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Abstract001

Modern reasoning models, such as OpenAI’s o1002
and DeepSeek-R1, exhibit impressive problem-003
solving capabilities but suffer from critical inef-004
ficiencies: high inference latency, excessive005
computational resource consumption, and a006
tendency toward overthinking—generating ver-007
bose chains of thought (CoT) laden with re-008
dundant tokens that contribute minimally to009
the final answer. To address these issues, we010
propose Conditional Token Selection (CTS), a011
token-level compression framework with a flex-012
ible and variable compression ratio that iden-013
tifies and preserves only the most essential to-014
kens in CoT. CTS evaluates each token’s con-015
tribution to deriving correct answers using con-016
ditional importance scoring, then trains mod-017
els on compressed CoT. Extensive experiments018
demonstrate that CTS effectively compresses019
long CoT while maintaining strong reasoning020
performance. Notably, on the GPQA bench-021
mark, Qwen2.5-14B-Instruct trained with CTS022
achieves a 9.1% accuracy improvement with023
13.2% fewer reasoning tokens (13% training024
token reduction). Further reducing training to-025
kens by 42% incurs only a marginal 5% accu-026
racy drop while yielding a 75.8% reduction in027
reasoning tokens, highlighting the prevalence028
of redundancy in existing CoT.029

1 Introduction030

Large reasoning models such as o1(Jaech et al.,031

2024) and R1(Guo et al., 2025) significantly en-032

hance their reasoning capabilities through rein-033

forcement learning, instructing models to generate034

thoughtful reasoning steps before producing final035

answers. Guo et al. (2025) demonstrated that by036

fine-tuning non-reasoning models like Qwen2.5-037

14B-Instruct on long Chain of Thought (CoT) data038

generated by R1, these models can acquire com-039

parable reasoning abilities, even surpassing o1-040

mini on math and code reasoning tasks. Conse-041

quently, numerous distilled R1 reasoning datasets042

have emerged, including s1K, SkyThought, Open- 043

MathReasoning, and AM-1.4M (Team, 2025; Zhao 044

et al., 2025; Muennighoff et al., 2025; Moshkov 045

et al., 2025). Small language models trained on 046

these datasets consistently demonstrate remark- 047

able reasoning capabilities. However, the ever- 048

increasing length of CoT sequences burdens both 049

training and inference, with recent studies (Sui 050

et al., 2025) revealing that models often overthink, 051

expending substantial resources on redundant rea- 052

soning steps. 053

This inefficiency raises a critical question: How 054

can we preserve the accuracy gains of long CoT 055

reasoning while eliminating its computational 056

waste? Existing solutions, such as TokenSkip’s 057

task-agnostic compression (Xia et al., 2025), show 058

promise for short CoT sequences but fail to address 059

the unique challenges of reinforcement learning- 060

generated long CoT data (spanning thousands of 061

tokens). Moreover, they overlook contextual sig- 062

nals like questions and answers, which prior work 063

Tian et al. (2025) identifies as key to effective com- 064

pression. 065

To bridge this gap, we propose Conditional To- 066

ken Selection (CTS), a framework that dynami- 067

cally prunes redundant reasoning tokens while pre- 068

serving those essential for deriving answers. CTS 069

leverages a Reference Model (RM) trained on high- 070

quality reasoning corpora to score token impor- 071

tance conditioned on critical context (e.g., ques- 072

tions and answers). As shown in Figure 1, by fil- 073

tering CoT data at adjustable compression ratios 074

and then fine-tuning model with compressed data, 075

we enable models to learn how to skip unnecessary 076

reasoning tokens during inference. 077

We conducted extensive experiments on mod- 078

els of various sizes, including the LLaMA-3.1-8B- 079

Instruct (Grattafiori et al., 2024) and the Qwen2.5- 080

Instruct series (Qwen et al., 2025). The exper- 081

imental results demonstrate the effectiveness of 082

our method and confirm that there indeed exist 083

1



Figure 1: Illustration of Conditional Token Selection (CTS). For long CoT datasets, CTS leverages a well-trained
Reference Model (RM) to evaluate the importance of each thinking token conditional on the answer, removing less
important tokens based on the compression ratio α. The model is then trained on this compressed data, enabling
more efficient reasoning capabilities.

many redundant thinking tokens in long CoT data.084

Notably, for Qwen2.5-14B-Instruct on the GPQA085

benchmark, CTS achieves a 9.1% accuracy gain086

with 13.2% fewer reasoning tokens when reducing087

training tokens by 13%. Further reducing training088

tokens by 42% leads to a marginal 5% accuracy089

drop but yields a substantial 75.8% reduction in090

reasoning tokens. On other benchmarks, such as091

MATH500 and AIME24, as well as with other mod-092

els, using the compressed training data obtained093

through CTS resulted in improved accuracy com-094

pared to the original data after training.095

In summary, our key contributions are:096

• We introduce the Conditional Token Selection097

framework, which assigns conditional impor-098

tance scores to tokens within CoT trajecto-099

ries based on critical contextual information,100

thereby selectively preserving essential rea-101

soning tokens necessary for accurate answer102

derivation at adjustable compression ratios.103

• We provide a Reference Model (RM) trained104

on high-quality reasoning corpora that is capa-105

ble of judging token importance in reasoning106

CoTs, along with methods for corpus filtering.107

This model can be applied to other indepen-108

dent tasks, such as prompt compression.109

• We comprehensively compare token-based110

compression methods, including both condi- 111

tional and non-conditional approaches, for 112

long CoT data obtained through reinforcement 113

learning, validating the effectiveness of token 114

selection strategies. 115

2 Preliminaries 116

In this section, we introduce some important pre- 117

liminary concepts. 118

2.1 Token Compression based on Perplexity 119

For a given context xt−1 = {xi}t−1
i=1, the self- 120

information of a token xt can be defined as: 121

I(xt) = − log2 P (xt | xt−1) (1) 122

Perplexity (PPL) is then defined based on self- 123

information as: 124

PPL(xt) = 2I(xt) (2) 125

Perplexity is commonly used to measure a language 126

model’s ability to predict the given context. Remov- 127

ing tokens with lower perplexity (Li et al., 2023) 128

has a relatively small impact on the model’s under- 129

standing and prediction of the context. 130

2.2 Conditional and Unconditional 131

Compression 132

To address information redundancy in long con- 133

texts and the issue of resource consumption during 134
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inference, Li et al. (2023) proposed a method that135

uses a small language model to calculate the im-136

portance of each lexical unit (such as sentences or137

tokens) in the original prompts, and then drops the138

less informative content for prompt compression.139

Subsequent studies by Jiang et al. (2023, 2024)140

followed this line of research, proposing more fine-141

grained compression methods. Pan et al. (2024)142

utilized a BERT model to transform prompt com-143

pression into a classification problem.144

These compression methods can be categorized145

into unconditional and conditional approaches,146

based on whether important information is used147

as a condition during compression. For example,148

user queries and instructions can serve as impor-149

tant conditions for compressing instances within150

a prompt. Specifically, during compression, un-151

conditional methods directly calculate metrics like152

self-information or perplexity as in Equation (1)153

and (2). In contrast, conditional methods determine154

token importance based on crucial conditional in-155

formation v:156

I(xt | v,xt−1) = − log2 P (xt | v,xt−1) (3)157

In terms of effectiveness, conditional methods gen-158

erally outperform unconditional methods because159

they preserve more information (Pan et al., 2024).160

3 Conditional Token Selection161

Conditional Token Selection (CTS) builds upon the162

idea of conditional token compression in prompt.163

It aims to compress long CoT sequences, such as164

those generated by harnessing reinforcement learn-165

ing techniques (e.g., R1 (Sui et al., 2025)), and166

subsequently fine-tune models on this compressed167

data. The goal is to enhance model performance168

while reducing training and inference resource con-169

sumption.170

3.1 Problem Formulation171

Given a long CoT dataset, where each instance172

x consists of a problem xprob, thinking tokens173

xthk, and a final answer xans, denoted as x =174

{xprob,xthk,xans} as depicted in Figure 1. Let us175

consider a small language model, such as Qwen2.5-176

7B-Instruct, with its original parameters denoted177

as θLM.178

The distillation objective is to train this small179

model to imbue it with reasoning (thinking) capa-180

bilities and achieve strong performance by mini-181

Figure 2: An example of CoT compression using CTS,
where the left figure employs a well-trained RM, while
the right uses a standard RM.

mizing the following loss function: 182

L = −
l∑

i=1

logPθLM(yi | xprob) (4) 183

where y = {yi}li=1 = xthk ⊕ xans is the target 184

sequence of l tokens, with ⊕ denoting the concate- 185

nation of tokens. 186

The objective of a long CoT compression system 187

can be defined as: 188

min
ỹ

dist(A, Ã) + λ∥ỹ∥0, (5) 189

Where ỹ represents the compressed CoT, a subse- 190

quence of y. A and Ã represent, respectively, the 191

answers to any question Q given by the small lan- 192

guage models trained with y and ỹ. Here, dist(·, ·) 193

is a function measuring the distance (e.g., KL di- 194

vergence). λ serves as a hyper-parameter balancing 195

the compression ratio. ∥ · ∥0 is a penalty. 196

3.2 Reference Modeling 197

When determining token importance in CoT data, 198

we typically need a Reference Model, which is usu- 199

ally a lightweight small language model. However, 200

through experimental observations, we found that 201

using small language models directly to compress 202

CoT tends to remove important but commonly used 203

numbers or alphanumeric symbols. As shown in 204

the right panel of Figure 2, the water flow veloc- 205

ity variable v has been removed. This variable is 206

crucial for understanding the subsequent equations. 207

To teach the Reference Model which numbers 208

and reasoning symbols are important for reaching 209

the final answer, we curated a high-quality dataset 210

{q, z1, . . . , zK ,a} that reflects the desired data dis- 211

tribution. We then train a reference model (RM) 212
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using cross-entropy loss on the curated data.213

LRM = −
K∑
i=1

logP (zi | xins, q,a) (6)214

Where xins represents "For a problem q, the fol-215

lowing reasoning steps are important to get the216

answer a". The resulting RM is then used to assess217

the token importance within long CoT trajectories,218

allowing us to focus on the most influential tokens219

in the training process.220

3.3 Token Selection Based on Conditional221

Perplexity Differences222

To perform conditional compression on Chain-of-223

Thought data, we need to evaluate the conditional224

importance of each token in the target sequences y.225

To mitigate the inaccuracy introduced by the226

conditional independence assumption, we adopt227

the iterative compression method from Jiang et al.228

(2023), where we first divide y into several seg-229

ments S = {s1, . . . , sm}, then compress within230

each segment to obtain {s̃1, . . . , s̃m}, and finally231

concatenate the compressed segments to form the232

final compressed text.233

For more fine-grained assessment of token con-234

ditional importance, we use the distribution shift235

caused by the condition of the answer to represent236

the association between the thinking token and the237

answer. Thus, we can derive a score ri for each to-238

ken in the target sequence y, calculated as follows:239

ri = PPL(xthk
i | xthk

<i)− PPL(xthk
i | xans, xthk

<i)240

Finally, given a compression ratio α, after scor-
ing each token in the reasoning chain using the RM,
we determine a threshold rα represented by the α-
quantile of importance scores, thereby selecting
thinking tokens whose scores exceed the threshold:

x̃thk = {xthk
i | ri > rα}

4 Experiments241

4.1 Experimental Setup242

Reference Model Training To train our mathe-243

matical reasoning reference model, we utilized the244

first 9.3K MATH training set from Face (2025),245

where problems originate from NuminaMath 1.5246

and reasoning traces were generated by DeepSeek.247

To teach the model to evaluate token importance in248

Figure 3: Performance metrics (Reasoning Token Re-
duction percentage and Absolute Accuracy Improve-
ment (%) relative to original) for various compres-
sion methods and ratios on Qwen2.5-7B-Instruct and
Qwen2.5-14B-Instruct models and MATH500. The top-
right region represents optimal performance, signifying
higher accuracy and reduced reasoning token usage.

mathematical reasoning chains, we employed care- 249

fully designed prompts (see Appendix) to select 250

8M tokens from an original 54M reasoning tokens. 251

Implementation Details & Dataset To demon- 252

strate the effectiveness of our Reference Model 253

(RM) and Conditional Token Selection framework, 254

we leveraged the framework proposed by (Jiang 255

et al., 2024), employing our trained RM for Condi- 256

tional Token Selection on the second 9.3K MATH 257

training set from Face (2025). We then fine- 258

tuned LLaMA-3.1-8B-Instruct (Grattafiori et al., 259

2024) and Qwen2.5-7B-Instruct and Qwen2.5- 260

14B-Instruct (Qwen et al., 2025) using the com- 261

pressed dataset with compression ratios α of 262

{0.5, 0.6, 0.7, 0.8, 0.9}. 263

Table 1: Detailed Information of the Datasets

Dataset Size

OpenMath 18,600
MATH500 500
AIME2024 30
GPQA Diamond 198

Evaluation Benchmarks & Metrics The evalua- 264

tion leverages three widely used reasoning bench- 265

marks: AIME24, MATH500, and GPQA Di- 266

amond (Mathematical Association of America, 267

2024; Hendrycks et al., 2021; Rein et al., 2024). 268

We used the actual compression ratio, average accu- 269

racy, and average reasoning token count as metrics 270
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Figure 4: Compression Ratio vs. Average Reasoning
Tokens for CTS and TokenSkip on the Qwen2.5-7B-
Instruct model across different test sets.

to evaluate compression methods. All training and271

evaluation were conducted on 8 NVIDIA A800272

GPUs. During training, we fine-tuned for 3 epochs273

with a batch size of 16. The maximum learning274

rate was set at 1e-5 with a cosine decay schedule.275

We set the maximum sequence length to 4096.276

Baselines In our main experiments, we compared277

Conditional Token Selection with unconditional278

TokenSkip (Xia et al., 2025), LLMLingua (Jiang279

et al., 2023) and Prompt-based Compression. We280

designate the method that directly uses the original281

CoT data for training as Original. For the Prompt-282

based method, we instructed GPT-4o1 to compress283

long CoT reasoning by providing prompts such as284

"Please retain important reasoning tokens in the285

Chain-of-Thought and remove unnecessary ones,286

preserving α% of the original tokens." However,287

we observed that GPT tends to be overly aggres-288

sive in compression, consistently preserving less289

than 10% of the original tokens regardless of the290

specified α value. Therefore, we did not set a spe-291

cific compression ratio α and simply used GPT-4o292

to compress the reasoning chains directly. These293

baselines are referred to as GPT-4o, LLMlingua294

and TokenSkip in Table 2, respectively.295

4.2 Main Results296

Table 2 and 4 presents the performance of differ-297

ent compression methods on the Qwen2.5-14B-298

Instruct model across various compression ratios.299

Notably, our method achieves the highest accuracy300

across all five compression ratios compared to other301

1We use the gpt-4o-2024-08-06 version for experiments.

Figure 5: Comparison of accuracy across different com-
pression ratios for various model configurations.

compression approaches. Figure 5 illustrates the 302

accuracy of CTS versus TokenSkip across different 303

models and compression ratios. CTS consistently 304

outperforms TokenSkip, highlighting the superior- 305

ity of conditional token compression. 306

Although the Prompt-based GPT-4o shown in 307

Table 2 uses fewer inference tokens, this is a re- 308

sult of its excessive compression of the chain of 309

thought. In reality, the model fails to learn thinking 310

capabilities from long CoT data, resulting in low 311

accuracy across all three benchmarks. 312

Furthermore, for CTS, when the compression 313

ratio is 0.9 and 0.8, the model shows improvements 314

in both accuracy and inference efficiency. For ex- 315

ample, on AIME24, at compression ratios of 0.9 316

and 0.8, accuracy increased by 10% and 4.3% re- 317

spectively, while inference tokens decreased by 318

1373 and 1274. Notably, for GPQA Diamond, CTS 319

achieves a 9.1% accuracy gain with 13.2% fewer 320

reasoning tokens. Further reduction of inference to- 321

kens by 75.8% results in only a 5% accuracy drop, 322

and since the compression ratio at this point is 42%, 323

training costs are significantly reduced. 324

As the compression ratio decreases, although 325

CTS accuracy declines compared to Original, in- 326

ference tokens continue to decrease. Thus, there 327

exists a trade-off between accuracy and inference 328

efficiency. From Table 2, we can infer that the op- 329

timal point lies between ratios 0.7 and 0.8, where 330

model capability remains unchanged while mini- 331

mizing inference token consumption. 332

However, poor compression methods can actu- 333

ally decrease model inference efficiency. As shown 334

in Figure 4, as the compression ratio increases, To- 335

kenSkip’s token consumption actually increases on 336

the 7B model. This demonstrates that tokens in 337
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Table 2: Experimental results of various compression methods on Qwen2.5-14B-Instruct, showing accuracy,
average reasoning CoT tokens, and compression ratio (actual ratio).

Methods Ratio (Actual)
MATH500 AIME24 GPQA Diamond

Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓

Original 1.0 90.2 5012 40 23041 51.5 12000

GPT-4o 0.9(0.06) 61.4 283 0 353 35.8 353

LLMLingua

0.9(0.88) 84.4 5597 33.3 19731 53.0 10689
0.8(0.80) 65.6 2510 10.0 4230 44.9 4037
0.7(0.71) 60.4 2511 6.7 4588 43.9 3371
0.6(0.62) 59.0 2270 6.7 3076 40.9 3347
0.5(0.50) 53.6 1998 3.3 3789 40.4 2796

TokenSkip

0.9(0.88) 86.6 4941 40.0 19985 50.0 12455
0.8(0.80) 83.4 5549 26.7 20945 50.0 13275
0.7(0.71) 78.2 6566 16.7 24718 43.4 15531
0.6(0.62) 62.8 8595 10.0 27748 38.8 16764
0.5(0.50) 47.8 9824 3.3 26555 31.8 19121

CTS

0.9(0.87) 91.6 4703 50.0 21668 60.6 10413
0.8(0.81) 90.8 4922 43.4 21767 53.5 13136
0.7(0.74) 86.4 3310 33.3 10448 57.1 10372
0.6(0.66) 81.0 3787 16.7 10308 48 9712
0.5(0.58) 75.6 2036 10.0 3196 46.5 2906

Table 3: Ablation Study Variant Comparison

Model Variant Conditional RM

Base × ×
+ Conditional ✓ ×
+ RM-Tuned × ✓

Proposed (CTS) ✓ ✓

CoT cannot be removed arbitrarily, which aligns338

with intuition.339

Figure 3 displays the percentage of reasoning to-340

ken reduction and accuracy improvement for three341

methods. Higher accuracy with greater reason-342

ing token reduction is preferable. Therefore, our343

method achieves the optimal balance between to-344

ken reduction and accuracy improvement.345

4.3 Ablation Study346

Our ablation study aims to verify: 1) The effec-347

tiveness of using a trained Reference Model (RM)348

for selecting valuable tokens, and 2) The effective-349

ness of conditional token importance assessment350

compared to unconditional methods. For the uncon-351

ditional token importance assessment, we follow352

the framework established in Jiang et al. (2023).353

We introduce the following variants of our 354

method for the ablation study, as shown in Table 3: 355

(1) Base: Using an untrained RM to predict token 356

importance in CoT reasoning without condition- 357

ing; (2) + Conditional: Using an untrained RM to 358

predict token importance in CoT reasoning with 359

conditioning; (3) + RM-Tuned: Using a trained 360

RM to predict token importance in CoT reasoning 361

without conditioning; (4) Proposed (CTS): Using 362

a well-trained RM to predict token importance in 363

CoT reasoning with conditioning. 364

As shown in Figures 7 and 6, conditional com- 365

pression methods play a crucial role in enhancing 366

model capabilities. For the Qwen2.5-14B-Instruct 367

model, the two curves with the highest accuracy in 368

the figures utilized conditional token importance 369

prediction methods. The Proposed method per- 370

forms slightly better than the + Conditional ap- 371

proach, while the + RM-Tuned method shows 372

marginal improvements over the Base method. 373

This indicates that training the reference model 374

provides some benefit in identifying important rea- 375

soning tokens. The modest improvement might 376

be attributed to the limited size of the high-quality 377

corpus used for training, which contained only 8M 378

tokens. 379
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Table 4: Experimental results of various compression methods on Qwen2.5-7B-Instruct, showing accuracy, average
reasoning CoT tokens, and compression ratio (actual ratio).

Methods Ratio (Actual)
MATH500 AIME24 GPQA Diamond

Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓

Original 1.0 82.4 7244 20 24396 37.8 17038

LLMLingua

0.9(0.88) 72.6 6804 13.3 23903 39.8 14470
0.8(0.80) 58.6 2969 6.7 4194 34.3 4421
0.7(0.71) 57.2 2542 6.7 3692 32.8 3236
0.6(0.62) 55.0 2178 3.3 3084 33.3 3203
0.5(0.50) 51.4 2226 3.3 3603 30.8 2462

TokenSkip

0.9(0.88) 78.6 6997 23.3 24094 38.8 17263
0.8(0.80) 72.8 8172 10.0 25223 39.3 18365
0.7(0.71) 64.2 9984 6.6 27946 32.3 21219
0.6(0.62) 54.6 11496 3.3 28802 26.2 21371
0.5(0.50) 37.4 13595 0 29470 31.3 21012

CTS

0.9(0.87) 82.8 6497 20 24769 43.4 17272
0.8(0.81) 81.2 6886 23.3 27006 39.3 17961
0.7(0.74) 78.0 5109 13.3 15929 42.4 13937
0.6(0.66) 70.8 2198 10.0 3550 32.3 3055
0.5(0.58) 70.6 2039 6.7 2993 32.8 3187

Table 5 demonstrates that reasoning tokens do380

not differ substantially across variants, indicating381

that various methods do not significantly improve382

inference efficiency. In fact, at certain compression383

ratios, efficiency actually decreases. This suggests384

that accuracy improvements at the same compres-385

sion ratio come with a corresponding increase in386

reasoning token consumption. This observation387

aligns with test time scaling results in Zhang et al.388

(2025), which indicate that model capability scales389

with inference length.390

5 Related Work391

5.1 Overthinking in Long CoT Reasoning392

Models393

Chen et al. (2025); Team et al. (2025) demonstrated394

that in long CoT reasoning models, models gener-395

ate overly detailed or unnecessarily elaborate rea-396

soning steps, ultimately reducing their problem-397

solving efficiency. Many current reasoning models398

with smaller parameter counts tend to produce ver-399

bose reasoning or redundant intermediate steps,400

making them unable to provide answers within the401

user-defined token budget. These results reveal the402

phenomenon of redundant thinking in reasoning403

models.404

Figure 6: Ablation experiments of the Qwen2.5-14B-
Instruct model on the MATH500 dataset under different
compression ratios

5.2 Efficient Reasoning 405

Prompt-based Chain of Thought (CoT) methods 406

(Wei et al., 2022; Kojima et al., 2022) guide mod- 407

els to think step-by-step, enhancing their problem- 408

solving capabilities. Chain of Draft (Xu et al., 409

2025), through prompting, retains essential formu- 410

las and numbers in the thought chain, maintain- 411

ing performance while reducing inference costs. 412

Lee et al. (2025) conducted a comprehensive com- 413

parison of prompt-based CoT compression meth- 414

ods. Wu et al. (2025); Ma et al. (2025) imple- 415

ment thought intervention by incorporating first- 416

person prompts in the model’s thinking process, 417
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Figure 7: Ablation experiments of the Qwen2.5-14B-
Instruct model on the AIME24 dataset under different
compression ratios

such as "<think> I think I have finished the think-418

ing. </think>", to achieve instruction following and419

efficient reasoning.420

Kang et al. (2025) improves reasoning efficiency421

by compressing the reasoning process. Yu et al.422

(2025) trains models by collecting variable-length423

CoT reasoning data with both long and short rea-424

soning, thereby experimenting with reduced infer-425

ence tokens. Munkhbat et al. (2025); Yeo et al.426

(2025); Xia et al. (2025) collect short CoT data427

by reducing redundant reasoning steps after full-428

length reasoning.429

5.3 Prompt Compression430

As language models increase in parameter scale,431

their capabilities also grow stronger, enabling many432

tasks to achieve better results merely by chang-433

ing the model’s input, such as RAG (Lewis et al.,434

2020) and few-shot learning (Wang et al., 2020).435

As prompts become longer, resource consumption436

increases significantly. Li et al. (2023) proposed437

evaluating token importance by calculating token438

perplexity in context to compress the input.439

Building on this foundation, Jiang et al. (2023)440

proposed a mixed coarse-grained and fine-grained441

compression method. Jiang et al. (2024) extended442

this work by introducing a task-aware prompt com-443

pression method that incorporates conditional infor-444

mation from the query when calculating perplexity.445

Pan et al. (2024) transformed token compression446

into a binary classification problem, utilizing BERT447

models for compression.448

6 Conclusion449

We propose the Conditional Token Selection (CTS)450

method, which utilizes a fine-tuned Reference451

Model to calculate conditional perplexity differ-452

Table 5: Comparison of Different Methods Across Vary-
ing Ratios. Cell values are shown as: Absolute Value
(Corresponding Ratio).

Ratio Base +RM +Conditional Proposed

0.9 5023 5597 4563 5012
0.8 2510 2992 5001 4703
0.7 2511 2369 2883 3310
0.6 2270 2167 1952 3787
0.5 1998 2036 1787 2036

ences for each token in long CoT data, identifying 453

the most critical thinking tokens for deriving cor- 454

rect answers. By applying flexible compression ra- 455

tios, our method compresses CoT reasoning data to 456

enable more efficient training while maintaining the 457

model’s reasoning capabilities and ensuring output 458

efficiency. Extensive experiments across various 459

LLMs and tasks validate the effectiveness of CTS. 460

Comprehensive ablation studies also demonstrate 461

the importance of each component in our method. 462

Impressively, our approach achieved up to a 10% 463

improvement in accuracy while reducing reason- 464

ing tokens by 6% (Qwen2.5-14B-Instruct model on 465

AIME24 with an actual compression ratio of 0.87). 466

For inference efficiency, we achieved a maximum 467

reduction of 75.8% in reasoning tokens with only 468

a 5% accuracy drop (Qwen2.5-14B-Instruct model 469

on GPQA Diamond with an actual compression 470

ratio of 0.58). 471

Additionally, the RM trained on valuable reason- 472

ing tokens can function as a standalone model for 473

other methods requiring assessment of reasoning 474

token importance. This work contributes to making 475

powerful reasoning capabilities more accessible 476

in resource-constrained environments and opens 477

new directions for developing efficient reasoning 478

models. 479

Limitation 480

First, our approach is constrained by data limita- 481

tions, as the quantity of valuable reasoning tokens 482

used for training the Reference Model is insuffi- 483

cient for broader token importance assessment ca- 484

pabilities, especially in specialized domains like 485

code-related problems. Resource constraints also 486

prevented experiments with larger models such as 487

32B and 72B variants. 488

Second, our method focuses primarily on com- 489

pressing existing reasoning patterns rather than de- 490

veloping new reasoning strategies, and requires 491
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high-quality reasoning datasets which may not be492

available for all domains or tasks. The token im-493

portance evaluation, while effective, remains an494

approximation of each token’s true contribution to495

the reasoning process.496

Third, very high compression ratios may affect497

the interpretability of reasoning chains for human498

readers, potentially limiting their educational or ex-499

planatory value in applications where transparency500

is important. Additionally, while we demonstrate501

effectiveness across several reasoning benchmarks,502

these may not fully represent the complexity and503

diversity of real-world reasoning tasks.504

Ethical Statement505

The datasets used in our experiments are publicly506

available, English-labeled, and privacy-compliant,507

with all research artifacts licensed for permissi-508

ble use. Our methodology adheres to ACL ethi-509

cal guidelines. However, while our approach en-510

hances reasoning efficiency, it may also accelerate511

AI deployment in sensitive areas without proper512

safeguards and reduce transparency in decision-513

making. We stress the need for responsible use,514

prioritizing transparency, fairness, and accountabil-515

ity—particularly in explainability-critical applica-516

tions, where lower compression ratios may be nec-517

essary to preserve interpretability. In our humble518

opinion, we have not discerned any potential social519

risks.520
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A Prompt Template 683

A.1 Prompt Template For Training 684

Supervised Fine Tune

Given the following problem, solve it step
by step.

QUESTION: {question}

<think> {thought_process} </think>

{Final Answer}
685
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A.2 Prompt Template for Obtaining686

High-Quality Corpus687

Compress the given reasoning steps to short
expressions, and such that you (Deepseek)
can understand reasoning and reconstruct it
as close as possible to the original.
Unlike the usual text compression, I need
you to comply with the 5 conditions below:

1. You can ONLY remove unimportant
words.
2. Do not reorder the original words.
3. Do not change the original words.
4. Do not use abbreviations or emojis.
5. Do not add new words or symbols.

Compress the origin aggressively by
removing words only. Compress the origin
as short as you can, while retaining as much
information as possible. If you understand,
please compress the following reasoning
steps:

{reasoning_steps}

The compressed reasoning steps are:

688

B Additional Experimental Results689

Below we present the results of different compres-690

sion methods on Llama3.1-8B-Instruct model.691
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Table 6: Experimental results of various compression methods on Llama3.1-8B, showing accuracy, average
reasoning CoT tokens, and compression ratio (actual ratio).

Methods Ratio (Actual)
MATH500 AIME24 GPQA Diamond

Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓ Accuracy ↑ Tokens ↓

Original 1.0 65.0

TokenSkip

0.9(0.88) 56.4 11985 0 27882 35.8 17846
0.8(0.80) 51.2 13145 3.3 30443 30.3 17960
0.7(0.71) 44.6 14354 3.3 34249 27.7 19265
0.6(0.62) 32.4 15453 0 23319 29.7 20800
0.5(0.50) 23.3 16013 0 22318 26.7 22010

CTS

0.9(0.87) 60.6 12047 3.3 29144 32.3 18503
0.8(0.81) 58.4 12134 6.7 24906 40.4 18981
0.7(0.74) 55.0 9987 3.3 25933 32.3 16571
0.6(0.66) 50.8 2808 0 3781 26.7 3492
0.5(0.58) 45.5 2625 0 3478 29.2 3080
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