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Abstract

The quality of pre-training corpora is central001
to the capabilities of large language models002
(LLMs), yet current curation pipelines that rely003
on rule-based filters or small supervised mod-004
els lack scalability and adaptability. This work005
introduces DATACURBENCH, a comprehen-006
sive benchmark for evaluating the ability of007
LLMs to autonomously perform two sequential008
pre-training data curation tasks: data filter-009
ing, which selects high-quality training data,010
and data cleaning, which improves linguis-011
tic form and coherence to enhance training ef-012
fectiveness. We propose a systematic evalua-013
tion framework and present empirical findings014
that reveal a dual pattern in LLM performance.015
While LLMs demonstrate near-human profi-016
ciency in language-driven data cleaning, they017
remain limited in data filtering, often failing018
to consistently apply prompt-based selection019
criteria and underperforming compared to fine-020
tuned smaller models. DataCurBench is pub-021
licly available1, offering a practical benchmark022
to evaluate data curation, highlight key chal-023
lenges, and support the development of more024
efficient and ethical pre-training pipelines.025

1 Introduction026

Large language models (LLMs) have driven break-027

throughs in NLP tasks such as text generation, ma-028

chine translation, and complex question answering.029

However, their outstanding performance depends030

on the quality of training data. Training corpora,031

sourced from diverse datasets like CommonCrawl,032

Wikipedia, arXiv, and GitHub, are rich but con-033

tain challenges including redundancy, harmful or034

sensitive content, and cross-domain inconsisten-035

cies. Therefore, robust and ethical preprocessing036

pipelines are essential to ensure data representa-037

tiveness and adherence to quality and ethical stan-038

dards (Radford et al., 2019; Brown et al., 2020).039

1https://huggingface.co/datasets/
anonymousaiauthor/DataCurBench

Traditional data curation uses a sequential 040

pipeline of data filtering followed by data clean- 041

ing to tackle scale, quality, and ethical challenges. 042

After initial preprocessing like URL deduplica- 043

tion and language identification, raw corpora first 044

undergo filtering based on heuristics (e.g., per- 045

plexity thresholds) (Gao et al., 2020) or small 046

fine-tuned models trained on curated data with 047

raw web negatives (Radford et al., 2019). Re- 048

cent advances incorporate machine learning for 049

large-scale content filtering, including toxicity de- 050

tection, and use structured annotation frameworks 051

like Redpajama (Gehman et al., 2020) and Fineweb- 052

edu (Lozhkov et al., 2024) to improve classifier 053

training and evaluation. Data cleaning then applies 054

sequence-to-sequence approaches to normalization, 055

grammar, style, and factual consistency. Neverthe- 056

less, these pipelines still face challenges in effec- 057

tiveness and scalability as corpora grow beyond 058

billions of documents (Yuan et al., 2023). 059

Against this backdrop, a compelling research 060

question emerges: Can LLMs autonomously curate 061

their training data? If so, this could revolution- 062

ize preprocessing by reducing human effort and 063

adapting to new data distributions. Rigorous vali- 064

dation requires a systematic evaluation framework 065

covering key data curation tasks. 066

To this end, we introduce DataCurBench, a 067

comprehensive benchmark specifically designed 068

to assess the self-curation capabilities of LLMs. 069

Unlike previous benchmarks that predominantly 070

target rule-based or small-model preprocessing 071

techniques, DataCurBench establishes a structured 072

framework for evaluating LLMs in tasks such as 073

harmful content identification, redundancy reduc- 074

tion, and the enhancement of data diversity and 075

quality. Our benchmark further incorporates novel 076

metrics that quantify the alignment between LLM- 077

curated datasets and traditional human-curated stan- 078

dards, thereby providing a precise measure of both 079

efficacy and ethical compliance. 080
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Preliminary results show that LLMs vary in their081

ability to handle data curation tasks with the same082

objectives but different formats. They excel at083

data cleaning tasks via text rewriting, likely ow-084

ing to their strong language modeling, contextual085

reasoning, and alignment with instruction-tuned086

generation objectives. In contrast, their filtering087

performance, posed as scoring or classification,088

remains limited, perhaps because prompt crite-089

ria lack the precision or clarity for LLMs to grasp090

filtering rules without explicit fine-tuning. These091

findings underscore LLMs’ potential to cut man-092

ual preprocessing substantially and identify where093

additional fine-tuning or supervision is needed.094

2 Dataset Construction095

For comprehensive evaluation, DataCurBench com-096

prises two tasks, filtering and cleaning, and draws097

on two data sources: manually annotated samples098

from open-source datasets and LLM-generated syn-099

thetic samples covering diverse scenarios.100

2.1 Real-world Sample Annotation101

Real-world samples are drawn from two widely102

used corpora: the English RedPajama-Data-V2103

dataset (Weber et al., 2024) and the Chinese CCI3-104

Data corpus (Wang et al., 2024), chosen for their105

large-scale pretraining use, rich metadata, and real-106

istic distributions. We first visualized key metadata107

(e.g., perplexity, heuristic scores) to characterize108

each corpus, then applied stratified sampling to109

select 1,000 samples per dataset that preserve the110

original distributions.111

The annotation followed a unified framework112

based on four criteria, Sensitive Information Safety113

(SI), Content Clarity and Integrity (CC), Format-114

ting Consistency (FC), and Content Relevance115

(CR), drawn from established pretraining quality116

control practices and insights from iterative data117

processing and manual review workflows in large118

model training (e.g., LLaMA (Touvron et al., 2023),119

Qwen (Yang et al., 2024), Yi (Young et al., 2024)).120

Each sample was independently scored (0–5)121

on each criterion by at least two annotators and122

assigned a binary retain/reject label reflecting pre-123

training utility; disagreements were resolved by a124

third expert or replaced by a same-stratum sam-125

ple if consensus failed. This yielded 733/267 re-126

tained/rejected Chinese samples and 596/404 En-127

glish samples for the filtering task. Detailed criteria128

definitions, guidelines, and example annotated data129

samples appear in Appendix A. 130

2.2 Synthetic Sample Generation 131

We initially applied manual annotation for the 132

cleaning task on real-world datasets using a simi- 133

lar protocol but found it impractical. First, many 134

“rejected” samples were too noisy and typically 135

discarded before cleaning, making them unsuit- 136

able for cleaning evaluation; second, even with 137

detailed criteria, annotations for cleaning lacked 138

consistency and were subjective; third, sampled 139

datasets provided insufficient coverage of real- 140

world issues. These limitations prompted a shift 141

toward synthetic sample generation. 142

(a) (b)

Figure 1: Distribution of data sources (a) and topic
hierarchy (b) in the synthetic dataset. The proportions
of data sources are specified, while sub-sources, topics,
and subtopics follow a uniform distribution.

Considering the unique challenges of cleaning 143

tasks and the nature of real-world data, our dataset 144

design follows three principles: diversity of data 145

sources, breadth of topic coverage, and realism 146

in preprocessing challenges. Building on struc- 147

tured prompt methodologies from recent synthetic 148

dataset work (Gunasekar et al., 2023), we use a 149

single template with multiple placeholders, each 150

tied to a semantic content property or corruption 151

type. These placeholders are systematically instan- 152

tiated from predefined sets to produce a diverse and 153

realistic collection of generation prompts. 154

Semantic content properties are ederived by ana- 155

lyzing the composition of representative LLM cor- 156

pora, as documented in prior literature (Touvron 157

et al., 2023; Yang et al., 2024; Young et al., 2024), 158

yielding ten source types (e.g., web, books) and 159

eleven domains (e.g., Science, Health) with esti- 160

mated proportions (e.g., 40% web, 10% books). 161

These are refined into fine-grained subtypes via 162

GPT-4o, producing the source distribution (Fig- 163

ure 1a) and topic taxonomy (Figure 1b), ensur- 164

ing semantic specificity and domain relevance in 165
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prompt construction.166

Beyond semantic diversity, corruption patterns167

are modeled from open-source datasets and indus-168

trial toolkits (Weber et al., 2024; Chen et al., 2024),169

yielding 30 data processing functions grouped into170

basic, moderate, and advanced levels. These cover171

tasks from simple sanitization to complex normal-172

ization. We also define two key challenge types,173

Character Corruption and Edge Cases, to cap-174

ture issues under-represented in existing resources.175

These challenges are randomly injected: 20% each176

for the two types, 10% both, and 50% left clean.177

Using GPT-4o with diverse prompts, we syn-178

thesized 3,000 English and Chinese samples; the179

prompt templates and definitions of processing180

functions, and challenges are in Appendix B.181

3 Evaluation Pipeline182

Grounded in our dataset design—real annotations183

for filtering and synthetic data for cleaning—we de-184

velop a unified evaluation pipeline with two parallel185

tracks. Standardized inputs, prompts, and criteria186

ensure fair and reproducible comparisons across187

LLMs and traditional baselines.188

Specifically, our evaluation follows four inte-189

grated steps. First, we design task-specific prompts190

that encode the four quality metrics (SI, CC, FC,191

CR) and provide illustrative output examples. Sec-192

ond, these prompts are applied to LLMs using best-193

practice hyperparameters, while traditional base-194

lines follow their standard protocols (e.g., heuris-195

tics or compact models trained on high-quality cor-196

pora), with no task-specific fine-tuning. Third, out-197

put formats are constrained: models generate bi-198

nary retain/reject labels for filtering and rewritten199

texts for cleaning, enabling deterministic parsing.200

Finally, filtering is assessed via absolute classifi-201

cation metrics against human-annotated ground202

truth, while cleaning quality is evaluated via pair-203

wise comparisons against reference rewrites from204

an LLM, judged by another LLM across the four205

metrics, yielding dimension-wise and overall win206

rates as relative performance indicators.207

3.1 Data Filtering Track208

The data filtering track evaluates a model’s abil-209

ity to distinguish between text samples suitable210

for pretraining and those that should be discarded,211

aligning with practical requirements in large-scale212

data curation. The task is formulated as a binary213

classification problem: given an input sample, the214

model must decide to Retain or Reject it based on 215

the four predefined quality criteria. 216

Notably, as specified in the annotation guide- 217

lines, the goal is not perfection. To reflect the prac- 218

tical realities of curating pretraining corpora, the 219

label Retain is assigned to samples that demon- 220

strate a clear educational or informational value 221

and meet an acceptable quality threshold, despite 222

minor formatting or clarity flaws. Conversely, the 223

Reject label applies to samples with either serious 224

flaws in any single criterion (e.g., harmful content, 225

incoherence) or an overall lack of value (e.g., ir- 226

relevant or meaningless text). 227

Models are evaluated under uniform infer- 228

ence settings without task-specific tuning. A 229

structured prompt (Appendix C.1, Figure 9) en- 230

codes the four annotation criteria, clarifies tol- 231

erance for minor flaws if educational value 232

is present, and constrains output to a single 233

<answer>Retain/Reject</answer> tag. This en- 234

sures deterministic parsing and aligns model deci- 235

sions with human judgment while isolating model 236

capability from implementation factors. 237

Given the importance of filtering low-quality or 238

harmful content, evaluation focuses on Precision, 239

Recall, and F1 for rejected samples, using human 240

annotations as ground truth. These metrics reflect 241

the model’s ability to correctly identify and exclude 242

irrelevant, incoherent, or sensitive data, aligning 243

with real-world needs in large-scale pretraining 244

corpus construction. 245

3.2 Data Cleaning Track 246

The data cleaning track evaluates a model’s capa- 247

bility to enhance text quality through addressing 248

grammar, clarity, and coherence while maintaining 249

semantic fidelity. The task is formulated as a text 250

rewriting problem, requiring models to produce 251

outputs that satisfy all four predefined quality 252

metrics beyond simple formatting corrections. 253

In practical data cleaning workflows, down- 254

stream model performance on cleaned data serves 255

as the most reliable quality indicator, making abso- 256

lute scoring insufficient. Therefore, reference-free 257

evaluation metrics are essential. AlpacaEval (Li 258

et al., 2023) is an automated, reference-free method 259

that applies fixed instructions to both a strong base- 260

line and the evaluated model, then uses a separate 261

LLM judge to estimate the preference probability. 262

The resulting win rate reflects relative model per- 263

formance. Inspired by this approach, we propose a 264

systematic comparative framework for evaluating 265
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data cleaning on our synthetic dataset.266

To ensure uniform evaluation, we adopt a struc-267

tured prompt (Appendix C.2, Figure 10) mirror-268

ing the filtering track. This prompt incorporates269

precise definitions of the four quality criteria, re-270

framed as rewriting objectives rather than classi-271

fication rules, and mandates output wrapped in272

<clean_text>. . . </clean_text> tags for de-273

terministic parsing.274

Using this setup, we prompt both candidate and275

reference models to generate cleaned outputs from276

identical inputs under uniform, non-finetuned infer-277

ence settings, isolating inherent cleaning capabil-278

ity differences. We select GPT-4 as the reference279

model due to its consistent near-human output280

quality and favorable cost-performance balance,281

providing a stable and practical baseline without282

complex comparison schemes.283

Outputs are evaluated through pairwise compar-284

isons by a dedicated judge model, which selects the285

superior rewrite between the evaluated and refer-286

ence models given the same input. We use GPT-4o287

as judge due to its strong reward modeling capabil-288

ity and over 90% agreement with human prefer-289

ences on a sampled subset. Importantly, the judge290

is distinct from the reference model to reduce bias291

and ensure evaluation reliability.292

The judgment follows a structured evaluation293

prompt (Appendix C.3, Figure 11), which also294

retains the definitions of the four quality criteria,295

while reframing them as comparative decision rules.296

To mitigate positional bias, the presentation order297

of candidate and reference outputs is randomized.298

Results are reported as win rates per dimension299

(SI, CC, FC, CR) and overall, reflecting relative300

cleaning performance.301

4 Results302

We evaluate the native capabilities of unfine-tuned,303

open-source LLMs under 10 billion parameters on304

data filtering and cleaning tracks, addressing prac-305

tical challenges in large-scale, bilingual corpus cu-306

ration. Our selection includes seven transparently307

developed model series supporting English and Chi-308

nese, LLaMA-3, Mistral, Phi, Gemma-2, Qwen2.5,309

MiniCPM, and Yi-1.5, each tested with base and310

supervised fine-tuned (SFT) variants. Leveraging311

strong few-shot adaptation, all models received312

limited examples and precise instructions per track,313

without parameter updates. Model names, API314

versions, and HuggingFace organizations used for315

reproducibility are listed in Appendix D.1, Table 5. 316

Under few-shot prompting, sub-10 billion- 317

parameter LLMs show moderate performance in 318

both filtering and cleaning tasks, indicating signif- 319

icant scope for improvement. These models es- 320

tablish a baseline for large-scale data curation, yet 321

further tuning and specialized methods are required 322

to fulfill practical pretraining demands. 323

Figure 2 shows precision–recall curves for all 324

seven model series on the data filtering track, while 325

Figure 3 presents their overall win rates on the 326

data cleaning track relative to GPT-4, evaluated by 327

GPT-4o. Results are compared against human per- 328

formance, traditional pipelines, and API baselines, 329

highlighting relative model capabilities. 330

On the filtering track, precision–recall con- 331

tours reveal a clear performance hierarchy, where 332

equal-F1 isolines indicate comparable overall per- 333

formance and higher recall reflects a more fa- 334

vorable trade-off. Leading open-source models 335

such as Meta-Llama-3-8B-Instruct and Qwen2.5- 336

7B-Instruct modestly outperform most peers but 337

remain notably behind traditional pipelines and 338

human annotations. Closed-source APIs (GPT- 339

4o, Gemini, and Claude 3.5) widely regarded as 340

stronger exceed open-source models but still per- 341

form comparably to traditional methods and below 342

human levels. These findings highlight that, given 343

current accuracy and computational constraints, 344

neither open- nor closed-source LLMs yet surpass 345

established pipelines or human judgment for prac- 346

tical filtering applications. 347

In contrast, on the data cleaning track, open- 348

source models exhibit markedly stronger perfor- 349

mance. Models such as gemma-2-9B-it and 350

Qwen2.5-7B-Instruct achieve results comparable 351

to human annotators and closed-source APIs, sig- 352

nificantly closing the gap. Notably, a broad 353

range of models, including many with only 3B 354

or even smaller parameters, also surpass traditional 355

pipelines. These results indicate that, in terms of 356

both effectiveness and cost, LLM-based data clean- 357

ing, especially with small and mid-sized open mod- 358

els, offers a practical and scalable alternative to 359

traditional pipelines and manual efforts. 360

We further investigated the detailed patterns be- 361

hind these findings by analyzing the influence of 362

key model characteristics such as instruction tun- 363

ing, model scale, architectural design, and multi- 364

lingual training. This analysis demonstrates how 365

these factors influence performance in data filtering 366

and cleaning tasks. 367
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Figure 2: Few-shot Precision-Recall on Data Filtering track, across model series (color), model types (shape: circle
for base models, diamond for SFT models, star for Human, pentagon for Traditional and other markers for APIs),
and model sizes (marker size). Baselines: Human(single) - average performance of two annotators; Human (GT) -
ground truth; Traditional - separate educational quality classifiers for Chinese and English, trained on annotations
generated by LLaMA3-70B-Instruct and Qwen-72B-Instruct, according to (Lozhkov et al., 2024)

Impact of Instruction Tuning: Instruction-368

tuned models exhibit notable improvements in both369

data filtering and data cleaning tracks. In the filter-370

ing track (Figure 2), instruction tuning primarily371

boosts recall while preserving precision at parity,372

yielding consistent F1 improvements across model373

series (LLaMA-3, Gemma-2, Phi, and Qwen2.5)374

in both English and Chinese subsets. The effect is375

even more striking in the cleaning track (Figure 3),376

where instruction-tuned models consistently sur-377

pass their base version at every scale and across all378

families, as evidenced by the upward shift of verti-379

cally paired points. These gains transcend language380

boundaries and even enable smaller SFT models381

to outperform larger base models. In particular,382

on the cleaning task, SFT models not only more383

frequently outperform traditional pipeline-based384

approaches but also approach human-level quality.385

Together, these findings underscore the critical role386

of instruction tuning in aligning model outputs with387

human judgments of data quality.388

Impact of Model Size: The expected positive389

correlation between model size and performance390

emerges more consistently in the data cleaning391

track than in the data filtering track. In the cleaning392

setting, larger models (represented by larger mark-393

ers) consistently outperform their smaller counter-394

parts within the same model series (color) and type395

(shape). This hierarchy persists across settings,396

as larger models often surpass smaller models397

even when the latter benefit from otherwise favor- 398

able configurations. In contrast, the filtering track 399

shows more deviations: within the Gemma-2 and 400

Qwen2.5 series, smaller models frequently match 401

or exceed the performance of mid to large scale 402

variants, particularly on the English subset. When 403

other configurations are held constant, the over- 404

all performance gap between smaller and larger 405

models in filtering remains minimal, obscuring any 406

clear size effect. These observations imply that 407

model size plays a more decisive role in data clean- 408

ing performance, whereas its influence on filtering 409

is moderated by factors such as prompt sensitivity 410

and overfitting to spurious patterns. 411

Impact of Model Series: Model series exert a 412

pronounced influence on performance across both 413

tracks. In the filtering track, the LLaMA-3 and 414

Qwen2.5 series exhibit consistently high recall and 415

precision, matching or exceeding other leading se- 416

ries. In the cleaning track, series-level differences 417

are even more striking: the Gemma-2 series domi- 418

nates the English subset, while the Qwen2.5 series 419

leads in the Chinese subset. Other families, such as 420

Phi and Yi-1.5, remain competitive but generally 421

underperform relative to the top series, even when 422

controlling for model size and instruction tuning. 423

These observations underscore the substantial role 424

of model family characteristics, including architec- 425

tural design and pretraining data composition, in 426

determining performance on both data filtering and 427
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Figure 3: Few-shot Overall Win Rates on Data Cleaning track (relative to GPT-4) judged by GPT-4o, across
model series (color), model types (shape: circle for base models, diamond for SFT models, star for Human,
and pentagon for Traditional), and model sizes (marker size). Baselines: Human - human-annotated clean texts;
Traditional - results produced by the default Data-Juicer (Chen et al., 2024) cleaning configuration, a widely adopted,
representative LLM data-processing system covering diverse cleaning functions.

cleaning tasks.428

Impact of Language: Evaluation language ex-429

erts minimal influence on the relative performance430

ranking of bilingual models across both tasks.431

Within each series, precision and recall contours432

for English and Chinese filtering tasks closely coin-433

cide, and model orderings in the cleaning track re-434

main largely stable across languages. For instance,435

Qwen-2.5-7B-Instruct occupies the top position in436

both English and Chinese subsets, achieving nearly437

identical filtering F1 scores and cleaning win rates.438

These findings indicate that balanced multilingual439

pretraining and prompt design mitigate language-440

specific variations in model behavior.441

4.1 Performance Across Evaluation Metrics442

As illustrated in Figure 2, instruction-tuned models443

achieve a more balanced precision–recall trade-off,444

whereas base models remain overly conservative,445

which prioritize precision at the expense of drasti-446

cally reduced recall. Closed-source APIs, such as447

GPT-4o, deliver modestly higher recall while sus-448

taining moderate precision, indicative of stronger449

instruction adherence. Nevertheless, overall effec-450

tiveness remains constrained: most models exhibit451

recall below 50%, and only a few exceed 80%.452

Since the primary objective of data filtering is to453

excise harmful content without discarding valuable454

data, recall is of central importance, even at the cost455

of imperfect precision. The widespread low-recall 456

tendency thus reveals a fundamental shortcoming 457

in current model strategies for the filtering task. 458

Figure 4: Cleaning performance radars across metrics
on EN (left) and ZH (right) subset.

For the cleaning track, we selected each series’ 459

top-performing model and plotted their win rates 460

across four quality dimensions, Sensitive Informa- 461

tion Safety (SI), Content Relevance (CR), Content 462

Clarity and Integrity (CC), and Formatting Consis- 463

tency (FC), as well as an overall score (Figure 4). 464

The models demonstrate pronounced strengths in 465

SI and CR, achieving win rates above 50 % and 466

even surpassing human annotations and the refer- 467

ence model, which likely reflects pretrained mod- 468

els’ ability to preserve meaning through precise, 469

minimal edits. In contrast, although performance 470

on CC and FC exceeds that of traditional rule- 471
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based systems, it remains below human-level qual-472

ity. These findings underscore current models’ limi-473

tations in ensuring linguistic clarity and formatting474

consistency while highlighting their potential to475

outperform humans in maintaining core semantic476

content. Full win rate statistics are provided in477

Appendix D.2 Table 6.478

4.2 Effect of Few-Shot Prompting479

We evaluated the impact of in-context examples on480

both tracks across several model families (Table 1;481

additional results in Appendix D.3 Table 7). The482

benefits of six-shot prompting decrease as model483

capacity and instruction tuning increase. For in-484

stance, LLaMA-3.2-1B-Instruct’s cleaning win rate485

rises from 14.5% to 19.9% and its filtering perfor-486

mance from 12.0% to 39.6%, corresponding to487

improvements of 5.4 and 27.6 percentage points,488

respectively. In contrast, Qwen-2.5-7B-Instruct at-489

tains 45.3% (cleaning) and 61.5% (filtering) under490

zero-shot conditions, with marginal changes when491

supplied with examples (–5.3 points for cleaning;492

+6.3 points for filtering). Base models derive sub-493

stantially greater gains from prompting: Qwen-2.5-494

3B’s filtering accuracy jumps from 6.6% to 60.4%495

with six examples, a 53.8-point increase, whereas496

its instruction-tuned counterpart improves by only497

3.2 points.498

These trends persist in both English and Chinese499

subsets, indicating that few-shot examples are par-500

ticularly effective for smaller or untuned models in501

enhancing data processing capabilities. Consider-502

ing the massive pretraining data scale and computa-503

tional costs, few-shot prompting offers a practical504

means to enable LLMs to perform more effective505

data curation without full-scale retraining.506

4.3 Cleaning Performance by Metadata507

To better understand model capabilities in data508

cleaning, we partitioned the benchmark into sub-509

sets defined by metadata from the dataset con-510

struction process. These dimensions include data511

source and topic, capturing stylistic and semantic512

properties, as well as difficulty and challenge type,513

reflecting noise severity and nature. Performance514

across these subsets highlights the impact of data515

characteristics on model robustness.516

Figure 5 presents a heatmap of model perfor-517

mance by source and topic. Inputs drawn from518

structured sources, research papers, encyclopedias,519

and technical manuals, consistently achieve higher520

scores, indicating strong alignment with models521

Table 1: Performance of 6-shot vs. 0-shot on Cleaning
and Filtering; bold: unexpected 0-shot wins

Model Cleaning Filtering

6-shot 0-shot 6-shot 0-shot

EN Subset
gemma-2-9b-it 44.53 41.58 43.09 29.94
gemma-2-9b 32.37 34.77 48.38 10.26

gemma-2-2b-it 31.77 33.53 67.61 47.57
gemma-2-2b 26.57 25.58 7.49 28.76

Meta-Llama-3-8B-Instruct 34.90 40.48 68.76 41.40
Meta-Llama-3-8B 31.45 30.65 51.94 47.22

Llama-3.2-3B-Instruct 30.40 20.62 57.23 9.86
Llama-3.2-3B 23.67 23.38 35.86 4.82

Llama-3.2-1B-Instruct 19.90 14.52 39.63 12.98
Llama-3.2-1B 18.35 7.97 45.27 28.70

Qwen2.5-7B-Instruct 40.00 45.25 67.76 61.50
Qwen2.5-7B 35.60 36.48 52.57 31.47

Qwen2.5-3B-Instruct 34.57 30.93 60.82 63.94
Qwen2.5-3B 28.43 28.55 40.34 6.64

Qwen2.5-1.5B-Instruct 29.55 21.18 56.84 52.78
Qwen2.5-1.5B 25.12 20.92 57.56 7.55

Qwen2.5-0.5B-Instruct 18.78 13.37 35.17 20.73
Qwen2.5-0.5B 16.55 14.60 12.11 0.50

ZH Subset
Qwen2.5-7B-Instruct 42.40 45.13 59.02 60.53

Qwen2.5-7B 33.52 33.52 42.38 13.70
Qwen2.5-3B-Instruct 36.83 36.58 54.17 60.40

Qwen2.5-3B 28.45 28.60 37.68 12.46
Qwen2.5-1.5B-Instruct 26.67 25.87 44.34 49.35

Qwen2.5-1.5B 23.03 23.15 41.11 40.85
Qwen2.5-0.5B-Instruct 18.38 15.57 41.54 26.16

Qwen2.5-0.5B 18.32 16.35 32.39 7.02

pretrained on formal text. In contrast, unstruc- 522

tured inputs such as social media posts and public 523

datasets yield lower performance, underscoring the 524

difficulty of processing informal and noisy text. By 525

topic, models excel in abstract domains (literature, 526

arts, philosophy) but struggle in specialized fields 527

(sports, business, mathematics). Particularly low 528

scores in health, medicine, and science suggest 529

that handling technical content effectively requires 530

targeted fine-tuning. 531

Figure 5: Cleaning performance heatmaps across data
sources (left) and topics (right).

We then analyze cleaning performance by task 532

difficulty (Table 2) and by challenge type in noise 533

(Table 3). In Table 2, every model exceeds its 534
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Table 2: Performance across difficulty levels: Basic,
Moderate, Advanced; ↑ / ↓: above / below average score

Model Basic Moderate Advanced
EN Subset

gemma-2-9b-it 48.88↑ 42.10↓ 39.67↓
Meta-Llama-3-8B-Instruct 36.64↑ 29.25↓ 30.67↓
Mistral-7B-Instruct-v0.3 40.80↑ 39.10↓ 35.00↓
Phi-3-mini-4k-instruct 33.88↑ 30.20↓ 26.20↓
Qwen2.5-7B-Instruct 43.40↑ 38.65↓ 36.13↓

Yi-1.5-9B 22.56↑ 15.85↓ 18.13↓
ZH Subset

Qwen2.5-7B-Instruct 44.24↑ 40.65↓ 41.67↓
Yi-1.5-9B 24.88↑ 22.15↓ 21.53↓

Table 3: Performance across challenge scenarios, CC
for Character Corruption challenges and EC for Edge
Case challenges, w/o means no challenge injected , ↑ /
↓: above / below average score

Model w/o CC EC CC&EC
EN Subset

gemma-2-9b-it 45.85↑ 41.27↓ 47.25↑ 37.15↓
Meta-Llama-3-8B-Instruct 32.60↓ 32.84↓ 43.53↑ 33.55↓
Mistral-7B-Instruct-v0.3 38.14↓ 36.72↓ 44.21↑ 35.52↓
Phi-3-mini-4k-instruct 37.00↑ 32.34↓ 43.62↑ 27.17↓
Qwen2.5-7B-Instruct 39.67↓ 37.14↓ 46.66↑ 34.37↓

Yi-1.5-9B 19.39↑ 15.63↓ 24.85↑ 14.57↓
ZH Subset

Qwen2.5-7B-Instruct 38.38↓ 46.75↑ 36.01↓ 43.61↑
Yi-1.5-9B 24.59↑ 17.04↓ 28.49↑ 17.68↓

overall mean on basic tasks (for example, Gemma-535

2-9B-Instruct achieves 48.9%), yet accuracy de-536

clines steadily on moderate tasks (down to 42.1%)537

and advanced tasks (as low as 39.7%). Table 3538

shows that isolated edge-case challenges (EC) of-539

ten match or surpass the original baseline (Gemma-540

2-9B-Instruct: 47.3% versus 45.9%), whereas541

character corruption alone (CC) reduces scores by542

4 to 6 percentage points and the combined edge-543

case plus character corruption (EC+CC) scenario544

experiences the largest drops (e.g., Phi-3-Mini at545

27.2%). These findings indicate that although cur-546

rent LLMs can effectively clean simple or isolated547

noise, they remain highly sensitive to increased task548

complexity and overlapping structural and contex-549

tual distortions, pointing to critical directions for550

improving robustness.551

5 Related Work552

Pre-training data processing for Large Language553

Models (LLMs) is crucial for improving model554

performance. As LLMs are trained on massive555

datasets, ensuring high-quality data is essential556

to prevent issues such as bias and irrelevant con-557

tent. (Brown et al., 2020) emphasized the im-558

portance of filtering low-quality data from web-559

crawled datasets to mitigate risks such as offensive 560

language and bias . Similarly, (Queiroz Abonizio 561

and Barbon Junior, 2020) introduced a technique 562

using GANs to reduce noise in text data, which can 563

improve model performance. 564

The automation of data preprocessing has also 565

been a significant focus. (Ouyang et al., 2022) 566

proposed an unsupervised data filtering framework 567

using clustering techniques to identify high-quality 568

data points (Ouyang et al., 2022). (Gupta and Mah- 569

mood, 2024) further extended this concept by de- 570

veloping data augmentation methods to diversify 571

training data , thus improving model robustness. 572

Automated data annotation has also been ex- 573

plored. (Gururangan et al., 2020) showed how 574

pre-trained LLMs can be used to automatically la- 575

bel large datasets, reducing the need for manual 576

labeling. Additionally, (Celikyilmaz et al., 2020) 577

introduced a Data Quality Score (DQS) metric to 578

assess text quality, which allows for standardized 579

evaluation of preprocessing methods. 580

Evaluation of data preprocessing techniques is 581

critical for understanding their effectiveness. (Elan- 582

govan et al., 2024) developed a framework that 583

combines human and machine evaluations of model 584

performance after training on processed datasets . 585

Comparative studies, such as (BARBERIO, 2022), 586

have shown that tailored data cleaning techniques 587

aligned with specific tasks result in better down- 588

stream performance . 589

These advancements in data processing and eval- 590

uation contribute to the development of more ro- 591

bust and efficient LLMs, particularly by focusing 592

on automation, quality control, and comprehensive 593

evaluation metrics. 594

6 Conclusion 595

This study introduces DataCurBench for evaluat- 596

ing the autonomous curation capabilities of LLMs 597

on pretraining data. We find that LLMs deliver 598

near-human quality in data cleaning owing to their 599

strong language comprehension and instruction- 600

following skills, yet they struggle in data filtering 601

because they cannot align selection criteria with 602

human preferences specified in prompts. These re- 603

sults highlight the complexity of data filtering and 604

the need for fine-tuning or minimal supervision to 605

close this performance gap, while demonstrating 606

that LLMs can significantly reduce manual and 607

rule-based preprocessing and enable automated it- 608

erative improvements in pretraining workflows. 609
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7 Limitations610

DataCurBench has two tracks: data filtering and611

data cleaning. In the data filtering track, expert an-612

notators provided ground truth labels via indepen-613

dent blind annotation and consensus adjudication,614

though individual differences in judgment criteria615

and domain expertise may still introduce subjective616

bias into the labels. In the data cleaning track, GPT-617

4o served as the sole judge model, achieving over618

90 percent agreement with human evaluators, yet619

reliance on a single large language model may em-620

bed biases specific to that model, such as over sen-621

sitivity to certain linguistic patterns or artifacts of622

its training data, into the assessment. The synthetic623

and sampled corpora used in both tracks cannot624

fully represent the heterogeneity and complexity625

of real world datasets. Future work will extend626

evaluation to diverse large scale real world corpora627

and employ a heterogeneous ensemble of human628

experts and multiple automated evaluators to mit-629

igate bias, improve fairness and more rigorously630

assess the generalization of LLM driven curation.631

DataCurBench are released under Apache632

2.0, but original source datasets (CCI3.0-Data2,633

RedPajama-Data-V23) retain their original li-634

censes; users must honor those terms. All datasets635

were used according to their intended research pur-636

poses, and our derivatives are intended for aca-637

demic use; commercial or other uses require sepa-638

rate license checks.639

We initially applied automated PII detection640

(e.g., emails, phone numbers) and offensive-641

language filters, complemented by manual review,642

to our original samples; however, some residual643

sensitive or harmful content may persist. Addition-644

ally, our synthetic datasets intentionally include645

instances of “fake" PII and harmful content to rig-646

orously evaluate filtering and cleaning pipelines.647

Users should exercise caution and perform any fur-648

ther required anonymization and validation when649

using these data.650
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A Details in Real-world Sample737

Annotation738

To ensure consistent and high-quality annotations,739

each text sample was assessed according to the fol-740

lowing four criteria. Each criterion is scored on a741

scale from 0 to 5, where 0 represents a severe de-742

ficiency and 5 reflects optimal quality. The scores743

are intended to capture various levels of quality744

across dimensions and guide the final decision to745

either Retain or Reject the sample.746

A.1 Evaluation Criteria747

Sensitive Information Safety(SI): This criterion748

measures the presence of sensitive or harmful749

content, such as personal information, offen-750

sive language, or other material that could751

pose a privacy risk. Higher scores correspond752

to the absence of such content, ensuring that753

the text is safe for use in training models.754

• 0: Contains significant sensitive or harm-755

ful content, such as identifiable personal756

data or hate speech.757

• 1-2: Contains noticeable sensitive con-758

tent that may hinder usability or intro-759

duce ethical concerns.760

• 3-4: Minor sensitive content present, but 761

overall suitable for training. 762

• 5: No identifiable sensitive or harmful 763

content. 764

Content Clarity and Integrity (CC): Evaluates 765

whether the core meaning and key information 766

of the text are preserved, ensuring that the 767

text is free from significant ambiguity, factual 768

distortion, or loss of meaning. 769

• 0: Severe loss of meaning or major fac- 770

tual distortions. 771

• 1-2: Major ambiguities or distortions af- 772

fecting clarity and usefulness. 773

• 3-4: Minor issues, but the core meaning 774

is largely preserved. 775

• 5: Fully clear and accurate, with no am- 776

biguity or distortion. 777

Formatting Consistency (FC): Assesses the ad- 778

herence to syntactic and formatting norms, in- 779

cluding punctuation, capitalization, and over- 780

all structure. This ensures that the text is read- 781

able and conforms to established formatting 782

guidelines. 783

• 0: Major formatting issues that signifi- 784

cantly impair readability. 785

• 1-2: Frequent formatting problems that 786

make the text hard to read or follow. 787

• 3-4: Minor inconsistencies that do not 788

substantially hinder readability. 789

• 5: Consistent formatting with no issues 790

that impact readability. 791

Content Relevance (CR): Measures the rele- 792

vance and informational value of the text, en- 793

suring that it contributes meaningfully to the 794

overall corpus. This criterion evaluates the 795

extent to which irrelevant, extraneous content, 796

or noise is removed. 797

• 0: Highly irrelevant, dominated by extra- 798

neous or redundant content. 799

• 1-2: Some irrelevant material, reducing 800

the value of the text. 801

• 3-4: Mostly relevant with occasional mi- 802

nor irrelevant elements. 803

• 5: Fully relevant and contributes substan- 804

tial informational value. 805
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A.2 Annotation Process806

The annotation process involves assigning numer-807

ical ratings for each of the four criteria, followed808

by a holistic decision to either Retain or Reject the809

sample.810

Retain decisions are made for samples that811

demonstrate sufficient overall quality and educa-812

tional value, even if minor issues are present. Re-813

ject decisions are reserved for samples with sub-814

stantial problems in any criterion or those with815

minimal educational or informational value.816

Disagreements between annotators are resolved817

by a third expert. If consensus cannot be reached,818

the sample is excluded from the dataset and re-819

placed with another sample from the same strati-820

fication group, ensuring the dataset remains repre-821

sentative of the original distribution.822

Annotations are submitted in a structured JSON823

format. An example is shown below:824

{
"SI": 4,
"CC": 5,
"FC": 3,
"CR": 4,
"Decision": "Retain",
"Reason": "Minor format issues
but overall high educational value
and relevance."

}

825

These guidelines ensure that the annotation pro-826

cess is rigorous, reproducible, and consistent, al-827

lowing for the creation of a benchmark dataset that828

accurately reflects real-world challenges in pretrain-829

ing data filtering.830

A.3 Data Filtering Track Examples831

We annotated a total of 2000 Chinese and 2000 En-832

glish samples, of which 733/267 were retained/re-833

jected in Chinese and 596/404 in English. Figure 6834

presents representative examples illustrating the835

annotation outcomes.836

The first sample (id: en-filter-186) is re-837

tained due to its clear relevance, high-quality for-838

matting, and educational value despite minor for-839

matting issues. In contrast, the second sample840

(id: en-filter-15) is rejected because it primar-841

ily contains raw sports score data with minimal842

instructional value, limited context, and substantial843

formatting noise.844

B Details in Synthetic Sample Generation845

This section provides implementation details for846

the construction of our synthetic dataset. We de-847

scribe the prompt templates, corruption functions, 848

and challenge definitions used to generate realistic 849

and diverse samples in both English and Chinese. 850

B.1 Prompt Templates 851

To enable fine-grained control over content type 852

and corruption patterns, we adopt a unified prompt 853

template with multiple placeholders. Each place- 854

holder is instantiated using predefined sets drawn 855

from source types, topic hierarchies, and data pro- 856

cessing functions. The unified prompt template, 857

shown in Figure 7, guides GPT-4o to generate cor- 858

rupted but semantically coherent data that reflects 859

the desired complexities. 860

The placeholder fields, {source}, {sub_source}, 861

{topic}, and {sub_topic}, are instantiated according 862

to controlled sampling distributions. As illustrated 863

in Figure 1a and Figure 1b, the inner rings repre- 864

sent high-level categories (data sources and topics), 865

while the outer rings represent their respective sub- 866

categories. The selection of data sources follows 867

the proportions shown in Figure 1a(a), whereas 868

sub-sources, topics, and sub-topics are sampled 869

uniformly within each parent category. 870

In the unified prompt template (Figure 7), all 871

placeholders are rendered in blue to clearly indi- 872

cate the fields subject to instantiation during gen- 873

eration. These placeholders allow explicit control 874

over the content source and topic scope, enabling 875

the creation of diverse yet structurally aligned data 876

samples. 877

B.2 Data Processing Functions 878

Table 4 presents a structured inventory of 30 879

data processing functions, consolidated from open- 880

source datasets and industrial toolkits. These are 881

grouped by complexity into: 882

• Basic: superficial noise, common tokeniza- 883

tion artifacts, spacing. 884

• Moderate: entity distortion, nested formats, 885

mixed script handling. 886

• Advanced: structural reordering, embedded 887

metadata, OCR-like errors. 888

Each entry includes a function name and a con- 889

cise description of its specific operations. These 890

entries provide the value sets for the placehold- 891

ers {process_func} and {func_detail} used in our 892

prompt templates, ensuring controllable and di- 893

verse corruption patterns during synthetic data gen- 894

eration. 895
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{
"id": "en-filter-186",
"text": "The Donaldson Adoption Institute\nSenior Research Fellows\nIssue Areas & Publications\
nThe Lynn Franklin Fund\nUNIQUE PROJECT AIMS TO PROMOTE POSITIVE IDENTITY FOR TRANSRACIAL
ADOPTEES\n06/14/2010\tMedia Advisory: For Immediate Release\nNEW YORK, June 14, 2010 The Evan B.
Donaldson Adoption Institute today announced that it is partnering with two major adoption

placement and support organizations, Lutheran Social Services of New England and the California-
based Kinship Center, to develop innovative materials and resources designed to promote positive
identity formation for transracially adopted children and youth. As a first step in shaping the
project, the three partners will convene accomplished professionals with experience and

expertise in this area for a think tank conclave at Tufts University on Wednesday, June 16.\nThe
project grows out of recommendations included in a groundbreaking study published by the

Adoption Institute last November entitled Beyond Culture Camp: Promoting Healthy Identity in
Adoption. The Executive Summary and full study are available, at no charge, on the Institutes
website at http://adoptioninstitute.org/publications/beyond-culture-camp-promoting-healthy-
identity-formation-in-adoption.",
"decision": "Retain"

},
{

"id": "en-filter-15",
"text": "Mount Aloysius vs Penn State Altoona (Apr 1, 2014)\n2014 Penn State Altoona Baseball\
nMount Aloysius at Penn State Altoona (Game 1)\nApr 1, 2014 at Altoona, Pa. (Stewart Athl. Field
)\nMount Aloysius 4 (5-10,1-0 AMCC) Penn State Altoona 1 (5-13,0-1 AMCC)\nIan Helsel 2b
.............. 3 1 2 0 Nate Bennett 2b............ 3 0 0 0\nBryn Brown lf.............. 4 0 1 1
Jordan Swope cf............ 3 0 0 0\nConnor Bowie rf............ 4 1 2 0 Jack Cleary 3b
............. 3 0 0 0\nBenjamin Legath dh......... 3 1 2 0 Logan Madill lf............ 3 0 0 0\
nBrandon Rauhauser pr...... 0 1 0 0 Pat McHenry p.............. 2 1 1 0\nCory Dick 3b
............... 3 0 1 0 Jared Dailey p............ 0 0 0 0\nJesse Bortner 1b........... 3 0 2 1
Jeff Deveney 1b............ 3 0 1 0\nPatrick Gully c............ 4 0 1 0 Nolan Spahr pr
............ 0 0 0 0\nDylan Oswalt cf............ 4 0 0 0 John Szmed c............... 2 0 0 0\
nBrock Gladfelter ss........ 4 0 0 0 Matt Roland rf............. 2 0 0 0\nDerrick Capiak p
........... 0 0 0 0 Joey Myers ph............. 1 0 0 0\nDan Bier ss................ 3 0 0 0\
nMount Aloysius...... 200 010 1 - 4 11 3\nPenn State Altoona.. 000 010 0 - 1 2 5\nE - Helsel;
Gladfelter; Capiak; Bennett; Madill; Szmed; Roland; Bier. DP - Altoona\n1. LOB - Mt. Aloysius 11;
Altoona 5. 2B - Helsel. HBP - Bortner; McHenry; Szmed.",

"decision": "Reject"
}

Figure 6: Examples of annotated data samples. The first sample (ID: en-filter-186) is retained due to its high
relevance and clarity, despite minor formatting issues. The second sample (ID: en-filter-15) is rejected due to its low
content relevance and poor suitability for model training. These cases exemplify the diversity of data encountered
and how annotation criteria are applied in practice.
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Table 4: Detailed Informtion of 30 Data Processing Functions by Complexity Level, Function Type, and Specific
Operations.

Level Function Description and Specific Operations

Basic

Remove Sensitive Info Eliminate personally identifiable information (e.g., Email,
Phone Numbers, Social Security Numbers, Addresses).

Remove Advertisements Remove all promotional content from the dataset.

Remove Harmful Content Identify and eliminate offensive or harmful content (e.g.,
Hate Speech, Violent Content, Politically Sensitive Content).

Remove Headers/Footers Eliminate extraneous header and footer text commonly found
in documents or web pages.

Standardize Formatting Normalize text formatting (e.g., Dates, Numbers, Units) for
consistency.

Remove Noise Remove irrelevant characters, corrupted content, or duplicate
text.

Remove Empty Lines Eliminate redundant empty lines or excessive breaks in the
text.

Trim Whitespace Strip leading and trailing whitespace.
Convert Case Standardize text to lowercase or uppercase.
Remove Stopwords Filter out common words that do not add semantic value.

Moderate

Mask Sensitive Info Replace sensitive data with placeholders (e.g., Phone Num-
ber Placeholders, SSN Placeholders).

Remove Embedded Links Eliminate hyperlinks, including anchor text and target URLs.

Normalize Punctuation Standardize punctuation based on language-specific conven-
tions.

DeDuplicate Content Detect and remove repeated sentences or paragraphs.

Handle Multilingual Text Identify and segregate content in mixed-language docu-
ments.

Extract Main Content Extract core content while discarding non-essential elements.

Remove Complex Ad Structures Handle dynamic ad structures, such as nested or script-
injected ads.

Clean OCR Text Correct recognition errors from Optical Character Recogni-
tion (OCR).

Correct Spelling/Grammar Fix common spelling and grammatical errors.
Segment and Label Sections Use structural markers to divide and label content logically.

Advanced

Handle Contextual Dependen-
cies

Resolve ambiguities requiring deep contextual understand-
ing, such as pronoun references.

Detect Deeply Embedded Info Identify sensitive or hidden data embedded within code or
HTML.

Handle Mixed Encoding Address issues arising from text in multiple character encod-
ings.

Restore Corrupted Content Reconstruct damaged or incomplete sections of text.
Identify and Correct Ambiguity Resolve unclear references in text.
Detect Subtle Bias Neutralize subtle biases (e.g., Gender or Cultural Bias).
Reformat Tables and Lists Ensure tables and lists are well-organized and consistent.
Detect Non-Standard Abbrevia-
tions Expand or clarify uncommon abbreviations.

Handle Legal Compliance Ensure processing adheres to privacy laws and copyright
regulations.

Handle Sensitive Cultural Con-
tent Identify and mitigate culturally sensitive material.

B.3 Definitions of Advanced Challenges896

To introduce additional difficulty and realism, 50%897

of samples are assigned to one or both of the fol-898

lowing challenge categories:899

• Character Corruption Challenges: These900

refer to character-level or formatting-level cor-901

ruptions that often appear in web-scale cor-902

pora but are difficult to detect or normalize. 903

Examples include character substitutions (e.g., 904

"0" vs "O"), irregular spacing, multilingual 905

entanglement (e.g., English-Chinese mixing), 906

malformed lists, or nested quotation struc- 907

tures. 908

• Edge Case Challenges: These reflect edge 909
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Prompt Template for Sample Synthesis

Task: You are required to generate two raw data entries, one in
English and one in Chinese, simulating articles from a specified data
source and topic. These raw samples should contain natural noise
commonly observed in real-world datasets, such as typographical
errors, encoding inconsistencies, or layout artifacts. Each type of
noise should be recoverable using a corresponding process function,
which cleans the data and restores it into a high-quality format
suitable for pre-training.

Task Details:

• Data Source: The entries should resemble articles originating
from {source}, specifically from {sub_source}.

(e.g., Web pages – online forums; Research papers – scanned
PDFs)

• Topic: The content of the data entries should reflect the topic of
{topic}, and more specifically, focus on {sub_topic}.

(e.g., Topic: Science & Technology; Sub-topic: Artificial Intelli-
gence in healthcare)

• Process Function: The noisy patterns within the data entries can
be resolved using {process_func}, which is designed to address
{func_detail}.

(e.g., Function: OCR Error Correction; Detail: Fixes character-
level distortions in scanned text)

Ensure the Data Includes:

• Source- and Topic-Specific Adaptation: The data should reflect
the characteristics of the given source and topic.

• Content Length: Both English and Chinese samples must be at
least 500 words long.

• (optional) Character Corruption Challenges: Include complex
elements to mimic real-world data challenges:

– Character Substitutions (e.g., "0" vs "O", "l" vs "I")
– Spelling Errors, Typos, and Code-Natural Language Mixing
– Irregular Spacing, Font Distortions, Nested Quotes, and

Multi-Level Lists
– Mixed Elements like page numbers, footnotes, and headers

• (optional) Edge Case Challenges: Add scenarios that increase
the difficulty for pre-processing:

– Hidden Sensitive Information (e.g., obfuscated emails, en-
coded URLs)

– Encoding Inconsistencies (e.g., UTF-8/GBK mix), hidden
text, and watermark content

– Edge Cases such as extreme text lengths, special characters,
or punctuation-only samples

Output Format:
Your output should strictly follow the format below:

##EN_RAW##
<English raw data sample>

##ZH_RAW##
<Chinese raw data sample>

Final Instructions:

• Only return the data samples in the specified format.

• Do not include any extra instructions or explanations.

• Ensure that the samples meet the criteria listed above.

Figure 7: Prompt for generating structured data samples
with pre-processing functions, focusing on complexities
and challenges in the data.

cases or hidden artifacts that require contex- 910

tual awareness or special handling. Examples 911

include encoded personal information (e.g., 912

Base64 email addresses), mixed encoding for- 913

mats (e.g., UTF-8 and GBK), extremely short 914

or excessively long sequences, and visually 915

embedded elements like watermarks or hidden 916

text. 917

The two optional fields in blue in Figure 7 corre- 918

spond to the inclusion of the above challenge types. 919

We introduce them with controlled probabilities: 920

20% for Character Corruption Challenges, 20% 921

for Edge Case Challenges, and 10% for both. This 922

setup introduces additional variability and better 923

reflects the types of difficulties encountered in real- 924

world pretraining corpora. 925

B.4 Data Cleaning Track Examples 926

In the data cleaning track of the DATACURBENCH, 927

a total of 6,000 examples were generated, in- 928

cluding 3,000 Chinese and 3,000 English sam- 929

ples. These examples are designed to test the 930

model’s ability to clean and process noisy text. 931

The figure below presents a representative ex- 932

ample from this track, showing both the raw 933

text and the corresponding cleaned text. In 934

this example, the "cleaned_text_human" refers 935

to the human-annotated cleaned text, while the 936

"cleaned_text_reference" represents the cleaned 937

text produced by the GPT-4 model. Additionally, 938

the figure provides meta-information such as the 939

topic, subtopic, source, function, and challenge 940

type, offering a comprehensive view of the clean- 941

ing task. 942

C Prompts for Evaluation 943

This section outlines the generation and evalua- 944

tion prompts utilized in the Data Filtering and Data 945

Cleaning tracks, which are central to the curation of 946

high-quality pre-training corpora. These prompts 947

aim to guide both annotators and evaluation mod- 948

els in making systematic judgments on raw and 949

cleaned text samples. The evaluation process is 950

grounded in four primary criteria: sensitive infor- 951

mation safety, content relevance, clarity and in- 952

tegrity, and formatting consistency. By employing 953

these structured evaluation criteria, we aim to mea- 954

sure the effectiveness of different models in pro- 955

cessing text and identify their strengths and weak- 956

nesses, ultimately fostering the creation of robust 957

datasets for further model development. 958
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{
"idx": "en-clean-3753",
"raw_text": "Chapter 3: Disease Pr3venti0n Techniques \n\"Dis-ease\" prev3ntion is cr1tical - In
this l@st book of the series, we focus on vari0us methods to stay healthy. First, let's discuss
balanced d1ets. A well-planned d1et should include v1tamins, minerals, and pr0teins... Healthy!
eating habits can greatly reduce the risk of gett1ng sick. **Exercise** is another crucia1

factor. Regular activ1ty helps maintain weight and enh@c3s immune function. Remember: \"A st1tch
in time saves nine!\" Pages: 207 \nNotes: [Ensure 50% of diet is fru1ts & vegetab1es] \

nFo0tnote: For further information, see \"Chapter 5: Nutrit10n\". \n\nEmail:
health00xample@encrypted.com \nImage: [Watermarked with \"Health&Medicine\"] \nURL: Https://
prevention-book.eXample.com/ch3 \n\n1. D1sease Causes \n - Bacteria \n - Vi1use5 \n *
Examples include influenza and COVID-19.\n2. Prev3ntion Tips \n - Hand washing \n -

Vacc1nations",
"cleaned_text_human": "Disease prevention is critical. In this section, we focus on methods to
stay healthy, emphasizing balanced diets that include vitamins, minerals, and proteins. Healthy
eating habits can reduce sickness risk, while regular exercise maintains weight and enhances
immune function. Bacteria and viruses cause diseases; prevention includes hand washing and
vaccinations.",
"cleaned_text_reference": "Disease prevention is critical. In this section, we focus on methods
to stay healthy, emphasizing balanced diets that include vitamins, minerals, and proteins.
Healthy eating habits can reduce sickness risk, while regular exercise maintains weight and
enhances immune function. Bacteria and viruses cause diseases; prevention includes hand washing
and vaccinations.",
"meta": {

"topic": "Health & Medicine",
"source": "Books",
"function": "ExtractMainContent",
"subtopic": "Disease Prevention",
"challenge": 2,
"explanation": "Focus on extracting core content from documents or web pages, discarding

non-essential elements.",
"detail_source": "Fiction",
"detail_function": "Discard Non-Essential Elements"

}
}

Figure 8: Representative example from the data cleaning track, showing raw text and the corresponding cleaned text.
The ‘cleaned_text_human‘ represents the human-annotated cleaning result, while ‘cleaned_text_reference‘ refers to
the GPT-4 model’s annotated cleaning result. Additional meta-information, including topic, subtopic, source, detail
source, function, detail function, and challenge type, is also provided.
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C.1 Generation Prompt for Data Filtering959

Track960

The Data Filtering Track is designed to assess961

whether raw text samples should be retained or962

discarded based on their overall quality. A struc-963

tured evaluation prompt, as illustrated in Figure 9,964

guides annotators or evaluation models to make965

decisions based on four essential criteria: sensitive966

information safety, content relevance, clarity and967

integrity, and formatting consistency. These cri-968

teria ensure that the resulting pre-training corpus969

is both high-quality and aligned with ethical stan-970

dards, minimizing the inclusion of inappropriate or971

irrelevant content.972

C.2 Generation Prompt for Data Cleaning973

Track974

Similar to the Data Filtering Track, the Data Clean-975

ing Track evaluates raw text samples, but its goal976

is to refine and clean these samples to meet qual-977

ity standards. The cleaning process follows the978

same four evaluation criteria, sensitive information979

safety, content relevance, clarity and integrity, and980

formatting consistency, ensuring that sensitive con-981

tent is properly addressed, irrelevant or unnecessary982

data is removed, and the text maintains its clarity983

and integrity. The generation prompt, illustrated984

in Figure 10, instructs the model to perform these985

tasks with a focus on maintaining consistency and986

standardization in the cleaned output, making it987

suitable for further processing in training pipelines.988

C.3 Evaluation Prompt for Data Cleaning989

Track990

The Evaluation Prompt for the Data Cleaning Track991

is used to compare the cleaning effectiveness of dif-992

ferent models, specifically the reference model and993

various evaluation models, shown in Figure 11. The994

evaluation process involves judges (models) com-995

paring the cleaned outputs generated by the evalua-996

tion models against those produced by the reference997

model. By doing so, the evaluation prompt helps998

identify the differences in cleaning capabilities be-999

tween the models. The four key criteria—sensitive1000

information safety, content relevance, clarity and1001

integrity, and formatting consistency—are used1002

to assess the relative quality of the cleaned text.1003

Through these comparisons, we can determine how1004

well the evaluation models perform relative to the1005

reference model and identify areas for improve-1006

ment in the cleaning process.1007

Generation Prompt for Data Filtering Track

Task: You are a data filtering expert tasked with evaluating the
overall quality and informational value of raw text data intended for
LLM pre-training.

Objective: Make a holistic judgment to retain data with acceptable
overall quality and meaningful content, even if minor issues are
present, and to reject data with significant flaws or low value.

Evaluation Criteria:

• Sensitive Information Safety(SI): This criterion measures the
presence of sensitive or harmful content, such as personal infor-
mation, offensive language, or other material that could pose a
privacy risk.

Reject entries containing substantial personal information, hate
speech, or harmful content. Minor residual issues may be toler-
ated if the content is otherwise valuable.

• Content Relevance (CR): Measures the relevance and informa-
tional value of the text, ensuring that it contributes meaningfully
to the overall corpus. This criterion evaluates the extent to which
irrelevant, extraneous content, or noise is removed.

Retain text with educational or informational value, especially
content introducing key concepts, tutorials, or textbook-style
explanations. Slight irrelevance or disorganization is acceptable.

• Content Clarity and Integrity (CC): Evaluates whether the core
meaning and key information of the text are preserved, ensuring
that the text is free from significant ambiguity, factual distortion,
or loss of meaning.

Keep entries where the core message is clear and meaningful,
even if some ambiguity or omission exists. Discard content that
suffers from serious degradation of meaning or logic.

• Formatting Consistency (FC): Assesses the adherence to syntac-
tic and formatting norms, including punctuation, capitalization,
and overall structure. This ensures that the text is readable and
conforms to established formatting guidelines.

Ensure the text is readable and reasonably structured. Minor
formatting problems (e.g., extra whitespace) can be corrected in
later processing.

Final Decision Logic:

• Retain: If the text has sufficient value for LLM training and only
minor imperfections.

• Reject: If the text exhibits serious flaws in content, integrity,
safety, or relevance.

Required Input/Output Format:

Input:
<text>text to be assessed</text>
Output:
<answer>Retain/Reject</answer>

Instructions:

• Only return the answer in the required format.

• Do not add any extra commentary or explanations.

• Be strict yet pragmatic in your judgment.

Examples: [Include benchmark examples here for demonstration.]
Actual Input:

<text>{raw_text}</text>

Expected Output:

<answer>

Figure 9: Evaluation prompt for the Data Filtering
Track, guiding retain/reject decisions based on over-
all quality and informational value, including safety,
clarity, relevance, and formatting.
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Generation Prompt for Data Cleaning Track

Task: You are a data cleaning expert responsible for preparing raw
text data by removing unwanted or unnecessary elements that may
hinder model training. Your goal is to ensure the data is clean, free of
irrelevant content, and formatted properly for downstream processes.

Objective: The task is to remove any extraneous, irrelevant, or
sensitive content from the raw text while standardizing the format
to make it suitable for large language model (LLM) training. This
includes eliminating sensitive personal information, advertisements,
irrelevant symbols, and unnecessary noise, ensuring that the text is
clear, concise, and well-structured.

Specific Requirements:

• Sensitive Information Safety (SI): This criterion measures the
presence of sensitive or harmful content, such as personal infor-
mation, offensive language, or other material that could pose a
privacy risk.

Remove entries containing sensitive data like personal informa-
tion (e.g., email addresses, phone numbers, physical addresses),
offensive language, or harmful content. Ensure no personally
identifiable information or privacy risks remain in the cleaned
data.

• Content Relevance (CR): Measures the relevance and informa-
tional value of the text, ensuring that it contributes meaningfully
to the overall corpus. This criterion evaluates the extent to which
irrelevant, extraneous content, or noise is removed.

Ensure that all irrelevant or extraneous content, including adver-
tisements, noise, or non-informative sections, is removed. Only
the meaningful content should remain.

• Content Clarity and Integrity (CC): Evaluates whether the core
meaning and key information of the text are preserved, ensuring
that the text is free from significant ambiguity, factual distortion,
or loss of meaning.

Remove any extra spaces, improper capitalization, and inconsis-
tent punctuation. Ensure the text is clean, consistent, and properly
structured with standardized formatting.

• Formatting Consistency (FC): Assesses the adherence to syntac-
tic and formatting norms, including punctuation, capitalization,
and overall structure. This ensures that the text is readable and
conforms to established formatting guidelines.

Remove any unnecessary characters, extra spaces, and formatting
noise, ensuring the text is clean and easy to process further.

Required Input/Output Format:

Input:
<raw_text>text to be processed</raw_text>
Output:
<clean_text>processed clean text</clean_text>

Instructions:

• Only return the processed text in the required format.

• Do not include any extra commentary or explanations.

• Strictly adhere to the text cleaning standards.

Examples: [Include benchmark examples here for demonstration.]
Actual Input:

<raw_text>{raw_text}</raw_text>

Expected Output:

<clean_text>

Figure 10: Structured prompt used in the Data Cleaning
Track Generation task. It guides the transformation
of raw noisy text into safe, clean, and well-formatted
content for LLM pre-training.

Evaluation Prompt for Data Cleaning Track

Task: You are an expert in text data processing, tasked with evaluat-
ing and comparing the quality of processed text generated by two
models. Your goal is to assess which model output better aligns with
high-quality standards for language model training data.

Specific Requirements:

• Removal of Sensitive and Harmful Information (SI): This cri-
terion assesses the extent to which each model output successfully
eliminates sensitive content, including personally identifiable in-
formation (e.g., names, emails), advertisements, and harmful or
offensive language.

Compare the two outputs and determine which model more thor-
oughly and reliably removes sensitive or harmful elements. Give
preference to the model that leaves no trace of privacy risks or
inappropriate content.

• Content Integrity and Coherence (CC): This evaluates whether
the core meaning, factual information, and logical flow of the
original text are preserved during the cleaning process.

Identify which model better retains the key ideas and expresses
them naturally and coherently. Avoid outputs that distort the
original meaning or introduce ambiguity.

• Formatting Consistency (FC): This measures how well each
model enforces consistent formatting, including proper punctua-
tion, spacing, capitalization, and structural clarity.

Judge which model produces cleaner and more standardized
formatting. Favor the output that shows fewer inconsistencies
and better aligns with formatting norms.

• Elimination of Irrelevant Information (CR): This assesses
each model’s ability to remove irrelevant or noisy content, such
as decorative symbols, unrelated sections, or visual clutter.

Compare the outputs and select the one that more effectively
filters out non-essential content while preserving informative and
relevant parts.

Instructions:

• Evaluate each output per the above criteria.

• Select the model that performed best on each criterion.

• Provide a summary of which model generated the highest quality
output based on the evaluation criteria.

• Output Format: Provide your answer in the following JSON
format:

{
"SI": "[model_identifier]",
"CC": "[model_identifier]",
"FC": "[model_identifier]",
"CR": "[model_identifier]",
"Overall": "[model_identifier]"

}

Only use the identifiers "A" or "B" in place of
[model_identifier], with no additional characters.

Input for Model A and Model B:

<raw_text>{raw_text}</raw_text>

Model A’s Output:

<clean_text>{clean_text_a}</clean_text>

Model B’s Output:

<clean_text>{clean_text_b}</clean_text>

Evaluation Results:

Figure 11: Prompt for evaluating raw text data for LLM
pre-training, based on value, integrity, safety, and for-
matting.
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D Detailed Evaluation Results1008

D.1 APIs and Models1009

To ensure reproducibility, Table 5 lists each evalu-1010

ated proprietary API and open-source model. Pro-1011

prietary systems are identified by their API ver-1012

sion; open-source models are listed with their Hug-1013

ging Face organization, enabling access through1014

https://huggingface.co/{org}/{model}.1015

Table 5: API Versions for Proprietary Systems and Hug-
ging Face Organizations for Open-Source Models

Model Name Version / HF Org.

GPT-4o GPT-4o-2024-08-06
GPT-4 GPT-4-1106-preview
Gemini Gemini-1.5-Pro

Claude-3.5 Claude-3.5-Sonnet

gemma-2-2b

google
gemma-2-2b-it
gemma-2-9b

gemma-2-9b-it

Llama-3.2-1B

meta-llama

Llama-3.2-1B-Instruct
Llama-3.2-3B

Llama-3.2-3B-Instruct
Meta-Llama-3-8B

Meta-Llama-3-8B-Instruct

MiniCPM-1B-sft-bf16
openbmbMiniCPM-2B-sft-bf16

MiniCPM3-4B

Mistral-7B-v0.3
mistralaiMistral-7B-Instruct-v0.3

Phi-3-mini-128k-instruct

microsoft

Phi-3-mini-4k-instruct
Phi-3-small-128k-instruct
Phi-3-small-8k-instruct

phi-1_5
phi-2

Qwen2.5-0.5B

Qwen

Qwen2.5-0.5B-Instruct
Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct
Qwen2.5-3B

Qwen2.5-3B-Instruct
Qwen2.5-7B

Qwen2.5-7B-Instruct

Yi-1.5-9B 01-ai

D.2 Cleaning Performance Across Different1016

Dimensions1017

Table 6 reports the full win rate results for each1018

evaluated model across the four dimensions of the1019

cleaning task, Sensitive Information Safety(SI),1020

Content Clarity and Integrity (CC), Formatting1021

Consistency (FC), and Content Relevance (CR),1022

as well as the overall win rate.1023

Table 6: Model performance across different dimension
of evaluation criteria.

Model Overall SI CC FC CR
gemma-2-2b 26.57 24.12 37.92 34.73 21.43

gemma-2-2b-it 31.77 29.68 41.52 38.55 27.92
gemma-2-9b 32.37 35.10 39.28 34.58 34.35

gemma-2-9b-it 44.53 46.55 48.60 42.17 45.50
Llama-3.2-1B 18.35 19.93 26.38 24.48 16.90

Llama-3.2-1B-Instruct 19.90 24.08 25.82 26.92 23.02
Llama-3.2-3B 23.67 26.83 30.23 27.72 26.53

Llama-3.2-3B-Instruct 30.40 33.53 36.07 33.00 30.00
Meta-Llama-3-8B 31.45 28.63 42.48 37.93 26.17

Meta-Llama-3-8B-Instruct 34.90 49.90 31.22 34.00 54.48
MiniCPM-1B-sft-bf16 19.40 25.12 25.87 25.25 23.58
MiniCPM-2B-sft-bf16 7.23 11.43 9.33 9.13 9.68

MiniCPM3-4B 29.40 35.22 35.17 32.10 35.05
Mistral-7B-Instruct-v0.3 38.78 47.62 36.82 37.22 51.95

Mistral-7B-v0.3 32.68 30.70 41.70 37.82 29.07
phi-1_5 13.98 17.50 21.15 20.98 14.27

Phi-3-mini-128k-instruct 31.40 46.88 26.62 31.62 51.33
Phi-3-mini-4k-instruct 30.73 48.00 24.97 30.60 53.75

Phi-3-small-128k-instruct 36.25 49.70 32.93 33.37 51.37
Phi-3-small-8k-instruct 31.28 50.08 27.02 29.05 52.88

Phi_2 23.62 22.67 34.65 32.17 19.45
Qwen2.5-0.5B 16.55 17.60 24.73 23.78 14.80

Qwen2.5-0.5B-Instruct 18.78 24.05 22.65 26.73 22.43
Qwen2.5-1.5B 25.12 23.00 36.18 34.05 20.50

Qwen2.5-1.5B-Instruct 29.55 29.32 33.48 36.17 31.38
Qwen2.5-3B 28.43 29.70 36.67 34.37 28.38

Qwen2.5-3B-Instruct 34.57 33.50 40.72 38.47 33.70
Yi-1.5-9B 19.22 40.22 15.83 19.75 49.22

MiniCPM-1B-sft-bf16 21.27 28.48 27.45 28.08 35.95
MiniCPM-2B-sft-bf16 23.47 25.93 37.02 31.17 25.65

MiniCPM3-4B 31.04 37.67 36.89 33.39 41.80
Qwen2.5-0.5B 18.32 18.32 20.75 33.43 26.17

Qwen2.5-0.5B-Instruct 18.38 22.45 22.45 24.18 26.82
Qwen2.5-1.5B 28.45 28.95 28.95 40.68 35.35

Qwen2.5-1.5B-Instruct 36.83 36.83 35.87 46.62 43.78
Qwen2.5-3B 23.03 21.75 40.52 31.77 19.48

Qwen2.5-3B-Instruct 26.67 28.37 34.82 34.70 32.58
Qwen2.5-7B 33.52 38.20 39.47 36.80 40.25

Qwen2.5-7B-Instruct 42.40 46.50 44.17 41.93 50.53
Yi-1.5-9B 23.13 36.23 20.57 25.20 56.68
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D.3 Additional Results on In-Context1024

Example Effectiveness1025

To complement the main results presented in Ta-1026

ble 1, we report additional experimental findings1027

on the impact of in-context examples across dif-1028

ferent model families and configurations in Ta-1029

ble 7. These include performance metrics on both1030

the cleaning and filtering tracks for various base1031

and instruction-tuned models, covering English1032

and Chinese subsets. The extended results fur-1033

ther support the observed trends regarding model1034

size, instruction tuning, and the efficacy of in-1035

context prompting, particularly for smaller or less1036

instruction-aligned models.1037

Table 7: Additional 6-shot vs. 0-shot comparison; bold
indicates rare 0-shot wins

Model Cleaning Filtering

6-shot 0-shot 6-shot 0-shot

EN Subset
Phi-3-small-128k-Instruct 36.65 34.38 22.03 9.84
Phi-3-small-8k-Instruct 31.28 33.85 38.42 13.76

Phi-3-mini-128k-Instruct 31.40 37.07 34.52 38.98
Phi-3-mini-4k-Instruct 30.73 35.23 20.56 16.18

phi_2 23.62 24.65 34.51 34.13
phi-1_5 13.98 7.65 6.12 0.00

Mistral-7B-Instruct-v0.3 38.78 37.23 22.32 11.57
Mistral-7B-v0.3 32.68 31.45 6.59 0.50
MiniCPM3-4B 29.40 29.38 59.85 23.50

MiniCPM-2B-sft-bf16 7.23 20.62 36.30 20.35
MiniCPM-1B-sft-bf16 19.40 20.25 49.87 7.87

Yi-1.5-9B 19.22 27.25 40.90 12.19

ZH Subset
MiniCPM3-4B 31.04 29.62 37.39 1.49

MiniCPM-2B-sft-bf16 23.47 19.63 48.14 17.53
MiniCPM-1B-sft-bf16 21.27 14.48 44.59 13.38

Yi-1.5-9B 23.13 27.35 47.78 3.61
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