP), it drives unimportant nodes
toward Gaussianized high-entropy embeddings while preserving structured clusters of im-
portant nodes, yielding compact, interpretable representations.

(3) Gaussianization Encourages Forgetting We show that the Gaussianization effect induced
by BottleneckMLP serves as a natural mechanism for forgetting task-irrelevant informa-
tion. By injecting noise inversely proportional to node importance, uninformative node
representations are progressively pushed toward high-entropy, Gaussian-like embeddings,
removing spurious correlations. Relevant information is retained in clustered, low-entropy
embeddings, while irrelevant information is forgotten through Gaussianization.

(4) Empirical Validation In comprehensive experiments on ante-hoc graph explainers, post-
hoc node classification explainers, and subgraph recognition models, BottleneckMLP con-
sistently outperforms explicit IB losses in both explanation quality and model performance,
demonstrating that implicit IB is more effective for interpretable graph learning.

2 PRELIMINARIES

Mutual information (MI) is a symmetric measure of how much one random variable reduces the
uncertainty of another random variable:

I(X;Z) = H(X)−H(X|Z), (1)

where H(X) denotes the entropy of random variable X . (A complete list of all symbols and notation
used in the paper appears in Appendix A.)

Information Bottleneck, proposed in Tishby et al. (2000), provides a framework to learn a mini-
mal sufficient representation Z that preserves only the aspects of X relevant to Y , quantified by the
mutual information I(X;Y ). Assuming X and Y are statistically dependent, with Y implicitly dis-
tinguishing between relevant and irrelevant features in X , the goal is for Z to retain all information
needed to predict Y while discarding irrelevant details. The general IB objective is:

min
p(z|x)

[−I(Z;Y ) + βI(X;Z)] , β ≥ 0 (2)

where the Lagrange multiplier β balances relevant information I(Z;Y ) and compression I(X;Z).

IB in Deep Learning. Tishby & Zaslavsky (2015) interpret DNN training via the IB framework,
where Shwartz-Ziv & Tishby (2017) identify two distinct phases in MI dynamics:

(1) Fitting Phase: Cross-entropy minimization increases I(X;Z) and I(Z;Y ) as the network fits
the data.

(2) Compression Phase: Layers discard task-irrelevant information, reducing I(X;Z) while pre-
serving or increasing I(Z;Y ). Proceeds slowly and without explicit regularization.

The two-phase dynamic of DNN training emerges in our graph experiments due to BottleneckMLP,
marking the first such observation in the graph setting. In graph learning, this behavior is espe-
cially desirable as embeddings must encode rich structural, node, and edge-level features into com-
pact, low-dimensional representations. We leverage this insight in our architectural mechanism that

2
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achieves stronger implicit compression while improving both predictive accuracy and explanatory
subgraph quality.

3 RELATED WORK

3.1 IB-BASED EXPLAINERS

A key challenge in generating explanatory subgraphs is their varying size, making fixed-size con-
straints ineffective Kakkad et al. (2023). To address this, these information-constrained methods
adopt the IB principle Tishby et al. (2000), which limits retained information rather than subgraph
size. Ante-hoc explainers such as GSAT Miao et al. (2022), PGIB Seo et al. (2024b), and TGIB Seo
et al. (2024a) incorporate IB objectives to encourage minimal sufficient representations:

min
ϕ

−I(GS ;Y ) + βI(GS ;G), s.t. GS ∼ gϕ(G). (3)

GSAT learns edge attention weights to suppress irrelevant features, sampling GS from Pϕ(GS |G).
PGIB introduces prototypes Gp and modifies the objective to include I(Y ;GS , Gp) and
I(Y ;Gp|GS) + βI(G;GS). TGIB, a temporal variant, extracts bottleneck subgraphs Rk from tem-
poral neighborhoods, using an analogous IB objective. While these methods rely on variational
upper bounds or contrastive loss to constrain I(X;Z), we show these bounds are too loose to en-
force meaningful compression. In contrast, our BottleneckMLP achieves the compression phases of
the IB curve effectively, without requiring explicit IB loss terms.

3.2 COMPRESSION IN DEEP LEARNING

Several studies have shown that DNNs naturally undergo an implicit compression phase during
supervised training. Scabini & Bruno (2023) use complex network theory to show that emergent
motifs arise during training without explicit regularization, supporting the IB perspective Tishby &
Zaslavsky (2015). Similarly, simple fully connected layers improve CNN generalization Basha et al.
(2020); Kocsis et al. (2022) even without explicit compression losses. These results suggest that
architectural biases alone can induce compact, informative representations. Our BottleneckMLP
demonstrates this in GNN explainability; compression can emerge directly from architecture and
cross-entropy training without IB loss terms, bridging implicit IB dynamics with graph explanations.

3.3 GAUSSIANIZATION OF REPRESENTATIONS

Eftekhari & Papyan (2025) show that Gaussian distributions are both the most efficient signal rep-
resentation and the worst-case noise. They propose a mechanism that enforces Gaussianity in neu-
ral representations, where injecting Gaussian noise and normalization improve generalization and
robustness across architectures. Agrawal et al. (2020) extend infinite-width theory to bottleneck
neural network Gaussian processes (NNGPs), showing that unlike deep ReLU NNGPs which lose
discriminative power, bottleneck layers preserve task-relevant information by acting as information-
preserving compression points. These results suggest that structured architectures (e.g., bottlenecks,
Gaussianized activations) naturally promote robustness and generalization, supporting our view that
compression and explainability need not rely on explicit IB constraints. Our BottleneckMLP follows
this principle, achieving effective compression and explanation purely through architectural design.

4 BOTTLENECKMLP

We begin by identifying critical limitations of explicit IB-based approaches in graph explainability
(Section 4.1), then introduce our BottleneckMLP module as an architectural solution (Section 4.2).
We provide theory for why this approach is more effective than explicit IB losses (Section 4.3),
followed by empirical validation of our theoretical results (Sections 4.3.3 and 5).

4.1 LIMITATIONS OF EXPLICIT INFORMATION BOTTLENECK IN GRAPH EXPLAINABILITY

While some post-hoc explainers Bajaj et al. (2021b); Luo et al. (2020b) impose sparsity, budget, or
connectivity constraints on explanatory subgraphs, the predominant strategy across IB-based meth-
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ods remains the use of variational upper bounds. However, these approaches face fundamental
limitations when applied to graph-structured data. We describe the general approach used by these
ante-hoc IB explainers below, and give explainer-specific details in Appendix I.

Variational Upper Bounds are Loose The terms of the Lagrangian in Equation 2 cannot be com-
puted directly, and require the integrals for I(X;Z) and I(Z;Y ). The marginal p(z) and the true
posterior p(y|z) are intractable, and variational bounds for mutual information Poole et al. (2019)
are used in machine learning Du et al. (2020); Dai et al. (2018); Bao (2021); Li et al. (2023a).
Maximizing I(Z;Y ) reduces to the usual cross-entropy (CE) loss:

I(Z;Y ) = Ep(y,z) [log p(y|z)]−H(Y ). (4)
Almost all ante-hoc graph explainers Lee et al. (2023); Miao et al. (2022; 2023); Seo et al. (2024a;b)
rely on variational approximations or naive priors which lead to loose or ineffective bounds. This
results in insufficient enforcement of the information constraint, allowing the learned subgraphs to
retain excessive or redundant information from the input. The variational upper bound loss LV UB

for graph explainers is defined as:
LV UB := KL(Pϕ(GS | G) ∥Q(GS)), (5)

where edges eij in Q(GS) are parameterized by eij ∼ Bernoulli(r) edges êij are parametrized by
êij ∼ Bernoulli(ϕij). We refer to this as simply ‘IB Loss’ throughout the paper. PGIB uses a
contrastive loss (Appendix I to minimize I(X;Z), which we again refer to as ‘IB Loss’.

Structural Dependencies Break Node-Level Independence Assumptions GNNs compute node
embeddings via recursive message passing: h

(k)
v = UPDATE(k)(h

(k−1)
v , AGGREGATE(k)({h(k−1)

u :

u ∈ N(v)})). Since each h
(k)
v aggregates information from multi-hop neighborhoods, node features

are interdependent. This violates the i.i.d assumptions underlying variational IB bounds, making
KL-based regularizers over node distributions ineffective in capturing structural dependencies. We
elaborate on this in Section 4.3.1.

Empirical Evidence of Ineffectiveness Sections 4.3.3 and 5 provide empirical results showing that
explicit IB constraints fail to regulate information effectively, motivating our implicit, architecture-
driven alternative based on selective forgetting of information.

4.2 BOTTLENECKMLP ARCHITECTURE

We propose BottleneckMLP, a two-component architectural module that implicitly enforces the IB
principle without requiring explicit IB Loss terms.

Component 1: Importance-Weighted Gaussian Noise For each node embedding Zi ∈ Rd with
importance scores αi ∈ (0, 1), we inject noise as:

Zi = f(X) + εi, εi ∼ N
(
0, (

σ2

αi
)Id

)
, (6)

where σ is a tunable hyperparameter, f(X) is the GNN embedder, and Id is the d-dimensional iden-
tity matrix. This mechanism scales the variance of injected Gaussian noise inversely with impor-
tance, so that nodes deemed unimportant are perturbed more heavily, thereby pushing them toward
high-entropy representations. We present our theoretical results for the component in Section 4.3.2

Component 2: Progressive Compression via MLP Layers Following Tishby & Zaslavsky (2015),
we use an MLP to compress representations and filter task-irrelevant noise. The default configura-
tion is h −→ h

4 −→ h, with ReLU activations between layers. We note that determining the
optimal architecture of the BottleneckMLP for a given dataset and explainer model is analogous to
hyperparameter tuning. This compression retains salient information while discarding noise, pro-
moting compact, meaningful representations.

Integration with Existing Explainers BottleneckMLP integrates seamlessly into existing ante-hoc
explanation pipelines (Figure 1), operating directly on the GNN embeddings before subgraph extrac-
tion. This modular design replaces explicit IB loss terms across different explainer architectures.

Importance Score Computation Node importance scores are computed using the explainer’s ex-
isting attention or selection mechanism. GSAT uses attention weights from the stochastic attention
mechanism, PGIB uses prototype similarity scores, and TGIB uses temporal neighborhood relevance
scores. This ensures compatibility while leveraging each method’s inherent importance estimation.

4
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Figure 1: BottleneckMLP method for a general ante-hoc (intrinsically interpretable) GNN pipeline.
Our general module acts on the embeddings produced by the explainer’s GNN module, and the
transformed embeddings are directed do the subsequent subgraph extractor component.

4.3 THEORY

In the following subsections, we provide theoretical justification for why explicit IB methods fail on
graphs (Section 4.3.1), and grounding for how BottleneckMLP effectively (and implicitly) enforces
IB by effecting latent space representation dynamics (Section 4.3.2). We empirically validate the
effectiveness of BottleneckMLP and current approaches failing to reduce I(X;Z) (Section 4.3.3).
We provide further empirical evidence on theory of latent space dynamics in Section 5.

4.3.1 WHY EXPLICIT IB FAILS ON GRAPHS

Explicit IB relies on the Asymptotic Equipartition Property (AEP), which holds when data is gen-
erated from a stationary, ergodic process with primarily local dependencies. In images or speech,
each variable (e.g., a pixel or phoneme) depends mostly on its local neighborhood and is condition-
ally independent of distant variables given that neighborhood (low global dependence). The AEP
theorem Breiman (1957) states that for a sequence X1, X2, . . . from distribution p(x1, x2, . . . )

lim
n→∞

− 1
n log p(x1, . . . , xn) = H(X). (7)

Thus, for large n, almost all patterns are typical. Under local dependence, the joint distribution can
be approximated by products of localized conditionals:

p(x1, . . . , xn | P ) ≈ 2−nH(X|P ) for typical partitions P. (8)

In systems with low global connectivity and primarily local dependencies, conditional probabilities
can be factorized locally and averaged via the Central Limit Theorem. Under the typicality assump-
tion, a similar effect holds in information theory, causing I(X;Z) and I(Z;Y ) to concentrate and
enabling reliable estimation from partitions of p(X,Y ).

I(X;Z) = EX,Z

[
log

p(x | z)
p(x)

]
= EX,Z

[∑
i

log
p(xi | N (xi), z)

p(xi | N (xi))

]
, (9)

I(Z;Y ) = EZ,Y

[
log

p(y | z)
p(y)

]
= EZ,Y

[∑
x

p(y |x)
∏
i

p(xi | N (xi), z)− log p(y)

]
, (10)

were N (xi) denotes the neighborhood of xi. These assumptions justify the use of variational bounds
in estimating I(X;Z) and I(Z;Y ). However, they break down in graphs, where features are not
i.i.d. and nodes are structurally entangled, and where the patterns are not large enough to be typical.

Graphs Break AEP Assumptions Graphs violate the requisite conditions for AEP. Structural en-
tanglement creates strong global dependencies, the distribution P (G) is not factorized over nodes
or edges (also addressed in Wu et al. (2020)), and most graphs are too small to exhibit typicality.
As a result, variational estimates of I(X;Z) collapse to KL terms that assume i.i.d. sampling, sys-
tematically underestimating dependencies. Empirical evidence of these dependencies is provided in
Appendix E.3. Thus, explicit IB losses cannot reliably control information flow in GNNs.

5
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4.3.2 IMPLICIT IB THROUGH GAUSSIANIZATION

Implicit Realization of the IB Lagrangian BottleneckMLP implicitly optimizes the IB objective
without requiring variational bounds. Concretely, we obtain:

min
p(z|x)

−I(Z;Y )+βI(X;Z)⇝

{
I(Z;Y ) is preserved via low-noise important nodes,

I(X;Z) is reduced via Gaussianization of unimportant nodes.

Decomposing the input representation, I(X;Z) = I(X;Zimp) + I(X;Zunimp), and noting
that unimportant nodes are conditionally independent of the target given the important nodes,
I(Zunimp;Y | Zimp) = 0, reducing I(X;Zunimp) via noise does not hurt prediction. Thus Bot-
tleneckMLP achieves the minimal sufficient representation postulated by the IB principle, while
avoiding the weaknesses of explicit IB loss functions in graphs.

Selective Forgetting of Information Our approach achieves compression by selectively forgetting
information about unimportant nodes (I(X;Z) minimization) while preserving structure around
important ones. Gaussianization serves as a natural mechanism for information loss. By the Central
Limit Theorem, repeated independent noise-injection drives convergence towards Gaussianity (since
the embeddings aggregate many independent perturbations).

For each unimportant node i we define

Zi = fi(X) + ti ϵi, ϵi ∼ N (0, Id), ti :=
σ

αi
, αi ∈ (0, 1), (11)

where fi(X) ∈ Rd is the output of the encoder, and σ is a fixed hyperparameter, and and the noise
terms {ϵi} are sampled independently at each forward pass. We assume Zi | X admits a smooth
density with finite Fisher information.

Below we formalize the theoretical groundings of BottleneckMLP. We refer the reader to B for the
proofs of Lemma 1 and Lemma 2.

Lemma 1 (Monotonicity of Conditional Entropy) Let Zi = fi(X) +
√
ti Ni as above. Then the

conditional entropy of Zi given X satisfies the multivariate De Bruijn identity:
d

dti
H(Zi | X) =

1

2
Tr(J(Zi | X)) ≥ 0,

where J(Zi | X) is the Fisher information matrix. Therefore conditional entropy H(Zi | X)
monotonically increases.

Lemma 2 (Bounded Marginal Entropy) The marginal entropy of Zi is bounded by:

H(Zi) ≤
1

2
log

(
(2πe)d det(Cov(fi(X)) + tiId)

)
.

Theorem 1 (Mutual Information Reduction) As noise variances {ti}i∈U increase: (1)
I(X;Zunimp) decreases monotonically, and (2) limmini∈unimp ti→∞ I(X;Zunimp) = 0.

Proof

(1) By the chain rule for MI, I(X;Z) = I(X;Zunimp)+I(X;Zimp | Zunimp). For the unimportant
term, I(X;Zunimp) = H(Zunimp)−H(Zunimp | X). By Lemma 1, H(Zunimp | X) increases
monotonically with {ti}; by Lemma 2 the marginal entropy H(Zunimp) is bounded above.
Consequently I(X;Zunimp) decreases as the noise variances increase.

(2) As ti → ∞ for i ∈ unimp, the noise dominates the signal: Zi ≈ tiϵi. Since ϵi is inde-
pendent of X , we get I(X;Zi) → 0 for each i ∈ unimp. For the joint MI, note that while
embeddings {fi(X)} may be correlated, the noise terms {ϵi} are independent. As ti → ∞,
we have Zunimp ≈ [t1ϵ1, . . . , t|unimp|ϵ|unimp|] where the ϵi are independent of X , giving
I(X;Zunimp) → 0.

Stochastic Relaxation For DNNs, after initial fitting, gradient noise induces stochastic relaxation
where the network implicitly maximizes conditional entropy H(Z|X), minimizing I(X;Z) =
H(Z)−H(Z|X) without explicit regularization Tishby & Zaslavsky (2015); Tishby et al. (2000). In
the graph setting, BottleneckMLP is the key architectural component that elicits this phenomenon.

6
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4.3.3 BOTTLENECKMLP EFFECTIVELY ENFORCES IB DYNAMICS

(a) Original (b) w/o IB loss (c) w/o IB loss + BottleneckMLP

Figure 2: Mutual information I(X;Z) (orange) and IB Loss (blue) (Equation 5) visualizations over
epochs (GSAT on MUTAG). BottleneckMLP enforces compression effectively, whereas explicit IB
Loss terms do not. (a) and (b) do not exhibit I(X;Z) minimization. (c) exhibits both the fitting
(I(X;Z) ↑) and compression (I(Z;Y ) ↓) phases consistent with Tishby & Zaslavsky (2015). Note
that minimization of IB Loss (blue) does not correlate with I(X;Z) (orange).

In Figure 2c, I(X;Z) rises early as task-relevant features are captured, then declines in later epochs,
reflecting effective compression. This shows that our architecture encourages forgetting irrelevant
details and produces IB dynamics absent in prior methods. HSIC analysis further confirms reduced
dependence between X and Z across layers (Appendix E.4). By contrast, explicit IB losses fail:
in 2a (GSAT) and 2b (GSAT w/o IB loss), I(X;Z) grows monotonically and IB Loss curves mis-
align with actual dynamics, highlighting the limits of explicit IB and the advantage of our implicit,
architecture-driven approach.

Figure 3: BottleneckMLP enforces IB on graph embeddings in the information plane I(X;Zi) vs.
I(Zi;Y ) over layers, i in range 1–5, and epochs (purple to yellow). Information curve Tishby &
Zaslavsky (2015) naturally appears with CE minimization. Compression and concentration are more
apparent in the later layers, consistent with the theory in Section 4.3.1.

BottleneckMLP effectively reproduces the information plane dynamics originally observed in DNNs
by Tishby & Zaslavsky (2015), now extended to the graph domain with GNNs, as shown in Figure
3. Both the characteristic fitting and compression phases are clearly visible, demonstrating that
BottleneckMLP successfully induces the expected IB behavior in graph representations.

5 EXPERIMENTS

Section 5.1 analyzes the distributional properties of node embeddings over training via LNSA and
embedding drift to validate our theory on Selective Forgetting of Information given in Section 4.3.2,
Section 5.2 reports the improved performance of BottleneckMLP versus baselines and ablations. We
focus on ante-hoc IB-based explainers. For generalizability of BottleneckMLP, we report improved
performance on subgraph recognition and post-hoc node classification tasks in Appendix H.

5.1 REPRESENTATION DYNAMICS OF BOTTLENECKMLP REFLECT IB

We provide strong mechanistic and empirical evidence that BottleneckMLP induces representa-
tional dynamics aligned with the goals of the IB framework, selectively reducing I(X;Z) while
preserving I(Z;Y ). All experiments corroborate that important node embeddings maintain lower
entropy and more structured distributions, while unimportant node embeddings progressively ap-
proach Gaussian-like high-entropy distributions. This results in the desired I(X;Z) minimization

7
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(4.3.2). We present LNSA and node drift results, and refer the reader to Appendix for convex hull
volume (E.2), node linkage (E.3), HSIC (E.4), and additional node drift experiments (F)

Results on Localized Normalized Space Alignment (LNSA) Following Ebadulla et al. (2025), we
track how representation geometry evolves across epochs using LNSA, which measures neighbor-
hood alignment across epochs (higher values indicate greater instability) (details in Appendix K).
Nodes are grouped by importance: Category 1 (important with important neighbors), Category 2
(important with mixed neighbors), and Category 3 (unimportant with unimportant neighbors). In
Figure 4, we observe that Categories 1 and 2 maintain low LNSA over epochs, while Category 3
exhibits high values, reflecting drift toward high-entropy distributions under BottleneckMLP.

Figure 4: LNSA values for PGIB + BottleneckMLP. Cat 1: important nodes. Cat 2: important nodes
with unimportant neighbors. Cat 3: unimportant nodes. Cat 1 and Cat 2 embeddings remain similar,
while Cat 3 and has a higher mean LNSA value as embedding structure changes over epochs.

Results on Embedding Drift Figure 5 shows embedding drift under different GSAT configura-
tions. Baseline GSAT yields little separation between node types, and removing the IB Loss term
causes uniformly unstable drift. With BottleneckMLP, we achieve the intended IB effect in align-
ment with out theory: important nodes stabilize with low drift, while unimportant nodes continue
drifting toward noisier, Gaussian-like distributions. This pattern holds across all datasets (see Ap-
pendix E.1). Notably, these effects occur without an explicit IB loss, demonstrating that Bottle-
neckMLP introduces a powerful implicit bottleneck via architectural constraints alone.

(a) GSAT (b) GSAT w/o IB Loss (c) GSAT + BottleneckMLP

Figure 5: Drift of important (blue) vs. unimportant (orange) nodes across epochs for: (a) GSAT,
(b) GSAT w/o IB Loss, and (c) GSAT with BottleneckMLP. BottleneckMLP alone correctly affects
representation dynamics. We see the same plots across models and datasets (in Appendix E).

5.2 BOTTLENECKMLP IMPROVES CLASSIFICATION AND EXPLANATION

We evaluate if IB Loss adds value beyond supervised training by comparing baseline explainers
with/ without the IB Loss, and BottleneckMLP (experimental setup in Appendix C). We evaluate
performance on benchmarks using accuracy, explanation AUC-ROC, and Fidelity± (Appendix J).

5.2.1 GRAPH TASK PERFORMANCE

Table 1 shows the ineffectiveness of IB Loss in GSAT and PGIB, where adding BottleneckMLP
consistently improves performance. On BA-2Motifs, where IB Loss removal hurts performance,
BottleneckMLP recovers and increases accuracy, replicating and surpassing the role of IB Loss.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: PGIB/ GSAT Classifier Accuracy. BottleneckMLP increases performance over the original
explainer method, and when IB Loss is removed.

MUTAG BA-2Motifs NCI1 PROTEINS

GSAT 0.909±0.033 0.994±0.006 0.689±0.017 0.681±0.036
GSAT w/o IB Loss 0.935±0.043 0.770±0.224 0.743±0.024 0.706±0.040
GSAT w/o IB Loss + BottleneckMLP 0.949±0.010 1.000 0.802±0.019 0.745±0.048

PGIB 0.904± 0.010 0.628± 0.171 0.729± 0.024 0.729± 0.024
PGIB w/o IB Loss 0.916± 0.011 0.896± 0.145 0.774 ± 0.014 0.763± 0.022
PGIB w/o IB Loss + BottleneckMLP 0.925 ± 0.009 0.963 ± 0.016 0.753± 0.019 0.792 ± 0.018

Table 2: TGIB Link Prediction AP and Explanation AUC/ROC. BottleneckMLP improves perfor-
mance across datasets, where removal of IB Loss also increases performance

Link Prediction (AP) Explanation AUC/ROC
Model CanParl USLegis Wikipedia CanParl USLegis Wikipedia

TGIB 0.789 0.828 0.991 0.588 0.673 0.983
TGIB w/o IB Loss 0.814 0.763 0.994 0.629 0.541 0.989
TGIB w/o IB Loss + Bottleneck MLP 0.82 0.843 0.994 0.632 0.703 0.989

In Table 2, BottleneckMLP improves Average Precision (main metric) and AUC-ROC for TGIB.
Performance gain is largest on USLegis, while Wikipedia and CanParl have comparable or slightly
better performance. Removing IB Loss boosts performance on Wikipedia and CanParl but reduces it
on USLegis; adding BottleneckMLP recovers this loss and exceeds the baseline. Classifier accuracy
is not reported on original TGIB paper, we include it in the Appendix H.

5.2.2 EXPLANATORY SUBGRAPH QUALITY

Table 3: PGIB Fidelity. BottleneckMLP improves explanation quality (Fid+, Fid−) across datasets

Method MUTAG BA-2Motifs NCI1 PROTEINS
Fid+↑ Fid-↓ Fid+↑ Fid-↓ Fid+↑ Fid-↓ Fid+↑ Fid-↓

PGIB 0.750± 0.079 0.588± 0.204 0.825± 0.159 0.492± 0.149 0.451± 0.124 0.523± 0.156 0.639± 0.024 0.602± 0.125
PGIB w/o IB Loss 0.719± 0.083 0.516± 0.192 0.829± 0.160 0.479± 0.143 0.524± 0.136 0.546± 0.125 0.654± 0.028 0.604± 0.035
PGIB + BottleneckMLP 0.762 ± 0.071 0.383 ± 0.254 0.975 ± 0.079 0.400 ± 0.242 0.771 ± 0.162 0.478 ± 0.214 0.658 ± 0.018 0.592 ± 0.087

Table 3 reports fidelity metrics for PGIB on MUTAG and BA-2Motifs (the only datasets with
ground-truth explanations). Adding BottleneckMLP consistently improves Fid+ and reduces Fid−,
yielding higher-quality explanations. Table 2 reports improved AUC-ROC scores across datasets for
TGIB with BottleneckMLP. AUC-ROC scores and information planes for GSAT variants are pro-
vided in Appendix F. Visual comparisons of explanatory subgraphs appear in Appendix D. We
further extend BottleneckMLP to node classification Luo et al. (2020b) and subgraph recognition
Yu et al. (2022), where results in Appendix H confirm its generality and effectiveness.

6 DISCUSSION AND FUTURE DIRECTIONS

BottleneckMLP is an architectural module that implicitly enforces the IB principle without IB loss
terms. Our model-agnostic method relies on two components: Importance-Weighted Gaussianiza-
tion and Progressive Compression via MLP layers. We both theoretically and empirically demon-
strate the effectiveness of these components, and show that explicit IB losses are less effective.

Formalizing the conditions under which implicit bottlenecks arise remains an open theoretical chal-
lenge. A deeper information-theoretic analysis of graph message passing could further unify our
observations with learning theory. We unite the representation geometry of explainers with IB the-
ory; future work can study how representation dynamics impact generalization in graph learning.
Future work may explore how inducing disentanglement Pan et al. (2020) may amplify IB effects
and promote stable, explainable representations in GNNs.
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7 REPRODUCIBILITY STATEMENT

All datasets used are available for download from the original source, linked in Appendix C. All code
needed to reproduce experiments and generate all figures within the paper is available in the supple-
mentary material, and experimental setup information is also in Appendix C. Follow the guidelines
on the supplementary material README pages to reproduce the performance results, as well as the
plots presented throughout the paper.
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APPENDIX: TECHNICAL DETAILS AND SUPPLEMENTARY MATERIAL
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A LIST OF SYMBOLS

B PROOFS OF LEMMA 1 AND LEMMA 2

Proof of Lemma 1 J(·) is positive semi-definite, therefore trace is nonnegative. Thus H(Zi | X) is
monotonically increasing in the noise variance ti. The same argument applies jointly to the vector
Zunimp, since independent Gaussian noise is injected into each unimportant node.

Proof of Lemma 2 By the law of total covariance,

Cov(Zi) = E[Cov(Zi | X)] + Cov(E[Zi | X]) = tiId +Cov(fi(X)).

The Gaussian distribution maximizes entropy among all distributions with fixed covariance, ΣZi
,

which yields the bound.

C EXPERIMENTAL SETUP

All experiments were implemented using PyTorch Geometric and run on either CPU or
NVIDIA H200 GPUs. Unless otherwise stated, the following hyperparameters were used:

Tables 6 and Table 7 give an overview of the dataset statistics used within the paper.
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Symbol Description
G Input graph
GS Explanation subgraph
X Input feature vector (node embeddings of G after graph layers)
Z Learned hidden representation
Zimp Learned hidden representations for important nodes
Zunimp Learned hidden representations for unimportant nodes
Zi Noisy hidden representation for node i
Y Ground truth label
H(X) Entropy of r.v. X
I(X;Z) Mutual information between X and Z
β Lagrangian multiplier for the IB functional
gϕ(G) Subgraph extractor
Pϕ(GS |G) Distribution of subgraph GS outputted by gϕ(G)
N (xi) Neighborhood of xi

fi Encoder yielding node/ edge embeddings
ti Noise magnitude, inversely proportional to importance
ϵi Gaussian noise vector
Id d × d identity matrix
αi Importance score of node i
σ Fixed noise scale; hyperparameter
J(·) Fischer information matrix
Tr(·) Trace of a matrix
det Matrix determiant
Cov Covariance
d Dimension of embedding space
Gp Prototype graph in PGIB
Q(GS) Assumed prior for GS for the KL variational upper bound
p(x1, x2, ..., xn) Joint distribution of random variables
N (xi) The local neighborhood on which r.v. xi depends
∆IkX Partial compression at layer k
hk
v Embedding of node v in kth layer

‘IB Loss’ Loss term explicitly which explicitly enforces IB principle

Table 4: Source code links of baseline models

Method Source code
GSATMiao et al. (2022) https://github.com/Graph-COM/GSAT/tree/main
PGIBSeo et al. (2024b) https://github.com/sang-woo-seo/PGIB
TGIBSeo et al. (2024a) https://github.com/sang-woo-seo/TGIB

Table 5: Summary of model hyperparameters.

Model Learning Rate Weight Decay Batch Size # Epochs # Random Seeds
GSATMiao et al. (2022) 10−3 0.0 128 100 10
PGIBSeo et al. (2024b) 5−3 0.0 128 300 10
TGIBSeo et al. (2024a) 10−5 0.0 200 10 10

Table 6: Overview of graph classification datasets used in experiments on GSAT and PGIB.

Dataset #Graphs #Classes Avg. # Nodes Avg. # Edges Node Labels Edge Labels Node Attr. (Dim.) Edge Attr. (Dim.)
MUTAG Debnath et al. (1991) 188 2 17.93 19.79 + + - -
NCI1 Morris et al. (2020) 4110 2 29.87 32.30 + - - -
PROTEINS Morris et al. (2020) 1113 2 39.06 72.82 + - + -
BA 2Motifs Luo et al. (2020b) 1000 2 25 51.39 - - - -
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Table 7: Overview of node classification datasets used in experiments on TGIB.

Dataset Domain #Nodes #Edges #Edge Features Duration
WikipediaKumar et al. (2019) Social 9,227 157,474 172 1 month
CanParlHuang et al. (2020) Politics 734 74,478 1 14 years
USLegisHuang et al. (2020) Politics 225 60,396 1 12 terms

D EXPLANATORY SUBGRAPH VISUALIZATION

(a) GSAT (b) GSAT + BottleneckMLP

Figure 6: Visualization of explanatory subgraphs for MUTAG dataset. (a) GSAT baseline, and (b)
GSAT enhanced with BottleneckMLP. BottleneckMLP correctly identifies the carbon ring for non-
mutagenic molecules.

(a) PGIB (b) PGIB + BottleneckMLP

Figure 7: Visualization of explanatory subgraphs for BA-2Motifs dataset. (a) PGIB baseline, and
(b) PGIB enhanced with BottleneckMLP. BottleneckMLP correctly identifies the cycle motif.

(a) PGIB (b) PGIB + BottleneckMLP

Figure 8: Visualization of explanatory subgraphs for MUTAG dataset. (a) PGIB baseline, and
(b) PGIB enhanced with BottleneckMLP. BottleneckMLP successfully identifies the NO2 group
(yellow shaded region), which is the ground truth explanation for mutagenic molecules in MUTAG.
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E REPRESENTATION DYNAMICS ACROSS LAYERS

Supplementary to the NSA and node drift results in Section 5.1, in this section we include these
results for additional models, and we study the representation dynamics of the important versus
unimportant node embeddings across training epochs from several lenses including (1) node drift,
(2) convex hull volume, (3) average linkage distance. Each of these further corroborates the effec-
tiveness of BottleneckMLP in implicitly enforcing IB as an architectural primitive which effects the
representation dynamics over training.

E.1 NODE DRIFT

Architecture / Configuration MUTAG BA-2Motifs NCI1 PROTEINS
GSAT −0.02± 0.007 0.006± 0.006 −0.004± 0.006 0.002± 0.001
GSAT w/o IB Loss −0.018± 0.007 −0.003± 0.006 0.028± 0.011 0.004± 0.013
GSAT w/o IB Loss + BottleneckMLP 0.07± 0.009 0.02± 0.006 0.04± 0.054 −0.003± 0.015

Table 8: Difference between unimportant and important node drift (Unimp − Imp) for GSAT. With
BottleneckMLP, we validate across datasets that important nodes stabilize and unimportant nodes
drift to higher-entropy representations.

Architecture / Configuration MUTAG BA-2Motifs NCI1 PROTEINS
PGIB 0.087± 1.014 0.126± 0.240 0.227± 0.127 0.129± 0.0531
PGIB w/o IB Loss −0.205± 0.169 0.186± 0.457 −0.116± 0.128 0.294± 0.095
PGIB w/o IB Loss + BottleneckMLP 0.546± 0.111 0.214± 0.049 0.415± 0.272 0.937± 0.563

Table 9: Difference between unimportant and important node drift (Unimp − Imp) for PGIB. With
BottleneckMLP, we validate across datasets that important nodes stabilize and unimportant nodes
drift to higher-entropy representations.

(a) PGIB (b) PGIB w/o IB Loss (c) PGIB + BottleneckMLP

Figure 9: Drift of important vs. unimportant nodes across models: (a) PGIB baseline, (b) PGIB
without Information Loss, and (c) PGIB with BottleneckMLP. The blue line represents the average
drift over epochs of the category 1 nodes, the orange line is that of category 2 nodes, and the green
is that of category 3 nodes. We see that BottleneckMLP effectively enforces drift/ forgetting of
unimportant nodes, as evident by their increased drift in latent space across epochs.

E.2 CONVEX HULL

To further support our hypothesis that the BottleneckMLP influences representation structure lo-
cally—particularly around important nodes—we analyze the convex hull volumes and average link-
age distances of node embeddings over training.

As described earlier, we project node embeddings into 3D using PCA and compute the convex hull
volume for each category across training epochs. Our findings, visualized in Figure 10, indicate a
clear trend: Category 3 nodes (unimportant) occupy significantly larger and more variable convex
hulls compared to Category 1 nodes (important). This increasing spatial dispersion suggests that
unimportant nodes drift more in embedding space as training progresses, while important nodes
remain compact and tightly clustered—consistent with more stable local structure.
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Figure 10: Convex hull volumes increase across categories.

(a) GSAT node linkage visualization

(b) PGIB node linkage visualization

Figure 11: Comparison of distances from Category 1 nodes to Category 3 nodes. Higher drift in the
embedding space of unimportant nodes increases these distances. We also present the importance of
node dependencies in graphs, Category 3 nodes drift far more than Category 2 nodes, even though
they are both unimportant

E.3 NODE LINKAGE DISTANCE

To complement this analysis, we compute the average linkage distance between node embeddings
within each category. This metric quantifies the average pairwise distance between points in a clus-
ter, offering an alternative view of intra- and inter-category embedding dynamics. The results, sum-
marized in Table 11, closely mirror the trends observed in the convex hull and LNSA analyses. Cat-
egory 1 nodes consistently exhibit low average intra-category linkage distances, confirming strong
internal cohesion. Category 3 nodes show a significant increase in linkage distance, especially at
deeper layers and later epochs, reinforcing the notion of representational drift in less important re-
gions. Category 2 nodes, which represent the neighbors of important nodes, exhibit average linkage
values that lie between those of Categories 1 and 3, but are closer to Category 1. This suggests
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that these nodes remain structurally and representationally aligned with important nodes due to their
direct connections and dependency.

We also report the average inter-category linkage distances in Table 10. Notably, the largest inter-
cluster distances are observed between Category 1 and Category 3, and between Category 2 and
Category 3. In contrast, the average distance between Category 1 and Category 2 embeddings re-
mains relatively low, highlighting their continued proximity in latent space. These patterns further
confirm the embedding drift of unimportant nodes away from critical substructures.

Table 10: Inter-Cluster Average Linkage for Categories and Layers

Layer Cat1 - Cat2 Cat1 - Cat3 Cat2 - Cat3
Layer 1 14.955 22.934 23.155
Layer 2 285.214 450.272 451.345
Layer 3 236.287 383.437 383.836
Layer 4 409.867 568.589 568.324

Table 11: Intra-Cluster Average Linkage for Categories and Layers

Layer Cat1 Cat2 Cat3
Layer 1 12.734 14.277 23.000
Layer 2 234.417 256.448 450.396
Layer 3 197.862 215.450 383.092
Layer 4 351.402 387.511 563.660

The results reported in Table 11 for the average linkage distance between a Category 1 node embed-
ding, and the closest node embedding from Category 2, and Category 3, respectively, are visualized
in Figure 11.

Together, these metrics validate our claim that important nodes form stable neighborhoods in em-
bedding space, while unimportant nodes undergo more drift. Importantly, this localized drift is not
easily observable through global metrics, but becomes clearly evident through localized geometric
and clustering analyses. Overall, this set of geometric and clustering-based analyses underscores the
model’s localized influence on representation learning, and validates our claim: the BottleneckMLP
selectively shapes local representations, stabilizing meaningful substructures while allowing greater
flexibility and dispersion in the remainder of the graph.

E.4 HSIC RESULTS

Hilbert-Schmidt Independence Criterion (HSIC) is a kernel-based method for measuring statistical
dependence between variables Gretton et al. (2005). We use HSIC to quantify the dependence
between the output of GCN layers (X) and the final node embeddings before classification (Z), as
an alternative to mutual information. Lower HSIC values indicate greater independence, helping us
assess how much information Z retains from X .

We observe that lowest values of dependence between input graph G and learned latent representa-
tion of the explanation GS are achieved with BottleneckMLP. (Table 12)

Table 12: HSIC values across datasets for GSAT. Lower values indicate more independence

Architecture / Configuration BA-2Motifs MUTAG PROTEINS NCI1

GSAT 3.39× 10−3 6.23× 10−3 2.95× 10−3 6.98× 10−3

GSAT w/o IB Loss 1.11× 10−3 1.01× 10−2 2.89× 10−3 6.87× 10−3

GSAT w/o IB Loss + BottleneckMLP 1.48× 10−3 3.89× 10−3 2.53× 10−3 6.37× 10−3
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Table 13: GSAT AUC-ROC

MUTAG BA-2Motifs

GSAT 0.995 ±0.03 0.988±0.01
GSAT w/o IB Loss 0.998±0.04 0.996±0.00
GSAT w/o IB Loss + Bottleneck MLP 0.987±0.01 0.982±0.01

F AUC-ROC

Table 13 shows that explanation AUC-ROC remains consistently high across all GSAT variants, even
when the information loss term is removed. The differences are not statistically significant, suggest-
ing that explicit information loss is not essential for generating high-quality subgraphs. Notably, our
BottleneckMLP matches this performance, preserving explanatory power without additional loss
terms. Figure 12 further reinforces this conclusion. In the information plane, GSAT with Bottle-
neckMLP (Figure 12b) achieves higher mutual information between the explanatory subgraph and
the label, I(Gs, y), without increasing I(G,Gs). This demonstrates that our approach improves
both label relevance and compression.

(a) GSAT (b) GSAT w/o IB Loss +BottleneckMLP

Figure 12: Comparison of I(G,Gs) vs. I(Gs, Y ) across training epochs for the original GSAT
model, and our model with a BottleneckMLP with fully connected layers. BottleneckMLP elicits
both decreased I(X;Z) and increased I(Z;Y ), as compared to original GSAT.

G TESTING BOTTLENECKMLP ON A VARIETY OF ARCHITECTURES

We tested multiple fully-connected architectures inserted after the GNN layers of the existing ex-
plainer models. All BottleneckMLP architectures use ReLU activations. Determining the optimal
architecture of the BottleneckMLP for a given dataset/ explainer model is analogous to hyperparam-
eter tuning.

Table 14: PGIB/ GSAT Test Accuracy

MUTAG BA-2Motifs NCI1 PROTEINS

GSAT w/o IB Loss + Bottleneck MLP (64-64-64) 0.943± 0.019 0.959± 0.066 0.799± 0.018 0.750± 0.048
GSAT w/o IB Loss + Bottleneck MLP (64-48-32) 0.959±0.02 0.995 ±0.18 0.798±0.01 0.749 ±0.058
GSAT w/o IB Loss + Bottleneck MLP (64-32) 0.942± 0.010 0.930± 0.131 0.797± 0.018 0.729± 0.056
GSAT w/o IB Loss + Bottleneck MLP (64-32-16) 0.942± 0.013 0.854± 0.162 0.796± 0.019 0.747± 0.043
GSAT w/o IB Loss + Bottleneck MLP (64-128) 0.926± 0.037 0.904± 0.152 0.788± 0.025 0.732± 0.067

PGIB w/o IB Loss + Bottleneck MLP (128-128-128) 0.928± 0.011 0.967± 0.009 0.771± 0.009 0.769± 0.015
PGIB w/o IB Loss + Bottleneck MLP (128-96-72) 0.918± 0.016 0.947± 0.033 0.769± 0.010 0.784± 0.015
PGIB w/o IB Loss + Bottleneck MLP (128-64) 0.923± 0.026 0.939± 0.055 0.763± 0.017 0.0766± 0.036
PGIB w/o IB Loss + Bottleneck MLP (128-64-32) 0.923± 0.014 0.940± 0.040 0.766± 0.010 0.782± 0.014
PGIB w/o IB Loss + Bottleneck MLP (128-256) 0.919± 0.019 0.959± 0.028 0.753± 0.016 0.779± 0.018
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H GENERALIZATION OF BOTTLENECKMLP ACROSS GRAPH TASKS

We used all existing ante-hoc graph explainers that use variational IB objectives as our baselines.
For generalizability, we tested BottleneckMLP on subgraph recognition Yu et al. (2022) and post-
hoc node classification. For VGIB Yu et al. (2022), we removed the MI loss penalty term, and added
BottleneckMLP. For VGIB in Table 15, the default model hidden dimension h = 16.

Table 15: VGIB Test Prediction Accuracy ± Std Dev.

Model Variant MUTAG PROTEINS AIDS NCI1
VGIB (normal) 0.423 ± 0.147 0.573 ± 0.036 0.418 ± 0.153 0.496 ± 0.069
VGIB (noinfo) 0.573 ± 0.167 0.569 ± 0.031 0.335 ± 0.207 0.494 ± 0.043
VGIB + BottleneckMLP (h− h

4 − h) 0.607 ± 0.232 0.556 ± 0.075 0.530 ± 0.345 0.500 ± 0.062
VGIB + BottleneckMLP (128-32) 0.556 ± 0.231 0.593 ± 0.002 0.679 ± 0.313 0.474 ± 0.019
VGIB + BottleneckMLP (64-48-32) 0.594 ± 0.233 0.592 ± 0.002 0.576 ± 0.238 0.561 ± 0.062

For PGExplainer Luo et al. (2020b), we removed size and entropy losses, kept only cross-entropy,
and added BottleneckMLP to the node classifier for implicit compression. Table 16 shows that we
achieve better generalization and accuracy in node classifiaction when BottleneckMLP is added.

BAShapes TreeCycles TreeGrids
GCN 0.954 ±0.009 0.916 ±0.037 0.806 ±0.075
GCN + BottleneckMLP (48-30) 0.981 ±0.013 0.959 ±0.013 0.815 ±0.111
GCN + BottleneckMLP (30) 0.979 ±0.013 0.961 ±0.008 0.782 ±0.162

Table 16: GNN Node Classification Accuracy

Table 16 shows that without the entropy loss, PGExplainer suffers a tremendous drop in explanation
quality (AUC-ROC). However, BottleneckMLP acts as such entropy regularizer, and the AUC-ROC
goes right back up, reaching or exceeding the initial PGExplainer performance.

BA-Shapes Tree-Cycles Tree-Grids
PGExplainer 0.993 ±0.006 0.941 ±0.002 0.676 ±0.003
PGExplainer w/o Entropy Loss 0.033 ±0.021 0.058 ±0.002 0.628 ±0.028
PGExplainer w/o E. Loss + BottleneckMLP 0.999 ±0.0001 0.938 ±0.031 0.732 ±0.001

Table 17: PGExplainer Explanation AUC-ROC

Classifier Accuracy
Model Wikipedia CanParl USLegis

TGIB 0.947 0.528 0.642
TGIB w/o Info Loss 0.960 0.588 0.544
TGIB w/o Info Loss + Bottleneck MLP 0.959 0.586 0.607

Table 18: TGIB Classifier Accuracy.

I EXPLICIT IB METHODS

We demonstrate ineffectiveness across multiple methods:

GSAT Miao et al. (2022) adopts a variational IB framework to extract explanatory subgraphs. It
introduces a lower bound on I(GS ;Y ) by employing a variational approximation to the joint distri-
bution P (Y,GS), and an upper bound on I(G;GS) (what we refer to as info-loss) using a variational
approximation to the marginal P (GS) =

∑
G Pϕ(GS |G)PG(G).
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The resulting KL-divergence term between Pϕ(GS |G) and Q(GS) simplifies to a sum of KL diver-
gences between individual Bernoulli distributions per edge. While this formulation is differentiable,
it is not tight. The prior Q(GS) acts only as a weak regularizer since it assumes i.i.d. edge inclu-
sion and ignores structural dependencies. Consequently, the KL term provides an upper bound on
I(G;GS) which is unable to sufficiently constrain the learned explainer.

PGIB Seo et al. (2024b) introduces a prototype-based framework that explains GNN predictions by
selecting a subgraph Gs and a prototype Gp that together retain information about the label Y . It
maximizes a lower bound on I(Y ;Gs, Gp) via a variational classifier qθ(Y |γ(Gs, Gp)) where γ is
a similarity function. To minimize I(Gs;Gp) (what we refer to as info-loss), PGIB uses a varia-
tional upper bound E[− log qϕ(Gp|Gs)] similar to GSAT, or the variant of their method, PGIBCONT,
leverages a contrastive loss approach proposed in Rusak et al. (2025) to minimize I(X,Z), see
Appendix M.

Despite being grounded in the IB framework, these approximations are weak. The variational classi-
fier qθ is task-specific and does not tightly control information flow similar to GSAT. The contrastive
loss in PGIBCONT is indirect, sensitive to sampling and hyperparameters, and lacks clear control over
mutual information. As such, PGIBCONT does not impose a tight constraint on I(G;GS), as it does
not explicitly regularize the information retained from the original graph G and enforce compres-
sion.

TGIB integrates temporal graph learning with the IB principle to improve both link prediction and
model explainability. It extracts a bottleneck code Rk for each target edge ek from its L-hop neigh-
borhood Gk. This code is a subgraph of the L-hop computation graph around ek and acts as a
compressed representation used for prediction. By limiting the information flow through this bottle-
neck, the model highlights the relevant parts of the neighborhood for edge prediction.

The objective function is defined as: minRk
−I(Yk;Rk) + βI(Rk; ek, Gk) where the first term en-

courages the model to preserve information relevant to the label Yk, while the second term penalizes
encoding unnecessary information from the edge ek and its surrounding graph Gk. We find that the
IB Loss is detrimental to the performance of TGIB.

J FIDELITY METRIC

Following Seo et al. (2024b), we use Fidelity metrics Pope et al. (2019); Yuan et al. (2023) to
quantify the quality of the explanations. Let yi denote the ground-truth values and ŷi denote the
predicted values for the i-th input graph. Let k be the sparsity score, denoting the (k × 100)% of
important nodes of the original graph which are used to construct the explanatory subgraph. The
prediction of the explanatory subgraph for a sparsity score of k is denoted by ŷki . The prediction of
the non-explanatory subgraph for a sparsity score of k is denoted by ŷ1−ki . The equations for the
Fidelity metrics are given by:

F− =
1

N

N∑
i=1

I(yi = ŷi)− I(yi = ŷki ), F
+ =

1

N

N∑
i=1

I(yi = ŷi)− I(yi = ŷ1−k
i ), (12)

where the binary indicator I(yi = ŷi) returns 1 if yi = ŷi, and 0, otherwise. Higher values for F+,
and lower values for F− indicate that the explanatory subgraphs produced by the model are better.

K NORMALIZED SPACE ALIGNMENT (NSA)

To evaluate the similarity between learned representations in neural networks, Ebadulla et al. pro-
pose Normalized Space Alignment (NSA) as a manifold analysis technique for neural network repre-
sentations which provides a robust similarity metric, and loss function, for comparing vector spaces
across architectures, layers, or training regimes Ebadulla et al. (2025). NSA builds upon previous
methods including Canonical Correlation Analysis (CCA) Morcos et al. (2018); Raghu et al. (2017)
and Centered Kernel Alignment (CKA) Kornblith et al. (2019), but addresses key limitations such
as scale sensitivity and confounding dimensionality effects.
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The central idea is to treat representations as subspaces, and then measure alignment via projections
onto the normalized Grassmann manifold, where vector directions are invariant to orthogonal trans-
formations and global scaling. Ebadulla et al. introduce Global NSA (GNSA), which compares
the entire representation spaces holistically, based on normalized projection matrices and Frobenius
norms, and Local NSA (LNSA), which focuses on fine-grained, per-sample neighborhood structure
preservation via rank-correlated similarity matrices, emphasizing local geometric alignment. NSA
provides a scale- and dimension-agnostic framework to evaluate whether our BottleneckMLP layers
yield more robust and aligned task-relevant representations.

L DERIVATIONS

I(X;Z) = EX,Z

[
log

p(x | z)
p(x)

]
= EX,Z

[
log

∏
i

p(xi |Patch(xi), z)

p(xi |Patch(xi))

]
= EX,Z

[∑
i

log
p(xi |Patch(xi), z)

p(xi |Patch(xi))

] (13)

M PGIB

The aforementioned contrastive loss approach used in PGIB is given as follows:

LCONT := − 1

n

n∑
i=1

log
exp(g(zGi , zGj )/τ)∑

k:zk /∈Psub
exp(g(zGi

, zGk
)/τ)

. (14)
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