
Published as a conference paper at ICLR 2024

LEARNING 3D PARTICLE-BASED SIMULATORS
FROM RGB-D VIDEOS

William F. Whitney∗, Tatiana Lopez-Guevara∗, Tobias Pfaff, Yulia Rubanova,
Thomas Kipf, Kimberly Stachenfeld, Kelsey R. Allen
Google DeepMind

ABSTRACT

Realistic simulation is critical for applications ranging from robotics to animation.
Traditional analytic simulators sometimes struggle to capture sufficiently realistic
simulation which can lead to problems including the well known “sim-to-real”
gap in robotics. Learned simulators have emerged as an alternative for better
capturing real-world physical dynamics, but require access to privileged ground
truth physics information such as precise object geometry or particle tracks. Here
we propose a method for learning simulators directly from observations. Visual
Particle Dynamics (VPD) jointly learns a latent particle-based representation of
3D scenes, a neural simulator of the latent particle dynamics, and a renderer that
can produce images of the scene from arbitrary views. VPD learns end to end
from posed RGB-D videos and does not require access to privileged information.
Unlike existing 2D video prediction models, we show that VPD’s 3D structure
enables scene editing and long-term predictions. These results pave the way for
downstream applications ranging from video editing to robotic planning.

1 INTRODUCTION

Physical simulation underpins a diverse set of fields including robotics, mechanical engineering, game
development, and animation. In each of these fields realistic simulation is critical and substantial
effort goes into developing simulation engines that are specialized for the unique requirements and
types of physical dynamics of that field (Todorov et al., 2012; OpenCFD, 2021; Coumans & Bai,
2016). Obtaining sufficiently realistic simulators for a particular scene requires additional work (Shao
et al., 2021), including the tuning of simulation assets like object models and textures, as well as the
physical properties that will lead to realistic dynamics (Qiao et al., 2022). Even with significant effort
and tuning, it is often impossible to perfectly capture the physics of any particular real-world scene,
as sub-scale variations in surfaces and textures can have significant impacts on how objects behave.

Over the last few years, learned simulators have emerged as an alternative to carefully hand-crafted
analytic simulators. They can be trained to correct the outputs of analytic solvers (Kloss et al., 2022;
Ajay et al., 2018), or trained to mimic analytic physics directly, but at significantly faster speeds
(Pfaff et al., 2021; Kochkov et al., 2021). Learned simulators can capture many different dynamics,
ranging from liquids and soft materials to articulated and rigid body dynamics (Li et al., 2019; Allen
et al., 2023). When researchers can provide state-based information for a real-world dynamic scene
(the positions and poses of objects over time), learned simulators can mimic real-world physics better
than careful tuning with analytic simulators (Allen et al., 2022).

However, learned simulators still require access to privileged “ground truth” physics information to
be trained. The vast majority require near-perfect state estimation – the poses, exact 3D shapes, and
positions – of all objects, at all time points, in a scene. Recent attempts to relax these requirements
still require access to other forms of supervised information such as object segmentation masks
(Driess et al., 2022; Riochet et al., 2020; Shi et al., 2022).

While there exist many video prediction models that do not require such privileged information (Finn
et al., 2016; Clark et al., 2019; Ho et al., 2022), these models are not simulators. Unlike simulators,
2D video models do not operate in 3D, do not generally support rendering a dynamic scene from a

∗Equal contribution. Correspondence to {wwhitney,zepolitat}@google.com.

1

Published as a conference paper at ICLR 2024

Dynamics

Input ImagesWorld Encoded Points Predicted Points Rendered Images

Visual Particle Dynamics - VPD

Encoder Renderer

t+1X ,Zt+1X ,Ztt

Figure 1: A diagram of our model. The encoder maps multiple RGB-D cameras into a latent point
cloud representation using a convolutional encoder. The dynamics model, a hierarchical graph neural
network, learns to transform this point cloud to a new point cloud on the next time-step. The 3D
latent point cloud is decoded into an image, supporting an image-based loss that can be used to train
the entire pipeline end-to-end.

new viewpoint, and do not allow 3D editing of scenes to produce new simulation outcomes. Recent
works such as NeRF-dy Li et al. (2021a) which represent scenes as single latent vectors can support
rendering from new viewpoints, but cannot support 3D editing. Similarly, recent advances in 3D
neural representations for dynamic scenes (Li et al., 2023; Du et al., 2021c), can provide beautiful
reconstructions of single videos without access to privileged physics information, but these models
are not simulators either. Once trained, they represent a recording of a specific scene, and cannot be
applied to a new scene without re-training.

Here we ask whether we can learn simulators from multi-view RGB-D observations alone. Our
model, Visual Particle Dynamics (VPD), jointly learns a latent particle-based 3D scene representation,
a predictive model represented as a hierarchical graph neural network on that representation, and a
conditional renderer that can produce new images from arbitrary views. It is trained end to end on
multi-view RGB-D data without object masks or 2D segmentation models, and has the following
desirable properties which we demonstrate:

• VPD supports 3D state editing. Its explicit 3D representation can be edited, simulated, and
re-rendered from novel views.

• VPD supports multi-material simulation. We demonstrate results for multi-body rigid
dynamics and soft-body interactions.

• VPD outperforms 2D video models in data efficiency. With as few as 16 trajectories, VPD
can learn a simulator for a simple dynamic scene.

To our knowledge, Visual Particle Dynamics is the first fully learned simulator that supports these
crucical properties, and which does not require access to any privileged supervised information for
training or inference.

2 RELATED WORK

Given the importance of realistic simulation across a wide variety of subject areas (robotics, graphics,
engineering), there are a variety of techniques for learning predictive models with different capabilities,
each with different assumptions about input data requirements. We outline the general classes of
learned predictive models below, and summarize the capabilities of key related works in Table 1.

Learned simulators Learned simulators aim at replacing analytic simulators with a learned function
approximator. This means they are generally trained on state information from a ground truth solver,
and often cannot be used directly on visual input data. Depending on the application, state can be
represented as point clouds (Li et al., 2019; Sanchez-Gonzalez et al., 2020; Mrowca et al., 2018),
meshes (Pfaff et al., 2021; Allen et al., 2023), or as SDFs (Le Cleac’h et al., 2023). Learned
function approximators such as graph neural networks (GNNs) (Battaglia et al., 2018), continuous
convolutional kernels (Ummenhofer et al., 2019), or MLPs (Li et al., 2021a), can then be used to
model the evolution of the state through time. Our work goes beyond these approaches by never
requiring access to the states directly, instead learning from RGB-D videos.

2

Published as a conference paper at ICLR 2024

Method Supervision Sensors Capabilities

No states No masks Type Editable Rendering 3D Prediction

NeRF-dy (Li et al., 2021a) ✓ ✓ multi RGB ✗ ✓ ✗ ✓
3D-IntPhys (Xue et al., 2024) ✗ ✗ multi RGB ✓ ✓ ✓ ✓
RoboCraft (Shi et al., 2022) ✓ ✗ multi RGB-D ✓ ✗ ✓ ✓
SlotFormer (Wu et al., 2023) ✓ ✓ RGB ✗ ✓ ✗ ✓
Driess et al. (2022) ✓ ✗ multi RGB ✓ ✓ ✓ ✓
Dynibar (Li et al., 2023) ✓ ✓ multi RGB ✗ ✓ ✓ ✗
Ours ✓ ✓ multi RGB-D ✓ ✓ ✓ ✓

Table 1: Comparison of input data requirements and capabilities of prior methods. VPD learns a full
dynamics prediction model with 3D bias, editability, and free-camera rendering, without requiring
state information or segmentation masks, but does require multiple RGB-D sensors.

Bridging perception and simulators Several approaches rely on these learned simulators as a
dynamics backbone, but attempt to learn perceptual front-ends that can provide point clouds or mesh
information from video. Some attempts rely on pre-trained dynamics models which were trained
with ground truth state information (Guan et al., 2022; Wu et al., 2017), and learn a mapping from
perception to 3D state. Learning this mapping for a general setting is a very hard task, and hence most
methods only work for simple scenes, and/or require object segmentation masks to seperate the scene
into components (Janner et al., 2019; Driess et al., 2022; Shi et al., 2022; Xue et al., 2024). In contrast,
VPD removes the requirement of either having a pre-trained simulator or object segmentation masks
and trains end to end with pixel supervision. NeRF-dy (Li et al., 2021a) reverses this formula, first
learning a vector representation of scenes, then learning a dynamics model on this representation. We
describe NeRF-dy in Section 4.1 and compare to its choices in Section 5.

Analytic simulators and system identification Another strategy for constructing a simulation
of a real-world scene involves modeling the scene in an analytic simulator, then fitting the physics
coefficients of this simulator to match the real data as well as possible. Differentiable simulators (Hu
et al., 2020b; Freeman et al., 2021; Du et al., 2021a; Howell et al., 2022; Macklin, 2022) enable the
use of gradients in system identification; however, this typically requires ground-truth object positions.
Recent work (Qiao et al., 2022; Le Cleac’h et al., 2023) combines implicit 3D object representations
with a differentiable simulator to support capturing object models from the real world. Methods for
inferring articulated models from video (Heiden et al., 2022) similarly depend on pre-trained instance
segmentation models and have only been applied to simple settings. Overall these methods can give
good results, but are limited by the types of physics representable in the analytic simulator and the
complexities of state estimation.

Unsupervised video models Video models do not require object segmentation masks or pre-trained
dynamics models. Some methods directly model dynamics in pixel-space (Finn et al., 2016; Clark
et al., 2019; Ho et al., 2022), but often fail to model dynamics reliably. Other models attempt to
discover object representations (Du et al., 2021b), or more recently, simultaneously learn object
representations and dynamics (Watters et al., 2017; Qi et al., 2020; Wu et al., 2023). Given the breadth
of existing video data, large-scale learning with transformers and diffusion models has shown promise
for enabling long-horizon planning in robotics (Hafner et al., 2023; Du et al., 2023). However, these
learned models are not simulators. Those that learn dynamics do not generally operate in 3D and
they do not support compositional editing. VPD possesses both of these qualities while still learning
from fully unsupervised data.

Video radiance fields A class of methods extend NeRF (Mildenhall et al., 2020) with a temporal
axis, to encode individual videos in neural network weights (Li et al., 2021b; Du et al., 2021c; Li et al.,
2023). Unlike the methods above however, these approaches encode a single video trajectory and do
not support predicting videos, or generalizing across different videos. In contrast, VPD supports both.

3 VISUAL PARTICLE DYNAMICS

A Visual Particle Dynamics (VPD) model consists of three components: (1) an encoder which maps
a set of one or more RGB-D images into a 3D latent particle representation; (2) a dynamics model

3

Published as a conference paper at ICLR 2024

(a) Encode (b) Process (c) Decode

Figure 2: Hierarchical message passing. (a) The particle representing the past timestep t− 1 (blue),
and particles representing the present state t (green) send their features and relative positions to the
abstract nodes (red). (b) The abstract nodes perform multi-step message passing amongst themselves.
(c) The abstract nodes send updates back to the present-time particle nodes.

which predicts the evolution of these particles through time; and (3) a renderer which decodes the
particles into an image. See Figure 1 for an overview of our method. All of these components are
trained together and end to end via supervision on a multi-step pixel-wise loss.

3.1 ENCODER

The encoder converts a set of RGB-D images, corresponding to a short video captured from one or
more views, into a set of latent particles for each time-step. First, we unproject each pixel into 3D
space using each camera’s transformation matrix and per-pixel depth value to obtain the 3D location
Xij . Next, we process the input RGB image using a UNet (Ronneberger et al., 2015) to produce
per-pixel latent features Zij . Latent features and 3D locations for each pixel (i, j) are combined to
form a latent particle (Xij ,Zij) as shown in Figure 7.

This procedure produces a set of particles P for each image. If more than one camera is present, we
can simply merge all the particle sets from each time-step. The UNet shares its weights between all
cameras and does not receive camera or depth inputs. In our experiments, we filter the set of particles
to those that lie within a designated area containing the objects of interest, which we refer to as the
workspace (see Table 3). We then subsample the particles uniformly at random to limit the memory
footprint of the network. See Appendix D for results with varying numbers of particles.

3.2 DYNAMICS MODEL

The dynamics model predicts the set of particles at time t + 1 given the current and previous
particles using a GNN, i.e. P̂t+1 = D(Pt−1,Pt), and is applied recursively to make multi-step
particle rollouts. Prior work on GNN-based dynamics models generally assumes ground truth
correspondences between points at different time-steps (Sanchez-Gonzalez et al., 2020), and use
those to compute e.g. velocities. However, correspondences are not available when working with
video, and can be unreliable or unspecified (e.g. objects moving out of frame). We therefore decide to
entirely side-step finding correspondences. Instead, we connect latent points of different time-steps in
a graph based on spatial proximity and rely on the network to learn to correctly propagate information.

Graph construction The most straightforward approach to construct such a graph would be to
connect each point inPt to all points inPt−1 within a certain spatial distance. However, working with
videos requires a large number of points (∼ 214) to accurately represent the textures and geometry
of a complex scene. Directly connecting these point clouds would generate an excessive number of
graph edges. Instead, we employ a hierarchical 2-layer GNN (Cangea et al., 2018; Ying et al., 2018;
Lee et al., 2019) to sparsify connections. Inspired by Hu et al. (2020a); Fortunato et al. (2022), we
construct a sparse layer of “abstract nodes” A, whose locations are chosen uniformly at random from
Pt, thereby roughly matching its point density. Each point in Pt−1,Pt connects to up to two nearest
abstract nodes within a small spatial radius rs, enabling the abstract nodes to convey information
over time. The abstract nodes are connected with bidirectional edges to other abstract nodes within a
larger radius ras , as well as reciprocal edges to each connected node in Pt (Figure 2). Communicating
through this sparse set of abstract nodes significantly reduces the number of necessary edges. Details
on graph construction and parameters can be found in Appendix A.

Message passing To compute the dynamics update, we use multigraph message passing with an
Encode-Process-Decode architecture (Pfaff et al., 2021). The multigraph G is defined by the particle

4

Published as a conference paper at ICLR 2024

nodes VPt−1 ,VPt , abstract nodes VA, and edges EPt−1→A, EPt→A, EA→A, EA→Pt between these
node sets. We encode latent features Z from the image encoder into the nodes VP , and the distance
vector between node positions into the edges. Nodes VA do not receive any initial features.

Next, we perform one round of message passing on all nodes VP to abstract nodes VA, followed by
K = 10 message passing steps between abstract nodes, and one message passing step back from
VA to VPt . Finally, the features in VPt are decoded to the difference vectors (∆x̂,∆ẑ) in position,
and latent state. These vectors are added to the particle state Pt to form the estimate P̂t+1 used for
rendering. Since the renderer operates on relative locations, the predicted ∆x̂ directly corresponds to
objects moving in the predicted video, while changes in ∆ẑ allows for predicting appearance changes
caused by motion, such as a shadow moving beneath a flying object.

Algorithm 1 in Appendix A details the entire message passing algorithm. Following Pfaff et al.
(2021), we use MLPs for encoding, decoding and message passing, with separate sets of weights for
different edge and node types. See Appendix A for all architectural details.

3.3 RENDERER

We use a neural renderer similar to (Xu et al., 2022; Guan et al., 2022) to render a particle set into an
image from a desired camera. Following the volumetric rendering formulation from Mildenhall et al.
(2020), rendering a given ray consists of querying a neural network at a set of locations along the ray
to get an RGB color and a density, then compositing these values along the ray to get the color of a
single pixel. The renderer R predicts a color ĉ given a particle set and the origin and direction (o,d)
of this ray: ĉ = R(P, (o,d)). For VPD, and similar to Xu et al. (2022), the input features at each
query location are computed from a set of k approximate nearest neighbor particles (see Appendix I).

Let px be the location of a particle and pz be its latent features, with N (x) the set of particles
close to a location x. We compute the features at a location x using a kernel k to be fk(x) =∑

pi∈N (x) k(x, p
i
x) · piz . For VPD, we use a set of concentric annular kernels defined by a radius r

and a bandwidth b:

kr,b(x,x
′) = exp

{
−
(∥x′ − x∥2 − r)

2

b2

}
(1)

This kernel weights points more highly when they are at a distance r from the query location. We
concatenate the computed features using a set of m kernels k1 . . . km, giving the final feature vector

f(x) = fk1(x)⊕ . . .⊕ fkm(x) (2)

where ⊕ denotes concatenation. The network then predicts the color ĉ and density σ̂ at a location x
and a viewing direction u as (ĉ, σ̂) = MLP(f(x)⊕ γ(u)), where γ is NeRF positional encoding.

3.4 TRAINING

Given a multi-view RGB-D video, we train VPD by encoding the first two timesteps into particle sets
(P1,P2). We then recursively apply the dynamics model P̂t+1 = D(Pt−1,Pt) to generate particle
sets (P̂3, . . . , P̂2+T) for some prediction length T . The complete loss is the expected squared pixel
reconstruction error over timesteps t = 3...2 + T and ray indices i across all cameras:

LVPD =
1

T

2+T∑
t=3

E
i

[
R
(
P̂t, (ot

i,d
t
i)
)
− cti

]2
(3)

In our training we use 256 sampled rays per timestep to evaluate this expectation.

4 EXPERIMENTAL SETUP

We test VPD on three datasets which stress different simulator capabilities. The MuJoCo block
dataset (Todorov et al., 2012) is visually simple but tests a model’s ability to accurately represent
crisp rigid contact (Allen et al., 2022). The Kubric datasets (Greff et al., 2022) encompass a range of
visual complexities, from Platonic solids to densely-textured scans of real objects and backgrounds,

5

Published as a conference paper at ICLR 2024

Input frames Prediction t
0 1 3 9 17 24 31

Camera angle

0 30 60 90 120 150 180

MuJoCo
Block

Deformable
Collision

Kubric
MOVi-C

Deformable
Collision
t=15

Figure 3: Top: Example rollouts from VPD on different datasets. Bottom: Viewpoint generalization;
VPD is unrolled for 15 time steps, and the latent state is rendered from novel camera positions. See
our video site and Appendix F, Appendix G for more rollouts.

and tests a model’s ability to represent multi-object interactions in varied visual environments. The
deformable dataset evaluates a model’s ability to represent the dynamics of non-rigid objects with a
large number of degrees of freedom. In all cases, the models are provided with RGB-D views from
multiple cameras. For evaluation, 16 trajectories are chosen at random and held out from each dataset,
and we report each model’s PSNR (with SSIM in Appendix E) (Wang et al., 2004). The PSNR (Peak
Signal to Noise Ratio) correlates with the mean squared error between the ground truth and predicted
images, and therefore captures both deviations in the dynamics and effects of blurring.

MuJoCo block contains 256 trajectories, each with 64 time-steps, of a single block being tossed onto
a plane with randomized initial height, velocity, and angular velocity. RGB-D images are generated
from 16 128× 128 pixel resolution cameras arranged in a half sphere.

Kubric Movi-A/B/C (Greff et al., 2022) includes trajectories of 3 objects (from a set of 3, 10, and
1033 different possible shapes, respectively) being thrown onto a grey/coloured/textured floor with
randomized initial velocities and sizes. We re-generate the dataset to include camera information.
RGB-D images are rendered from 9 cameras of 128× 128 pixel resolution arranged in a half dome.
350 trajectories are used for training, each with 96 time-steps.

Deformables is a dataset of deformable objects, simulated and rendered using Blender (Blender,
2018) softbody physics. In Deformable Block a cube is dropped onto the floor with randomized
initial position and orientation. In Deformable Multi, one object out of a set of five (Cube, Cylinder,
Donut, Icosahedron, Rubber duck) is dropped onto the floor with randomized initial position and
orientation. In Deformable Collision two objects are dropped and collide onto the floor. All datasets
consist of 256 training trajectories with 80 time steps. The scene is rendered using four cameras of
128× 128 pixel resolution arranged in a half dome.

4.1 BASELINES

We provide two major baseline comparisons to highlight the importance of VPD’s compositional 3D
architecture: SlotFormer and NeRF-dy. SlotFormer is a compositional 2D object-based video model
(Wu et al., 2023) and NeRF-dy is a non-compositional 3D prediction model (Li et al., 2021a).

SlotFormer is a 2D video prediction model that operates over a slot-based latent representation (Wu
et al., 2023). It uses a slot-based image encoder, SAVI (Kipf et al., 2021), and models how these slots

6

https://sites.google.com/view/latent-dynamics

Published as a conference paper at ICLR 2024

Figure 4: Video image quality as a function of rollout duration. VPD captures sharp detail, leading to
high PSNR in the first steps of prediction. Low PSNR at the first steps indicates blurry reconstructions.

change over time with a transformer. In contrast to VPD, SlotFormer operates on single-view RGB
camera data. To provide SlotFormer with the same data that VPD has access to, we treat each view
in the multi-view dataset as a separate trajectory for training. Matching prior work, we condition
SlotFormer on 6 history time-steps rather than 2 used for our model. We adapt the open-source code
to run on the Kubric, MuJoCo and Deformable datasets.

NeRF-dy (Li et al., 2021a) is the most similar work to ours, with its ability to use multi-view video
data and perform novel view synthesis. Since neither the code nor the datasets from that work are
available, we perform ablations to VPD that roughly capture the key architectural differences between
VPD and NeRF-dy as highlighted below:

1. NeRF-dy uses a global latent vector per scene. Instead of a 3D latent representation, NeRF-
dy uses a single latent vector z to represent the scene. This affects both the dynamics model
(implemented as an MLP on z instead of a GNN) and the renderer (globally conditioned
on z). We implement this as an ablation, “Global”, which uses the image and camera
orientation encoder from Li et al. (2021a), and models the dynamics using an MLP rather
than a GNN. As in VPD, the encoder and the dynamics are trained jointly.

2. NeRF-dy uses sequential training of the encoder/decoder followed by dynamics. NeRF-
dy pretrains the encoder and decoder then holds their weights fixed and trains the dynamics
model with supervision in the latent space. We use this training scheme in conjunction with
the VPD particle-based architecture to investigate the significance of end-to-end training.
This ablation is referred to as “Sequential”.

More implementation details for these baselines are available in Appendix B and Appendix C.

5 RESULTS

Across the MuJoCo, Kubric, and Deformables datasets, we find that VPD produces detailed, phys-
ically consistent long-horizon rollouts (Section 5.1), supports compositional 3D editing and re-
rendering of novel scenes (Section 5.2), and can learn simple dynamics with as few as 16 trajectories
and 1-2 RGB-D cameras (Section 5.3). All metrics and visuals are from the held-out set. Videos of
rollouts for each model, as well as generalization experiments, can be found on the project website.

5.1 VIDEO PREDICTION QUALITY

We first evaluate each learned simulator’s ability to generate long horizon video predictions. After
training, each model is rolled out to generate predicted videos for 32 timesteps into the future, which
are compared to the ground truth future frames. VPD performs consistently well across all three
datasets (Table 2) which is to be expected given the high quality qualitative rollouts (Figure 3). The
Global representation struggles to capture multi-object scenes, which can be seen in its lower scores
on the Kubric datasets and Deformable Collision. SlotFormer performs well on the solid-colored
rigid bodies it was designed for (MOVi-A/B), but struggles to represent detailed textures (MOVi-C) or
deformable objects when they come into contact with the floor. VPD is able to successfully represent
both multi-object collision dynamics and object shape changes. Kubric’s scenes pose a challenge for

7

https://github.com/pairlab/SlotFormer
https://sites.google.com/view/latent-dynamics

Published as a conference paper at ICLR 2024

Initial
Trajectory

Deleted
Floor

t

Deleted
Cylinder

Deleted
Sphere

2 3015 50

Figure 5: A demonstration of deleting various elements from our model’s 3D scene representation on
the Deformable Collision dataset before running the learned simulator forward for 50 time steps.

VPD because they have a huge diameter (100 meters); we find VPD predictions can be improved
slightly by bounding the input scene (Appendix H).

VPD’s prediction quality also degrades gracefully as a function of rollout step (Figure 4). VPD is
able to represent significantly more detail than SlotFormer, as evinced by its high PSNR scores in
the first few rollout steps. Meanwhile VPD’s predictions at 32 steps are often better than the Global
ablation at any step, and it remains much more accurate than the Sequential ablation at 32 steps.

These results highlight the ability of VPD’s latent 3D particle representation to precisely capture a
scene, and the locality bias of the VPD dynamics to preserve scene coherence over time.

5.2 EDITABILITY AND NOVEL VIEW GENERALIZATION

3D point cloud editing When using a learned simulator with a 3D scene representation, it is
possible to directly interrogate and even edit the scene before simulating. This capability could
support many applications such as adding 3D assets to a 3D scene estimated from a set of sensors,
tweaking object shapes, deleting objects, or moving them around.

We demonstrate 3D editing and simulation with VPD on a held-out test trajectory from the de-
formables collision dataset. Figure 5 visualizes the latent particles by applying the VPD renderer to
each particle location to get a color, then plotting the colored points in 3D. In the original trajectory, a
deformable pink ball and red cylinder fall onto a floor, squishing together into a pink and red lump.
In order to edit the points corresponding to each object (ball, cylinder, floor) we roughly cluster the
particles by position on the first frame. If we delete the pink ball from the inferred 3D scene, the
cylinder still falls onto the ground. However, the top of the cylinder is no longer squished, since the
pink ball did not come into contact with it. If we delete the cylinder, the pink ball falls all the way
to the floor without deforming. If we delete the floor, the two objects both fall at a steady rate and
neither one deforms since they both fall at the same acceleration. In all cases, this is roughly the
behavior we would expect from the true underlying physics.

Method MuJoCo Deformable Kubric

Block Block Multi Collision MOVi-A MOVi-B MOVi-C

SlotFormer 32.541 28.673 27.545 23.145 30.934 28.810 22.367
Global 29.601 26.969 26.636 22.394 27.604 26.201 20.068
Sequential 25.858 30.854 31.256 27.911 28.613 25.921 21.854
VPD (Ours) 33.076 31.520 31.221 28.725 29.014 27.194 23.142

Table 2: PSNR scores averaged over 32 rollouts steps (higher is better).

8

Published as a conference paper at ICLR 2024

(a) Dataset sizes (b) Input views (c) Estimated depth

Figure 6: Video prediction results with various changes to the MuJoCo dataset that ablate different
aspects of the input data. (a) VPD works effectively across a range of dataset sizes, whereas baselines
require more data to achieve good results. (b) VPD can learn as well conditioned on one RGB-D
camera as on 9 RGB-D cameras. (c) VPD is able to sustain reasonably high prediction quality even
with an imprecise learned depth model (blue line).

Novel viewpoint generalization Operating on 3D latent point clouds also allows us to render
high-quality images from novel viewpoints, even when training on very few camera poses. In Figure
3, we show that VPD trained on the “Deformable Collision” dataset with only 4 fixed camera angles
has no trouble generalizing to novel camera positions in a ring around the object. This sparse setting
is challenging for e.g. NeRF-based methods which have weaker spatial biases, and impossible for 2D
predictive models like SlotFormer. See Appendix Figure 9 for more examples.

5.3 DATA SPARSITY

In many applications, it might not be possible to obtain large numbers of RGB-D images of a
particular scene at each timestep. We therefore investigate how well VPD performs when it has
access to a very small number of trajectories or input views, and when it must use depth information
predicted by a monocular depth estimation network.

Different numbers of trajectories We generate datasets for MuJoCo Block of sizes 16, 32, 64,
128 and 256 trajectories, and evaluate each model’s video prediction quality on the same set of 16
held-out trajectories (Figure 6a). Surprisingly, we find that even with as few as 16 distinct training
trajectories, VPD achieves a PSNR of 31.22 which is only 1.85 points less than VPD trained with
256 distinct trajectories, and comparable in performance to baseline models trained with 4-8× as
much data. This suggests that VPD could be suitable for applications in robotics where collecting
many trajectories can be expensive.

Different numbers of views We train models on MuJoCo Block with between 1 and 9 input
views. With fewer views, VPD will have significant uncertainty about the object’s shape (for example,
it cannot see the back of the block). Despite this challenge, even with a single RGB-D camera VPD
performs comparably to when it has 9 RGB-D cameras. While we are unsure of how VPD performs
so well with a single RGB-D camera, one hypothesis is that since VPD’s dynamics are trained end
to end with the encoder, the dynamics could compensate for the particles that are missing due to
self-occlusion. Future work will investigate whether these results apply to more complex datasets,
and whether separately training the dynamics and the encoder erases this effect.

Predicted depth While we use VPD with ground-truth depth information throughout our experi-
ments, we provide a preliminary experiment using estimated depth instead. We extend the encoder’s
UNet with an additional output feature plane and interpret its value as pixel-wise metric depth. This
depth prediction is supervised with an MSE loss on the training images and receives gradients via
end to end training. On the MuJoCo Block dataset, VPD makes predictions of reasonable quality
even with imprecise depth estimates (Figure 6c).

6 DISCUSSION

Visual Particle Dynamics (VPD) represents a first step towards simulators that can be learned from
videos alone. By jointly learning a 3D latent point cloud representation, dynamics model for evolving
that point cloud through time, and renderer for mapping back to image space, VPD does not require

9

Published as a conference paper at ICLR 2024

state information in the form of object masks, object geometry, or object translations and rotations.
Since VPD encodes particles in 3D, it also supports novel view generation and video editing through
direct point cloud interactions. To our knowledge, this combination of 3D interpretability, editability,
and simulation is unique among predictive models learned without physical supervision.

However, VPD also has limitations. As evidenced in our videos and figures, VPD struggles with
blurring over very long rollouts, a common challenge in video prediction. It also requires access
to RGB-D videos, which are not always available. While we showed a proof-of-concept for VPD
working with predicted depth instead of ground-truth depth, this still requires a depth signal for
training which may not always be available. Future work will need to investigate the potential
application of pre-trained depth models with fine-tuning to a particular scenario.

We believe that VPD’s ability to learn simulators directly from sensors has several important implica-
tions. For robotics, VPD could be used to learn a simulator directly from real data without requiring
a separate state estimation step. This could then support much more effective sim-to-real transfer by
learning a simulator that better reflects the robot’s environment. For graphics, VPD could support new
applications such as realistic video editing for systems where it is difficult to hand-code simulators.
Overall, VPD opens new directions for how simulators can be learned and deployed when no analytic
simulator is available.

REFERENCES

A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez. Augmenting
physical simulators with stochastic neural networks: Case study of planar pushing and bouncing.
In International Conference on Intelligent Robots and Systems (IROS), 2018.

Kelsey R Allen, Tatiana Lopez-Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous,
rigid contact dynamics. In 6th Annual Conference on Robot Learning, 2022.

Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks. In International Conference on Learning Representations, 2023.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Blender. Blender - a 3D modelling and rendering package. Blender Foundation, 2018. URL
http://www.blender.org.

Cătălina Cangea, Petar Velickovic, Nikola Jovanovic, Thomas Kipf, and Pietro Lio’. Towards
sparse hierarchical graph classifiers. ArXiv, abs/1811.01287, 2018. URL https://api.
semanticscholar.org/CorpusID:53219108.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets.
arXiv preprint arXiv:1907.06571, 2019.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. arXiv preprint arXiv:2202.11855, 2022.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Everett Spielberg, Daniela Rus, and
Wojciech Matusik. Diffpd: Differentiable projective dynamics with contact. ArXiv, abs/2101.05917,
2021a. URL https://api.semanticscholar.org/CorpusID:231627650.

Yilun Du, Kevin Smith, Tomer Ulman, Joshua Tenenbaum, and Jiajun Wu. Unsupervised discovery
of 3d physical objects from video. Neural Information Processing Systems, 2021b.

10

http://www.blender.org
https://api.semanticscholar.org/CorpusID:53219108
https://api.semanticscholar.org/CorpusID:53219108
http://pybullet.org
https://api.semanticscholar.org/CorpusID:231627650

Published as a conference paper at ICLR 2024

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance
flow for 4d view synthesis and video processing. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society, 2021c.

Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B Tenenbaum, Dale Schu-
urmans, and Pieter Abbeel. Learning universal policies via text-guided video generation. URL
https://arxiv. org/abs/2302.00111, 2023.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. Advances in neural information processing systems, 29, 2016.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets, 2022.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation. ArXiv, abs/2106.13281,
2021. URL https://api.semanticscholar.org/CorpusID:235420616.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J.
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: A scalable
dataset generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3749–3761, June 2022.

Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics
grounding with particle-driven neural radiance fields, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Eric Heiden, Ziang Liu, Vibhav Vineet, Erwin Coumans, and Gaurav S. Sukhatme. Inferring articu-
lated rigid body dynamics from rgbd video. 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 8383–8390, 2022. URL https://api.semanticscholar.
org/CorpusID:247594294.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Taylor A. Howell, Simon Le Cleac’h, J. Zico Kolter, Mac Schwager, and Zachary Manchester.
Dojo: A differentiable simulator for robotics. ArXiv, abs/2203.00806, 2022. URL https:
//api.semanticscholar.org/CorpusID:247218588.

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds, 2020a.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. Difftaichi: Differentiable programming for physical simulation. ICLR, 2020b.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and Jiajun
Wu. Reasoning about physical interactions with object-oriented prediction and planning, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
learning from video. arXiv preprint arXiv:2111.12594, 2021.

11

https://api.semanticscholar.org/CorpusID:235420616
https://api.semanticscholar.org/CorpusID:247594294
https://api.semanticscholar.org/CorpusID:247594294
https://api.semanticscholar.org/CorpusID:247218588
https://api.semanticscholar.org/CorpusID:247218588
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106

Published as a conference paper at ICLR 2024

Alina Kloss, Stefan Schaal, and Jeannette Bohg. Combining learned and analytical models for
predicting action effects from sensory data. The International Journal of Robotics Research, 41(8):
778–797, 2022.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21), 2021.

Simon Le Cleac’h, Hong-Xing Yu, Michelle Guo, Taylor Howell, Ruohan Gao, Jiajun Wu, Zachary
Manchester, and Mac Schwager. Differentiable physics simulation of dynamics-augmented neural
objects. IEEE Robotics and Automation Letters, 8(5):2780–2787, 2023.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. ArXiv, abs/1904.08082,
2019. URL https://api.semanticscholar.org/CorpusID:119314157.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In International
Conference on Learning Representations, 2019.

Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. arXiv preprint arXiv:2107.04004, 2021a.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021b.

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural
dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4273–4284, 2023.

Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Confer-
ence (GTC).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. Advances in neural
information processing systems, 31, 2018.

OpenCFD. OpenFOAM CFD solver. www.openfoam.org, 2021.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Haozhi Qi, Xiaolong Wang, Deepak Pathak, Yi Ma, and Jitendra Malik. Learning long-term visual
dynamics with region proposal interaction networks. arXiv preprint arXiv:2008.02265, 2020.

Yi-Ling Qiao, Alexander Gao, and Ming C. Lin. Neuphysics: Editable neural geometry and physics
from monocular videos. In Conference on Neural Information Processing Systems (NeurIPS),
2022.

Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique
Izard, and Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics
reasoning, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Conference
on Machine Learning, pp. 8459–8468. PMLR, 2020.

12

https://api.semanticscholar.org/CorpusID:119314157
https://github.com/nvidia/warp
www.openfoam.org

Published as a conference paper at ICLR 2024

Han Shao, Tassilo Kugelstadt, Torsten Hädrich, Wojtek Palubicki, Jan Bender, Sören Pirk, and
Dominik L Michels. Accurately solving rod dynamics with graph learning. Advances in Neural
Information Processing Systems, 34:4829–4842, 2021.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects with graph networks, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2019.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. Advances in
neural information processing systems, 30, 2017.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
via visual de-animation. Advances in Neural Information Processing Systems, 30, 2017.

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
visual dynamics simulation with object-centric models, 2023.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neumann.
Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5438–5448, 2022.

Haotian Xue, Antonio Torralba, Josh Tenenbaum, Dan Yamins, Yunzhu Li, and Hsiao-Yu Tung.
3d-intphys: Towards more generalized 3d-grounded visual intuitive physics under challenging
scenes. Advances in Neural Information Processing Systems, 36, 2024.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. ArXiv, abs/1806.08804,
2018. URL https://api.semanticscholar.org/CorpusID:49420315.

Yanshu Zhang*, Shichong Peng*, Alireza Moazeni, and Ke Li. Papr: Proximity attention point
rendering. Advances in Neural Information Processing Systems, 2023.

13

https://api.semanticscholar.org/CorpusID:49420315

Published as a conference paper at ICLR 2024

Appendix

A VPD IMPLEMENTATION DETAILS

This section describes details of our VPD implementation. Dataset-specific hyperparameters can be
found in Table 3.

A.1 ARCHITECTURES

Encoder Figure 7 shows a schematic of the encoder network. The network uses a UNet architecture
(Ronneberger et al., 2015) with the following numbers of channels: (64, 128, 256, 512, 512, 256, 128,
64, 16). The network outputs a 16-dimensional feature vector Zij for each input pixel, which we
associate with the corresponding particle. When using the UNet for depth prediction, we add another
output channel (17 total) and take this channel to be a pixel-wise depth prediction; the predicted
depth is not included in the particle features Z. There is a ReLU activation between each layer
and no batch normalization. The UNet has a final softplus activation. The pixels from each image
are unprojected together into the world coordinate frame, cropped to only include locations in the
workspace (Table 3). They are then subsampled uniformly at random down to a set of 214 particles
representing a single time-step.

Dynamics model The dynamics model is a hierarchical message passing graph neural network
using MLPs for the node and edge encoders, updaters, and decoders. There is a separate set of
parameters for each type of {node, edge} {encoder, updater, decoder}. We use 10 steps of message
passing amongst the abstract nodes with un-tied weights at each message passing step. Each encoder
or updater MLP has shape (128, 128), the location decoder MLP has shape (128, 128, 128, 3), and
the feature decoder MLP has shape (128, 128, 128, 16), where 3 is the location delta and 16 is the
particle feature delta. The updater MLPs use an output layer norm and an output residual connection.

The outputs of this GNN are one 3-d location delta vector and one 16-d feature delta vector for each
current-timestep particle. The location delta goes into a tanh function and then is scaled by the
“location scale” from Table 3, which helps early in training by preventing particles from moving
unrealistically fast. The particles at the next timestep are produced by applying these deltas.

Renderer The renderer is based on the jaxnerf codebase with accelerated Pallas CUDA kernels
for nearest-neighbor finding. We use 16 approximate nearest neighbors for computing the features
for input to the NeRF MLPs, and the kernel parameters are in Table 3. We use two tiers of sampling
for NeRF rendering, a coarse layer with 128 sampling locations and no view directions and a fine
layer with 128 (coarse) + 256 (fine) sampling locations. The coarse and fine networks have 8 layers
of width 256 before concatenating view directions (if using), followed by 1 layer of width 128.
Skip connections are added to every 4th layer and ReLU activations are used throughout. We use
fourth-degree positional encodings on the view directions in the fine MLP.

A.2 TRAINING

During training, we roll out the model for T = 6 time steps. For each unrolled time step, we render
256 rays, and supervise on the corresponding ground truth pixel value as in Equation 3. We apply a
small amount of Gaussian noise centered at 0 and with sigma given by “location noise” in Table 3 to
the particle locations during training rollouts to improve robustness. We use a batch size of 16 split
across 16 GPUs. Optimization uses the Adam optimizer (Kingma & Ba, 2014) with a learning rate
that begins at 3e− 4, then decays by a factor of 3 at 100K and 300K updates. Models are trained for
400K updates.

A.3 HIERARCHICAL MESSAGE PASSING

The hierarchical message algorithm is detailed in Algorithm 1. The initial features for the particle
nodes are the features predicted by the UNet encoder, and the initial feature for the edges is the 3D

14

https://github.com/google-research/google-research/tree/master/jaxnerf
https://jax.readthedocs.io/en/latest/pallas/index.html

Published as a conference paper at ICLR 2024

Parameter MuJoCo Deformable Kubric
rs 0.1 1.0 1.0
ras 0.3 3.0 3.0

Input views 1 4 9
Kernel radii (0.0, 0.05, 0.1, 0.5) (0.0, 0.5, 1.0, 4.0) (0.0, 0.1, 0.4, 2.0)

Kernel bandwidths (0.05, 0.05, 0.05, 0.5) (0.5, 0.5, 1.0, 4.0) (0.1, 0.2, 0.4, 2.0)
Location scale 0.1 0.5 0.5
Location noise 1e− 5 1e− 3 1e− 4

Near plane 0.3 9.0 0.5
Far plane 5.0 30 15

Workspace min [-1, -1, -1] [-8, -8, -2] [-10, -10, -10]
Workspace max [1, 1, 1] [8, 8, 8] [10, 10, 10]

Table 3: Hyperparameters for VPD by dataset

relative position between the start and end nodes. Abstract nodes start with no features, identified in
Algorithm 1 as ∅.

Algorithm 1: Hierarchical message passing
input :Typed graph G = (V, E)
/* Encode particle nodes and edges. */
VP ← EncodeNode(VP)
EP→A ← EncodeEdge(EP→A)

/* Update particle → abstract edges. */
EP→A ← UpdateEdge(EP→A,VP ,∅)

/* Update abstract nodes. */
VA ← UpdateNode(∅, EP→A)

/* Perform message passing among abstract nodes. */
for k = 1, . . . , K do
EA→A ← UpdateEdge(EA→A,VA,VA)
VA ← UpdateNode(VA, EA→A)

end
/* Update features of abstract → current particle nodes. */
EA→Pt ← UpdateEdge(EA→Pt ,VA,VPt)

/* Update current-time particle nodes. */
VPt ← UpdateNode(VPt , EA→Pt)

/* Decode predicted locations and features. */
∆X ← DecodeLocation(VPt)
∆Z ← DecodeFeature(VPt)

B SLOTFORMER TRAINING

We experimented with both the OBJ3D and CLEVRER hyperparameter configurations for all datasets,
and found the results from the OBJ3D configuration to be superior. These hyperparameters are in
Table 4.

Kubric datasets use 8 slots while the Mujoco and Deformable datasets use 4 slots (8 slots caused
instabilities in training). Kubric was also downsampled to 64 × 64 resolution for training due to
training stability challenges. MuJoCo and Deformables datasets were trained at 128× 128 resolution.

After training, the slots learned by SAVi are extracted for the training and validation datasets.
SlotFormer is then trained on these slot representations, using the hyperparameters in Table 5.

15

Published as a conference paper at ICLR 2024

VPD Encoder

xij

ziji,j

UNet

x ,zij

features

location

ij

RG
B

D
ep

th

unproject

i,j

3
16w

h

w

h

Figure 7: A diagram of the VPD Encoder. The encoder maps an RGB-D image into a latent point
cloud representation. Each pixel observed from a given camera is unprojected into 3D using the depth
information. The RGB image is fed into a UNet to produce per-pixel latent features.

Hyperparameter Setting
epochs 40

learning rate 1e− 4
gradient clip 0.05

history length 6
frame offset 1
batch size 64

slot mlp size 256
num iterations 2

encoder channels (3, 64, 64, 64, 64)
encoder ks 5

encoder out channels 128
decoder channels (128, 64, 64, 64, 64)

decoder resolution (8, 8)
decoder ks 5

predictor type transformer
pred norm first True

pred rnn True
pred num layers 2
pred num heads 4
pred ffn dim 128× 4

use post recon loss True
kld method none

post recon loss w 1
kld loss w 1e− 4

Table 4: SAVi training hyperparameters

C ABLATION IMPLEMENTATION DETAILS

C.1 SEQUENTIAL

Supervising the dynamics in the particle-based latent space is more complex than it is with the
NeRF-dy architecture, since particles have no correspondences across timesteps. To avoid the
correspondence issue, we randomly sample 214 3D locations in the scene’s workspace, then compute
the renderer input features at those points under (1) the particle cloud at the next timestep predicted
by the dynamics model and (2) the particle cloud from the encoder obtained from the set of RGB-

16

Published as a conference paper at ICLR 2024

Hyperparameter Setting
epochs Kubric: 15, Deformables: 80, MuJoCo: 80

learning rate 2e− 4
history length 6
sample frames 16 (10 rollout)
frame offset 1
batch size 64
slot size 128
t pe sin

d model 128
num layers 4
num heads 8
ffn dim 128× 4

norm first True
decoder channels (128, 64, 64, 64, 64)

decoder resolution (8, 8)
decoder ks 5

use img recon loss True
rollout length 10

slot recon loss w 1
img recon loss w 1

Table 5: SlotFormer training hyperparameters

D images at the next timestep. The loss is then the mean squared error between the features at
corresponding locations. This ensures that the dynamics model’s predictions lead to renderer input
features which are correct at all locations in the scene. In the limit of perfect predictions, this would
translate to correct reconstruction.

We find sequential training to be less robust than end-to-end training and needed to use lower learning
rates: 1e− 4 to start for both pre-training and dynamics training, decaying by a factor of 10 followed
by an additional factor of 3. We perform 100K steps of auto-encoder pre-training and 400K steps of
dynamics model training.

D SCALING WITH NUMBER OF POINTS

We find that VPD’s video quality increases as more particles are used to represent the scene. A greater
number of particles enables the model to represent details of geometry and textures.

Figure 8: Evaluating the performance of VPD with varying numbers of particles, measured as average
PSNR over a 32-step rollout. More particles result in consistently better performance.

17

Published as a conference paper at ICLR 2024

E SSIM RESULTS

SSIM is an alternative metric to PSNR for evaluating image similarity. It compares statistics of
windowed pixels and permits more blurring than the pixel-wise error of PSNR. Results are broadly
similar to scoring with PSNR, but with less discriminitive power due to SSIM’s insensitivity to detail.

Method MuJoCo Deformable Kubric

Block Block Multi Collision MOVi-A MOVi-B MOVi-C

SlotFormer 0.954 0.957 0.956 0.913 0.880 0.867 0.547
Global 0.954 0.936 0.932 0.885 0.848 0.846 0.529
Sequential 0.699 0.953 0.953 0.933 0.850 0.845 0.606
VPD (Ours) 0.960 0.957 0.953 0.939 0.857 0.859 0.703

Table 6: SSIM scores averaged over 32 rollouts steps (higher is better). Ties awarded within 0.01.

F RENDERING FROM NOVEL VIEWS

Since VPD contains a 3D representation of the scene and learns a ray-based renderer, we can render
novel views from camera positions not seen in training. Figure 9 shows an example of this for the
Deformable Collisions dataset on held-out trajectories.

Figure 9: Generalization over camera pose. A VPD model trained on Deformable Collision is rolled
out on the test set for 15 frames, and the final latent state is rendered from multiple camera positions
oriented in a ring around the objects. A video example of free camera movement can be found [here].

18

https://sites.google.com/view/latent-dynamics

Published as a conference paper at ICLR 2024

G ROLLOUT COMPARISONS BETWEEN VPD AND BASELINES

In each of these diagrams, the first two frames are ground-truth inputs to the models. SlotFormer is
conditioned on six frames, not two; the first four frames of SlotFormer conditioning are not shown.
All videos are from the held-out evaluation set.

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 10: Rollout comparison on MuJoCo Block dataset

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 11: Rollout comparison on Deformable Block dataset

19

Published as a conference paper at ICLR 2024

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D
Gr

ou
nd

 tr
ut

h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 12: Rollout comparison on the Deformable Multi dataset.

20

Published as a conference paper at ICLR 2024

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D
Gr

ou
nd

 tr
ut

h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 13: Rollout comparison on Deformable Collision dataset.

21

Published as a conference paper at ICLR 2024

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D
Gr

ou
nd

 tr
ut

h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 14: Rollout comparison on Deformable Collision dataset.

22

Published as a conference paper at ICLR 2024

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 15: Rollout comparison on Kubric MOVi-A dataset.

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 16: Rollout comparison on Kubric MOVi-B dataset.

23

Published as a conference paper at ICLR 2024

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

Sl
ot

Fo
rm

er
Gl

ob
al

Se
qu

en
tia

l
VP

D

Figure 17: Rollout comparison on Kubric MOVi-C dataset.

24

Published as a conference paper at ICLR 2024

H IMPROVING VPD RECONSTRUCTION QUALITY ON KUBRIC.

In the main text we use the Kubric dataset with the conventional camera setup, where the cameras
point sideways and cover the walls surrounding the scene. However, scenes with far-away objects are
generally challenging for NeRFs, as they require sampling points at lower resolution along the ray,
resulting in blurry reconstructions.

We generate a version of Kubric where the cameras are positioned higher and point downwards,
creating a bounded scene that is more suitable for NeRFs. Figure 18 demonstrates that the quality of
VPD reconstructions considerably improves on the updated camera setup. The objects are more crisp
and track the ground-truth object trajectory more accurately.

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

VP
D

(a) MOVi-A with high cameras

Gr
ou

nd
 tr

ut
h

Input t=0 Input t=1 t=3 t=9 t=17 t=24 t=31

VP
D

(b) MOVi-C with high cameras

Figure 18: VPD recontructions on Kubric with the modified camera setup.

25

Published as a conference paper at ICLR 2024

I FEATURE ENCODING EXPERIMENTS

The particle features from VPD resemble those used in PointNerf (Xu et al., 2022), although there
are some differences. PointNerf includes an extra feature MLP F (f i

k,x− pix). This MLP processes
nearby points (within a certain range k) to predict the feature pattern at a specific x. We experimented
with a modified version of VPD that uses a similar additional feature encoder F , but had to reduce
the number of prediction steps to T = 2 to fit in memory. We did not observe any significant benefits
when compared to the full VPD model, particularly when considering longer rollouts (Figure 19a).

Another variation of feature encoding is the normalization feature described in PAPR (Zhang* et al.,
2023). We explored a variation of VPD that normalizes the feature (Equation (1)) contributions with
respect to the relative distances between the query point x and a given nearby particle pix. Similarly,
we did not observe any notable advantages compared to the complete VPD model (Figure 19b).

(a) Feature encoding strategies on MuJoCo
Block.

(b) Feature normalization strategies on
MuJoCo Block.

26

	Introduction
	Related work
	Visual Particle Dynamics
	Encoder
	Dynamics model
	Renderer
	Training

	Experimental setup
	Baselines

	Results
	Video prediction quality
	Editability and novel view generalization
	Data sparsity

	Discussion
	VPD implementation details
	Architectures
	Training
	Hierarchical message passing

	SlotFormer training
	Ablation implementation details
	Sequential

	Scaling with number of points
	SSIM results
	Rendering from novel views
	Rollout comparisons between VPD and baselines
	Improving VPD reconstruction quality on Kubric.
	Feature Encoding Experiments

