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ABSTRACT

Spiking Neural Networks (SNNs) are a promising research direction for build-
ing power-efficient information processing systems, especially for temporal tasks
such as speech recognition. In SNNs, delays refer to the time needed for one
spike to travel from one neuron to another. These delays matter because they
influence the spike arrival times, and it is well-known that spiking neurons re-
spond more strongly to coincident input spikes. More formally, it has been shown
theoretically that plastic delays greatly increase the expressivity in SNNs. Yet,
efficient algorithms to learn these delays have been lacking. Here, we propose a
new discrete-time algorithm that addresses this issue in deep feedforward SNNs
using backpropagation, in an offline manner. To simulate delays between con-
secutive layers, we use 1D convolutions across time. The kernels contain only
a few non-zero weights – one per synapse – whose positions correspond to the
delays. These positions are learned together with the weights using the recently
proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated
our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spik-
ing Speech Commands (SSC) and its non-spiking version Google Speech Com-
mands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We
used feedforward SNNs with two or three hidden fully connected layers, and
vanilla leaky integrate-and-fire neurons. We showed that fixed random delays
help and that learning them helps even more. Furthermore, our method outper-
formed the state-of-the-art in the three datasets without using recurrent connec-
tions and with substantially fewer parameters. Our work demonstrates the po-
tential of delay learning in developing accurate and precise models for temporal
data processing. Our code is based on PyTorch / SpikingJelly and available at:
https://github.com/Thvnvtos/SNN-delays

1 INTRODUCTION

Spiking neurons are coincidence detectors (König et al., 1996; Rossant et al., 2011): they respond
more when receiving synchronous, rather than asynchronous, spikes. Importantly, it is the spike ar-
rival times that should coincide, not the spike emitting times – these times are different because prop-
agation is usually not instantaneous. There is a delay between spike emission and reception, called
delay of connections, which can vary across connections. Thanks to these heterogeneous delays,
neurons can detect complex spatiotemporal spike patterns, not just synchrony patterns (Izhikevich,
2006) (see Figure 1).
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In the brain, the delay of a connection corresponds to the sum of the axonal, synaptic, and den-
dritic delays. It can reach several tens of milliseconds, but it can also be much shorter (1 ms or
less) (Izhikevich, 2006). For example, the axonal delay can be reduced with myelination, which
is an adaptive process that is required to learn some tasks (see Bowers (2017) for a review). In
other words, learning in the brain can not be reduced to synaptic plasticity. Delay learning is also
important.

A certain theoretical work has led to the same conclusion: Maass and Schmitt demonstrated, using
simple spiking neuron models, that a SNN with k adjustable delays can compute a much richer class
of functions than a threshold circuit with k adjustable weights (Maass & Schmitt, 1999).

Finally, on most neuromorphic chips, synapses have a programmable delay. This is the case for Intel
Loihi (Davies et al., 2018), IBM TrueNorth (Akopyan et al., 2015), SpiNNaker (Furber et al., 2014)
and SENeCA (Yousefzadeh et al., 2022).

All these points have motivated us and others (see related works in the next section) to propose delay
learning rules. Here, we show that delays can be learned together with the weights, using backpropa-
gation, in arbitrarily deep SNNs. More specifically, we first show that there is a mathematical equiv-
alence between 1D temporal convolutions and connection delays. Thanks to this equivalence, we
then demonstrate that the delays can be learned using Dilated Convolution with Learnable Spacings
(Khalfaoui-Hassani et al., 2023a;b), which was recently proposed for another purpose, namely to
increase receptive field sizes in non-spiking 2D CNNs for computer vision. In practice, the method
is fully integrated with PyTorch and leverages its automatic differentiation engine.
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Figure 1: Coincidence detection: we consider two neurons N1 and N2 with the same positive synap-
tic weight values. N2 has a delayed synaptic connection denoted d21 of 8ms, thus both spikes from
spike train S1 and S2 will reach N2 quasi-simultaneously. As a result, the membrane potential of
N2 will reach the threshold ϑ and N2 will emit a spike. On the other hand, N1 will not react to these
same input spike trains.

2 RELATED WORK

2.1 DEEP LEARNING FOR SPIKING NEURAL NETWORKS

Recent advances in SNN training methods like the surrogate gradient method (Neftci et al., 2018;
Shrestha & Orchard, 2018) and the ANN2SNN conversion methods (Bu et al., 2022; Deng & Gu,
2021; Han et al., 2020) made it possible to train increasingly deeper spiking neural networks. The
surrogate gradient method defines a continuous relaxation of the non-smooth spiking nonlinearity:
it replaces the gradient of the Heaviside function used in the spike-generating process with a smooth
surrogate gradient that is suitable for optimization. On the other hand, the ANN2SNN methods
convert conventional artificial neural networks (ANNs) into SNNs by copying the weights from
ANNs while trying to minimize the conversion error.

Other works have explored improving the spiking neurons using inspiration from biological mech-
anisms or techniques used in ANNs. The Parametric Leaky Integrate-and-Fire (PLIF) (Fang et al.,
2021a) incorporates learnable membrane time constants that could be trained jointly with synaptic
weights. Bellec et al. (2018) were the first to propose a method for dynamically adapting firing
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thresholds in deep (recurrent) SNNs, Hammouamri et al. (2022) also proposes a method to dynam-
ically adapt firing thresholds in order to improve continual learning in SNNs. Spike-Element-Wise
ResNet (Fang et al., 2021b) addresses the problem of vanishing/exploding gradient in the plain Spik-
ing ResNet caused by sigmoid-like surrogate functions and successfully trained the first deep SNN
with more than 150 layers. Spikformer (Zhou et al., 2023) adapts the softmax-based self-attention
mechanism of Transformers (Vaswani et al., 2017) to a spike-based formulation. Other recent works
like SpikeGPT (Zhu et al., 2023) and Spikingformer (Zhou et al., 2023) also proposes spike-based
transformer architectures. These efforts have resulted in closing the gap between the performance
of ANNs and SNNs on many widely used benchmarks.

2.2 DELAYS IN SNNS

Few previous works considered learning delays in SNNs. Wang et al. (2019) proposed a similar
method to ours in which they convolve spike trains with an exponential kernel so that the gradient
of the loss with respect to the delay can be calculated. However, their method is used only for a
shallow SNN with no hidden layers.

Other methods like Grimaldi & Perrinet (2022; 2023); Zhang et al. (2020); Taherkhani et al. (2015)
also proposed learning rules developed specifically for shallow SNNs with only one layer. Hazan
et al. (2022) proposed to learn temporal delays with Spike Timing Dependent Plasticity (STDP) in
weightless SNNs. Han et al. (2021) proposed a method for delay-weight supervised learning in op-
tical spiking neural networks. Patiño-Saucedo et al. (2023) proposed a method for deep feedforward
SNNs that uses a set of multiple fixed delayed synaptic connections for the same two neurons before
pruning them depending on the magnitude of the learned weights.

To the best of our knowledge, SLAYER (Shrestha & Orchard, 2018) and Sun et al. (2022; 2023b;a)
(which are based on SLAYER) are the only ones to learn delays and weights jointly in a deep
SNN. However, unless a Spike Response Model (SRM) (Gerstner, 1995) is used, the gradient of
the spikes with respect to the delays is numerically estimated using finite difference approximation,
and we think that those gradients are not precise enough as we achieve similar performance in our
experiments with fixed random delays (see Table 2 and Figure 4).

We propose a control test that was not considered by the previous works and that we deem necessary:
the SNN with delay learning should outperform an equivalent SNN with fixed random and uniformly
distributed delays, especially with sparse connectivity.

3 METHODS

3.1 SPIKING NEURON MODEL

The spiking neuron, which is the fundamental building block of SNNs, can be simulated using
various models. In this work, we use the Leaky Integrate-and-Fire model (Gerstner & Kistler, 2002),
which is the most widely used for its simplicity and efficiency. The membrane potential u(l)

i of the
i-th neuron in layer l follows the differential equation:

τ
du

(l)
i

dt
= −(u

(l)
i (t)− ureset) +RI

(l)
i (t) (1)

where τ is the membrane time constant, ureset the potential at rest, R the input resistance and
I
(l)
i (t) the input current of the neuron at time t. In addition to the sub-threshold dynamics, a neuron

emits a unitary spike S
(l)
i when its membrane potential exceeds the threshold ϑ, after which it is

instantaneously reset to ureset. Finally, the input current I(l)i (t) is stateless and represented as the
sum of afferent weights W (l)

ij multiplied by spikes S(l−1)
j (t):

I
(l)
i (t) =

∑
j

W
(l)
ij S

(l−1)
j (t) (2)
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We formulate the above equations in discrete time using Euler’s method approximation, and using
ureset = 0 and R = τ .

u
(l)
i [t] = (1− 1

τ
)u

(l)
i [t− 1] + I

(l)
i [t] (3)

I
(l)
i [t] =

∑
j

W
(l)
ij S

(l−1)
j [t] (4)

S
(l)
i [t] = Θ(ul

i[t]− ϑ) (5)

We use the surrogate gradient method (Neftci et al., 2018) and define Θ′(x) ≜ σ′(x) during the
backward step, where σ(x) is the surrogate arctangent function (Fang et al., 2021a).

Input spike trains

Time

Equivalent Kernel
Representation

Figure 2: Example of one neuron with 2 afferent synaptic connections, convolving K1 and K2 with
the zero left-padded S1 and S2 is equivalent to following Equation 6

3.2 SYNAPTIC DELAYS AS A TEMPORAL CONVOLUTION

In the following, for clarity, we assume one synapse only between pairs of neurons (modeled with
a kernel containing only one non-zero element). Generalization to multiple synapses (kernels with
multiple non-zero elements) is trivial and will be explored in the experiments.

A feed-forward SNN model with delays is parameterized with W = (w
(l)
ij ) ∈ R and D = (d

(l)
ij ) ∈

R+, where the input of neuron i at layer l is

I
(l)
i [t] =

∑
j

w
(l)
ij S

(l−1)
j [t− d

(l)
ij ] (6)

We model a synaptic connection from neuron j in layer l − 1 to neuron i in layer l which have a
synpatic weight w(l)

ij and delay d
(l)
ij as a one dimensional temporal convolution (see Figure 2) with

kernel k(l)ij as follows:

∀n ∈ J0, ... Td − 1K :

k
(l)
ij [n] =

{
w

(l)
ij if n = Td − d

(l)
ij − 1

0 otherwise
(7)

where Td is the kernel size or maximum delay + 1. Thus we redefine the input I(l)i in Equation 6 as
a sum of convolutions:

I
(l)
i =

∑
j

k
(l)
ij ∗ S(l−1)

j (8)

We used a zero left-padding with size Td−1 on the input spike trains S so that I[0] does correspond
to t = 0. Moreover, a zero right-padding could also be used, but it is optional; it could increase the
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expressivity of the learned delays with the drawback of increasing the processing time as the number
of time-steps after the convolution will increase.

To learn the kernel elements positions (i.e., delays), we use the 1D version of DCLS (Khalfaoui-
Hassani et al., 2023a) with a Gaussian kernel (Khalfaoui-Hassani et al., 2023b) centered at Td −
d
(l)
ij − 1, where d

(l)
ij ∈ J0, Td − 1K, and of standard deviation σ

(l)
ij ∈ R∗, thus we have:

∀n ∈ J0, ... Td − 1K :

k
(l)
ij [n] =

w
(l)
ij

c
exp

−1

2

(
n− Td + d

(l)
ij + 1

σ
(l)
ij

)2
 (9)

With

c = ϵ+

Td−1∑
n=0

exp

−1

2

(
n− Td + d

(l)
ij + 1

σ
(l)
ij

)2
 (10)

a normalization term and ϵ = 1e − 7 to avoid division by zero, assuming that the tensors are in
float32 precision. During training, d(l)ij are clamped after every batch to ensure their value stays
in J0, ... Td − 1K.

The learnable parameters of the 1D DCLS layer with Gaussian interpolation are the weights wij , the
corresponding delays dij , and the standard deviations σij . However, in our case, σij are not learned,
and all kernels in our model share the same decreasing standard deviation, which will be denoted
as σ. Throughout training, we exponentially decrease σ as our end goal is to have a sparse kernel
where only the delay position is non-zero and corresponds to the weight.

The Gaussian kernel transforms the discrete positions of the delays into a smoother kernel (see
Figure 5), which enables the calculation of the gradients ∂L

∂d
(l)
ij

.

By adjusting the parameter σ, we can regulate the temporal scale of the dependencies. A small value
for σ enables the capturing of variations that occur within a brief time frame. In contrast, a larger
value of σ facilitates the detection of temporal dependencies that extend over longer durations. Thus,
σ tuning is crucial to the trade-off between short-term precision and long-term dependencies.

We start with a high σ value and exponentially reduce it throughout the training process, after each
epoch, until it reaches its minimum value of 0.5 (Fig. 3). This approach facilitates the learning of
distant long-term dependencies at the initial time. Subsequently, when σ has a smaller value, it
enables refining both weights and delays with more precision, making the Gaussian kernel more
similar to the discrete kernel that is used at inference time. As we will see later in our ablation study
(Section 4.3), this approach outperforms a constant σ.

Indeed, the Gaussian kernel is only used to train the model; when evaluating on the validation or
test set, it is converted to a discrete kernel as described in Equation 7 by rounding the delays. This
permits to implement sparse kernels for inference which are very useful for uses on neuromorphic
hardware, for example, as they correspond to only one synapse between pairs of neurons, with the
corresponding weight and delay.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We chose to evaluate our method on the SHD (Spiking Heidelberg Digits) and SSC (Spiking Speech
Commands)/GSC (Google Speech Commands v0.02) datasets (Cramer et al., 2022), as they require
leveraging temporal patterns of spike times to achieve a good classification accuracy, unlike most
computer vision spiking benchmarks. Both spiking datasets are constructed using artificial cochlear
models to convert audio speech data to spikes; the original audio datasets are the Heidelberg Dataset
(HD) and the GSC v0.02 Dataset (SC) (Warden, 2018) for SHD and SSC, respectively.

The SHD dataset consists of 10k recordings of 20 different classes that consist of spoken digits
ranging from zero to nine in both English and German languages. SSC and GSC are much larger
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(a) Initial Delays

(c) Final delays

(b) Intermediate
delays

(d) Final delays
        after rounding

Figure 3: This figure illustrates the evolution of the same delay kernels for an example of eight
synaptic connections of one neuron throughout the training process. The x-axis corresponds to
time, and each kernel is of size Td = 25. And the y-axis is the synapse id. (a) corresponds to
the initial phase where the standard deviation of the Gaussian σ is large (Td

2 ), allowing to take into
consideration long temporal dependencies. (b) corresponds to the intermediate phase, (c) is taken
from the final phase where σ is at its minimum value (0.5) and weight tuning is more emphasized.
Finally, (d) represents the kernel after converting to the discrete form with rounded positions.

datasets that consist of 100k different recordings. The task we consider on SSC and GSC is the
top one classification on all 35 different classes (similar to Cramer et al. (2022); Bittar & Garner
(2022)), which is more challenging than the original key-word spotting task on 12 classes, proposed
in Warden (2018).

For the two spiking datasets, we used spatio-temporal bins to reduce the input dimensions. Input
neurons were reduced from 700 to 140 by binning every 5 neurons; as for the temporal dimension,
we used a discrete time-step ∆t = 10 ms and a zero right-padding to make sure all recordings in
a batch have the same time duration. As for the non-spiking GSC, we used the Mel Spectrogram
representation of the waveforms with 140 frequency bins and approximately 100 timesteps to remain
consistent to the input sizes used in SSC.

We used a very simple architecture: a feedforward SNN with two or three hidden fully connected
layers. Each feedforward layer is implemented using a DCLS module where each synaptic con-
nection is modeled as a 1D temporal convolution with one Gaussian kernel element (as described
in Section 3.2), followed by batch normalization, a LIF module (as described in Section 3.1) and
dropout. Table 1 lists the values of some hyperparameters used for the three datasets (for more
details, refer to the code repository).

Table 1: Network parameters for different datasets

Dataset # Hidden Layers # Hidden size τ (ms) Maximum Delay(ms) Dropout rate

SHD 2 256 10.05∗ 250 0.4
SSC/GSC 2 or 3 512 15 300 0.25

*We found that a LIF with quasi-instantaneous leak τ = 10.05 (since ∆t = 10) is better than using a
Heaviside function for SHD.
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The readout layer consists of nclasses LIF neurons with an infinite threshold (where nclasses is 20 or
35 for SHD and SSC/GSC, respectively). Similar to Bittar & Garner (2022), the output outi[t] for
every neuron i at time t is

outi[t] = softmax(u(r)
i [t]) =

eu
(r)
i [t]∑nclasses

j=1 eu
(r)
j [t]

(11)

where u
(r)
i [t] is the membrane potential of neuron i in the readout layer r at time t.

The final output of the model after T time-steps is defined as

ŷi =

T∑
t=1

outi[t] (12)

We denote the batch size by N and the ground truth by y. We calculate the cross-entropy loss for
one batch as

L =
1

N

N∑
n=1

− log(softmax(ŷyn
[n])) (13)

The Adam optimizer (Kingma & Ba, 2017) is used for all models and groups of parameters with
base learning rates lrw = 0.001 for synaptic weights and lrd = 0.1 for delays. We used a one-cycle
learning rate scheduler (Smith & Topin, 2018) for the weights and cosine annealing (Loshchilov &
Hutter, 2017) without restarts for the delays learning rates. Our work is implemented1 using the
PyTorch-based SpikingJelly(Fang et al., 2020; 2023) framework.

4.2 RESULTS

We compare our method (DCLS-Delays) in Table 2 to previous works on the SHD, SSC, and GSC-
35 (35 denoting the 35 classes harder version) benchmark datasets in terms of accuracy, model size,
and whether recurrent connections or delays were used.

The reported accuracy of our method corresponds to the accuracy on the test set using the best-
performing model on the validation set. However, since there is no validation set provided for SHD
we use the test set as the validation set (similar to Bittar & Garner (2022)). The margins of error are
calculated at a 95% confidence level using a t-distribution (we performed ten and five experiments
using different random seeds for SHD and SSC/GSC, respectively).

Our method outperforms the previous state-of-the-art accuracy on the three benchmarks (with a
significant improvement on SSC and GSC) without using recurrent connections (apart from the self-
recurrent connection of the LIF neuron), with a substantially lower number of parameters, and using
only vanilla LIF neurons. Other methods that use delays do have a slightly lower number of param-
eters than we do, yet we outperform them significantly on SHD, while they didn’t report any results
on the harder benchmarks SSC/GSC. Finally, by increasing the number of hidden layers, we found
that the accuracy plateaued after two hidden layers for SHD and three for SSC/GSC. Furthermore,
we also evaluated a model (Dense Conv Delay) that uses standard dense convolutions instead of the
DCLS ones. This corresponds conceptually to having a fully connected SNN with all possible delay
values as multiple synaptic connections between every pair of neurons in successive layers. This led
to worse accuracy (partly due to overfitting) than DCLS. The fact that DCLS outperforms a standard
dense convolution, although DCLS is more constrained and has fewer parameters, is remarkable.

4.3 ABLATION STUDY

In this section, we conduct control experiments aimed at assessing the effectiveness of our delay
learning method. The model trained using our full method will be referred to as Decreasing σ
(specifically, we use the 2L-1KC version), while Constant σ will refer to a model where the standard
deviation σ is constant and equal to the minimum value of 0.5 throughout the training. Additionally,

1Our code is available at: https://github.com/Thvnvtos/SNN-delays

7

https://github.com/Thvnvtos/SNN-delays


Published as a conference paper at ICLR 2024

Table 2: Classification accuracy on SHD, SSC and GSC-35 datasets

Dataset Method Rec. Delays #Params Top1 Acc.

SHD

EventProp-GeNN (Nowotny et al., 2022) ✓ ✕ N/a 84.80±1.5%
Cuba-LIF (Dampfhoffer et al., 2022) ✓ ✕ 0.14M 87.80±1.1%
Adaptive SRNN (Yin et al., 2021) ✓ ✕ N/a 90.40%
SNN+Delays (Patiño-Saucedo et al., 2023) ✕ ✓ 0.1M 90.43%
TA-SNN (Yao et al., 2021) ✕ ✕ N/a 91.08%
STSC-SNN (Yu et al., 2022) ✕ ✕ 2.1M 92.36%
Adaptive Delays (Sun et al., 2023b) ✕ ✓ 0.1M 92.45%
DL128-SNN-Dloss (Sun et al., 2023a) ✕ ✓ 0.14M 92.56%
Dense Conv Delays (ours) ✕ ✓ 2.7M 93.44%
RadLIF (Bittar & Garner, 2022) ✓ ✕ 3.9M 94.62%
DCLS-Delays (2L-1KC) ✕ ✓ 0.2M 95.07±0.24%

SSC
Recurrent SNN (Cramer et al., 2022) ✓ ✕ N/a 50.90 ± 1.1%
Heter. RSNN (Perez-Nieves et al., 2021) ✓ ✕ N/a 57.30%
SNN-CNN (Sadovsky et al., 2023) ✕ ✓ N/a 72.03%
Adaptive SRNN (Yin et al., 2021) ✓ ✕ N/a 74.20%
SpikGRU (Dampfhoffer et al., 2022) ✓ ✕ 0.28M 77.00±0.4%
RadLIF (Bittar & Garner, 2022) ✓ ✕ 3.9M 77.40%
Dense Conv Delays 2L (ours) ✕ ✓ 10.9M 77.86%
Dense Conv Delays 3L (ours) ✕ ✓ 19M 78.44%
DCLS-Delays (2L-1KC) ✕ ✓ 0.7M 79.77±0.09%
DCLS-Delays (2L-2KC) ✕ ✓ 1.4M 80.16±0.09%
DCLS-Delays (3L-1KC) ✕ ✓ 1.2M 80.29±0.06%
DCLS-Delays (3L-2KC) ✕ ✓ 2.5M 80.69±0.21%

GSC-35
MSAT (He et al., 2023) ✕ ✕ N/a 87.33%
Dense Conv Delays 2L (ours) ✕ ✓ 10.9M 92.97%
Dense Conv Delays 3L (ours) ✕ ✓ 19M 93.19%
RadLIF (Bittar & Garner, 2022) ✓ ✕ 1.2M 94.51%
DCLS-Delays (2L-1KC) ✕ ✓ 0.7M 94.91±0.09%
DCLS-Delays (2L-2KC) ✕ ✓ 1.4M 95.00±0.06%
DCLS-Delays (3L-1KC) ✕ ✓ 1.2M 95.29±0.11%
DCLS-Delays (3L-2KC) ✕ ✓ 2.5M 95.35±0.04%

nL-mKC stands for a model with n hidden layers and kernel count m, where kernel count denotes the number
of non-zero elements in the kernel. “Rec.” denotes recurrent connections.

Fixed random delays will refer to a model where delays are initialized randomly and not learned,
while only weights are learned. Meanwhile, Decreasing σ - Fixed weights will refer to a model
where the weights are fixed and only delays are learned with a decreasing σ. Finally, No delays
denotes a standard SNN without delays. To ensure equal parameter counts across all models (for
fair comparison), we increased the number of hidden neurons in the No delays - wider case, and
increased the number of layers instead in the No delays - deeper case. Moreover, to make the
comparison even fairer, all models have the same initialization for weights and, if required, the same
initialization for delays.

We compared the five different models as shown in Figure 4a. The models with delays (whether fixed
or learned) significantly outperformed the No delays model both on SHD (FC) and SSC (FC); for us,
this was an expected outcome given the temporal nature of these benchmarks, as achieving a high
accuracy necessitates learning long temporal dependencies. However, we didn’t expect the Fixed
random delays model to be almost on par with models where delays were trained, with Decreasing
σ model only slightly outperforming it.

To explain this, we hypothesized that a random uniformly distributed set of delay positions will
likely cover the whole temporal range. This hypothesis is plausible given the fact that the number of
synaptic connections vastly outnumbers the total possible discrete delay positions for each kernel.
Therefore, as the number of synaptic connections within a layer grows, the necessity of moving
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(b) S: Sparse connections

Figure 4: Barplots of test accuracies on SHD and SSC datasets for different models. With (a): fully
connected layers (FC) and (b): sparse synaptic connections (S). Reducing the number of synaptic
connections of each neuron to ten for both SHD and SSC.

delay positions away from their initial state diminishes. And only tuning the weights of this set of
fixed delays is enough to achieve comparable performance to delay learning.

In order to validate this hypothesis, we conducted a comparison using the same models with a sig-
nificantly reduced number of synaptic connections. We applied fixed binary masks to the network’s
synaptic weight parameters. Specifically, for each neuron in the network, we reduced the number of
its synaptic connections to ten for both datasets (except for the No delays model, which has more
connections to ensure equal parameter counts). This corresponds to 96% sparsity for SHD and 98%
sparsity for SSC. With the number of synaptic connections reduced, it is unlikely that the random
uniform initialization of delay positions will cover most of the temporal range. Thus, specific long-
term dependencies will need to be learned by moving the delays.

The test accuracies corresponding to this control test are shown in Figure 4b. It illustrates the
difference in performance between the Fixed random delays model and the Decreasing/Constant σ
models in the sparse case. This enforces our hypothesis and shows the need to perform this control
test for delay learning methods. Furthermore, it also indicates the effectiveness of our method.

In addition, we also tested a model where only the delays are learned while the synaptic weights are
fixed (Decreasing σ - Fixed weights). It can be seen that learning only the delays gives acceptable
results in the fully connected case (in agreement with Grappolini & Subramoney (2023)) but not
in the sparse case. To summarize, it is always preferable to learn both weights and delays (and
decreasing σ helps). If one has to choose, then learning weights is preferable, especially with sparse
connectivity.

5 CONCLUSION

In this paper, we propose a method for learning delays in feedforward spiking neural networks using
dilated convolutions with learnable spacings (DCLS). Every synaptic connection is modeled as a 1D
Gaussian kernel centered on the delay position, and DCLS is used to learn the kernel positions (i.e.
delays). The standard deviation of the Gaussians is decreased throughout training, such that at the
end of training, we obtain a SNN model with one discrete delay per synapse, which could potentially
be compatible with neuromorphic implementations. We show that our method outperforms the
state-of-the-art in the temporal spiking benchmarks SHD and SSC and the non-spiking benchmark
GSC-35 while using fewer parameters than previous proposals. Finally, we also perform a rigorous
control test that demonstrates the effectiveness of our delay learning method. Future work will
investigate the use of other kernel functions than the Gaussian or applying our method to other
network architectures like convolutional networks.
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A APPENDIX

A.1 SUPPLEMENTARY FIGURE

Input spike trains Convolution Kernel

Time Time

Figure 5: Gaussian convolution kernels for N synaptic connections. The Gaussians are centered on
the delay positions, and the area under their curves corresponds to the synaptic weights wi. On the
right, we see the delayed spike trains after being convolved with the kernels. (the −1 was omitted
for figure clarity).
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