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ABSTRACT
Blockchain and smart contracts are one of key technologies promot-

ing Web 3.0. However, due to security considerations and consis-

tency requirements, smart contracts currently only support simple

and deterministic programs, which significantly hinders their de-

ployment in intelligent Web 3.0 applications. To enhance smart con-

tracts intelligence on the blockchain, we propose SMART, a plug-in
smart contract framework that supports efficient AImodel inference

while being compatible with existing blockchains. To handle the

high complexity of model inference, we propose an on-chain and

off-chain joint execution model, which separates the SMART contract
into two parts: the deterministic code still runs inside an on-chain

virtual machine, while the complex model inference is offloaded to

off-chain compute nodes. To solve the non-determinism brought

by model inference, we leverage Trusted Execution Environments

(TEEs) to endorse the integrity and correctness of the off-chain

execution. We also design distributed attestation and secret key

provisioning schemes to further enhance the system security and

model privacy. We implement a SMART prototype and evaluate it

on a popular Ethereum Virtual Machine (EVM)-based blockchain.

Theoretical analysis and prototype evaluation show that SMART not

only achieves the security goals of correctness, liveness, and model

privacy, but also has approximately 5 orders of magnitude faster

inference efficiency than existing on-chain solutions.

KEYWORDS
Web 3.0, Smart contract, Blockchain, Model inference, Trusted exe-

cution environment
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1 INTRODUCTION
The concept of Web 3.0 has become very popular in recent years. It

is believed that Web 3.0 can revolutionize current centralized archi-

tecture of Web systems and return the data control rights to users.

Blockchain and smart contracts are one of key infrastructures pro-

motingWeb 3.0 [50]. At present, representativeWeb 3.0 applications

are highly related to blockchains, such as Metaverse, Decentral-

ized Finance (DeFi) [48], Non-Fungible Token (NFT), blockchain
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games, decentralized social media [31], and more next-generation

Decentralized Applications (DApps).

One of the key issues hindering the promotion of Web 3.0 appli-

cations is the huge gap between the complex logic requirements

of applications and the simple operations provided by smart con-

tracts. Currently, powerful model-based AI algorithms drive the

widespread use of many intelligent applications. If smart contracts

can support AI model inference capabilities, we believe that the

practicality of Web 3.0 applications will be largely strengthened

and it could be a promising step to the Web 3.0 era. We can imag-

ine that, with well-trained AI models, Decentralized Autonomous

Organizations (DAOs) can filter qualified members more precisely

through analyzing their transaction histories or more information;

Generative AI models powered smart contracts can bring richer

gameplay for blockchain games and NFTs; DeFi can explore a new

unsecured lending mode by leveraging AI models to evaluate users’

assets, risk, and credit before lending money. Motivated by this, we

aim to make smart contracts “smarter” to build more fancy Web

3.0 applications by supporting model inference functions. Unfortu-

nately, existing smart contracts cannot support AI model inference

for two challenges: high complexity and non-determinism.

High complexity. The computational complexity of model in-

ference is generally high, which is proportional to the depth and

width of the neural network. If we introduce model inference func-

tions into smart contracts, each blockchain node would bear the

high computational overhead when executing and verifying smart

contracts. Current blockchains have explicit complexity limits for

smart contracts due to system throughput and security concerns.

For example, the complexity of Ethereum smart contracts is mea-

sured through gas. Ethereum only allows up to 15-30M gas for

each block [13]. As estimated in Section 6.1, even the inference

computation
1
of the dedicated lightweight model, SqueezeNet,

costs about 2.88G gas. It indicates that Ethereum smart contracts

are far from supporting model inference. Although Harris et al. [18]
succeeded in deploying a single-layer perceptron in the Ethereum

smart contract with near 4M gas cost, they can only support very

simple models in practice.

Non-determinism. Except for some private blockchains controlled

by a single entity, all state transitions of blockchains are decided

corporately through consensus mechanisms. Only if the new state

is accepted by the majority of blockchain nodes, it can be “writ-

ten” to the blockchain. Following this principle, smart contracts

should accept deterministic code whose execution outputs are con-

sistent in heterogeneous blockchain nodes, for achieving consensus.

For example, Ethereum implements a smart contract interpreter,

Ethereum Virtual Machine (EVM), and a dedicated contract pro-

gramming language Solidity to ensure the output consistency of

contracts. It is realized by restricting contract programs to a set

1
Note that model inference is making predictions based on live data and well-trained

models. It should be distinguished from model training.

1
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Figure 1: Non-deterministic model inference computation.

of deterministic opcodes (i.e., integer-supported only), and execut-

ing them in the single-thread EVM. Although Hyperledger Fabric

(HLF) [2] supports non-deterministic programming languages (e.g.,
Nodejs, Java, Go) to write smart contracts (called chaincode), it

demands the deterministic outputs of contracts in the block val-

idation phase. Specifically, if the output of the smart contract is

inconsistent across different blockchain nodes, then the transac-

tion will be marked as invalid and discarded. Thus, all blockchains

require deterministic outputs for achieving consensus on contract

execution, which is determined by their design philosophy.

However, AI model inference is typically non-deterministic,

mainly caused by several factors, such as random seeds, out-of-

order parallel threads, and heterogeneous hardware [35]. Even

though current two most popular inference frameworks, PyTorch

and TensorFlow, both provide experimental options to make model

operations deterministic, they only guarantee the outputs are re-

producible on the same hardware platform and framework ver-

sion [38, 45]. It is not suitable for heterogeneous blockchain nodes.

As shown in Fig. 1, we also confirm the non-deterministic outputs

of model inference on the same hardware platform and framework

version, but different Operating Systems (OSs). Taking the AlexNet

model as an example, we use the same model parameters, inputs,

and PyTorch version (v1.11.0), but the inference outputs are still
not the same. Thus, the inconsistent inference results cannot reach

a consensus among blockchain nodes.

To enable AI capabilities in smart contracts, there are several

efforts [3, 9, 18, 32] to make model inference deterministic or ef-

ficient on-chain. However, these solutions either do not support

complex AI models or fail to achieve compatibility. Moreover, all

these efforts compromise the accuracy of the models and cannot

protect the privacy of the models.

In this paper, we propose SMART, a plug-in contract framework

that supports complex, non-deterministicmodel inference. To achieve

this goal, we design an on-chain and off-chain joint execution

model to solve the above problems, while achieving good compati-
bility with existing blockchains, which is a critical feature but often

overlooked. A SMART contract is composed of deterministic and

non-deterministic code. We leave the deterministic code executed

on-chain while outsourcing the non-deterministic code (i.e., model

inference) to off-chain nodes.

On-chain. The goal of preserving on-chain execution is to be

compatible with existing blockchains and leave off-chain com-

puting nodes stateless, which is different from previous off-chain

work [8, 11]. We argue that a prosperous system ecology is more

difficult than its internal functions to build. Thus, one of our design

goals is to be compatible with existing successful blockchains, such

as Ethereum and HLF, to derive benefits from their mature ecology.

We store the contract states on-chain, so the off-chain nodes can

be stateless and are free to join or leave. If users do not need model

inference features in their contracts, SMART contracts can naturally

degrade to normal contracts by simply disabling the off-chain func-

tion. Therefore, SMART can be viewed as a pluggable module for

existing blockchains.

Off-chain. The off-chain function handles the challenges of non-

determinism and high complexity brought by model inference. To

satisfy this design goal, we utilize TEE hardware to endorse the

integrity and correctness
2
of the off-chain model inference. Other

blockchain nodes can verify the authenticity of the inference out-

puts through TEE’s remote attestation (discussed below) instead

of re-running the model inference, thereby bypassing the non-

determinism and high complexity problems simultaneously.

Besides, we utilize blockchain nodes to design a distributed attes-

tation service to avoid relying on the centralized remote attestation

server provided by TEE manufacturers, which could be the perfor-

mance bottleneck and weakest link of the whole system. Consider-

ing users may want to keep their models private, we also design

a TEE-aided secret key provisioning scheme, which guarantees

private models are never exposed outside TEEs. To summarize, this

paper mainly makes the following contributions:

• Problem formulation. We summarize two challenges for support-

ing AI capabilities in smart contracts, i.e., high complexity and

non-determinism, and comprehensively discuss current possible

solutions and their limitations.

• SMART framework.We propose a pluggable contract framework

to support model inference in existing blockchains. In specific,

we design a TEE-based on-chain and off-chain joint execution

model to enable non-deterministic, complex model inference in

the contracts while compatible with existing blockchains.

• Prototype-based evaluation. To demonstrate the feasibility of

SMART, we implement a prototype based on Intel SGX and FISCO

BCOS, which is a popular open-source EVM-based blockchain

platform [22] and has 2k+ stars on GitHub till now. We make

the SMART prototype and experiment data open-source at https:

//anonymous.4open.science/r/fisco-smart-E715.

2 RELATEDWORK AND PRELIMINARIES
2.1 Related Work
We discuss previous solutions and their limitations from two related

work lines. Onework line is committed to realizing AI capabilities in

on-chain smart contracts. Another work line focuses on supporting

complex smart contracts through the off-chain execution model.

We present the pros and cons of on-chain and off-chain solutions

in the form of radar charts in Fig. 2 and compare them with SMART.
To make model inference deterministic on-chain, the main ap-

proach is to use integers to represent floating-point numbers opera-

tions. For example, Harris et al. [18] use integers multiplied with 10
9

2
The correctness property is achieved under the premise of the model inference code

executed inside TEE is well audited by the community.

2
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to represent floating-point numbers with 9 decimal places of preci-

sion. A similar solution is also adopted in [3]. Although the above

on-chain solutions are well compatible with existing blockchains,

due to the complexity limit of smart contracts, they cannot support

complex model inference, and even decrease model accuracy. To

break the complexity limit, SmartVM [32] and Cortex project [9] add

convolutional instructions in EVM for supporting efficient on-chain

model inference. To make the inference results consistent across

different hardware, they still need to adopt quantization techniques

to transform floating-point numbers into integers. These modified

VMs not only cannot be compatible with EVM, but also compro-

mise the model inference accuracy. Moreover, all these on-chain

solutions are hard to prevent model privacy from disclosure.

Another type of related work focuses on supporting complex off-

chain smart contracts on blockchains. Their key idea is outsourcing

complex contract computation to off-chain compute nodes, such

as Arbitrum [25], YODA [12], and ACE [51]. Since the number of

compute nodes is generally much smaller than blockchain nodes,

they have a faster convergence rate of execution and verification of

complex smart contracts. Besides, Ekiden [8], FastKitten [11], and

POSE [17] utilize Trusted Execution Environment (TEE)-enabled

off-chain compute nodes to protect the integrity and confidential-

ity of contract states. However, all of these off-chain solutions do

not consider non-deterministic computation, so they are not suit-

able to integrate model inference functions into smart contracts.

Moreover, the introduction of a pure off-chain execution model

generally changes the blockchain system’s workflow and is not

compatible with existing blockchains. Except for trusted hardware-

based solutions, Zero-Knowledge Proof (ZKP) is also a potential

approach to construct verifiable off-chain smart contracts. For ex-

ample, both Hawk [26] and zkCNN [33] utilize ZKP techniques to

realize privacy-preserving smart contracts. However, ZKP-based

solutions are generally computation-consuming and need to store

a large size of evaluation keys.

2.2 Preliminaries
TEE provides hardware-level security and privacy protection to

applications. Many mainstream processors implement TEE inside

to protect critical applications from attacks by untrusted hosts. For

example, Intel SGX [10], one of the most widely used TEE imple-

mentations, has been embedded inside Intel Core-series and Xeon-

series CPUs. Programs running inside TEE are called enclaves.
Guaranteed by a series of hardware-level isolation instructions and

protection policies, users can trust the output of the enclave after

checking if the enclave is running inside a valid TEE.

To verify that the enclave indeed is running inside a valid TEE,

TEE generally provides remote attestation based on a chain of the

root. The trusted root can be TEEs’ manufacturers (as Intel is to

SGX [10]) or other trusted organizations. Firstly, TEE generates an

attestation quote over the enclave, which contains the enclave’s

output, the hash measurement of the instantiated enclave, hard-

ware security version, denoted as Q = (Oenclave,Henclave,VTEE).
The quote is signed with TEE’s attestation key, denoted as 𝜎TEEQ =

Sig
(
skTEEattest,Q

)
, and sent to the user over the secure communi-

cation channel. And then, the user queries the attestation collat-

eral (e.g., TEE’s key certificates) associated with the 𝜎TEEQ from the

trusted root, and verifies that if the quote’s signature is from a

valid TEE. Assuming the 𝜎TEEQ is valid, the user can trust the en-

clave’s outputs. We adopt Intel SGX as our TEE implementation

in the prototype, but the SMART framework is TEE-agnostic. Any

TEE supporting remote attestation [1, 16, 24, 28, 37] can apply to

the SMART framework.

3 SMART OVERVIEW
Fig. 3 shows the architecture and workflow of SMART. There are
three roles in the framework: clients, blockchain nodes, and TEE

providers. Their functions are described as follows:

Clients write, deploy SMART contracts and send contract calls

through blockchain nodes. If clients want to deploy SMART con-

tracts with private models, they need to send corresponding secret

shares to the Key Management Committee (KMC) for later secret

key provision. Blockchain nodes are responsible for maintain-

ing the security and consistency of the blockchain. In the SMART
framework, blockchain nodes receive contract calls and divide them

into deterministic and non-deterministic code (if exists). The de-

terministic code is still executed on-chain by blockchain nodes,

and the non-deterministic code is outsourced to TEE providers.

Besides, blockchain nodes host the distributed attestation service

for TEE providers. TEE providers run model inference according

to the contract calls signed by clients. Anyone with a TEE-enabled

platform can participate in the system. TEE providers do not need

to store contract states, so they can be regarded as hot-plugging

modules in the SMART framework. Besides that, a quorum 𝑡 of TEE

providers form a KMC to provision secret keys of private models,

so the framework works fine as long as there are at least 𝑡 valid

TEE providers available. We assume that communication links be-

tween clients, blockchain nodes, and TEE providers will be secured

through the TLS protocol.

3.1 Workflow
The workflow of the SMART framework is presented in Fig. 3, we

illustrate it as three parts:

Contract creation. Before creating a SMART contract, the client

saves the model file M in the off-chain storage service
3
(step

➀-a). If the client wants to keep the model private, he/she would

encrypt the model file using a symmetric secret key 𝑆 before storage,

denoted asMenc = Enc (𝑆,M), and sends the secret key shares to

the TEE-aided KMC (step ➀-b). After getting the storage URL of the

model, the client specifies the model information as initial variables

of the contract, such as the model name, model hash, and off-chain

storage URL (step ➀-c). The client deploys its SMART contract by

3
The storage service can be a storage server built by the client, or a storage platform

provided by a cloud vendor, as long as it can be accessed by TEE providers.

3
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Figure 3: Overview of SMART system model and workflow.

posting a contract deployment transaction to the blockchain nodes,

who will include this transaction in the blockchain (step ➁).

Contract call. Once a SMART contract has been deployed, clients

can make contract calls through RPC services at blockchain nodes

(step➁). Blockchain nodes handle contract call requests from clients.

Before executing a SMART contract call, the blockchain node first di-

vides the contract code into the deterministic and non-deterministic

parts. We use the TEE.inference() functions to mark the non-

deterministic part in the contract (refers to Section 6.2). The for-

mer part is executed inside on-chain VMs by the blockchain node,

which is the same as common contracts (step ➂). The latter part

is offloaded to TEE providers and executed inside secure enclaves.

The blockchain node randomly chooses a TEE provider from a

list of registered TEEs (refers to Section 4.2), and sends the corre-

sponding model inference task (i.e., the signed inference request)

to the TEE provider (step ➃-a). The TEE provider loads the model

file from the off-chain storage according to the URL and checks

the integrity of the obtained model file by comparing the received

model hash (step ➃-b). If the model is encrypted, the TEE provider

needs to request the secret key of the private model from the

KMC (refers to Section 4.3) and decrypts the model inside enclaves

M = Dec (𝑆,Menc) (step ➃-c). After that, TEE executes the infer-

ence computation inside enclaves (step ➄). Once model inference

is completed, it returns the execution results and a signed quote
𝜎TEEQ to the blockchain node (step ➅).

When the blockchain node receives inference results from the

TEE provider, it first checks the validity of 𝜎TEEQ through remote at-

testation to verify that the model inference is executed inside valid

TEE hardware. And whether the hash measurement of the enclave

and TEE’s hardware security version match the requirement. If so,

it can trust the obtained inference results. And then, the blockchain

node updates the contract call transaction’s state by aggregating

the inference results and attaching the 𝜎TEEQ in the transaction. The

nominated/leader blockchain node (executor) packs the transac-

tions into a new block and broadcasts it to other blockchain nodes

(verifiers) for verification (step ➆).

Block verification. When blockchain nodes (verifiers) receive

a new block, they will verify the transactions included in the

block one by one. For the on-chain contract parts, the blockchain

nodes verify the correctness of execution results still by simply re-

executing it inside on-chain VMs. For the model inference contract

parts, the blockchain nodes only verify the validity of 𝜎TEEQ attached

in the transactions to see if the inference results are trustful (step➇).

This bypasses the non-deterministic execution of model inference

(since other nodes do not need to re-execute), and the verification

complexity is reduced from the complexity of model inference to

signature verification.

3.2 Threat Model and Security Goals
Compared with other blockchain systems, SMART additionally in-

troduces an attack surface of TEE providers, which could bring the

following threats:

• Inference termination and delay attacks. Although TEE is

designed to be isolated from the host OS, it also needs to interact

with the host OS to access system resources such as memory, stor-

age, and network interfaces. Thus, malicious hosts could delay

forwarding or block inference requests from blockchain nodes to

TEE enclaves. This attack prolongs the end-to-end latency of the

transaction and even interrupts the execution process of model

inference, thereby threatening the system’s liveness.

• DDoS attack against remote attestation service. The remote

attestation services are usually provided by Trusted Third-Parties

(TTPs). For example, Intel provides remote Attestation Service

(IAS) for SGX, whose single point of service could be the perfor-

mance bottleneck of decentralized blockchain systems, and be

fragile to DDoS attacks.

• Model leakage. Due to the transparency of blockchain and

smart contracts, everyone can access model details from on-chain

contracts. In practice, some clients do not want to expose their

private models outside, while such a transparent architecture

cannot achieve that intuitively.

Upon the aforementioned threats, we have two reasonable as-

sumptions on TEE and blockchain: We assume there are always

at least 𝑡 valid TEE providers available, and TEE hardware is cor-

rectly implemented and securely manufactured. We assume the

blockchain will perform prescribed computation correctly and is

always available. That is, there is always a majority of blockchain

nodes (e.g., ≥ 2

3
) that agree on the correct outcome. Considering the

above threat model and assumptions, we summarize the security

goals of SMART:

• Correctness. The model inference will be honestly executed

on given inputs and well-audited enclaves, and the integrity of

inference results is guaranteed.

• Liveness. The valid SMART contract transactions will be eventu-

ally committed even though partial TEE providers and blockchain

nodes are compromised.

• Model privacy. SMART offers end-to-end privacy protection for

private models.

4 DETAILED DESIGN
4.1 On-chain and Off-chain Contract Execution
To make SMART framework support non-deterministic and complex

model inference, while compatible with mainstream smart contract-

supported blockchains, we design an on-chain and off-chain joint

execution model.

TEE roles in most existing TEE-based solutions are stateful [8,

11], they need to maintain the contract states, which heavily rely

on the liveness and security of TEE roles. To get rid of the need

for long-lifespan TEE providers, we decouple the model inference

with common smart contracts operations. Specifically, we do not

4
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outsource the whole contract, instead just the model inference part

to the TEE provider. The contract states are still stored on-chain,

thus the TEE provider can be stateless. That is why TEE providers

can join/leave the system at will without breaking the system’s

liveness.

We assume the SMART contract takes the form (O, 𝜙new) = Contract
(I, 𝜙old), where 𝜙 denotes the contract state, O and I denote the

output and input of the contract. When the blockchain node (execu-

tor) receives a contract call transaction, it will divide the Contract
into the on-chain part and off-chain part, denoted as Contractvm
and Contractenclave.

The blockchain node executes Contractvm inside on-chain VMs.

For example, the on-chain contract part is executed inside EVM

in Ethereum while executed inside a docker container in HLF.

Thus, in the on-chain mode, the workflow is the same as existing

blockchain smart contracts. And the blockchain node will outsource

the Contractenclave with corresponding input data Ienclave to a
randomly chosen TEE provider for non-deterministic model in-

ference. Ienclave contains the client’s signed contract call request
(including model input data), the model hash, model URL, denoted

as

(
𝜎clienttransaction,HM ,UM

)
.

Once receiving the model inference request, the TEE provider

loads the enclave program Contractenclave into TEE, and setups

a TLS channel with the blockchain node. To avoid replay attacks

from blockchain nodes, the TEE provider only accepts the same

transaction once. After obtaining Ienclave, the enclave requestsM
from storage services according toUM . The integrity ofM would

be checked inside TEE by comparing its hash measurement toHM .

After preparing essential input data 𝜎clienttransaction, the enclave starts

model inference with the fetched model and outputs the inference

results Oenclave. To prove that the model inference is executed

inside valid TEE hardware and the integrity of inference results,

the enclave will provide an quote on its identity and inference

outputs, Q =

(
Oenclave,Henclave,VTEE, 𝜎

client
transaction

)
. Including

𝜎clienttransaction in the quote is to bundle the inference computation

with one specific contract call transaction, which can avoid free-

riding and false-reporting attacks from TEE providers. Then, the

TEE provider returns the signed quote 𝜎TEEQ to the blockchain node.

The blockchain node will verify the validity of 𝜎TEEQ through

remote attestation, check ifHenclave andVTEE match the require-

ment, and 𝜎clienttransaction is the target contract call request. If all
these checks pass, the blockchain node accepts the inference output

Oenclave. If Oenclave is not the final output of the contract, the

blockchain node will take Oenclave and Ovm (if exists) as interme-

diate results to continue computing the final output according to

the contract logic, update the contract state 𝜙 and seal them as a

newly completed transaction. Note that the blockchain node could

outsource multiple model inference tasks to TEE providers simulta-

neously, and wait for responses in an asynchronous mode, thus the

off-chain inference does not congest block generation.

However, malicious host OSs could interrupt or delay TEE’s

model inference execution on purpose. Although they cannot forge

the execution outputs or steal secrets inside TEE, such attacks

could prolong the transaction latency and even break the system’s

liveness. To prevent endless waiting, we set a simple timeout policy

PCK 
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Figure 4: Blockchain nodes assisted distributed attestation
service.

for blockchain nodes. If the waiting time of the blockchain nodes

exceeds the threshold 𝛿 , they will assign another TEE provider

to perform the inference task and raise an evidence challenge of

the abnormal TEE provider, similar to POSE [17]. If the evidence

is confirmed, the abnormal TEE provider would be added to a

blacklist and not used again. In this way, as long as there is at least

one normal working TEE provider exists, the system’s liveness is

guaranteed.

4.2 Distributed Attestation Service
To mitigate potential DDoS attacks against centralized remote at-

testation services hosted by TTPs, we leverage blockchain nodes

to construct a distributed attestation service that avoids the single

point of failure.

The intuitive idea is that we can make blockchain nodes cache

the quote certificate chain and provide quote verification services

locally. The whole blockchain network could be seen as a decen-

tralized “third party” to provide attestation services and does not

need to access TEE manufacturer-provided attestation services fre-

quently. The design of the distributed attestation service can be

described as Fig. 4. We mainly group it into two flows: the reg-

ister/update of TEE providers (orange lines) and the distributed

attestation (blue lines).

Register/update of TEE providers. We require TEE providers to

register their identities before participating in the system, which is

to identify the validity of TEE providers and for further incentive

distribution (we discuss incentives for TEE providers in Appen-

dix A). We design the TEE Provider Management (TPM) smart

contract (the implementation code refers to Appendix B) to record

the Platform Provisioning ID (PPID) of TEE providers. PPID is

unique to the platform and Provisioning Certificate Enclave (PCE)

identity, and it is constant during the platform’s lifetime. Thus,

we use PPID as the unique identifier of TEE providers. The TPM

contract contains two functions: register and update.
For registering a TEE provider, the Quoting Enclave (QE) first

retrieves the TEE platform’s PPID from the PCE, and then the

TEE provider sends its PPID to the TPM contract via invoking the

register function. Blockchain nodes keep listening to the TPM

contract for updated events. If there comes a new registered TEE
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provider, blockchain nodes will acquire corresponding attestation

collateral from the TEE manufacturer-provided attestation service

by querying with the PPID of the TEE provider. The attestation

collateral contains Provisioning Certification Key (PCK) certifi-

cates, PCK certificate revocation lists, Trusted Computing Base

(TCB) version, and the QE identity for platforms with TEE enabled.

Blockchain nodes cache the obtained attestation collateral in their

local database for later quote verification. If the TEE provider needs

to update its PCK due to CPU microcode updates or PCE updates,

the QEwill retrieve a new PPID from the PCE and update its PPID in

the TPM contract by calling the update function. Once blockchain

nodes detect PPID updates, they will acquire new attestation collat-

eral for all updated TEE platforms. It is similar to the TEE provider

registration process.

Distributed attestation. After TEE providers register their identi-

ties on-chain, they can perform remote attestation to blockchain

nodes without connectivity to manufacturer servers. In specific,

the QE first generates an attestation key skTEEattest (used to sign

quotes) and requests the PCE to certify the attestation key (only

on first deployment). Then, the QE can obtain an attestation key

certificate signed by the PCE. With the attestation key certificate,

the QE can generate a quote structure containing TCB version

(i.e., hardware security version VTEE), enclave identity Henclave,

inference outputs Oenclave, attestation key certificate, PCK, and

sign the quote using the certified attestation key. Then, the TEE

provider sends the signed quote to the blockchain node for remote

attestation verification.When the blockchain node receives a quote,
it will query the PCK certificate from its local database according

to the PCK embedded in the quote, and verify the validity of the

quote according to the quote certificate chain (shown as Fig. 4).

Assuming the quote is certified correctly, the blockchain node will

further check ifVTEE satisfies the minimum value andHenclave is

the desired one. Only after all these checks pass, the blockchain

node can trust the inference results in the quote. To this end, the

remote attestation and verification between blockchain nodes and

TEE providers are completed without additional TTPs. Even if some

of the blockchain nodes are temporarily unavailable due to DDoS

attacks or other reasons, the distributed attestation service still

works normally in the rest of the blockchain nodes. Note that we

need to acquire attestation collateral from the manufacturer server

when the TEE provider registers or updates their identities, so the

trust root still exists. Even so, the call frequency of register/update

of TEE providers is much smaller than remote attestation, thus the

distributed attestation service can effectively improve the scalability

and security of the system.

4.3 Secret Key Provisioning for Private Model
In practice, some clients may use private models or commercial

models for inference and want to protect their models’ privacy

during outsourcing computation. A straightforward solution is that

clients can encrypt their private models and only decrypt models

after being loaded into TEE. However, this raises a problem: how
can the secret key to decrypt the private model be securely provided
to the TEE and ensure that the key is always accessible? To solve

this problem, we design a TEE-aided Shamir’s Secret Sharing (SSS)

scheme to manage the secret keys of private models.

Secret shares distribution. Assume that SSS [40] is an ideal and

perfect (𝑡, 𝑛)-threshold scheme based on polynomial interpolation

over a finite field𝐺𝐹 (𝑞). We leverage 𝑛 TEE providers to constitute

a secret key management committee. We denote the secret key

of a private model as 𝑆 . The client firstly randomly chooses 𝑡 − 1
elements 𝑎1, · · · , 𝑎𝑡−1 from 𝐺𝐹 (𝑞) and construct the polynomial

𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + · · · + 𝑎𝑡−1𝑥𝑡−1 .
Then, the client computes any 𝑛 points out on the polynomial

𝑓 (𝑥), for instance, set 𝑥 = 1, · · · , 𝑛 to find points (𝑥, 𝑓 (𝑥)). Note
that these 𝑛 points should be non-zero. These 𝑛 points are treated

as 𝑛 secret shares of 𝑆 and separately transmitted to the 𝑛 TEEs in

the committee over the secure channel.

Key recovery. If a TEE provider wants to make an inference on a

private model, it should recover the secret key from the committee.

The TEE provider firstly retrieves 𝑡 secret shares (i.e., points) from
any 𝑡 TEEs from the committee over the secure channel. Obtained 𝑡

secret shares, the secret key 𝑆 can be recovered using interpolation

𝑆 = 𝑓 (0) = ∑𝑡−1
𝑗=0 𝑦 𝑗

∏𝑡−1
𝑚=0
𝑚≠𝑗

𝑥𝑚
𝑥𝑚−𝑥 𝑗

.

Thus, the TEE provider can decrypt the private model using the

recovered 𝑆 inside TEE, and make model inference. The authentic-

ity of TEEs is guaranteed by the proposed distributed attestation

service, so our TEE-aided SSS scheme does not need to consider

malicious nodes. As long as there are at least 𝑡 TEEs available in

the committee, the secret key can be recovered.

5 SECURITY ANALYSIS
Based on the threat model proposed in Section 3.2, we analyze the

system security formally to show how the aforementioned security

goals, i.e., liveness, correctness, and model privacy, are achieved.

In the SMART framework, both blockchain nodes and TEE providers

contribute to the system liveness. Previous work has proven that

valid transactions will be included in the blockchain within suffi-

cient time [21, 52], so we mainly demonstrate that TEE providers

will not break the liveness of blockchain systems.

Theorem 5.1 (system liveness). If an honest blockchain node
outsources a model inference task to TEE providers, SMART would
complete the task within 𝑛 − 𝑡 + 1 rounds.

Proof. Under the assumption that network is partial synchro-

nous, one honest blockchain node broadcasts a inference task, the

other honest TEE providers can receive the task within a certain

time. However, a malicious TEE provider might not response or pro-

long the waiting time to delay the task. Once the TEE providers ac-

cept the task, based on the timeout epoch 𝛿 we set up, the blockchain
nodes can prevent deadlocks caused by malicious behaviors or acci-

dents of TEE providers. The blockchain node can abandon current

round and choose another TEE provider if it receives nothing from

current TEE provider after waiting for 𝛿 . Under the assumption that

there are always at least 𝑡 of 𝑛 TEE providers working normally, the

blockchain node always can find available honest TEE providers to

execute model inference task. We denote 𝑋 as the event that the

blockchain node chooses an honest TEE provider in the 𝑘-th round,

and then we have

𝑃𝑟 (𝑋 ) =

∏𝑛−𝑡

𝑘=1

(
1 − 𝑡

𝑛−𝑘+1

)𝑘−1
𝑡

𝑛−𝑘+1 , if 1 ≤ 𝑘 ≤ 𝑛 − 𝑡,
1, if 𝑘 > 𝑛 − 𝑡 .
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Therefore, SMART will complete the inference task within 𝑛 − 𝑡 + 1
rounds nomatter what Byzantine behaviors happen, and the system

liveness is guaranteed. □

Theorem 5.2 (execution correctness). If the output of a model
inference task is included in the blockchain of themajority of blockchain
nodes, the execution result of model inference is correct.

Proof. After completing model inference, the TEE provider

generates a quote Q =

(
Oenclave,Henclave,VTEE, 𝜎

client
transaction

)
to

provide the inference result. Since Q is signed by the TEE’s attesta-

tion key 𝜎TEEQ = Sig
(
skTEEattest,Q

)
, the blockchain node can verify

the validity of Q through the distributed attestation. And then, the

blockchain node checks if the received hash measurement of the

enclaveHenclave equals the targeted one. If so, it indicates that the

TEE provider executes model inference inside the correct enclave

program Contractenclave. Besides, the blockchain node checks if

the version of TEEVTEE is up-to-date and if the input data of the en-

clave is from the correct client and transaction 𝜎clienttransaction. With

the correct input data, TEE enclave measurement, and quote signa-

ture, SMART guarantees the correctness of inference results. Only if

all the above checks pass, honest blockchain nodes will include Q
and 𝜎TEEQ in the new block. And previous work has proven that if a
transaction is included in a block of the blockchain of an honest node,
this transaction will be ultimately persisted in every honest node’s
blockchain with high probability [21]. Under the assumption of a

majority of blockchain nodes are honest, the theorem is proven. □

Theorem 5.3 (model privacy). If a rational client submits a
private model inference transaction, the private model parameters
would not be leaked throughout the whole inference process.

Proof. A client will encrypt its private model using a randomly

generated symmetric keys 𝑆 and store the encrypted model in the

storage services. And then, the client generates𝑛 secret shares based

on 𝑆 and sends them to 𝑛 TEE providers in the KMC for secret key

provision. Since the transmission of the secret shares is secured

by the TLS communication (the authenticity of the TLS channels

is ensured by identity attestation 𝜎TEEQ between TEEs and clients),

the secret shares would not be disclosure. When the TEE provider

needs to execute a privatemodel inference task, it will request secret

shares from randomly chosen 𝑡 TEE providers in the KMC to recover

the secret key 𝑆 as described in Section 4.3. Since we assume TEE

hardware is correctly implemented and securely manufactured, and

𝑆 is recovered inside authenticated TEE hardware, no one can know

the content of 𝑆 including TEE providers themselves. Moreover, a

rational client always does not proactively leak the secret key 𝑆 .

Therefore, as long as the encryption algorithm is secure, the privacy

model cannot be compromised. □

6 IMPLEMENTATION AND EVALUATION
We adopt FISCO BCOS [22] as the underlying blockchain system,

which is a popular consortium blockchain embedded with the EVM

engine, so it is completely compatible with Ethereum smart con-

tracts. We realize the on-chain and off-chain context switch in the

Ethereum smart contract through the precompiled contract tech-

nique [15], which supports the on-chain contract calling customized

off-chain programs. Thus, the off-chain programs (i.e., precompiled
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Figure 5: Estimated gas cost for on-chain model inference.

contracts) act as a bridge to connect blockchain nodes and TEE

providers. Through it, the SMART framework can provide backward

compatibility for mainstream blockchains.

We take Intel SGX as the experiment TEE hardware and use

PyTorch as the model inference framework. For simplifying SGX ap-

plication deployment, we leverage Graphene-SGX [47] (now called

Gramine), a LibOS for TEE hardware, to support model inference

inside enclaves without modifying Python code. We leverage Intel

DCAP (allowing third-parties nodes to cache attestation collat-

eral) [39] to implement distributed attestation service to certify the

quote with a certificate chain rooted to an Intel-issued certificate.

We set up a four-node blockchain network and one TEE provider

instance to evaluate the SMART framework.We adopt a (3, 4)-threshold
SSS scheme to make secret shares and the AES-128-GCM symmet-

ric encryption algorithm to encrypt/decrypt private models. The

prototype is deployed on a laptop with an Intel i7-8750H CPU (sup-

porting SGXv1 with FLC) and 16 GB RAM running the Ubuntu 20.04

operating system. We compare the SMART framework with existing

solutions [3, 18, 32] to fully reveal the necessity and superiority of

our framework.

6.1 Estimated Gas Cost for On-chain Inference
In order to prove the impracticality of on-chain solutions [3, 18], we

estimate how much gas would be consumed to implement model

inference on-chain.

Since the traditional smart contracts cannot support floating

point operations, we need to use integers to represent floating

point numbers during on-chain model inference [18]. We can cal-

culate the number of multiply-accumulate operations (MACs) to

approximate the complexity of AI models [44]. Taking Ethereum

as an example, we can know the total cost of a ADD and a MUL oper-

ation of the EVM is 8 gas [14]. Thus, 8×#MACs is an approximate

gas cost for on-chain model inference. We estimate the gas cost of

dozens of popular AI models and mark the block gas limit using

a red dotted line in Fig. 5. We can observe that the gas cost of all

these models far exceeds the block gas limit of 30M. Even for the

lightweight architecture model, SqueezeNet [23], it still consumes

about 2.88G gas. These results demonstrate that on-chain model

inference cannot support these mainstream models even using inte-

gers for data representation. Moreover, developers have to spend a

lot of time porting models to traditional smart contracts (e.g., Solid-
ity). Therefore, the on-chain model inference schemes [3, 9, 18] are

not practical. In comparison, our SMART framework bypasses the

gas limit by offloading the model inference to TEE providers while

retaining the authenticity of the computation. And TEE providers

can use the off-the-shelf model files and inference frameworks to

do the model inference computation, which largely reduces the

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

alex dense161 res18 squeeze1.0 vgg16

102

104

106
tim

e 
co

st
 (s

ec
on

ds
)

13.687 14.46 8.35 4.685
30.702

EVM
SMART

Figure 6: Model inference time comparison of EVM-based
on-chain solutions [3, 18] and SMART.

development cost. The experimental result shows the necessity of

offloading model inference to off-chain nodes.

6.2 Performance of SMART Contract Inference
Model inference. To further demonstrate the efficiency of model

inference on SMART, we choose five popular AImodels, i.e., AlexNet [27],
SqueezeNet [23], ResNet [19], DenseNet [20], and VGG [43] as the

inference models, and compare the inference time of EVM-based

on-chain solutions [3, 18] with SMART, as shown in Fig. 6.

We can observe that SMART’s inference efficiency is about 5 orders

of magnitude faster than EVM-based on-chain solutions. That is

why existing on-chain solutions only can support simplemodels like

single-layer perceptron or naive bayes classifier [18]. In comparison,

SMART can complete model inference within a few seconds, which

largely enhance the feasibility of model inference on blockchains.

End-to-end latency. To reflect the impact of introducing SMART
framework in existing blockchains, we write a SmartCall contract

that has an inference function purely calling the off-chain model

inference function TEE.inference() to test the end-to-end latency
of a SMART contract call (refers to Appendix C).

We evaluate the end-to-end latency of the SMART contract call un-
der the public and privatemodels, and compare it with SmartVM [32],

an AI operators embedded smart contract VM, as shown in Fig. 7.

Taking AlexNet and ResNet18 as examples, we can observe that

the end-to-end latency of SMART is better than SmartVM, especially

for AlexNet, there is about 2.7x improvement. Note that SmartVM

does not support private model inference. Even for private model

inference, SMART still has lower latency compared to SmartVM.

Micro-performance.We also analyze the micro-performance of

SMART to show the time overhead of each component in Fig. 8.

The latency difference of contract calls between private models

and public ones is caused by additional secret key provisioning and

decryption operations. In our experiment setting, the TEE provider

who needs to decrypt private models will set up TLS connections

with 3 TEE providers in the KMC to acquire secret shares and

recover the secret key 𝑆 . We observe that the process of secret

key provisioning is completed in about 5.15 seconds on average

(denoted as SKP in Fig. 8). It is an acceptable time overhead.

The time overhead of quote generation (QG), verification (QV),

and context switching between on-chain and off-chain (OC and

CR) is negligible. In the QG and QV phases, the registered TEE

provider generates a signed quote and sends it to the blockchain

node for verification. Since the blockchain node only needs to query

it from the local PCK certificate cache database for verifying the

𝜎TEEQ (an ECDSA-based verification), the attestation process can be

completed quickly in about 0.172 seconds on average.

We can observe that the overall latency is around 75 seconds

for the chosen models, of which the enclave initialization is the
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Figure 7: End-to-end latency of SmartVM [32] and SMART.
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Figure 8:Micro-performance analysis of SMART (OC=On-chain
Contract Call; EI=Enclave Initialization; SKP=Secret Key
Provisioning; MI=Model Inference; QG=Quote Generation;
QV=Quote Verification; CR=Contract Context Recovery).

major factor of the long latency, about 61.5 seconds (denoted as EI

in Fig. 8). The reason is that we adopt Graphene-SGX [47] to bring

convenience for developing SGX applications, but it takes a certain

time to load massive LibOS files and check their integrity. On one

hand, the latency brought by EI can be avoided through initializing

the enclaves in advance. On the other hand, this overhead could be

optimized by pruning unnecessary LibOS files or developing model

inference enclaves from scratch using the official SDK. Besides, we

can adopt some proper read/write strategies to reduce page swap

cost [29]. We further discuss the potential strategies for improving

TEE performance in Appendix D.

Nevertheless, the latency of off-chain model inference does not

congest the blockchain throughput due to its asynchronous request-

response mode. And model inference tasks can be executed in par-

allel (i.e., multiple inference tasks can be assigned to multiple TEE

nodes simutaneously), which could lift up the inference throughput

from the system perspective.

7 CONCLUSION
In this paper, we propose the SMART framework to support model

inference atop existing blockchains, which incorporates an on-chain

and off-chain execution model to handle the non-deterministic

and complex computation while achieving good compatibility. We

also leverage blockchain nodes to host a distributed attestation

service to avoid the single point of failure brought by the centralized

attestation server. Besides, we design the TEE-assisted Shamir’s

secret sharing scheme to provide end-to-end privacy preservation

for private models. Both analysis and evaluation show the security

and feasibility of the proposed framework. We believe it is a worthy

attempt to bring AI capabilities to existing smart contracts, which

could endow smart contracts with more application space in the

upcoming Web 3.0 era.
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A INCENTIVES FOR TEE PROVIDERS
In the SMART framework, we introduce new roles, TEE providers,

to execute off-chain model inference, so we have to re-design the

incentive scheme to reward TEE providers. Considering that TEE

providers will register their TEE hardware identities (i.e., PPIDs) be-
fore participating in the system, theywould generate new blockchain

accounts (or use existing blockchain accounts) and bundle them

with PPIDs in the TPM contract (see Appendix B). The registered

blockchain accounts are used to distribute rewards/transaction fees

to TEE providers. In other words, the rewards obtained by TEE

hardware execution will be sent to the TEE provider, so a rational

TEE provider has less motivation to do evil.

Table 1: The number of parameters and MACs of the models.

AlexNet DenseNet161 ResNet18 SqueezeNet1.0 VGG16

# of Params (M) 61.1 28.68 11.69 1.25 138.36

# of MACs (G) 0.72 7.82 1.82 0.83 15.5

In public blockchains like Ethereum, the blockchain nodes will

be paid transaction fees for executing and packing transactions into

a new block. In the same way, TEE providers should also be paid re-

wards for executing the off-chain part of a contract call transaction,
i.e., model inference. Similar to the gas concept in Ethereum, we

quantify computation costs for model inference by the complexity

of models. We adopt the number of multiply-accumulate operations

(MACs) and the number of parameters of models to estimate how

expensive a model inference can be. We list the number of parame-

ters and MACs of five popular models in Tab. 1. One MAC contains

an addition and a multiplication operation, i.e., 𝑎 ← 𝑎 + (𝑏 × 𝑐).
The number of MACs can roughly represent the computational

complexity of the model. The number of parameters represents

the space complexity of the model. Combining the computing and

space complexity metrics, we can easily establish a linear mapping

from model complexity to gas settings. Note that we do not give a

specific mapping relation between them in this paper since it is a

configurable setting. When the new block is generated, the rewards

of model inference will be transferred to TEE providers automati-

cally as transaction fees. Thus, in public blockchain systems, the

TEE providers can be paid proper transaction fees according to the

gas consumed during model inference.

As for the blockchain nodes and TEE providers of consortium

blockchains (e.g., HLF [2], FISCO BCOS [22]), they are generally

hosted by several authorized organizations, so consortium blockchains

do not need transaction fees to incentive participants.

B TEE PROVIDER MANAGER (TPM)
CONTRACT

The TPM contractmanages the identities of registered TEE providers.

TEE providers could register/update their PPIDs in the TPM con-

tract. Everyone could query the information (PPIDs and blockchain

accounts) of registered TEE providers from the TPM contract.

1 contract TPM {

2 struct tee_info {

3 address tee_provider;

4 string ppid;

5 }

6 string contract_name;

7 tee_info [] tee_list;

8 constructor () {

9 contract_name = "TEE Provider Manager Contract";

10 }

11 // query TEE provider 's address and PPID by its index

12 function get_tee_info(uint256 memory index) public
view returns (address , string memory) {

13 return (tee_list[index]. tee_provider , tee_list[

index].ppid);

14 }

15 // TEE providers register their PPID

16 function register(string memory ppid) public {

17 tee_info tee = tee_info ({ tee_provider: msg.sender
, ppid: ppid})

18 if (tee not in tee_list) {

19 tee_list.push(tee);
20 }

21 }

22 // TEE providers update their PPID

23 function update(uint256 memory index , string memory
new_ppid) public {

24 tee_provider , _ = get_tee_info(index);

25 assert(tee_provider == msg.sender);
26 tee_list[index].ppid = new_ppid;

27 }

28 }

Listing 1: TPM contract implementation code.

C SMARTCALL CONTRACTWITH MODEL
INFERENCE

TEE.inference() is implemented by the precompiled contract

technique and acts as a bridge that connects on-chain contract and

off-chain model inference.

1 contract SmartCall {

2 address contract_owner;

3 address precompiled_contract_address = 0x6000;

4 InferencePrecompiled TEE;

5 // Instantiate a precompiled inference contract

6 constructor () {

7 contract_owner = msg.sender;
8 TEE = InferencePrecompiled(

precompiled_contract_address);

9 }

10 // Call the precompiled inference function

11 function inference(string memory cmd) public view
returns (string memory) {

12 return TEE.inference(cmd);

13 }

14 }

Listing 2: inference function in SmartCall contract.

D DISCUSSION OF TEE SECURITY AND
PERFORMANCE

Two main problems of TEEs, i.e., security and performance, which

could be the potential adoption and deployment challenges of

SMART. Even though we do not aim to solve them in this paper,

we can briefly discuss some existing solutions for addressing these

issues.

TEE side-channel attacks.Many studies have revealed possible

side-channel attacks in TEE. For example, SgxPectre [4] utilizes

speculative execution side-channel vulnerabilities to compromise

10
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the confidentiality of SGX enclaves. Cachezoom [34] introduces a

cache side-channel attack that can track all memory accesses of

SGX enclaves with high spatial and temporal precision. Wang et
al. [49] also identify 8 potential memory side-channel attack vectors,

ranging from TLB to DRAM modules. T-SGX [42] investigates

controlled-channel attacks that malicious OS can track enclave

accessed addresses by intentionally triggering page faults. Although

many TEE side-channel attacks are discovered, there are many

defenses to these attacks proposed at the same time [5–7, 42]. TEE is

still a developing technologywith security flaws, but it is undeniable

that TEE is a promising and powerful hardware-assisted security

guard. We believe that existing studies can improve the security

design of TEE.

TEE performance improvement. Due to the limited memory

size (about 96MB EPC memory size in SGXv1) and security check

policies of SGX [29], model inference within SGX could cause fre-

quent page swaps between secure and insecure memory, which

largely increases the inference time overhead of some big AI mod-

els. There are mainly two lines of work focused on accelerating

AI inference in TEE. The first type of solution is to accelerate AI

inference by designing dedicated computation/load/store strategies

inside the TEE. For example, Occlumency [29] designs on-demand

weights loading, memory-efficient inference and parallel processing

pipelines to maximizing the AI inference performance running in

SGX enclave. Another type of work is to accelerate AI inference by

outsourcing partial workload. For example, Goten [36], Soter [41],

and Slalom [46] propose secure GPU-outsourcing protocols to en-

able TEE communicating with GPU for speeding up AI training and

inference. We believe these solutions can help the SMART framework

increase the model inference speed inside TEE.

As the TEE develops, its performance becomes stronger and

stronger. For example, SGXv2 can support up to 1TB of EPCmemory,

greatly reducing the overhead of paging [30]. Moreover, other TEE

implementations, such as ARM Trustzone, have no limit on the

memory size of the secure world [17], which is also conducive to

enclave applications with large memory requirements. Therefore,

the performance of TEE in the future is no longer an issue.
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