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Abstract
We propose a new method called the N-particle
underdamped Langevin algorithm for optimizing
a special class of non-linear functionals defined
over the space of probability measures. Examples
of problems with this formulation include train-
ing mean-field neural networks, maximum mean
discrepancy minimization and kernel Stein dis-
crepancy minimization. Our algorithm is based
on a novel spacetime discretization of the mean-
field underdamped Langevin dynamics, for which
we provide a new, fast mixing guarantee. In addi-
tion, we demonstrate that our algorithm converges
globally in total variation distance, bridging the
theoretical gap between the dynamics and its prac-
tical implementation.

1. Introduction
The mean-field Langevin dynamics (MLD) has recently
received renewed interest due to its connection to gradient-
based techniques used in supervised learning problems such
as training neural networks in a limiting regime (Mei et al.,
2018). Several recent works have focused on the theoreti-
cal characterizations of the convergence properties of MLD
in particular (Hu et al., 2019; Chizat, 2022; Nitanda et al.,
2022; Chen et al., 2022; Claisse et al., 2023; Suzuki et al.,
2023). More generally, MLD can be used to solve problems
that can be posed as an entropy regularized mean-field opti-
mization (EMO) problem. Other examples of such problems
include density estimation via maximum mean discrepancy
(MMD) minimization (Gretton et al., 2006; Arbel et al.,
2019; Chizat, 2022; Suzuki et al., 2023) and sampling via
kernel Stein discrepancy (KSD) minimization (Liu et al.,
2016; Chwialkowski et al., 2016; Suzuki et al., 2023).

The MLD has also been the subject of a number of recent

1Department of Computer Science, Yale University, New
Haven, CT, USA 2Department of Electrical Engineering and Com-
puter Science, MIT, Cambridge, MA, USA. Correspondence to:
Qiang Fu <qiang.fu@yale.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

theoretical developments. Hu et al. (2019), for example,
show that MLD finds EMO solutions asymptotically when
problems can be expressed as optimizing a convex func-
tional. If in addition, the EMO satisfies a uniform loga-
rithmic Sobolev inequality, several studies have established
that this convergence occurs exponentially quickly (Chizat,
2022; Nitanda et al., 2022; Chen et al., 2022). However,
implementing MLD is not a straightforward task; to arrive
at a practical algorithm requires both spatial and temporal
discretizations of the dynamics. Nitanda et al. (2022) study
a time-discretization of MLD by extending an interpola-
tion argument introduced by Vempala & Wibisono (2019)
to a non-linear Fokker-Planck equation. They establish a
non-asymptotic rate of convergence for the discrete-time
process. Chen et al. (2022) study a space-discretization con-
sisting of a finite-particle approximation to the density of
MLD (referred to as a finite-particle system) and show the
finite-particle system finds the solution to the EMO prob-
lem exponentially fast, with a bias related to the number
of particles. More practically, Suzuki et al. (2023) analyze
a spacetime discretization of the MLD and establish the
non-asymptotic convergence of the resulting algorithm to
a biased limit related to both the number of particles used
and stepsize. Their analysis applies to several important
learning problems and improves the results of the standard
gradient Langevin dynamics.

A natural candidate method for finding solutions to EMO
problems faster is the mean-field underdamped Langevin
dynamics (MULD). MULD resemble several techniques
for adding momentum to gradient descent in optimization,
many of which are known to result in provably faster conver-
gence in a variety of settings (Nesterov, 1983; Wilson et al.,
2016; Laborde & Oberman, 2020; Hinder et al., 2020; Fu
et al., 2023; Srinivasan & Wilson, 2022). Moreover, training
neural networks using momentum-based gradient descent
is considered effective in several applications (Sutskever
et al., 2013; Kingma & Ba, 2014; Ruder, 2016). Kazeykina
et al. (2020) and Chen et al. (2023) confirm that a naive
spacetime discretization of MULD has impressive empirical
performance when compared to a naive discretization of
the MLD on applications such as training mean-field neural
networks.

Chen et al. (2023) introduce a space-discretization of MULD
consisting of a finite particle approximation to the density
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and show it finds the EMO solution exponentially fast, albeit
with several additional assumptions that are easy to verify
for the problem of training mean-field neural networks. In
addition, Chen et al. (2023) implement an Euler-Maruyama
discretization of the finite-particle system and show that it
performs empirically faster when compared with the space-
time discretization of the mean-field Langevin dynamics
in training a toy neural network model. However, space-
time discretizations of MULD are not yet theoretically well
understood. Furthermore, the rate obtained by Chen et al.
(2023) for the dynamics does not resemble an “accelerated
rate” when compared with recent results for MLD.

A remaining question is whether we can theoretically charac-
terize the behavior of an implementable algorithm based on
discretizing MULD. If so, and there is a limiting bias, how
does it scale with the number of particles and other problem
parameters? Ideally, these characterizations would give a
sharper rate of convergence than Suzuki et al. (2023)’s space-
time discretization of the mean-field Langevin dynamics,
suggesting there might be an advantage to adding momen-
tum in the mean-field setting (at least in the worst case).

Contributions We contribute the following:

1. We introduce the N-particle underdamped Langevin
algorithm (N-ULA), a fast implementable algorithm
based on the MULD for solving EMO problems. We
prove that the N-ULA converges to a small limiting
bias under a set of assumptions that subsumes many
problems of interest.

2. We sharpen the convergence bound for MULD and its
space-discretization established by Chen et al. (2023)
under the same set of assumptions utilized by Chen
et al. (2023) (Theorems 3.1 and 3.2 and Table 1).

3. We show the global convergence of N-ULA in total
variation (TV) distance (Theorem 3.4). Importantly,
our results improve on Suzuki et al. (2023)’s analysis of
the spacetime discretization of the MLD. While we re-
quire additional assumptions 2.7-2.9, our results hold
in several real-world applications including training
neural networks, density estimation via MMD mini-
mization and sampling via KSD minimization.

Organization Section 2 presents the formal definitions,
assumptions and related work. Section 3 proposes our main
methods and theoretical results. Section 4 discusses the
application of our methods to some classical problems. Sec-
tion 5 presents our numerical results.

2. Preliminaries
We begin by introducing general notation that will be used
throughout this work.

2.1. Notation

The Euclidean and operator norms are denoted by ∥ · ∥ and
∥ · ∥op. The space of probability measures on Rd with finite
second moment is denoted by P2(Rd). Throughout, let ρ
and µ denote general distributions in P2(Rd) and P2(R2d)
respectively. The TV distance between ρ and π ∈ P2(Rd) is
denoted by ∥ρ−π∥TV := sup |ρ(A)−π(A)|where the sup is
over all Borel measurable sets A ⊂ Rd. The p-Wasserstein
distance and Kullback-Leibler divergence between ρ and π
is denoted by Wp(ρ, π) := infΠ EΠ[∥x − y∥p]1/p where
the infimum is over joint distributions Π of (x, y) with
the marginals x ∼ ρ, y ∼ π and KL(ρ∥π) :=

∫
ρ log ρ

π .
The relative Fisher information is denoted by FI(ρ∥π) :=
Eρ∥∇ log ρ

π∥
2, and more generally we use the notation

FIS(ρ∥π) := Eρ∥S1/2∇ log ρ
π∥

2 for a positive definite
symmetric matrix S. Ent(ρ) :=

∫
ρ log ρ denotes the neg-

ative entropy of ρ. The functional and intrinsic deriva-
tives of F are denoted by δF

δρ : P2(Rd) × Rd → R and
DρF := ∇ δF

δρ : P2(Rd) × Rd → Rd, respectively. A d-
dimensional Brownian motion is denoted by Bt. We use
notation a ≲ b, an = Θ(bn) and an = Θ̃(bn) to denote that
there exist c, C > 0 such that a ≤ Cb, cbn ≤ an ≤ Cbn
for n ≥ N ′ and an = Θ(bn) up to logarithmic factors,
respectively.

2.2. Background

We consider the following problem described by minimizing
the entropy regularized mean-field objective (EMO),

min
ρ∈P2(Rd)

F (ρ) + λEnt(ρ), (1)

where F : P2(Rd) → R is a potentially non-linear
functional and λ > 0 is a regularization constant. As
done in several prior works (Chen et al., 2022; 2023), we
will take λ = 1 throughout and focus on other important
problem parameters. Hu et al. (2019) study the gradient
flow dynamics of the EMO in 2-Wasserstein metric called
the mean-field Langevin dynamics (MLD):

dxt = −DρF (ρt, xt)dt+
√
2dBt, (MLD)

where ρt := Law(xt) ∈ P2(Rd). Under mild condi-
tions, the MLD finds the solution to the EMO, given by
ρ∗(x) ∝ exp

(
− δF

δρ (ρ∗, x)
)

(Hu et al., 2019).

This paper introduces a new sharp mixing-time bound for
the mean-field underdamped Langevin dynamics (MULD):

dxt = vtdt,

dvt =−γvtdt−DρF (µX
t , xt)dt+

√
2γdBt.

(MULD)

Here, µt := Law(xt, vt) ∈ P2(R2d), γ > 0 is the damping
coefficient, and µX

t := Law(xt) =
∫
µt(x, v)dv is the X-

marginal of µt. The limiting distribution of MULD is the
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solution to the augmented EMO problem,

min
µ∈P2(R2d)

F (µX) + Ent(µ) +
∫

1

2
∥v∥2µ(dxdv), (2)

where a momentum term is added to the EMO. The min-
imizer of the augmented EMO is given by µ∗(x, v) ∝
exp

(
− δF

δρ (µ
X
∗ , x)− 1

2∥v∥
2
)

. We provide details of the
derivation of the limiting distributions of MLD and MULD
in Appendices A.1 and A.3 respectively. To obtain the so-
lution of the EMO problem, the minimizer µ∗(x, v) can be
X-marginalized. This work also sharpens the analysis of
the space-discretization of MULD introduced by Chen et al.
(2023), which we refer to as the N -particle underdamped
Langevin dynamics (N-ULD) for i = 1, ..., N :

dxi
t = vitdt, (N-ULD)

dvit = −γvitdt−DρF (µxt , x
i
t)dt+

√
2γdBi

t,

where µxt :=
1
N

∑N
i=1 δxi

t
, µi

t := Law(xi
t, v

i
t) and (Bi

t)
N
i=1

are d-dimensional Brownian motions. Notably, a time-
discretization of N-ULD is necessary to run the method on
a machine. We explore two time-discretization techniques
in this paper.

To motivate our algorithm as a time-discretization of N-
ULD, we review discretizations of the underdamped
Langevin dynamics (ULD), a special case of MULD where
F (ρ) =

∫
V (x)ρ(dx) is a linear functional of µ:

dxt = vtdt,

dvt =−γvtdt−∇V (xt)dt+
√
2γdBt.

(ULD)

The ULD was first studied in Kolmogoroff (1934)
and Hörmander (1967). Under functional inequalities
such as Poincaré’s inequality on the target distribution
ρ∗ ∝ exp(−V ) , the convergence guarantee of the ULD
was studied by Villani using a hypocoercivity approach
(Villani, 2001; 2009), but without capturing the acceleration
phenomenon when compared to the overdamped Langevin
dynamics. Cao et al. (2023) are the first to show ULD
converges in χ2-divergence at an accelerated rate when
V is convex and the target distribution ρ∗ satisfies LSI
defined in (5) with CLSI > 0. They prove that when
CLSI ≪ 1, the decaying rate of ULD is O(

√
CLSI) whereas

the decaying rate of the overdamped Langevin dynamics
is O(CLSI). We will refer to the time-discretization of
ULD as an underdamped Langevin Monte Carlo (ULMC)
algorithm. The Euler-Maruyama (EM) discretization
(Kloeden et al., 1995; Platen & Bruti-Liberati, 2010) is
perhaps the well-studied ULMC algorithm and it incurs the
largest discretization error in several metrics including KL
divergence and Wasserstein distance. Recently, however,
several works have studied the ULMC obtained from a more

precise discretization scheme called the the exponential
integrator (EI) (Cheng et al., 2018):

dxt = vtdt, (EI-ULMC)

dvt = −γvtdt−∇V (xkh)dt+
√
2γdBt,

for t ∈ [kh, (k + 1)h]. Unlike the EM integrator, EI only
fixes the drift term in each small interval, creating a group
of linear stochastic differential equations (SDE) that can
be exactly integrated. Leimkuhler et al. (2023) show that
the EI incurs weaker stepsize restriction when compared
with EM scheme. Other works have derived its conver-
gence in Wasserstein distance (Cheng et al., 2018), KL
divergence (Ma et al., 2021) and Rényi divergence (Zhang
et al., 2023). Other discretization schemes are proposed in
Shen & Lee (2019); Li et al. (2019); He et al. (2020); Foster
et al. (2021); Monmarché (2021); Foster et al. (2022); John-
ston et al. (2023), whose convergence guarantee are obtained
in Wasserstein distance without achieving better dependence
on terms such as the smoothness and LSI constants. In this
work, we show that EI can be applied to discretize both
MULD and N-ULD to achieve fast convergence.

2.3. Definitions and Assumptions

For each method considered, we study their behavior in
settings where the minimizing distribution satisfies a Log-
Sobolev inequality.

Definition 2.1 (LSI). A measure π ∈ P2(Rd) satisfies
Log-Sobolev Inequality (LSI) with parameter CLSI > 0, if
for any ρ ∈ P2(Rd)

KL(ρ∥π) ≤ 1

2CLSI
FI(ρ∥π). (5)

We also work with the following distribution µ̂ ∈ P2(R2d)
that appears in the Fokker-Planck equation (26) of MULD
(see Appendix A.3). Note that the limiting distribution
µ∗ ∈ P2(R2d) of MULD satisfies µ∗ = µ̂∗.

Definition 2.2. Throughout, we define the distribution µ̂
associated with the X-marginal of distribution µ and a func-
tional F to be

µ̂(x, v) ∝ exp

(
−δF

δρ
(µX , x)− 1

2
∥v∥2

)
. (6)

We also introduce the same three assumptions on F as Chen
et al. (2023) for establishing the non-asymptotic conver-
gence of the MULD and N-ULD.

Assumption 2.3 (Convexity). F is convex in the linear
sense, which means for any ρ1, ρ2 ∈ P2(Rd) and t ∈
[0, 1] the functional satisfies

F (tρ1 + (1− t)ρ2) ≤ tF (ρ1) + (1− t)F (ρ2). (7)
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Assumption 2.4 (L -smoothness). F is smooth, which
means the intrinsic derivative exists and for any ρ1, ρ2 ∈
P2(Rd), x1, x2 ∈ Rd and some 1 ≤ L <∞ satisfies

∥DρF (ρ1, x1)−DρF (ρ2, x2)∥
≤ L (W1(ρ1, ρ2) + ∥x1 − x2∥)

(8)

Assumption 2.5 (LSI). The distribution (6) satisfies LSI
with constant 0 < CLSI ≤ 1 for any µ ∈ P2(Rd).

The X-marginal of distribution (6), which is related to the
optimization gap, was first utilized by Nitanda et al. (2022)
to establish convergence of MLD. Note that if µ̂X(x) ∝
exp(− δF

δρ (µ
X , x)) satisfies LSI for any µ ∈ P2(R2d) with

constant τ > 0, then Assumption 2.5 is satisfied with the
choice CLSI = min{1/2, τ}. We refer our readers to Chen
et al. (2022; 2023); Suzuki et al. (2023) for the verification
of Assumptions 2.3 and 2.5 in a variety of settings. Suzuki
et al. (2023) consider a weaker smoothness assumption than
Assumption 2.4 where they use W2 distance in place of W1

distance. They verify smoothness in W2 distance for three
examples including training mean-field neural networks,
MMD minimization and KSD minimization, whereas Chen
et al. (2022) verify smoothness in W1 distance only for
the example of training mean-field neural networks. In
this paper, we verify L -smoothness in W1 distance (As-
sumption 2.4) for the other two examples (see Section C.1).
Beyond Assumptions 2.3-2.5, we introduce four additional
assumptions that are sufficient for our spacetime discretiza-
tion analysis.

Assumption 2.6 (Bounded Gradient). For any ρ ∈
P2(Rd), the intrinsic derivative of F satisfies (where
L > 0)

∥DρF (ρ, x)∥ ≤ L (1 + ∥x∥). (9)

Notably, Suzuki et al. (2023) assume that F can be
decomposed as F (ρ) = U(ρ) + Ex∼ρ[r(x)] where
∥DρU(ρ, x)∥ ≤ R for any ρ ∈ P(Rd), x ∈ Rd, and
where r(x) is a differentiable function satisfying ∥∇r(x)−
∇r(y)∥ ≤ λ2∥x− y∥ with∇r(0) = 0 in order to establish
the convergence of their spacetime discretization of MLD.
Thus, their assumption that ∥DρF (ρ, x)∥ ≤ ∥DρU(ρ, x)∥+
∥∇r(x)∥ ≤ R+ λ2∥x∥ implies Assumption 2.6 holds with
the choice L ≥ max{R, λ2}. The next three assumptions
are needed for bounding the second moment of the iter-
ates (xt, vt)t≥0 and (xi

t, v
i
t)t≥0 along MULD and N-ULD,

which is crucial for the establishment of our discrete-time
convergence.

Assumption 2.7. For all µ ∈ P2(R2d), the distribu-
tion (6) given F satisfies Eµ̂∥ · ∥2 ≲ d.

Assumption 2.8. The functional F and the initial distri-
bution µ0 ∈ P2(R2d) satisfy F (µX

0 ) ≲ L d.

Assumption 2.9. The functional F and the initial distribu-
tion µN

0 ∈ P2(R2Nd) satisfy Ex0∼(µX
0 )NF (µx0) ≲ L d,

where µN
0 is the N-tensor product of µ0 and µx0 =

1
N

∑N
i=1 δxi

0
with xi

0 ∼ µX
0 .

While Assumptions 2.7-2.9 are sufficient, they may not be
necessary for the iterates to be bounded. Nevertheless, we
argue these assumptions are not too restrictive by verifying
them for three examples introduced above including training
mean-field neural networks, MMD minimization and KSD
minimization in Section 4.

2.4. Related Work

Techniques for establishing the continuous-time conver-
gence of the mean-field underdamped systems and their
space-discretization (N-particle systems) are centered
around coupling and hypocoercivity. The latter one is also
known as functional approaches (Villani, 2009). The cou-
pling approach generally constructs a joint probability of
the mean-field and N-particle systems to make the ana-
lytic comparison between them. Based on coupling ap-
proaches, Guillin et al. (2022); Bolley et al. (2010); Bou-
Rabee & Schuh (2023) show convergence of the under-
damped dynamics with mean-field interaction and its space-
discretization. Duong & Tugaut (2018); Kazeykina et al.
(2020) study the ergodicity of the MULD without a quantita-
tive rate. Under the setting of small mean-field dependence,
Kazeykina et al. (2020) show exponential contraction us-
ing coupling techniques in Eberle et al. (2019a;b). The
functional approach (hypocoercivity) generally constructs
appropriate Lyapunov functionals and studies how their
values change along the dynamics. Based on hypocoer-
civity, Monmarché (2017); Guillin et al. (2021); Guillin &
Monmarché (2021); Bayraktar et al. (2022) establish the
exponential convergence of the mean-field underdamped
systems and its propagation of chaos by constructing a suit-
able Lyapunov functional. Nevertheless, most of the works
above only consider specific settings of MULD such as
singular interactions and two-body interactions, which re-
stricts the application to real-world problems. Setting γ = 1,
Chen et al. (2023) establish the exponential convergence
of MULD and N-ULD using the hypocoercivity technique
in Villani (2009). Under Assumptions 2.3-2.5, they derive
the convergence without restricting the size of interactions,
which subsumes many settings above. Notably, the tech-
niques of our Theorems 3.1 and 3.2 are adopted from Chen
et al. (2023) based on hypocoercivity where we consider
other choices of γ to improve the decaying rate of MULD
and N-ULD established in Chen et al. (2023).
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3. N-particle Underdamped Langevin
Algorithm

Our first step is to establish the global convergence of the
mean-field underdamped Langevin algorithm (MULA),

dxt = vtdt, (MULA)

dvt = −γvtdt−DρF (µX
kh, xkh)dt+

√
2γdBt,

for stepsize h, t ∈ [kh, (k + 1)h] and k = 1, ...,K. Note
that MULA is the EI time-discretization of the MULD,
where each step will now require integrating from t = kh to
t = (k + 1)h for stepsize h. MULA is intractable to imple-
ment in most instances given we do not often have access
to µX

kh. This prompts us to consider the particle approxima-
tion which uses µxkh

= 1
N

∑N
i=1 δxi

kh
to approximate µX

kh

where (xi
k)

N
i=1 are iid samples from µX

k :

dxi
t = vitdt,

dvit = −γvitdt−DρF (µxkh
, xi

kh)dt+
√
2γdBi

t,
(11)

for stepsize h, t ∈ [kh, (k + 1)h], i = 1, ..., N , k ∈ N and
µxkh

= 1
N

∑N
i=1 δxi

kh
. Integrating the particle system (11)

from t = kh to t = (k+1)h for stepsize h and i = 1, ..., N ,
we obtain our proposed Algorithm 1 which we refer to as
the N-particle underdamped Langevin algorithm (N-ULA).

Algorithm 1 (N-ULA)
Require: F satisfies Assumptions 2.3-2.7 and 2.9

1: Initialize x0 = (x1
0, ..., x

N
0 ), v0 = (v10 , ..., v

N
0 ), h, γ

Specify φ0, φ1, φ2, Σ11, Σ12, Σ22 using (33) and (34).
2: for k = 0, ...,K − 1 do
3: for i = 1, ..., N do

4:

[
(Bi

k)
x

(Bi
k)

v

]
∼ N

(
0,

[
Σ11Id Σ12Id
Σ12Id Σ22Id

])
5: xi

k+1 ← xi
k +φ0 v

i
k−φ1 DρF (µxk , x

i
k)+ (Bi

k)
x

6: vik+1 ← φ2 v
i
k − φ0 DρF (µxk , x

i
k) + (Bi

k)
v

7: end for
8: end for

output (x1
K , ..., xN

K)

The update parameters of Algorithm 1, φ0, φ1, φ2 and Σ11,
Σ12, Σ22, are functions of γ and stepsize h. Thus, we need
to specify the value of γ and h to compute the update pa-
rameters and initialize (x0, v0) ∼ µN

0 ∈ P2(R2Nd) before
running the algorithm.

3.1. Convergence Analysis

We begin by leveraging entropic hypocoercivity and The-
orems 2.1 and 2.2 from Chen et al. (2023) to analyze the
continuous-time dynamics MULD and N-ULD. Let

S =

(
1/L 1/

√
L

1/
√

L 2

)
⊗ Id. (12)

We construct the Lyapunov functional similar to Chen et al.
(2023), but with a different choice of S. Theorem 3.1 is
established by showing the following functional is decaying
along the trajectory of MULD.

E(µ) := F(µ) + FIS(µ∥µ̂), where (13)

F(µ) := F (µX) +

∫
1

2
∥v∥2µ(dxdv) + Ent(µ).

Our second Theorem 3.2 establishes the convergence of N-
ULD. Denote x = (x1, ..., xN ), v = (v1, ..., vN ), µN =
Law(x, v), and µN

∗ as the limiting distribution of N-ULD
satisfying µN

∗ (x, v) ∝ exp
(
−NF (µx)− 1

2∥v∥
2
)

(see the
derivation of limiting distribution in Appendix A.4). Denote
∇i := (∇xi ,∇vi)T. We obtain our guarantee by showing
the functional is decaying along the trajectory of N-ULD:

EN (µN ) := FN (µN ) + FINS (µN∥µN
∗ ), where (14)

FINS (µN∥µN
∗ ) :=

N∑
i=1

EµN

∥∥∥S1/2∇i log
µN

µN
∗

∥∥∥2, and

FN (µN ) :=

∫
NF (µx) +

1

2
∥v∥2µN (dxdv) + Ent(µN ).

Theorem 3.1 (Convergence of MULD). If Assumptions
2.3-2.5 hold, µ0 has finite second moment, finite entropy
and finite Fisher information, then the law µt of the
MULD with γ =

√
L and E defined in (13) satisfy,

F(µt)−F(µ∗) ≤ (E(µ0)− E(µ∗)) exp

(
− CLSI

3
√

L
t

)
.

Theorem 3.2 (Convergence of N-ULD). If Assump-
tions 2.3-2.5 hold, µN

0 has finite second moment, fi-
nite entropy, finite Fisher information, and N ≥
(L /CLSI) (32 + 24L /CLSI), then the joint law µN

t of N-
ULD with γ =

√
L and EN defined in (14) satisfy

1

N
FN (µN

t )−F(µ∗) ≤
EN0
N

exp

(
− CLSI

6
√

L
t

)
+
B
N

,

where B := 60L d
CLSI

+ 36L 2d
C 2

LSI
, EN0 := EN (µN

0 )−NE(µ∗).

Note that EN0 = FN (µN
0 )−NF(µ∗)+FINS (µN

0 ∥µN
∗ ) ≥ 0

by Lemma B.4. The decaying rate given in Theorem 3.1
resembles the decaying rate of ULD in Zhang et al. (2023)
with similar choices of γ and S. Theorem 3.2 implies the
non-uniform-in-N convergence of N-ULD, which incorpo-
rates a bias term involving N due to the particle approxi-
mation. Our proof technique is more refined but parallel to
that of Chen et al. (2023) where our faster convergence and
smaller bias is achieved by choosing γ =

√
L instead of

γ = 1 (see Table 1).

Our main results analyze the convergence of the discrete-
time processes MULA and N-ULA as well as their mixing
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time guarantees to generate an ϵ-approximate solution in TV
distance with the specific choice of initialization, damping
coefficient γ, and stepsize h.

Theorem 3.3 (Convergence of MULA). In addition to
the assumptions specified in Theorems 3.1, let Assump-
tions 2.6-2.8 hold. Denote µ̄K := Law(xK , vK) and
κ := L /CLSI. Then in order to ensure ∥µ̄K −µ∗∥TV ≤ ϵ
for MULA, it suffices to choose γ =

√
L , µ̄0 =

N (0, I2d), and

h = Θ̃

(
CLSIϵ

L 3/2d1/2

)
, K = Θ̃

(
κ2d1/2

ϵ

)
.

Theorem 3.4 (Convergence of N-ULA). In addition to
the assumptions specified in Theorem 3.2, let Assump-
tions 2.6, 2.7 and 2.9 hold. Denote µ̄i

K := Law(xi
K , viK)

for i = 1, ..., N and κ := L /CLSI. Then in order to
ensure 1

N

∑N
i=1 ∥µ̄i

K − µ∗∥TV ≤ ϵ for N-ULA, it suffices
to choose γ =

√
L , µ̄N

0 = N (0, I2Nd),

h = Θ̃

(
CLSIϵ

L 3/2d1/2

)
, K = Θ̃

(
κ2d1/2

ϵ

)
,

and the number of particles N = Θ
(
κ2d/ϵ2

)
.

3.2. Proof Sketches

For the continuous-time results, we outline the proof of The-
orem 3.1 (and analogously Theorem 3.2) in this section to
provide intuition for how choosing γ =

√
L can improve

the decaying rate of MULD. Inheriting the analysis of The-
orem 2.1 in Chen et al. (2023) and Lemma 32 in Villani
(2009), we show that for a general γ, the Lyapunov func-
tional (13) with S = [sij ] ⊗ Id ∈ R2d×2d along MULD
satisfies

d

dt
E(µt) ≤ −Y T

t KYt, (15)

where s11 = c, s12 = s21 = b, s22 = a; Yt ∈ R4 is defined
by (54) in Appendix D.1; K is an upper triangle matrix
with diagonal elements (γ + 2γa − 4L b, 2γa, 2b, 2γc).
To ensure S ≻ 0 and Y T

t KYt > 0, the criteria of choosing
positive constants γ, a, b, c should be ac > b2 and K ≻ 0.
Our choices of γ =

√
L as well as a, b, c specified in (12)

satisfy the criterion and upper bound the right hand side of
(15) differently from Chen et al. (2023) with γ = 1, which
leads to an improved decaying rate by utilizing Grönwall’s
inequality.

For discretization errors, we outline the proof of Theo-
rem 3.3 (and analogously Theorem 3.4) in this section.
Let (µt)t≥0 and (µ̄t/h)t≥0 represent the law of MULD and
MULA initialized at µ0. Let QKh and PKh denote proba-
bility measures of MULD and MULA on the space of paths
C([0,Kh],R2d). Invoking Girsanov’s theorem (Girsanov,

1960; Kutoyants, 2004; Le Gall, 2016) and Assumption 2.4,
we can upper bound the pathwise KL divergence between
MULD and MULA for stepsize h and k = 1, ...,K under
Assumptions 2.4 and 2.6:

KL(QKh∥PKh) ≲
L 4h5

γ

K−1∑
k=0

EQKh
∥xkh∥2 +

L 4h5K

γ

+
L 2h3

γ

K−1∑
k=0

EQKh
∥vkh∥2 + L 2h4Kd (16a)

The derivation of (16a) is similar to that of Zhang et al.
(2023); they show a discretization error of EI-ULMC mea-
sured in the q-th order Rényi divergence (q ∈ [1, 2)), which
has KL divergence as a special case (q = 1). Their smooth-
ness assumption on the potential function V is (L , s)-weak
smoothness, which recovers L -smoothness when s = 1.
We use techniques similar to Zhang et al. (2023) to bound
the discretization error. Their Lemma 26 can be generalized
to our Lemma B.7 in the mean-field setting, which describes
an intermediate process of deriving (16a). Uniformly upper
bounding the right-hand side of (16a) requires obtaining
uniform bounds for EQKh

∥xkh∥2 and EQKh
∥vkh∥2; If we

were to rely on existing techniques (Zhang et al., 2023),
we would need a χ2-convergence guarantee of MULD.
Given χ2-convergence is not established for MULD by pre-
vious works, we develop different techniques to uniformly
upper bound the iterates of MULD and N-ULD. Denote
zt = (xt, vt). More specifically, we have for t ∈ [0, T ]

EQT
∥zt∥2 = W 2

2 (µt, δ0) ≲ W 2
2 (µt, µ∗)︸ ︷︷ ︸

I

+W 2
2 (µ∗, δ0)︸ ︷︷ ︸

II

,

where δ0 is Dirac measure on 0 ∈ R2d, and II is the sec-
ond moment of µ∗. Under Assumption 2.5, µ∗ satisfies
LSI which allows us to upper bound I using Talagrand’s
inequality: I ≲ KL(µt∥µ∗)/CLSI. Under Assumptions 2.3
and 2.4, Lemma 4.2 in Chen et al. (2023) establishes the
following relation between KL divergence and energy gap:
KL(µt∥µ∗) ≤ F(µt)−F(µ∗). Along with this upper bound
of KL divergence, we obtain

I ≲
KL(µt∥µ∗)

CLSI
≤ F(µt)−F(µ∗)

CLSI
≤ F(µ0)

CLSI
,

where the last inequality follows from the fact that F(µt) is
decreasing along MULD (Kazeykina et al., 2020; Chen et al.,
2023) and our assumption thatF(µ∗) ≥ 0. Therefore, under
Assumptions 2.7 and 2.8, our Lemma B.8 establishes the
upper bound of EQT

∥zt∥2 in terms of L , CLSI and d, which
implies the uniform upper bound of KL(µT ∥µ̄K) by data
processing inequality. Applying Pinsker’s inequality, we
can convert the discretization error bound in KL divergence
to that in TV distance. The remaining details of this proof
is deferred to Appendix E.
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Discretization Method # of particles Mixing time
Time-discretizations MLA (Nitanda et al., 2022) * Θ̃

(
κ2L d/ϵ2

)
EI-ULMC (Zhang et al., 2023) * Θ̃

(
κ3/2d1/2/ϵ

)
MULA (Ours) * Θ̃

(
κ2d1/2/ϵ

)
Space-discretizations N-ULD (Chen et al. (2023)) Θ

(
κ2L d/ϵ2

)
Θ̃
(
κ
)

N-ULD (Ours) Θ
(
κ2d/ϵ2

)
Θ̃
(
κ/L 1/2

)
Spacetime discretizations N-LA (Suzuki et al., 2023) Θ

(
κL 3d/ϵ2

)
Θ̃
(
κ2L d/ϵ2

)
N-ULA (Ours) Θ

(
κ2d/ϵ2

)
Θ̃
(
κ2d1/2/ϵ

)
Table 1. Comparison of algorithms in terms of the mixing time and number of particles to achieve ϵ-approximate solutions in TV distance.
κ := L /CLSI. * represents that we do not need particle approximation for this method.

3.3. Discussion of Mixing Time Results

We summarize the convergence results of MULA, N-ULA
and several existing methods including EI-ULMC, the EM-
discretization of MLD (referred to as MLA (Nitanda et al.,
2022)), and its finite-particle system (referred to as N-
LA (Suzuki et al., 2023)) in Table 1. For the mixing time
to generate an ϵ-approximate solution in TV distance, our
proposed MULA and N-ULA achieve better dependence
on L , d and ϵ than MLA and N-LA, and keep the same
dependence on CLSI as MLA and N-LA. For the number
of particles, we improve the dependence on L for N-ULD
(γ =

√
L ) when compared with N-ULD (γ = 1) in Chen

et al. (2023) (and for N-ULA when compared with N-LA).
Particularly, our dependence on the smoothness constant
in the number of particle guarantee of N-ULA is Θ(L 2)
whereas the counterpart of N-LA is Θ(L 4). However, our
dependence on the LSI constant in the number of particle
guarantee of N-ULA is Θ(C−2

LSI ) whereas the counterpart of
N-LA is Θ(C−1

LSI ).

4. Applications of Algorithm 1
In this section, we will show how Algorithm 1 can be applied
to several applications by verifying Assumptions 2.3-2.9
hold for these examples. We present these results in full
details in Appendix C.

4.1. Training Mean-field Neural Networks

Consider a two-layer mean-field neural network (with in-
finite depth), which can be parameterized as h(ρ; a) :=
Ex∼ρ[h(x; a)], where h(x; a) represents a single neuron
with trainable parameter x and input a (e.g. h(x; a) =
σ(xTa) for activation function σ); ρ is the probability dis-
tribution of the parameter x. Given dataset (ai, bi)ni=1 and

loss function ℓ, we choose F in objective (2) to be

F (µX) =
1

n

n∑
i=1

ℓ(h(µX ; ai), bi) +
λ′

2
Ex∼µX∥x∥2, (17)

The objectives (17) satisfy Assumptions 2.3-2.6 for spe-
cific common choices ℓ and h described in several works
(Nitanda et al., 2022; Chen et al., 2022; 2023; Suzuki
et al., 2023). If there exists L > 0 such that the acti-
vation function satisfies |h(x; a)| ≤

√
L (also proposed

in Suzuki et al. (2023)) and the convex loss function ℓ
is quadratic or satisfies |∂1ℓ| ≤

√
L (also proposed in

Nitanda et al. (2022)), F satisfies Assumption 2.7 with
λ′ ≤ (2π)3 exp(−8L ). Finally, if in addition we assume
ℓ is
√

L -Lipschitz and choose λ′ ≤ (2π)3 exp(−8L ),
µ0 = N (0, I2d) and µN

0 = N (0, I2Nd), Assumptions 2.8
and 2.9 will be satisfied.

4.2. Density Estimation via MMD Minimization

The maximum mean discrepancy between two probability
measures ρ and π is defined asM(ρ∥π) =

∫∫
[k(x, x) −

2k(x, y) + k(y, y)]dρ(x)dπ(y), where k is a positive defi-
nite kernel. Similar to Example 2 in Suzuki et al. (2023),
we consider the non-parametric density estimation using
the Gaussian mixture model, which can be parameterized
as p(ρ; z) := Ex∼ρ[p(x; z)], where p(x; z) is the Gaussian
density function of z with mean x and a user-specified vari-
ance σ2. Given a set of samples {zi}ni=1 from the target
distribution p∗, our goal is to fit p∗ by minimizing the em-
pirical version ofM(p(ρ; z)∥p∗), defined as

M̂(ρ) =

∫∫∫
p(x; z)p(x′; z′)k(z, z′)dzdz′dρ(x)dρ(x′)

− 2

∫ (
1

n

n∑
i=1

∫
p(x; z)k(z, zi)dz

)
dρ(x).

We choose F in objective (2) to be

F (µX) = M̂(µX) +
λ′

2
Ex∼µX∥x∥2, (18)

7
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Figure 1. Evaluation on N-ULA, N-LA and EM-N-ULA with different number of particles N where x-axis represents the training epochs
and y-axis represents the value of 1

2n

∑n
i=1(

1
N

∑N
s=1 h(x

s; ai)− f(ai))
2. As the number of particles grows, our method outperforms

both N-LA and EM-N-ULA, however if the number of particles is small, the momentum-based methods suffer from unstable convergence
(the loss will slightly go up after convergence) as is shown in the first figure.

where λ′ > 0. Suzuki et al. (2023) show that objec-
tive (18) satisfies Assumptions 2.3, 2.5 and 2.6 by choos-
ing a smooth and light-tailed kernel k, such as Gaussian
radial basis function (RBF) kernel defined as k(z, z′) :=
exp(−∥z − z′∥2/2σ′2) for σ′ > 0. We also verify that
objective (18) also satisfies our Assumption 2.4 with the
same choice of kernel. With Gaussian RBF kernel k
(σ′ = σ), we provide verification in Appendix C that objec-
tive (18) satisfies Assumptions 2.7-2.9 when λ′ ≤ 3π/25,
µ0 = N (0, I2d) and µN

0 = N (0, I2Nd).

4.3. Kernel Stein Discrepancy Minimization

Kernel Stein discrepancy (KSD) minimization is a method
for sampling from a target distribution ρ∗ if we have
the access to the score function sρ∗(x) = ∇ log ρ∗(x)
(Chwialkowski et al., 2016; Liu et al., 2016). For a pos-
itive definite kernel k, the Stein kernel is defined as

uρ∗(x, x
′) = sTρ∗

(x)k(x, x′)sρ∗(x
′) + sTρ∗

(x)∇x′k(x, x′)

+∇T
xk(x, x

′)sρ∗(x
′) + tr(∇x,x′k(x, x′)).

The KSD between ρ and ρ∗ is defined as KSD(ρ) =∫∫
uρ∗(x, x

′)dρ(x)dρ(x′). We choose F in (2) to be

F (µX) = KSD(µX) +
λ′

2
Ex∼µX∥x∥2, (19)

where λ′ > 0. Suzuki et al. (2023) show that objective
(19) satisfies Assumptions 2.3, 2.5 and 2.6 by choosing
light-tailed kernel and assume the score function satisfies

max
k=1,2,3

{∥∇⊗k log ρ∗(x)∥op} ≤ L (1 + ∥x∥). (20)

Choosing the same kernel as in Suzuki et al. (2023), we
verify in Appendix C that (19) also satisfies Assump-
tion 2.4 and satisfies our Assumptions 2.7-2.9 with λ′ ≤
min{(2π)3 exp(−4L ),L , d}, µ0 = N (0, I2d) and µN

0 =
N (0, I2Nd).

5. Experiments
We evaluate our method N-ULA in training a two-layer
mean-field neural network to approximate a Gaussian func-
tion f(z) = exp(−∥z−m∥2/2d) for z ∈ Rd and unknown
m ∈ Rd. Consider objective (17) given quadratic loss ℓ and
n randomly generated data samples (ai, f(ai))ni=1:

F (ρ) =
1

2n

n∑
i=1

(h(ρ; ai)− f(ai))
2 +

λ′

2
Ex∼ρ∥x∥2,

where h(ρ; a) = Ex∼ρ[tanh(xTa)]. In this task, we com-
pare our N-ULA with N-LA (the spacetime discretiza-
tion of MLD) and EM-N-ULA (the Euler-Maruyama time
discretization of N-ULD) for the number of particles
N ∈ {28, 29, 210, 211}. We average our results over
5 random seeds from {0, 1, 2, 3, 4} and present the con-
vergence curves of three methods with their error bars
in Figure 1. Figure 1 demonstrate the superiority of N-
ULA over N-LA and EM-N-ULA in terms of the conver-
gence speed. Codes of our experiments are available at
https://github.com/QiangFu09/NULA. More details of the
experimental settings and discussion are postponed to Sec-
tion F.

6. Discussion
To summarize, this paper (1) improves the convergence guar-
antees in Chen et al. (2023) with a refined Lyapunov analysis
(Theorems 3.1 and 3.2); (2) discretizes the MULD and N-
ULD with a scheme which results in smaller bias than the
EM scheme; and (3) presents a novel discretization analysis
of MULD and N-ULD. We also verify that these methods
work when the objective is W1 smooth. We provide experi-
mental evidence in Appendix F that MULA and N-ULA out-
performs MLA and N-LA across a variety of experiments,
consistent with our theoretical findings. We now note sev-
eral directions for future potential developments. First, we
only choose λ = 1 in our bound, as considering a general
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λ is even more complicated in the analysis of MULD in
Chen et al. (2023). However, it is interesting to incorporate
a general λ for generalization in machine learning, which
we leave for the future work. Second, it is unclear what
the optimal choice of damping coefficient γ is for MULD
and N-ULD. Understanding whether the optimal choice has
been found is helpful to improving our established mixing
time. What’s more, we obtain convergence rates for the
MULA and N-ULA in TV distance, which are not consis-
tent with the convergence rates of MULD, N-ULD, MLA
and N-LA in energy gap (e.g. F(µt)−F(µ∗)). We hope to
establish our results in the energy gap or KL divergence in
the future. Finally, our techniques on uniformly bounding
the iterates of MULD and N-ULD combined with Assump-
tions 2.7-2.9 generates an additional CLSI after applying
Talagrand’s inequality, which leads to non-improvement of
CLSI for MULA and N-ULA. We hope to explore whether
it is possible to weaken those assumptions and refine the
analysis of uniformly bounding the iterates to improve the
dependence of CLSI in the mixing time and number of parti-
cles of MULA and N-ULA.
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A. Supplementary Background
A.1. Mean-field Langevin Dynamics

The law (ρt)t≥0 of MLD solves the following non-linear Fokker-Planck equation:

∂ρt
∂t

= ∇ · (ρtDρF (ρt, ·)) + ∆ρt = ∇ ·
(
ρt∇ log

ρt
ρ̂t

)
, (21)

where ρ̂t(x) ∝ exp
(
− δF

δρ (ρt, x)
)

. Let E(ρ) := F (ρ) + Ent(ρ). The optimality condition of the EMO problem is

δE

δρ
=

δF

δρ
+ log ρ+ c = 0, (22)

where c is a constant. Given the condition (22), the solution of EMO problem ρ∗ satisfies ρ∗(x) = ρ̂∗(x) ∝
exp

(
− δF

δρ (ρ∗, x)
)
, which solves ∇ ·

(
ρt∇ log ρt

ρ̂t

)
= 0. Thus we conclude that MLD converges to the minimizer

of EMO objective.

A.2. N-particle Langevin Dynamics

The space-discretization of MLD is referred to as the N-particle Langevin dynamics,

dxi
t = −DρF (ρxt , x

i
t)dt+

√
2dBt, (N-LD)

where ρxt =
1
N

∑N
i=1 δxi

t
. Let ρit denotes the law of xi

t and ρNt denotes the joint law of xt := (x1
t , ..., x

N
t ). The joint law

(ρNt )t≥0 of N-LD solves the following linear Fokker-Planck equation:

∂ρNt
∂t

=

N∑
i=1

∇i ·
(
ρNt DρF (ρxt , x

i
t)
)
+∆iρ

N
t =

N∑
i=1

∇i ·
(
ρNt ∇i log

ρNt
ρN∗

)
, (23)

where∇i := ∇xi , ∆i := ∆xi and ρN∗ (x) ∝ exp(−NF (ρx)). Define the N-particle free energy:

EN (ρN ) = N

∫
F (ρx)ρ

N (dx) + Ent(ρN ). (24)

The optimality condition of minimizing the N-particle free energy (24) over P2(RNd) is

δEN

δρN
= NF (ρx) + log ρN + c = 0, (25)

where c is a constant. Given the optimality condition (25), the minimizer of (24) satisfies ρN∗ (x) ∝ exp(−NF (ρx)), which
is exactly the limiting distribution of N-LD according to (23). Thus we conclude that N-LD converges to the minimizer of
(24).

A.3. Mean-field Underdamped Langevin Dynamics

The law (µt)t≥0 of MULD solves the following non-linear Fokker-Planck equation:

∂µt

∂t
= γ∆vµt + γ∇v · (µtvt)− v · ∇xµt +DρF (µx

t , xt) · ∇vµt

= ∇ ·
(
µtJγ∇ log

µt

µ̂t

)
,

(26)

where Jγ =

(
0 1
−1 γ

)
, ∇ := (∇x,∇v)

T and µ̂t(x, v) ∝ exp
(
− δF

δρ (µ
X
t , x)− 1

2∥v∥
2
)

. The optimality condition of

the augmented EMO problem is
δF
δµ

=
δF

δµ
+ logµ+

1

2
∥v∥2 + c = 0, (27)

12
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where F is defined in (13) and c is a constant. Note that δF (µX)
δµ = δF (µX)

δρ . Given the optimality condition (27), the

solution of the augmented EMO problem satisfies µ∗(x, v) = µ̂∗(x, v) ∝ exp
(
− δF

δρ (µ
X
∗ , x)− 1

2∥v∥
2
)

, which solves

∇ ·
(
µtJγ∇ log µt

µ̂t

)
= 0. Thus we conclude that MULD converges to the minimizer of the augmented EMO objective.

A.4. N-particle Underdamped Langevin Dynamics

The law (µN
t )t≥0 of N-ULD solves the following linear Fokker-Planck equation:

∂µN
t

∂t
=

N∑
i=1

(
γ∆viµN

t + γ∇vi · (µN
t vit)− vit · ∇xiµN

t +DρF (µxt , x
i
t) · ∇viµN

t

)
=

N∑
i=1

∇i ·
(
µN
t Jγ∇i log

µN
t

µ̂N
∗

)
,

(28)

where Jγ =

(
0 1
−1 γ

)
, ∇i := (∇xi ,∇vi)T and µ̂N

∗ (x, v) ∝ exp
(
−NF (µx)− 1

2∥v∥
2
)
. Define the N-particle free

energy:

FN (µN ) =

∫
NF (µx) +

1

2
∥v∥2µN (dxdv) + Ent(µN ). (29)

The optimality condition of minimizing the N-particle free energy (29) over P2(R2Nd) is

δFN

δµN
= NF (µx) +

1

2
∥v∥2 + logµN + c = 0, (30)

where c is a constant. Given the optimality condition (30), the minimizer of (29) satisfies µN
∗ (x) ∝ exp(−NF (µx)− 1

2∥v∥
2),

which is exactly the limiting distribution of N-ULD according to (28). Thus we conclude that N-ULD converges to the
minimizer of (29).

B. Helpful Lemmas
Lemma B.1. The solution (xt, vt) to the discrete-time process (MULA) for t ∈ [kh, (k + 1)h] is

xt = xkh +
1− e−γ(t−kh)

γ
vkh −

γh− (1− e−γ(t−kh))

γ2
DρF (µX

kh, xkh) + Bx
kh,

vt = e−γ(t−kh)vkh −
1− e−γ(t−kh)

γ
DρF (µX

kh, xkh) + Bv
kh,

(31)

where (Bx
kh,B

v
kh) ∈ R2d is independent of k and has the joint distribution[

Bx
kh

Bv
kh

]
∼ N

(
0,

[
2
γ

(
h− 2(1−e−γ(t−kh))

γ + 1−e−2γ(t−kh)

2γ

)
1
γ

(
1− 2e−γ(t−kh) + e−2γ(t−kh)

)
∗ 1− e−2γ(t−kh)

]
⊗ Id

)

The solution (xi
t, v

i
t) to the discrete-time process (11) for i = 1, ..., N and t ∈ [kh, (k + 1)h] is

xi
t = xi

kh +
1− e−γ(t−kh)

γ
vikh −

γh− (1− e−γ(t−kh))

γ2
DρF (µxkh

, xi
kh) + (Bi

kh)
x,

vit = e−γ(t−kh)vikh −
1− e−γ(t−kh)

γ
DρF (µxkh

, xi
kh) + (Bi

kh)
v.

(32)

where ((Bi
kh)

x, (Bi
kh)

v) ∈ R2d is independent of i, k and has the joint distribution[
(Bi

kh)
x

(Bi
kh)

v

]
∼ N

(
0,

[
2
γ

(
h− 2(1−e−γ(t−kh))

γ + 1−e−2γ(t−kh)

2γ

)
1
γ

(
1− 2e−γ(t−kh) + e−2γ(t−kh)

)
∗ 1− e−2γ(t−kh)

]
⊗ Id

)

13
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Proof. The proof technique is similar to the proof of Lemmas 10 and 11 proposed in Cheng et al. (2018).

Choosing t = (k + 1)h for (32) generates the update parameters of Algorithm 1:

φ0 =
1− e−γh

γ
, φ1 =

γh− (1− e−γh)

γ2
, φ2 = e−γh; (33)

Σ11 =
2

γ

(
h− 2(1− e−γh)

γ
+

1− e−2γh

2γ

)
, Σ12 =

1

γ

(
1− 2e−γh + e−2γh

)
, Σ22 = 1− e−2γh. (34)

Lemma B.2. Suppose DρF : P2(Rd)× Rd → Rd admits a continuous first variation δDρF : P2(Rd)× Rd → Rd. Then,
DρF is L -Lipschitz with respect to W1 distance satisfying

∥DρF (ρ1, x)−DρF (ρ2, x)∥ ≤ LW1(ρ1, ρ2) (35)

with L := supρ′∈P2(Rd) supx,x′∈Rd

∥∥D2
ρF (ρ′, x, x′)

∥∥
op

Proof. By the definition of functional derivative, we have

∥DρF (ρ1, x)−DρF (ρ2, x)∥ ≤
∫ 1

0

∥∥∥∥∫ δ

δρ
DρF ((1− t)ρ1 + tρ2, x, x

′)(ρ1 − ρ2)dx
′
∥∥∥∥dt (36)

By Kantorovich duality and the definition of L , which is the Liptschiz constant of δ
δρDρF (·, x), we obtain∥∥∥∥∫ δ

δρ
DρF ((1− t)ρ1 + tρ2, x, x

′)(ρ1 − ρ2)dx
′
∥∥∥∥ ≤ LW1(ρ1, ρ2).

Combining with (36), we complete the proof.

Lemma B.3 (Mean-field Entropy Sandwich, Chen et al. 2023, Lemma 4.2). Assume F satisfies Assumptions 2.3-2.5. Then
for every µ ∈ P2(R2d) we have

KL(µ∥µ∗) ≤ F(µ)−F(µ∗) ≤ KL(µ∥µ̂) ≤
(
1 +

L

CLSI
+

L 2

2C 2
LSI

)
KL(µ∥µ∗). (37)

Lemma B.4 (Particle System’s Entropy Inequality, Chen et al. 2023, Lemma 4.2). Assume that F satisfies Assumption 2.3
and there exists a measure µ∗ ∈ P(R2d) that admits the structure µ∗(x, v) ∝ exp

(
− δF

δρ (µ
X
∗ , x)− 1

2∥v∥
2
)

. Then for all

µN ∈ P(R2dN ), we have
KL(µN∥µ⊗N

∗ ) ≤ FN (µN )−NF(µ∗). (38)

Lemma B.5 (Information Inequality). Let X1, ..., XN be measurable spaces, µ be a probability on the product space
X = X1 × ...×XN with µ = µ1 ⊗ ...⊗ µN and ν = ν1 ⊗ ...⊗ νN is a σ-finite measure. Then

N∑
i=1

KL(µi∥νi) ≤ KL(µ∥ν). (39)

Lemma B.6 (Matrix Grönwall’s Inequality, Zhang et al. 2023). Let x : R+ → Rd, and c ∈ Rd, A ∈ Rd×d, where A has
non-negative entries. Suppose that the following inequality is satisfied componentwise:

x(t) ≤ c+

∫ t

0

Ax(s)ds, for all t ≥ 0.

Then the following inequality holds where Id ∈ Rd×d is the d-dimensional identity matrix:

x(t) ≤
(
AA†eAt −AA† + Id

)
c.
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Lemma B.7. Let (xt, vt)t≥0 and (xi
t, v

i
t)t≥0 respectively denote the iterates of the MULD and N-ULD. Assume that

h ≲ L −1/2 ∧ γ−1. Under Assumption 2.4 and Assumption 2.6, for t ∈ [kh, (k + 1)h], we have

sup
t∈[kh,(k+1)h]

∥xt − xkh∥ ≤ 2L h2∥xkh∥+ 4h∥vkh∥+ 2L h2 + 2
√
2γh sup

t∈[kh,(k+1)h]

∥Bt − Bkh∥

sup
t∈[kh,(k+1)h]

∥xi
t − xi

kh∥ ≤ 2L h2∥xi
kh∥+ 4h∥vikh∥+ 2L h2 + 2

√
2γh sup

t∈[kh,(k+1)h]

∥Bi
t − Bi

kh∥

for i = 1, ..., N .

Proof. We only prove the first relation, and the proof of the second relation is similar.

∥xt − xkh∥ =
∥∥∥∥∫ t

kh

vτdτ

∥∥∥∥ ≤ h∥vkh∥+
∥∥∥∥∫ t

kh

vτ − vkhdτ

∥∥∥∥
≤ h∥vkh∥+

∥∥∥∥∫ t

kh

∫ τ

0

γvτ ′dτ ′dτ

∥∥∥∥+ ∥∥∥∥∫ t

kh

∫ τ

kh

DρF (µX
τ ′ , xτ ′)dτ ′dτ

∥∥∥∥+ ∥∥∥∥∫ t

kh

∫ τ

kh

√
2γdBτ ′dτ

∥∥∥∥
≤ h∥vkh∥+ γh

(
h∥vkh∥+

∫ t

kh

∥vτ − vkh∥dτ
)
+

∥∥∥∥∫ t

kh

∫ τ

kh

DρF (µX
τ ′ , xτ ′)dτ ′dτ

∥∥∥∥
+

∥∥∥∥∫ t

kh

∫ τ

kh

√
2γdBτ ′dτ

∥∥∥∥
≤ h∥vkh∥+ γh

(
h∥vkh∥+

∫ t

kh

∥vτ − vkh∥dτ
)
+ L h

∫ t

kh

∥xτ − xkh∥dτ + L h2∥xkh∥

+ L h2 +
√
2γh sup

t∈[kh,(k+1)h]

∥Bt − Bkh∥

where the last inequality follows from Assumptions 2.4 and 2.6. Likewise for V :

∥vt − vkh∥ =
∥∥∥∥∫ t

kh

γvτdτ

∥∥∥∥+ ∥∥∥∥∫ t

kh

DρF (µX
τ , xτ )dτ

∥∥∥∥+ ∥∥∥∥∫ t

kh

√
2γdBt

∥∥∥∥
≤ γ

(
h∥vkh∥+

∫ t

kh

∥vτ − vkh∥dτ
)
+

∥∥∥∥∫ t

kh

DρF (µX
τ , xτ )dτ

∥∥∥∥+√2γ sup
t∈[kh,(k+1)h]

∥Bt − Bkh∥

≤ γ

(
h∥vkh∥+

∫ t

kh

∥vτ − vkh∥dτ
)
+ L

∫ t

kh

∥xτ − xkh∥dτ + L h+ L h∥xkh∥

+
√
2γ sup

t∈[kh,(k+1)h]

∥Bt − Bkh∥

where the last inequality follows from Assumptions 2.4 and 2.6. Before applying matrix form of Grönwall’s inequality, let

c = c1 + c2 with c2 =

[
h∥vkh∥

0

]
,

A =

[
L h γh
L γ

]
, c1 =

[
L h2∥xkh∥+ γh2∥vkh∥+ L h2 +

√
2γh supt∈[kh,(k+1)h] ∥Bt − Bkh∥

L h∥xkh∥+ γh∥vkh∥+ L h+
√
2γ supt∈[kh,(k+1)h] ∥Bt − Bkh∥

]
.

c1 lies in the image space of A, and exp(At)c1 also lies in the image space of A. For the first component:

sup
t∈[kh,(k+1)h]

∥xt − xkh∥ ≤ h exp ((L h+ γ)h) (L h∥xkh∥+ γh∥vkh∥+ L h+
√
2γ sup

t∈[kh,(k+1)h]

∥Bt − Bkh∥)

+
L h exp((L h+ γ)h) + γ

L h+ γ
h∥vkh∥

≤ 2h

(
L h∥xkh∥+ 2∥vkh∥+ L h+

√
2γ sup

t∈[kh,(k+1)h]

∥Bt − Bkh∥

)
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where the second inequality comes from choosing h ≲ 1
L 1/2 ∧ 1

γ .

((AA†(exp(Ah)− I) + I)c2)(1) =
L h exp((L h+ γ)h) + γ

L h+ γ
h∥vkh∥ ≤ 2h∥vkh∥

Combining relations above and Lemma B.6 completes the proof.

Lemma B.8. Let (xt, vt)t≥0 denote the iterates of the MULD with (x0, v0) ∼ µ0 = N (0, I2d). Under Assumption 2.7 and
Assumption 2.8, we have E∥(xt, vt)∥2 ≲ L d

CLSI
.

Proof.

E∥(xt, vt)∥2 = W 2
2 (µt, δ0) ≤ 2W 2

2 (µt, µ∗) + 2W 2
2 (µ∗, δ0)

≤ 2

CLSI
KL(µt∥µ∗) + 2m2

2

≤ 2

CLSI
(F(µt)−F(µ∗)) + 2m2

2

≤ 2

CLSI
(F(µ0)−F(µ∗)) + 2m2

2

≤ 2

CLSI
F(µ0) + 2m2

2

The second inequality follows from Talagrand’s inequality which can be implied by Assumption 2.5.1 The third inequality
follows from Lemma B.3. The fourth inequality follows that d

dtF(µt) < 0 along the MULD (Proof of Theorem 2.1 in
Chen et al. (2023)) and the last inequality follows from the assumption that F(µ∗) ≥ 0. By the definition of F(µ), we have
F(µ0) = F (µX

0 ) +
∫

1
2∥v∥

2µ0(dxdv) + Ent(µ0). Since (x0, v0) ∼ N (0, I2d), we have
∫

1
2∥v∥

2µ0(dxdv) ≲ d and

|Ent(µ0)| =
∣∣∣∣∫ µ0 logµ0

∣∣∣∣ = d

2
log(2π) +

1

2
Eµ0
∥ · ∥2 ≲ d.

By Assumption 2.8, we have F (µX
0 ) ≲ L d. By Assumption 2.7, we have m2

2 ≲ d. Thus we have

E∥(xt, vt)∥2 ≤
2

CLSI
F(µ0) + 2m2

2 ≲
L d

CLSI
+ d

Lemma B.9. Let (xi
t, v

i
t) denote the iterates of the N-ULD with (xi

0, v
i
0) ∼ µi

0 = N (0, I2d) for i = 1, ..., N and t ≥ 0.
Under Assumption 2.7 and Assumption 2.9, we have 1

N

∑N
i=1 E∥(xi

t, v
i
t)∥2 ≲ L d

CLSI
.

Proof.

1

N

N∑
i=1

E∥(xi
t, v

i
t)∥2 =

1

N

N∑
i=1

W 2
2 (µ

i
t, δ0) ≤

2

N

N∑
i=1

W 2
2 (µ

i
t, µ∗) + 2W 2

2 (µ∗, δ0)

≤ 2

CLSI

1

N

N∑
i=1

KL(µi
t∥µ∗) + 2m2

2

≤ 2

CLSI

1

N
KL(µN

t ∥µ⊗N
∗ ) + 2m2

2

≤ 2

CLSI

(
1

N
FN (µN

t )−F(µ∗)

)
+ 2m2

2

≤ 2

NCLSI
FN (µN

0 ) + 2m2
2

1Assumption 2.5 states that µ̂ satisfies the LSI. Note that µ∗ also has the form of the µ̂∗ and thus satisfies LSI.
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The second inequality follows from Talagrand’s inequality which can be implied by Assumption 2.5. The third inequality
follows from Lemma B.5. The fourth inequality follows from Lemma B.4 and the last inequality follows that d

dtF
N (µN

t ) < 0
along the N-ULD (Proof of Theorem 2.2 in Chen et al. (2023)) and F(µ∗) ≥ 0. By the definition of FN (µN ), we have
FN (µN

0 ) =
∫
(NF (µx) +

1
2∥v∥

2)µN
0 (dxdv) + Ent(µN

0 ). Similar to the proof of Lemma B.8, since (x, v) ∼ N (0, I2Nd),
we have

∫
1
2∥v∥

2µN
0 (dxdv) ≲ Nd and |Ent(µN

0 )| ≲ Nd. By Assumption 2.9 and Assumption 2.7, we also have∫
NF (µx)µ

N
0 (dxdv) ≲ NL d and m2

2 ≲ d. Thus we have

1

N

N∑
i=1

E∥(xi
t, v

i
t)∥2 ≤

2

NCLSI
FN (µN

0 ) + 2m2
2

=
2

NCLSI

(∫
(NF (µx) +

1

2
∥v∥2)µN

0 (dxdv) + Ent(µN
0 )

)
+ 2m2

2

≲
1

NCLSI
(NL d+Nd) + d

≲
L d

CLSI
+ d

Lemma B.10 (Girsanov’s Theorem, (Zhang et al. (2023), Theorem 19)). Consider stochastic processes (xt)t≥0, (bP
t )t≥0,

(bQ
t )t≥0 adapted to the same filtration, and σ ∈ Rd×d any constant matrix (possibly degenerate). Let PT and Q be probability

measures on the path space C([0, T ];Rd) such that (xt)t≥0 follows

dxt = bP
t dt+ σdBP

t under PT ,

dxt = bQ
t dt+ σdBQ

t under QT ,

where BP and BQ are PT -Brownian motion and QT -Brownian motion. Suppose there exists a process (yt)t≥0 such that

σyt = bP
t − bQ

t ,

and

EQT
exp

(
1

2

∫ T

0

∥yt∥2 dt

)
<∞.

If we define σ† as the Moore-Penrose pseudo-inverse of σ, then we have

dPT

dQT
= exp

(∫ T

0

⟨σ†
t (b

PT
t − b

QT
t ),dB

QT
t ⟩ −

1

2

∫ T

0

∥σ†
t (b

PT
t − b

QT
t )∥2dt

)

Besides, (B̃t)t∈[0,T ] defined by dB̃t := dBt + σ†
t (b

Y
t − bXt ) is a PT -Brownian motion.

C. Verification of Assumptions
C.1. Verification of Assumption 2.4

Smoothness in W1 distance has been verified for training mean-field neural networks in Chen et al. (2022). Thus we only
verify smoothness in W1 distance for examples of density estimation via MMD minimization and KSD minimization.
Lemma B.2 provides sufficient conditions for smoothness in W1 distance. In particular, we have

∥DρF (ρ1, x1)−DρF (ρ2, x2)∥ ≤ ∥DρF (ρ1, x1)−DρF (ρ2, x1)∥+ ∥DρF (ρ2, x1)−DρF (ρ2, x2)∥ (40)

Suzuki et al. (2023) verify that ∥DρF (ρ2, x1)−DρF (ρ2, x2)∥ ≤ L ∥x1 − x2∥ for three examples mentioned above. Thus
it suffices to verify (35) for the last two examples.
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MMD Minimization We now prove that objective (18) satisfies Assumption 2.4 with Gaussian RBF kernel. We choose
σ′ in Gaussian RBF kernel k to be σ for brevity. We reformulate (18) as

F (ρ) = M̂(ρ) +
λ′

2
Ex∼ρ∥x∥2. (41)

According to the definition of M̂ in Section 4, the intrinsic derivative of F is

DρF (ρ, x) = DρM̂(ρ, x) +
λ′

2
∥x∥2

= 2

∫∫∫
∇xp(x; z)p(x

′; z′)k(z, z′)dzdz′dρ(x′)− 2

n

n∑
i=1

∫
∇xp(x; z)k(z, zi)dz +

λ′

2
∥x∥2

We only need to prove DµM̂(µ, x) is smooth. The second-order intrinsic derivative DρM̂(ρ, x) is

D2
ρM̂(ρ, x, x′) = 2

∫∫
∇xp(x; z)⊗∇x′p(x′; z′)k(z, z′)dzdz′

=
2

(2πσ2)dσ4

∫∫
(x− z)⊗ (x′ − z′) exp

(
−∥x− z∥2 + ∥x′ − z′∥2 + ∥z − z′∥2

2σ2

)
dzdz′

From the relation x · exp(−x2/2σ2) ≤ σ for x ≥ 0, we have

∥∥∥D2
ρM̂(ρ, x, x′)

∥∥∥ ≤ 1

(2πσ2)dσ4

∫∫
∥x− z∥∥x′ − z′∥ exp

(
−∥x− z∥2 + ∥x′ − z′∥2 + ∥z − z′∥2

2σ2

)
dzdz′

≤ 1

(2πσ2)dσ2

∫∫
exp

(
−∥z − z′∥2

2σ2

)
dzdz′ =

1

(2πσ2)d/2σ2

According to Lemma B.2 and (40), F defined in (41) satisfies Assumption 2.4.

KSD Minimization We now prove that objective (19) satisfies Assumption 2.4 with kernel

k(x, x′) = exp

(
−∥x∥

2

2σ2
1

− ∥x
′∥2

2σ2
1

− ∥x− x′∥2

2σ2
2

)
. (42)

We also assume the score function of µ∗ satisfies (20). Under this assumption on score function and with
this choice of kernel, Suzuki et al. (2023) show in their Appendix A that the Stein kernel uρ∗ satisfies
supx,x′∈Rd max{|uρ∗ |, ∥∇xuρ∗∥, ∥∇x∇x′uρ∗∥op} ≤ L . We reformulate (19) as

F (ρ) = KSD(ρ) +
λ′

2
Ex∼ρ∥x∥2. (43)

Similarly, we only need to verify that KSD is smooth with respect to W1 distance. The intrinsic derivative of KSD is

DρKSD(ρ, x) =

∫
∇xuρ∗(x, x

′)dρ(x′).

The second-order intrinsic derivative of DρKSD(ρ, x) is

D2
ρKSD(ρ, x, x′) = ∇x∇x′uρ∗(x, x

′)

The following relation implies Assumption 2.4 by Lemma B.2.

∥D2
ρKSD(ρ, x, x′)∥ = ∥∇x∇x′uρ∗(x, x

′)∥ ≤ L

18
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C.2. Verification of Assumption 2.7

Training Mean-field Neural Networks Denote µ̂(x, v) = µ̂X(x) ⊗ N (0, Id) where µ̂X(x) ∝ exp
(
− δF

δρ (µ
X , x)

)
.

Since the second moment of N (0, Id) is O(d), it suffices to ensure Ex∼µ̂X∥x∥2 = O(d). We reformulate objective (17) as:

F (ρ) =
1

n

n∑
i=1

ℓ(h(ρ; ai), bi) +
λ′

2
Ex∼ρ[∥x∥2]. (44)

• We will prove that Assumption 2.7 holds if |h(x; a)| ≤
√

L (such activation functions include tanh and sigmoid) and
|∂1ℓ| ≤

√
L (such loss functions include logistic loss, Huber loss and log-cosh loss) or ℓ is quadratic. The functional

derivative of F is
δF

δρ
(µX , x) =

1

n

n∑
i=1

[
∂1ℓ(h(µ

X ; ai), bi)h(x; ai)
]
+

λ′

2
∥x∥2

Consider the case where |∂1ℓ| ≤
√

L . Since |h(x; a)| ≤
√

L , we have |∂1ℓ(h(µX ; ai), bi)h(x; ai)| ≤ L . Let
Z =

∫
exp

(
− δF

δρ (µ
X , x)

)
dx, and we have

Eµ̂X∥ · ∥2 =
1

Z

∫
∥x∥2 exp

(
− 1

n

n∑
i=1

[
∂1ℓ(h(µ

X ; ai), bi)h(x; ai)
]
− λ′

2
∥x∥2

)
dx ≜

Z ′

Z
(45)

Now we bound Z ′ and Z respectively.

Z ′ ≤
∫
∥x∥2 exp

(
L − λ′

2
∥x∥2

)
dx ≲

exp(L )d

λ′ ,

Z ≥
∫

exp

(
−L − λ′

2
∥x∥2

)
dx = exp(−L )

(
2π

λ′

)d/2

Choose λ′ ≤ (2π)3 exp(−4L ) which implies λ′ ≤ (2π)
d

d−2

exp( 4L
d−2 )

, and we have Eµ̂X∥ · ∥2 = Z′

Z ≲ exp(2L )

λ′( 2π
λ′ )

d/2 d ≤ d.

Consider the case where ℓ is quadratic. |h(µX ; ai)| = |
∫
h(x; ai)µ

X(dx)| ≤
∫
|h(x; ai)|µ(dx) ≤

√
L , thus we

have |∂1ℓ(h(µX ; ai), bi)h(x; ai)| = |(h(µX ; ai) − bi)h(x; ai)| ≤ L + |bi|
√

L . We can scale the label to ensure
maxni=1 |bi| ≤

√
L , and we obtain |∂1ℓ(h(µX ; ai), bi)h(x; ai)| ≤ 2L . The remaining proof keeps the same with

λ′ ≤ (2π)3 exp(−8L ).

• We will prove that Assumption 2.7 holds if |h(x; a)| ≤
√

L (1+∥x∥) (such activation functions include ReLU, GeLU,
Softplus, SiLU) and |∂1ℓ| ≤

√
L . Under these conditions, we have |∂1ℓ(h(µX ; ai), bi)h(x; ai)| ≤ L (1 + ∥x∥).

Then, based on (45), we obtain

Z ′ ≤
∫
∥x∥2 exp

(
L (1 + ∥x∥)− λ′

2
∥x∥2

)
dx ≤ exp(L )

∫
∥x∥2 exp

(
3L 2

2λ′ −
λ′

3
∥x∥2

)
dx

≲ exp

(
L +

3L 2

2λ′

)
d

λ′ .

We also have

Z ≥
∫

exp

(
−L (1 + ∥x∥)− λ′

2
∥x∥2

)
dx ≥ exp(L )

∫
exp

(
−L 2

λ′ −
3λ′

4
∥x∥2

)
dx

= exp

(
L − L 2

λ′

)(
4π

3λ′

)d/2

Combining the upper bound of Z ′ and the lower bound of Z, if d ≥ 5L 2

λ′

(
log 4π

3

)−1
, we obtain

Eµ̂X∥ · ∥2 =
Z ′

Z
≲ exp

(
5L 2

2λ′

)
d

λ′

(
3λ′

4π

)d/2

≤ exp

(
5L 2

2λ′

)(
3

4π

)d/2

d ≤ d.

Note that d ≥ 5L 2

λ′

(
log 4π

3

)−1
is possible for large-scale problems.
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MMD Minimization We now prove that objective (18) satisfies Assumption 2.7 with Gaussian RBF kernel. We choose
σ′ in Gaussian RBF kernel k to be σ for brevity. We reformulate (18) as

F (ρ) = M̂(ρ) +
λ′

2
Ex∼ρ∥x∥2. (46)

According to the definition of M̂(ρ) in Section 4, the functional derivative of M̂(ρ) is

δM̂
δρ

(ρ, x) = 2

∫∫∫
p(x; z)p(x′; z′)k(z, z′)dzdz′dρ(x′)︸ ︷︷ ︸

P

− 2

n

n∑
i=1

∫
p(x; z)k(z, zi)dz︸ ︷︷ ︸

Q

(47)

Next we bound each part of δM̂
δρ (ρ, x). For P, we have

1

2
P =

1

(2πσ2)d

∫∫∫
exp

(
−∥x− z∥2

2σ2
− ∥x

′ − z′∥2

2σ2
− ∥z − z′∥2

2σ2

)
dzdz′dρ(x′)

=
(πσ2)

d
2

(2πσ2)d

∫∫
exp

(
−∥x− x′∥2

6σ2
−

3∥z′ − 2
3x

′ − 1
3x∥

2

4σ2

)
dz′dρ(x′)

=

(
1√
3

)d ∫
exp

(
−∥x− x′∥2

6σ2

)
dρ(x′) ≤

(
1√
3

)d

where the last inequality follows from the relation exp
(
−∥x−x′∥2

6σ2

)
≤ 1. For Q, we have

1

2
Q =

1

(2πσ2)
d
2

1

n

n∑
i=1

∫
exp

(
−∥x− z∥2

2σ2
− ∥z − zi∥2

2σ2

)
dz

=
1

(2πσ2)
d
2

1

n

n∑
i=1

exp

(
−∥x∥

2 + ∥zi∥2

2σ2
+
∥zi + x∥2

4σ2

) ∫
exp

(
−
∥z − 1

2zi −
1
2x∥

2

σ2

)
dz

=

(
1√
2

)d
1

n

n∑
i=1

exp

(
−∥x∥

2 + ∥zi∥2

2σ2
+
∥zi + x∥2

4σ2

)
≤
(

1√
2

)d

where the last inequality follows from the relation ∥zi + x∥2 ≤ 2∥zi∥2 + 2∥x∥2. Note that P ≥ 0 and Q ≥ 0. Combining
the bound of P and Q, we obtain the bound of δM̂

δρ (ρ, x) as follows:

−
√
2 ≤ −2

(
1√
2

)d

≤ δM̂(µ)

δµ
(x) = P−Q ≤ 2

(
1√
3

)d

≤
√
3 (48)

Let µ̂X(x) = exp
(
− δF

δρ (µ
X , x)

)
/Z where Z =

∫
exp

(
− δF

δρ (µ
X , x)

)
dx, and we have

Eµ̂X∥ · ∥2 =
1

Z

∫
∥x∥2 exp

(
−δM̂

δρ
(µX , x)− λ′

2
∥x∥2

)
dx ≜

Z ′

Z
(49)

Now we bound Z ′ and Z respectively.

Z ′ ≤
∫
∥x∥2 exp

(√
2− λ′

2
∥x∥2

)
dx ≲

exp(
√
2)d

λ′ ,

Z ≥
∫

exp

(
−
√
3− λ′

2
∥x∥2

)
dx = exp(−

√
3)

(
2π

λ′

)d/2

Thus in order to ensure Eµ̂X∥ · ∥2 = Z′

Z ≲ exp(
√
2+

√
3)λ′ d−2

2

(2π)
d
2

d ≤ d, it suffices to choose λ′ ≤ 3π/25.
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KSD Minimization Assume the score function sρ∗ satisfies (20) and choose the kernel k to be (42), and the Stein
kernel uρ∗ satisfies supx,x′∈Rd max{|uρ∗ |, ∥∇xuρ∗∥, ∥∇2

xuρ∗∥op} ≤ L (Suzuki et al., 2023). We now prove the following
objective

F (ρ) = KSD(ρ) +
λ′

2
Ex∼ρ∥x∥2 (50)

satisfies Assumption 2.7, with KSD defined by KSD(ρ) =
∫∫

uρ∗(x, x
′)dρ(x)dρ(x′). The functional derivative of KSD is

δKSD
δρ

(ρ, x) =

∫
uρ∗(x, x

′)dρ(x′).

The functional derivative is bounded as∣∣∣∣δKSD
δρ

(ρ, x)

∣∣∣∣ ≤ ∫ |uρ∗(x, x
′)|dρ(x′) ≤ L .

Let µ̂X(x) = exp
(
− δF

δρ (µ
X , x)

)
/Z where Z =

∫
exp

(
− δF

δρ (µ
X , x)

)
dx, and we have

Eµ̂X∥ · ∥2 =
1

Z

∫
∥x∥2 exp

(
−δKSD

δρ
(µX , x)− λ′

2
∥x∥2

)
dx ≜

Z ′

Z
(51)

Now we bound Z ′ and Z respectively.

Z ′ ≤
∫
∥x∥2 exp

(
L − λ′

2
∥x∥2

)
dx ≲

exp(L )d

λ′ ,

Z ≥
∫

exp

(
−L − λ′

2
∥x∥2

)
dx = exp(−L )

(
2π

λ′

)d/2

Thus we have Eµ̂X∥ · ∥2 = Z′

Z ≲ exp(2L )dλ′ d
2
−1

(2π)
d
2

≤ d for λ′ ≤ (2π)3 exp (−4L ).

C.3. Verification of Assumption 2.8

Training Mean-field Neural Networks Reformulate the objective (17) with µ0 = N (0, Id):

F (ρ) =
1

n

n∑
i=1

ℓ(h(ρ; ai), bi) +
λ′

2
Ex∼ρ[∥x∥2].

• If l is
√

L -Lipschitz, we have |ℓ(h(ρ; a), b)| ≤
√

L |h(ρ; a) − b|. If |h(x; a)| ≤
√

L , we have |h(ρ; a)| ≤
√

L .
Since µ0 = N (0, I2d), Ex∼µX

0
[∥x∥2] ≲ d. With λ′ ≤ min{L , d}, we have F (µX

0 ) ≲
√

L (
√

L +maxni=1 |bi|) + d.
We can normalize the data samples to ensure maxni=1 |bi| ≲ d ∧

√
L . Thus F (µX

0 ) ≲ L + d.

• If |h(x; a)| ≤
√

L (1 + ∥x∥), we have |h(µX
0 ; a)| ≤

√
L
∫
(1 + ∥x∥)µX

0 (dx) ≲
√

L d1/2. If ℓ is
√

L -Lipschitz, we
have |l(h(µX

0 ; ai), bi)| ≤
√

L |h(µX
0 ; ai)− bi| ≲ L d1/2 +

√
L maxni=1 |bi|. We can normalize the data samples to

ensure maxni=1 |bi| ≲ d ∧
√

L . Thus we have F (µX
0 ) ≲ L d+ d.

MMD Minimization Reformulate the objective (18) with Gaussian RBF kernel (σ′ = σ) and µ0 = N (0, Id):

F (ρ) = M̂(ρ) +
λ′

2
Ex∼ρ∥x∥2, (52)

where

M̂(ρ) =

∫∫∫
p(x; z)p(x′; z′)k(z, z′)dzdz′d(ρ× ρ)(x, x′)− 2

∫ (
1

n

n∑
i=1

∫
p(x; z)k(z, zi)dz

)
dρ(x)

=
1

3d/2

∫
exp

(
−∥x− x′∥2

6σ2

)
d(ρ× ρ)(x, x′)− 2

2d/2
1

n

n∑
i=1

∫
exp

(
−∥x− zi∥2

4σ2

)
dρ(x)

≤ 1

3d/2

∫
exp

(
−∥x− x′∥2

6σ2

)
d(ρ× ρ)(x, x′) ≤ 1

3d/2
≤ L
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Thus F (µX
0 ) = M̂(µX

0 ) + λ′

2 Ex∼µX
0
∥x∥2 ≲ L + d, which satisfies Assumption 2.8.

KSD Minimization Consider the same objective in (19) with µ0 = N (0, Id):

F (ρ) = KSD(ρ) +
λ′

2
Ex∼ρ∥x∥2.

If we choose kernel k(x, x′) = exp
(
−∥x∥2

2σ2
1
− ∥x′∥2

2σ2
1
− ∥x−x′∥2

2σ2
2

)
and assume the score function of ρ∗ satisfies

max{∥∇ log ρ∗(x)∥, ∥∇⊗2 log ρ∗(x)∥op, ∥∇⊗3 log ρ∗(x)∥op} ≤ L (1 + ∥x∥), then the Stein kernel uρ∗ satisfies
supx,x′∈Rd max{|uρ∗ |, ∥∇xuρ∗∥, ∥∇2

xuρ∗∥op} ≤ L according to the statement of Appendix A in Suzuki et al. (2023). We
have

F (µX
0 ) = KSD(µX

0 ) +
λ′

2
Ex∼µX

0
∥x∥2

=

∫∫
uρ∗(x, x

′)dµX(x)dµX(x′) +
λ′

2
Ex∼µX

0
∥x∥2

≲ L + d,

which satisfies Assumption 2.8.

C.4. Verification of Assumption 2.9

Training Mean-field Neural Networks Similar to examples of training mean-field neural networks above, we initialize
µN
0 = N (0, I2Nd).

Ex∼µNF (µx) := Ex∼µN

1

n

n∑
i=1

[
ℓ

(
1

N

N∑
s=1

h(xs; ai), bi

)]
+

λ′

2
Ex∼µN

1

N

N∑
s=1

[
∥xs∥2

]
,

where x = (x1, ..., xN ), xi ∼ µi for i = 1, ..., N and µN = ⊗N
i=1µ

i = Law(x1, ..., xN ).

• If |h(x; a)| ≤
√

L and ℓ is
√

L -Lipschitz, and Ex0∼µN
0

1
n

∑n
i=1

[
ℓ
(

1
N

∑N
i=1 h(x

i
0; ai), bi

)]
≲
√

L (
√

L +

maxni=1 |bi|) and thus EµN
0
F (µx0) ≲ L +

√
L maxni=1 |bi| + d. We can normalize the data samples to ensure

maxni=1 |bi| ≲ d ∧
√

L . Thus we have EµN
0
F (µx0) = O(L + d).

• If |h(x; a)| ≤
√

L (1 + ∥x∥) and ℓ is
√

L -Lipschitz, Ex0∼µN
0

1
n

∑n
i=1

[
ℓ
(

1
N

∑N
s=1 h(x

s
0; ai), bi

)]
≤

√
L
(√

L 1
N

∑N
s=1(1 + Ex0∼µN

0
∥xs

0∥) + maxni=1 |bi|
)

≲ L d1/2 +
√

L maxni=1 |bi|. We can normalize the data

samples to ensure maxni=1 |bi| ≲ d ∧
√

L . Thus we have EµN
0
F (µx0) = O(L d+ d)

MMD Minimization Now we verify Assumption 2.9 for the example of density estimation. We consider the N-particle
approximation of the objective (52) with the initialization µN

0 = N (0, INd).

EµNM̂(µx,y)

:= Ex,y∼µN

[
1

N2

N∑
s=1

N∑
t=1

∫∫
p(xs; z)p(yt; z′)k(z, z′)dzdz′ − 2

nN

n∑
i=1

N∑
s=1

∫
p(xs; z)k(z, zi)dz

]

≤ Ex,y∼µN

[
1

N2

N∑
s=1

N∑
t=1

∫∫
p(xs; z)p(yt; z′)k(z, z′)dzdz′

]

=

(
1√
3

)d

Ex,y∼µN

[
1

N2

N∑
s=1

N∑
t=1

exp

(
−∥x

s − yt∥2

6σ2

)]
≤
(

1√
3

)d

≤ L

where x = (x1, ..., xN ) and y = (y1, ..., yN ). Thus we can upper bound Ex0,y0∼µN
0
F (µx0,y0) as follows:

Ex0,y0∼µN
0
F (µx0,y0) = Ex0,y0∼µN

0
M̂(µx,y) +

λ′

2
Ex0∼µN

0

1

N

N∑
s=1

[
∥xs

0∥2
]
≲ L + d
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which satisfies Assumption 2.9.

KSD Minimization Similar to the verification of Assumption 2.8 above, we have the following relation for µN
0 =

N (0, INd) under the same assumptions on the score function and kernel:

Ex0∼µ0
F (µx0) = KSD(µx0) +

λ′

2
Ex0∼µN

0

1

N

N∑
s=1

[
∥xs

0∥2
]

= Ex0∼µ0

1

N2

N∑
i=1

N∑
j=1

uµ∗(x
i
0, x

j
0) +

λ′

2
Ex0∼µN

0

1

N

N∑
s=1

[
∥xs

0∥2
]
≲ L + d,

which satisfies Assumption 2.9.

D. Continuous-time Results
In this section, we give the explicit rate of Theorem 2.1 and Theorem 2.2 proposed by Chen et al. (2023) with a specific
choice of parameters and then provide the detailed proof of Theorem 3.1 and Theorem 3.2 by reparameterizing γ.

D.1. Proof of Theorem 3.1

Our proof is directly adapted from Theorem 2.1 in Chen et al. (2023) using hypocoercivity in Villani (2009). Chen et al.
(2023) prove the Lyapunov functional

E(µt) = F(µt) + FIS(µt∥µ̂t) (53)

is decaying along the MULD with S =

(
c b
b a

)
⊗ Id and γ = 1. Let At = ∇v, Bt = v · ∇x − DρF (µx

t , x) · ∇v,

Ct = [At, Bt] = AtBt −BtAt = ∇x and

Yt = (∥Atut∥, ∥A2
tut∥, ∥Ctut∥, ∥CtAtut∥)T (54)

where ut = log µt

µ̂t
and ∥ · ∥ := ∥ · ∥L2(µt). More specifically, Chen et al. (2023) prove that

d

dt
E(µt) ≤ −Y T

t KYt, (55)

where

K =


1 + 2a− 4L b −2b −2a− 2L c 0

0 2a −2L c −4b
0 0 2b 0
0 0 0 2c

 .

The choice of a, b, c should satisfies ac > b2 and K ≻ 0. If we choose a = c = 2L and b = 1, the smallest eigenvalue of
K is λmin(K) = 1, and thus we have

d

dt
(E(µt)− E(µ∗)) ≤ −(∥Atut∥2 + ∥A2

tut∥2 + ∥Ctut∥2 + ∥CtAtut∥2)

≤ −(∥Atut∥2 + ∥Ctut∥2) = −
1

2
FI(µt∥µ̂t)−

1

2
FI(µt∥µ̂t)

≤ −CLSIKL(µt∥µ̂t)−
1

2λmax(S)
FIS(µt∥µ̂t)

≤ −CLSI(F(µt)−F(µ∗))−
1

4L + 2
FIS(µt∥µ̂t)

≤ −CLSI

6L
(E(µt)− E(µ∗))

Applying Grönwall’s inequality, we obtain

F(µt)−F(µ∗) ≤ E(µt)− E(µ∗) ≤ (E(µ0)− E(µ∗)) exp

(
−CLSI

6L
t

)
. (56)
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Note that the proof in Chen et al. (2023) also considers the approximation technique to remove some restrictive assumptions
they make, which we omit in our proof. Now we consider a more general γ in the proof above. Analogous to the proof of
Lemma 32 in Villani (2009), if we incorporate a general γ, the diagonal elements of upper triangular matrix K will become
(γ + 2γa− 4L b, 2γa, 2b, 2γc). If we choose γ =

√
L , b = 1/

√
L , a = 2 and c = 1/L , the smallest eigenvalue of K

will become λmin(K) = 2/
√

L . Similar to the previous proof, we have

d

dt
(E(µt)− E(µ∗)) ≤ −

2√
L

(∥Atut∥2 + ∥A2
tut∥2 + ∥Ctut∥2 + ∥CtAtut∥2)

≤ − 2√
L

(∥Atut∥2 + ∥Ctut∥2) = −
1√
L

FI(µt∥µ̂t)−
1√
L

FI(µt∥µ̂t)

≤ −2CLSI√
L

KL(µt∥µ̂t)−
1

λmax(S)
√

L
FIS(µt∥µ̂t)

≤ −2CLSI√
L

(F(µt)−F(µ∗))−
1

3
√

L
FIS(µt∥µ̂t)

≤ − CLSI

3
√

L
(E(µt)− E(µ∗))

where the fourth inequality follows from λmax(S) =
1

L +2+
√

1
L2 +4

2 ≤ 1
L + 2 ≤ 3. Applying Grönwall’s inequality, we

obtain

F(µt)−F(µ∗) ≤ E(µt)− E(µ∗) ≤ (E(µ0)− E(µ∗)) exp

(
− CLSI

3
√

L
t

)
, (57)

which completes the proof of Theorem 3.1. Eq. (57) exhibits a faster rate than the rate of Eq. (56).

D.2. Proof of Theorem 3.2

Our proof is directly adapted from Theorem 2.2 in Chen et al. (2023) using hypocoercivity in Villani (2009). Chen et al.
(2023) prove that the Lyapunov functional

EN (µN
t ) = FN (µN

t ) + FINS (µN
t ∥µN

∗ ) (58)

is decaying along the N-ULD with S =

(
c b
b a

)
⊗ Id and γ = 1. Let uN

t = log
µN
t

µN
∗

, ∥ · ∥ := ∥ · ∥L2(µN
t ) and

Y N
t = (∥∇vu

N
t ∥, ∥∇2

vu
N
t ∥, ∥∇xu

N
t ∥, ∥∇x∇vu

N
t ∥)T.

Chen et al. (2023) prove that
d

dt
EN (µN

t ) ≤ −(Y N
t )TKY N

t (59)

where

K =


1 + 2a− 4L b −2b −2a 0

0 2a −4L c −4b
0 0 2b 0
0 0 0 2c

 .

The choice of a, b, c should satisfies ac > b2 and K ≻ 0. If we choose a = c = 2L and b = 1, the smallest eigenvalue of
K is λmin(K) = 1, and thus we have

d

dt
EN (µN

t ) ≤ −(∥∇vu
N
t ∥2 + ∥∇2

vu
N
t ∥2 + ∥∇xu

N
t ∥2 + ∥∇x∇vu

N
t ∥2)

≤ −(∥∇vu
N
t ∥2 + ∥∇xu

N
t ∥2) = −FI(µN

t ∥µN
∗ )

(60)

Since µN
∗ does not satisfy the uniform LSI, we can not utilize the same technique to upper bound −FI(µN

t ∥µN
∗ ). Chen et al.

(2022) and Chen et al. (2023) obtain the lower bound of the relative Fisher information FI(µN
t ∥µN

∗ ) using other technique
to circumvent the uniform LSI of µN

∗ . We will directly provide the conclusion instead of providing many details about that
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technique in this paper, and we refer our readers to Chen et al. (2022; 2023) for the precise proof. Chen et al. (2023) propose
that

FI(µN
t ∥µN

∗ ) =
1

2
FI(µN

t ∥µN
∗ ) +

1

2
FI(µN

t ∥µN
∗ )

≥ 1

2

[
2(1− ε)CLSI −

L

N

(
16 + 12(ε−1 − 1)

L

CLSI

)]
(FN (µN

t )−NF(µ∗))

+
1

2
FI(µN

t ∥µN
∗ )− L d

CLSI
(5CLSI + 3(ε−1 − 1)L )

for ε ∈ (0, 1). If we choose ε = 1/2 and N ≥ 32L
CLSI

+ 24L 2

C 2
LSI

, we have

FI(µN
t ∥µN

∗ ) ≥ CLSI

4
(FN (µN

t )−NF(µ∗)) +
1

2λmax(S)
FIS(µN

t ∥µN
∗ )− L d

CLSI
(5CLSI + 3L )

≥ CLSI

4
(FN (µN

t )−NF(µ∗)) +
1

6L
FIS(µN

t ∥µN
∗ )− L d

CLSI
(5CLSI + 3L )

≥ CLSI

24L
(EN (µN

t )−NE(µ∗))−
L d

CLSI
(5CLSI + 3L )

Combining (60) with the lower bound of Fisher information above, we obtain

d

dt
(EN (µN

t )−NE(µ∗)) ≤ −
CLSI

24L
(EN (µN

t )−NE(µ∗)) +
L d

CLSI
(5CLSI + 3L )

Applying Grönwall’s inequality, we obtain

FN (µN
t )−NF(µ∗) ≤ EN (µN

t )−NE(µ∗)

≤ (EN (µN
0 )−NE(µ∗)) exp

(
− CLSI

24L
t

)
+

L dt

CLSI
(5CLSI + 3L ) exp

(
− CLSI

24L
t

)
≤ (EN (µN

0 )−NE(µ∗)) exp

(
− CLSI

24L
t

)
+

120L 2d

CLSI
+

72L 3d

C 2
LSI

(61)

where the last inequality follows from exp(−x) ≤ (1 + x)−1 for x > −1. Now we consider a more general γ in the proof
above. Analogous to the proof of Lemma 32 in Villani (2009), if we incorporate γ, the diagonal elements of upper triangular
matrix K will become (γ + 2γa − 4L b, 2γa, 2b, 2γc). If we choose γ =

√
L , b = 1/

√
L , a = 2 and c = 1/L , the

smallest eigenvalue of K will become λmin(K) = 2/
√

L . Similar to the previous proof, we have

d

dt
(EN (µN

t )−NE(µ∗)) ≤ −
2√
L

(∥∇vu
N
t ∥2 + ∥∇2

vu
N
t ∥2 + ∥∇xu

N
t ∥2 + ∥∇x∇vu

N
t ∥2)

≤ − 2√
L

(∥∇vu
N
t ∥2 + ∥∇xu

N
t ∥2) = −

2√
L

FI(µN
t ∥µN

∗ )

≤ − CLSI

2
√

L
(FN (µN

t )−NF(µ∗))−
1

λmax(S)
√

L
FIS(µN

t ∥µN
∗ ) +

2
√

L d

CLSI
(5CLSI + 3L )

≤ − CLSI

2
√

L
(FN (µN

t )−NF(µ∗))−
1

3
√

L
FIS(µN

t ∥µN
∗ ) +

2
√

L d

CLSI
(5CLSI + 3L )

≤ − CLSI

6
√

L
(EN (µN

t )−NE(µ∗)) +
2
√

L d

CLSI
(5CLSI + 3L )

Applying Grönwall’s inequality, we obtain

FN (µN
t )−NF(µ∗) ≤ EN (µN

t )−NE(µ∗) ≤ EN0 exp

(
− CLSI

6
√

L
t

)
+

60L d

CLSI
+

36L 2d

C 2
LSI

(62)

where EN0 := EN (µN
0 )−NE(µ∗). This completes the proof of Theorem 3.2. The convergence rate exhibited in Eq. (62) is

faster and incurs a smaller bias than the rate exhibited in Eq. (61).
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E. Discretization Analysis
In this section, we provide the proof of Theorem 3.3 and Theorem 3.4 establishing the global convergence of the discrete-
time-space processes. Our discretization analysis is unified for the MULA and N-ULA.

E.1. Proof of Theorem 3.3

Suppose QNh is the joint law of the MULD for t ∈ [0, Nh] and PNh is the joint law of the MULA for t ∈ [kh, (k + 1)h]
and k = 0, 1, ...,K − 1. Applying Girsanov’s theorem (Lemma B.10), we have

KL(QKh∥PKh) = EQKh
log

dQKh

dPKh

= EQKh

K−1∑
k=0

(
− 1√

2γ

∫ (k+1)h

kh

〈(
0

DρF (µX
t , xt)−DρF (µX

kh, xkh)

)
,dBt

〉

+
1

4γ

∫ (k+1)h

kh

∥∥DρF (µX
t , xt)−DρF (µX

kh, xkh)
∥∥2 dt)

=
1

4γ

K−1∑
k=0

∫ (k+1)h

kh

EQKh

∥∥DµF (µX
t , xt)−DµF (µX

kh, xkh)
∥∥2 dt

And we obtain

KL(QKh∥PKh) =
1

4γ

K−1∑
k=0

∫ (k+1)h

kh

EQKh

∥∥DρF (µX
t , xt)−DρF (µX

kh, xkh)
∥∥2 dt

≤ L 2

2γ

K−1∑
k=0

∫ (k+1)h

kh

EQKh
∥xt − xkh∥2 +W 2

1 (µ
X
t , µX

kh)dt

≤ L 2

2γ

K−1∑
k=0

∫ (k+1)h

kh

EQKh
∥xt − xkh∥2 + EQKh

∥xt − xkh∥2dt

=
L 2

γ

K−1∑
k=0

∫ (k+1)h

kh

EQKh
∥xt − xkh∥2dt

where the first inequality follows from Assumption 2.4 and the last inequality follows from Lemma B.7 and the inequality(
1
n

∑n
i=1 xi

)2 ≤ 1
n

∑n
i=1 x

2
i :

EQKh
∥xt − xkh∥2 ≤ 16L 2h4EQKh

∥xkh∥2 + 64h2EQKh
∥vkh∥2 + 16L 2h4 + 32γh3d

Combined with Lemma B.8 and γ =
√

L , the discretization error is upper bounded as follows:

KL(QKh∥pKh) ≤
16L 4h5K

γ
max

0≤k≤K
EQKh

∥xkh∥2 +
64L 2h3K

γ
max

0≤k≤K
EQKh

∥vkh∥2

+
16L 4h5K

γ
+ 32L 2h4Kd

≲
L 9/2h5Kd

CLSI
+

L 5/2h3Kd

CLSI
+ L 7/2h5K + L 2h4Kd

=
L 9/2h4Td

CLSI
+

L 5/2h2Td

CLSI
+ L 7/2h4T + L 2h3Td

where T = Kh. By Lemma B.3 and Theorem 3.1, we obtain

KL(µt∥µ∗) ≤ F(µt)−F(µ∗) ≤ (E(µ0)− E(µ∗)) exp

(
− CLSI

3
√

L
t

)
(63)

26



Mean-field Underdamped Langevin Dynamics and its Spacetime Discretization

Combining with (63), we upper bound the TV distance between µ̄K , the probability measure of MULA at Kh and µ∗, the
limiting distribution of MULD as follows:

∥µ̄K − µ∗∥TV ≤ ∥µ̄K − µKh∥TV + ∥µKh − µ∗∥TV

= ∥µKh − µ̄K∥TV + ∥µKh − µ∗∥TV

≲
√

KL(µKh∥µ̄K) +
√

KL(µKh∥µ∗)

≲
√

KL(QKh∥pKh) +
√

KL(µKh∥µ∗)

≲
L 9/4h2T 1/2d1/2

C
1/2
LSI

+
L 5/4hT 1/2d1/2

C
1/2
LSI

+ L 7/4h2T 1/2 + L h3/2T 1/2d1/2

+ (E(µ0)− E(µ∗))
1/2 exp

(
−CLSIT/6

√
L
)

where the first inequality follows from the triangle inequality of TV distance; the second inequality follows from Pinsker’s
inequality, and the fourth inequality follows from the data processing inequality. In order to ensure ∥µKh − µ∗∥TV ≤ 1

2ϵ, it

suffices to choose T = Kh = Θ̃
(√

L /CLSI

)
. In order to ensure ∥µ̄K − µKh∥TV ≤ 1

2ϵ, it suffices to choose the stepsize

h = Θ

(
C

1/2
LSI ϵ

L 5/4T 1/2d1/2

)
= Θ̃

(
CLSIϵ

L 3/2d1/2

)
, (64)

and the mixing time

K =
T

h
= Θ̃

(
L 2d1/2

C 2
LSIϵ

)
. (65)

The choice of T, h, K above ensures ∥µ̄K − µ∗∥TV ≤ ϵ.

E.2. Proof of Theorem 3.4

Suppose Qi
Nh is the joint law of the N-ULD for the i-th particle and t ∈ [0,Kh]; P i

Nh is the joint law of the N-ULA for the
i-th particle. Applying Girsanov’s theorem (Lemma B.10), we have

1

N

N∑
i=1

KL(Qi
Kh∥Pi

Kh) =
1

4γ

K−1∑
k=0

∫ (k+1)h

kh

1

N

N∑
i=1

EQi
Kh

∥∥DρF (µxt , x
i
t)−DρF (µxkh

, xi
kh)
∥∥2 dt

≤ L 2

2γ

K−1∑
k=0

∫ (k+1)h

kh

1

N

N∑
i=1

EQi
Kh
∥xi

t − xi
kh∥2 +W 2

1 (µxt , µxkh
)dt

≤ L 2

γ

K−1∑
k=0

∫ (k+1)h

kh

1

N

N∑
i=1

EQi
Kh
∥xi

t − xi
kh∥2dt

≤ 16L 4h5

γ

1

N

N∑
i=1

K∑
k=1

EQi
Kh
∥xi

kh∥2 +
64L 2h3

γ

1

N

N∑
i=1

K∑
k=1

EQi
Kh
∥vkh∥2

+
16L 4h5K

γ
+ 32L 2h4Kd

where the first inequality follows from Assumption 2.4 and the last inequality follows from Lemma B.7 and the inequality(
1
n

∑n
i=1 xi

)2 ≤ 1
n

∑n
i=1 x

2
i :

EQi
Kh
∥xi

t − xi
kh∥2 ≤ 16L 2h4EQi

Kh
∥xi

kh∥2 + 64h2EQi
Kh
∥vikh∥2 + 16L 2h4 + 32γh3d
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for t ∈ [kh, (k + 1)h] and k = 0, 1, ...,K − 1. Combining Lemma B.9 and γ =
√

L , the discretization error is upper
bounded as follows:

1

N

N∑
i=1

KL(Qi
Kh∥Pi

Kh) ≤
16L 4h5K

γ

1

N

N∑
i=1

max
0≤k≤K

EQi
Kh
∥xi

kh∥2 +
64L 2h3K

γ

1

N

N∑
i=1

max
0≤k≤K

EQi
Kh
∥vkh∥2

+
16L 4h5K

γ
+ 32L 2h4Kd

≲
L 9/2h5Kd

CLSI
+

L 5/2h3Kd

CLSI
+ L 7/2h5K + L 2h4Kd

=
L 9/2h4Td

CLSI
+

L 5/2h2Td

CLSI
+ L 7/2h4T + L 2h3Td

where T = Kh. By Lemma B.4 and Theorem 3.2, we obtain

1

N
KL(µN

T ∥µ⊗N
∗ ) ≤ 1

N
FN (µN

T )−F(µ∗) ≤
EN0
N

exp

(
− CLSI

6
√

L
T

)
+

60L d

NCLSI
+

36L 2d

NC 2
LSI

, (66)

where EN0 := EN (µN
0 )−NE(µ∗). Combining with (66), we upper bound the averaged TV distance between µ̄i

K and µ∗
over N particles as follows:

1

N

N∑
i=1

∥µ̄i
K − µ∗∥TV ≤

1

N

N∑
i=1

∥µ̄i
K − µi

Kh∥TV +
1

N

N∑
i=1

∥µi
Kh − µ∗∥TV

=
1

N

N∑
i=1

∥µi
Kh − µ̄i

K∥TV +
1

N

N∑
i=1

∥µi
Kh − µ∗∥TV

≲
1

N

N∑
i=1

√
KL(µi

Kh∥µ̄i
K) +

1

N

N∑
i=1

√
KL(µi

Kh∥µ∗)

where the first inequality follows from the triangle inequality of TV distance; the second inequality follows from Pinsker’s
inequality. Then we have

1

N

N∑
i=1

∥µ̄i
K − µ∗∥TV ≲

1

N

N∑
i=1

√
KL(µi

Kh∥µ̄i
K) +

1

N

N∑
i=1

√
KL(µi

Kh∥µ∗)

≲

√√√√ 1

N

N∑
i=1

KL(µi
Kh∥µ̄i

K) +

√√√√ 1

N

N∑
i=1

KL(µi
Kh∥µ∗)

≤

√√√√ 1

N

N∑
i=1

KL(Qi
Kh∥Pi

Kh) +

√
1

N
KL(µN

Kh∥µ
⊗N
∗ )

≤

√√√√ 1

N

N∑
i=1

KL(Qi
Kh∥Pi

Kh) +

√
1

N
FN (µN

Kh)−F(µ∗)

≲
L 9/4h2T 1/2d1/2

C
1/2
LSI

+
L 5/4hT 1/2d1/2

C
1/2
LSI

+ L 7/4h2T 1/2 + L h3/2T 1/2d1/2

+

(
1

N
EN (µN

0 )− E(µ∗)

)1/2

exp
(
−CLSIT/12

√
L
)
+

L 1/2d1/2

N1/2C
1/2
LSI

+
L d1/2

N1/2CLSI

where the second inequality follows from Jensen’s inequality; the third inequality follows from data processing inequality
and the information inequality (Lemma B.5) and the fourth inequality follows from Lemma B.4. In order to ensure
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1
N

∑N
i=1 ∥µi

Kh − µ∗∥TV ≤ 1
2ϵ, it suffices to choose T = Kh = Θ̃

(√
L /CLSI

)
. In order to ensure 1

N

∑N
i=1 ∥µ̄i

K −
µi
Kh∥TV ≤ 1

2ϵ, it suffices to choose the stepsize

h = Θ

(
C

1/2
LSI ϵ

L 5/4T 1/2d1/2

)
= Θ̃

(
CLSIϵ

L 3/2d1/2

)
, (67)

the mixing time

K =
T

h
= Θ̃

(
L 2d1/2

C 2
LSIϵ

)
, (68)

and the number of particles

N = Θ

(
L 2d

C 2
LSIϵ

2

)
. (69)

The choice of T, h, K, N above ensures 1
N

∑N
i=1 ∥µ̄i

K − µ∗∥TV ≤ ϵ.

F. Numerical Experiments
We verify our theoretical findings by providing empirical support in this section. Our experiment is to approximate a
Gaussian function f(z) = exp(−∥z−m∥2/2d) for z ∈ Rd and unknown m ∈ Rd by a mean-field two-layer neural network
with tanh activation. Consider the empirical risk minimization problem (17) with quadratic loss function l, d = 103,
λ′ = 10−4 and n randomly generated data samples from f(z) (n = 100), described by

F (ρ) =
1

2n

n∑
i=1

(h(ρ; ai)− f(ai))
2 +

λ′

2
Ex∼ρ[∥x∥2].

F satisfy Assumptions 2.3-2.9 with the choice of l, h, and thus we apply Algorithm 1 for minimizing the objective above.
Note that the number of neurons in the first hidden layer is equivalent to the number of particles in N-ULA, and we choose
N ∈ {256, 512, 1024, 2048}. The intrinsic derivative of F (µ) for the j-th particle in our method is given by

DρF (µx, x
j) =

1

n

n∑
i=1

(
1

N

N∑
s=1

h(xs; ai)− f(ai))∇h(xj ; ai) + λ′xj .

Note that 1
N

∑N
s=1 h(x

s; a) is in fact a two-layer neural network with N neurons. Instead of fine-tuning γ and stepsize h in
N-ULA, we directly fine-tune the value of φ0, φ1 and φ2 in Algorithm 1 by grid search. For simplifying the computation, we
approximate (Bi

k)
x and (Bi

k)
v by ηξxk and ηξvk where ξxk and ξvk are independent standard Gaussian, and then we fine-tune

the scaling scalar η. We compare our method (N-ULA) to N-LA with stepsize h1 and scaling scalar λ1 given by,

xj
k+1 = xj

k − h1DρF (µxk , x
j
k) +

√
2λ1h1ξ

i
k (N-LA)

for i = 1, ..., N , k = 1, ...,K and ξik ∼ N (0, Id), and EM-N-ULA (the EM discretization of the N-ULD with stepsize
h2 and scaling scalar λ2) whose update is given by

xj
k+1 = xj

k + h2v
j
k

vjk+1 = (1− γh2)v
j
k − h2DρF (µxk , x

j
k) +

√
2λ2h2ξ

i
k

(EM-N-ULA)

for i = 1, ..., N , k = 1, ...,K and ξik ∼ N (0, Id) in the same task. We choose K = 104 and also fine-tune h1, λ1 and
h2, λ2 to make fair comparison. We postpone our choice of hyperparameters to the Appendix F.1. For each algorithm in our
experiment, we initialize xj

0 ∼ N (0, 10−2Id) and vj0 ∼ N (0, 10−2Id) for j = 1, ..., N , average 5 runs over random seeds in
{0, 1, 2, 3, 4} and generate the error bars by filling between the largest and the smallest value per iteration. Fig. 2 illustrates
the effectiveness of N-ULA. For each N , N-ULA enjoys faster convergence than N-LA and EM-N-ULA. Notably, there is an
interesting phenomenon in our experiments. For N = 256, both N-ULA and EM-N-ULA suffer from convergence instability,
which means that the loss will escape the stable convergence regime and slightly go up after many training epochs. However,
N-ULA outperforms N-LA and EM-N-ULA without convergence instability for N = 512, 1024, 2048, and the loss of N-
ULA even goes on decreasing when the losses of N-LA and EM-N-ULA keep stable for N = 1024, 2048. This phenomenon
matches our theory that we do not reduce the number of particles for N-ULA when compared with N-LA (see Table 1).
These observations suggest that our method performs better in the high particle-approximation regime. Fig. 3 demonstrates
this finding more transparently. The second row of Fig. 2 also suggests that EM discretization incurs a larger bias than LPM.

29



Mean-field Underdamped Langevin Dynamics and its Spacetime Discretization

Figure 2. Evaluation on N-ULA, N-LA and EM-N-ULA with different number of particles N where x-axis represents the training epochs
and y-axis represents the value of 1

2n

∑n
i=1(

1
N

∑N
s=1 h(x

s; ai) − f(ai))
2. Our method often enjoys better performance in the high

particle-approximation regime which is consistent with our theoretical findings.

F.1. Experimental Settings

We give the actual updates of the methods involved in our experiment and provide the precise value of parameters in Table 2.
The update of the N-ULA is given by

xj
k+1 = xj

k + φ0 v
j
k − φ1 DρF (µxk , x

j
k) + ηξxk ,

vjk+1 = φ2 v
j
k − φ3 DρF (µxk , x

j
k) + ηξvk .

for j = 1, ..., N . The update of EM-N-ULA is given by

xj
k+1 = xj

k + h2 v
j
k,

vjk+1 = (1− h3)v
j
k − h2 DρF (µxk , x

j
k) +

√
2λ2h2ξk.

for j = 1, ..., N . The update of the N-LA is given by

xj
k+1 = xj

k − h1 DρF (µxk , x
j
k) +

√
2λ1h1ξk.

for j = 1, ..., N .

Parameters φ0 φ1 φ2 φ3 η h1 h2 h3 λ1 λ2

Value 10−4 0.02 0.99 0.02 10−3 10−2 10−2 10−2 10−4 10−4

Table 2. Choice of hyperparameters.
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Figure 3. N-ULA with different number of particles

G. Methods for Comparisons
In this section, we review the convergence result of MLA in Nitanda et al. (2022) and N-LA in Suzuki et al. (2023), which
consider problem (1) in more specific settings. Nitanda et al. (2022) suppose F (ρ) = E(a,b)∼D [ℓ(h(ρ; a), b)]+ λ′

2 Ex∼ρ∥x∥2
whereas Suzuki et al. (2023) suppose F (ρ) = U(ρ) + λ′Ex∼ρ[r(x)]. While our convergence results are established in TV
distance, we consider more general settings compared with the previous two. Since the problem setting in Nitanda et al.
(2022) is only for training neural networks, we perform convergence analysis of the MLA in Suzuki et al. (2023)’s setting to
make a comparison with our results. Define the free energy

E(ρ) = F (ρ) + Ent(ρ), (70)

where µ ∈ P2(Rd). Let ρ̄k denotes the law of k-th iterate of the MLA and ρ∗ denotes the minimizer of (70), and Nitanda
et al. (2022) obtain the following results in Theorem 2:

E(ρ̄k)− E(ρ∗) ≤ exp(−CLSIhk)(E(ρ̄0)− E(ρ∗)) +
δh

2CLSI
, (71)

where δhk := E∥DρF (ρ̄k+1, xk+1)−DρF (ρ̄k, xk)∥2 and E is taken under the joint law of ρ̄k+1 and ρ̄k. Now we bound
δhk uniformly in k with a different method from the one in Nitanda et al. (2022). We do not need to specify F to be the
objective of training nerual networks. Since F is L -smooth2 and satisfies Assumption 2.6, we obtain

E∥DρF (ρ̄k+1, xk+1)−DρF (ρ̄k, xk)∥2 ≤ 2L 2E(∥xk+1 − xk∥2 +W 2
2 (ρ̄k+1, ρ̄k))

≤ 4L 2E∥xk+1 − xk∥2

= 4L 2E∥ − hDρF (ρ̄k, xk) +
√
2hξ∥2

≤ 4L 2h2E∥DρF (ρ̄k, xk)∥2 + 8L 2hd

≤ 8L 4h2(1 + E∥xk∥2) + 8L 2hd

We refer to Lemma 1 in Suzuki et al. (2023) to uniformly bound E∥xk∥2. Before applying Lemma 1, we translate
some constants in Suzuki et al. (2023) into our constants systems. Suzuki et al. (2023) assumes that ∥DρU(ρ, x)∥ ≤ R,
λ1Id ⪯ ∇2r(x) ⪯ λ2Id. We let R = L and λ2 = L (since this specification matches our Assumption 2.6). We prove
Lemma 1 proposed by Suzuki et al. (2023) in the mean-field setting without particle approximation. But we also assume
the decomposition F (ρ) = U(ρ) + Ex∼ρ[r(x)] with ∥DρU(ρ, x)∥ ≤ L and λ1Id ⪯ ∇2r ⪯ L Id. Given the update of

2We inherit the weaker smoothness assumption in Suzuki et al. (2023) with respect to W2 distance.

31



Mean-field Underdamped Langevin Dynamics and its Spacetime Discretization

the MLA, if h ≤ λ1

2L 2 , we have

E∥xk+1∥2 = E∥xk∥2 + h2E∥DρF (ρk, xk)∥2 + 2hd− 2hE ⟨xk, DρU(ρk, xk) +∇r(xk)⟩
≤ E∥xk∥2 + L 2h2(1 + E∥xk∥2) + 2hd+ 2hLE∥xk∥ − 2hλ1E∥xk∥2

≤ (1− λ1h)E∥xk∥2 + L 2h2 + 2hd+
2L 2h

λ1

Recursively, we obtain

E∥xk∥2 ≤ (1− λ1h)
kE∥x0∥2 +

L 2h+ 2d

λ1
+

2L 2

λ2
1

≤ E∥x0∥2 +
L 2h+ 2d

λ1
+

2L 2

λ2
1

. (72)

If x0 ∼ N (0, Id), E∥x0∥2 ≲ d. Thus (72) implies E∥xk∥2 ≲ L 2d. Plugging into the inequality above, we obtain

E∥DρF (ρ̄k+1, xk+1)−DρF (ρ̄k, xk)∥2 ≲ L 6h2d+ L 2hd. (73)

Applying Lemma B.3 and pinsker’s inequality, we obtain

∥ρ̄K − ρ∗∥TV ≲
√

KL(ρ̄K∥ρ∗) ≤
√
E(ρ̄K)− E(ρ∗)

≲ exp(−CLSIhK/2)(E(ρ̄0)− E(ρ∗))
1/2 +

L 3hd1/2

C
1/2
LSI

+
L h1/2d1/2

C
1/2
LSI

In order to ensure ∥ρ̄K − ρ∗∥TV ≤ ϵ, it suffices to choose

h = Θ

(
CLSIϵ

2

L 3d

)
, K = Θ̃

(
L 3d

C 2
LSIϵ

2

)
. (74)

Now we translate the convergence results in Suzuki et al. (2023). Define the free energy of the particle system:

EN (µN ) = NEx∼µNF (µx) + Ent(µN ), (75)

where µx = 1
N

∑N
i=1 δxi . Similar to the analysis above, Theorem 2 in Suzuki et al. (2023) implies the TV-convergence of

the N-LA, given by

1

N

N∑
i=1

∥ρ̄iK − ρ∗∥TV ≲

√√√√ 1

N

N∑
i=1

KL(ρ̄iK∥ρ∗) ≤
√

1

N
EN (ρNK)− E(ρ∗)

≲ exp (−CLSIhK/4) + h1/2K1/2(L 3hd1/2 + L h1/2d1/2)

+ h1/2K1/2L 2d1/2

N1/2

In order to ensure ∥ρ̄K − ρ∗∥TV ≤ ϵ, it suffices to choose

h = Θ

(
CLSIϵ

2

L 3d

)
, K = Θ̃

(
L 3d

C 2
LSIϵ

2

)
, N = Θ

(
L 4d

CLSIϵ2

)
. (76)
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