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Abstract

We study causal effect estimation in a setting where the data are not i.i.d. (inde-
pendent and identically distributed). We focus on exchangeable data satisfying an
assumption of independent causal mechanisms. Traditional causal effect estimation
frameworks, e.g., relying on structural causal models and do-calculus, are typically
limited to i.i.d. data and do not extend to more general exchangeable generative
processes, which naturally arise in multi-environment data. To address this gap, we
develop a generalized framework for exchangeable data and introduce a truncated
factorization formula that facilitates both the identification and estimation of causal
effects in our setting. To illustrate potential applications, we introduce a causal
Pdlya urn model and demonstrate how intervention propagates effects in exchange-
able data settings. Finally, we develop an algorithm that performs simultaneous
causal discovery and effect estimation given multi-environment data.

1 Introduction

Inferring causal effects from observational data is a central task for scientific applications from health
and epidemiology to the social and behavioral sciences. Scientists aim to understand Nature’s mecha-
nisms to discover feasible intervention targets and estimate intervention effects. The existing causal
effect estimation theory is often formulated for structural causal models [Pearl, [2009], focusing on
the study of independent and identically distributed (i.i.d.) data. Indeed, the do-calculus [Pearl, 2012]]
and its extensions and applications (e.g., mediation analysis [Pearl, 2022], stochastic interventions
[Correa and Bareinboim, [2020]) developed in the i.i.d. framework has been widely used in practice.

A more recent line of work relaxes the i.i.d. assumption and considers causal inference under the
assumption of independent causal mechanisms (ICM) [Scholkopf et al.| [2012} [Pearl, 2009 |Guo et al.|
2023al], which postulates that distinct causal mechanisms of the true underlying generating process
do not inform or influence one another. The Causal de Finetti theorems of |Guo et al.|[2023a]] provide
a mathematical justification of the ICM assumption in exchangeable data-generation processes,
thus establishing a foundation for studying causality in exchangeable data. Exchangeable data
generation processes that adhere to the ICM principle are referred to as ICM generative processes, or
ICM-exchangeable data.

Guo et al. [2023a] showed that data from ICM generative processes, or more succinctly ICM-
exchangeable data, are more informative than i.i.d. data in that they often permit unique causal
structure identification in cases where i.i.d. data does not. In contrast, the present work focuses
on causal effect identification and estimation. Standard formalisms in the i.i.d. framework, e.g.,
using structural causal models and do-operators, do not apply in the exchangeable non-i.i.d. setting.
We study the meaning of interventions, feasible intervention targets, and finally causal effect
identification and estimation for ICM generative processes. In doing so, we make three contributions:
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Figure 1: A bivariate illustration demonstrates differences in causal effect between i.i.d. processes
and ICM-generative processes. Suppose G = X — Y. The hammer represents an intervention on
the closest node. (a): Data generated according to G under an i.i.d. process; (b): Data generated
under an ICM-generative process (using plate notation). Block A shows how P(Y |do(X)) differs
between the i.i.d. (a) and the exchangeable (b) case. Note that the causal effect under i.i.d. is a special
case of that under exchangeable processes with p(v) = 0(¢ = 1), for some value 5. Corollary
[T below justifies that we omit position indices from Block A in ICM-generative processes. Block
B shows the difference in intervention effect when conditioned on other observations, for i.i.d. (a)
and ICM-generative (b) processes. In the i.i.d. case (a), due to (Y1, X;7) L (Y3, X>), conditioning on
(X2, Y3) conveys no information on the prediction of the interventional effect on Y7. In contrast, for
an ICM-generative process (b), observing (X3, ¥2) does provide additional information about the
effect on Y7 when intervening on X;. Graph (c) illustrates the graph surgery performed on ICM(G)
(cf. Def. [7in Appendix [A). We observe that conditioning on a collider Y> provides additional
information about the effect on Y; when intervening on X;.

* Causal effect in ICM generative processes (Section [3): We establish the operational
meaning of interventions and the feasible intervention targets in ICM generative processes
that differ from the traditional framework in i.i.d. data.

* Our main causal effect identification and estimation theorem (Section [3.1) provides
an explicit truncated factorization formula for ICM generative processes that solves the
problems of identification and estimation of causal effects. In particular, we introduce a
causal Pélya urn model (Section [3.2) and show that the post-interventional distribution
changes when conditioning on other observations — a property that does not exist in i.i.d. data.

* Causal effect estimation in multi-environment data (Section [d): we connect ICM
processes with multi-environment data, showing that extending the causal framework to
exchangeable data does not necessarily mean a decrease of its ability in graphical identifica-
tion and effect estimation. Theorem 2} informally stated, shows that with no prior graphical
assumptions, data adhering to the ICM principle and generated by an exchangeable process
alone is sufficient for both graphical and effect identification. We developed a Do-Finetti
algorithm for multi-environment data, and empirically validate our results in Section 5]

Fig. [T]illustrates the main differences in causal effects between i.i.d. and ICM generative processes.

2 Preliminaries

Notation Denote X as a random variable with realization = with boldsymboled X as a set of random
variables with realizations x. Data generated by either i.i.d. or ICM generative processes is a sequence
of random variables X.,1, X..0, X..3, ..., where X..,, := (X1,p, ..., X4.n) and d denotes the number
of variable indices and n denotes the position index within a sequence. For example, X, denotes
the i-th random variable observed at the n-th position in a sequence. Often in this work, N denotes

the number of positions observed in a sequence and [N] := {1, ..., N} as the set of positive integers
less than or equal to N and [—S] denotes the set of positive integers less than equal to N excluding
values contained in S. To abbreviate notation, write X;,[n] := (Xi,- .-, Xi;n). For simplicity of

illustration, we use bivariate examples with X, Y,, as a pair of random variables observed at the n-th
position. Putting the bivariate notation in the above multivariate context, X, corresponds to X,,
and X»,,, corresponds to Y;, where the first index indicates different variables in the same position.
Denote uppercase P for probability distribution and lowercase p for probability density functions.



2.1 The Causal Framework in i.i.d. Data

Structural Causal Model [Peters et al., [2017} [Pearl, 2009} [Haavelmo et al., [1995| Wright, [1921]]
A structural causal model (SCM) M := (F, Py) consists of a set of structural assignments F :=
{f1,..., fa} such that X; := f;(PA;,U;),j = 1,...,d, where PA; C {Xq,..., Xq}\{X;} and
are often called as parents of X ;. The joint distribution Py over the noise or exogenous variables U
is assumed to be jointly independent. When such a condition is satisfied, the SCM is a Markovian
model that assumes the absence of unmeasured confounders. A graph G of an SCM is obtained by
creating one vertex X ; and drawing directed edges from each parent in PA; to X;. We assume G is
acyclic. Our lack of knowledge in noise variables Py and together with the structural assignments
F induces a joint distribution over the observable variables P(X1, ..., X). Such joint distribution
satisfies the Markov factorization property with respect to G:

d
P(Xy,..., Xq) = [[ P(X: | PAy), ¢))

i=1

Given two disjoint sets of variables X and Y, the causal effect of X on Y, denoted as P(Y|do(X)),
is defined with respect to modifications of an existing SCM (also known as graph surgery): for each
realization x of X, P(y|do(x)) gives the probability of Y = y induced by deleting from the SCM
all structural assignments corresponding to variables in X and substituting X = x in the remaining
equations. In Markovian models, given a graph, causal effect is identifiable via Eq. (2)):

P(Xy,..., Xaldo(X =x)) = [[ P(Xi[PA)|4_,. 2)
ZX1€X
where |x—x enforces X7, ..., X, to be consistent with realizations of X else Eq. takes value 0.

This principled approach is known as g-computation formula [Robins}, |1986|, truncated factorization
[Pearl, [2009] or manipulation theorem [Spirtes et al., [1993]]. Appendix E] details the standard
graphical terminology.

Independent Causal Mechanism (ICM) postulates how Markov factors (hereon referred to as
causal mechanisms) in Eq. should relate to each other. |Scholkopf et al.|[2012] and |Peters et al.
[2017]] express the insights as follows:

Causal mechanisms are independent of each other in the sense that a change in one mechanism
P(X; | PA;) does not inform or influence any of the other mechanisms P(X; | PA;), for i # j.

This notion of invariant, independent, and autonomous mechanisms has appeared in many forms
throughout the history of causality research: from early work led by [Haavelmo|[[1944]] and |/Aldrich
[1989] to |Pearl|[2009]. Studying properties of independent causal mechanisms rigorously demands a
statistical understanding of what such independence means between distributions. |Guo et al.[[2023a]
provides a statistical formalization of ICM in exchangeable data, thus providing necessary tools to
study causal framework in exchangeable data. The next section introduces relevant background.

2.2 The Causal Framework in Exchangeable Data

Definition 1 (Exchangeable Sequence) An exchangeable sequence of random variables is a finite

or infinite sequence X1, X2, X3, ... such that for any finite permutation o of the position indices
{1,..., N}, the joint distribution of the permuted sequences remains unchanged to that of original:
P(Xs1)s- s Xowy) = P(X1,..., XN) 3)

Note an independent and identically distributed (i.i.d.) sequence of random variables is an exchange-

able sequence, i.e., P(X1,...,XN) = Hfil P(X;), but not all exchangeable sequences are i.i.d.
Examples of exchangeable non-i.i.d. sequences include but are not limited to P6lya urn model [Hoppe,
1984, Chinese restaurant processes [Aldous et al.,[1985]] and Dirichlet processes [Ferguson,|1973].

An important result of exchangeable data are de Finetti’s theorems [de Finetti, [1931]] which show any
exchangeable sequence can be represented as a mixture of conditionally i.i.d. data. Building upon the
work of [de Finetti| [1931]],|Guo et al.|[2023a]] observes that exchangeable but not i.i.d. data possess
extra conditional independence relationships compared to i.i.d. data. This enables:
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Figure 3: An illustration of differences in what the do-operator does between a structural causal
model (a) and an ICM generative process (b). In the observational phase, SCMs (a), where the dotted
plate indicates i.i.d. sampled, illustrates that fixed assignment of Ux and Uy leads to fixed observable
values X and Y’; on the other hand, for ICM-generative processes where exch. is an abbreviation
for an exchangeable process, fixing 6,1 does not fix X and Y, instead, it means sampling from
a fixed distribution. Because SCM fails to characterize ICM-generative processes, we define the
operational meaning of do-interventions on ICM-generative processes as assigning d-distribution to
the intervened variables and substituting the corresponding values in the remaining distributions.

* unique causal structure identification (Theorem 5 in [Guo et al.,[2023a]), and

* statistical formalization of ICM principle (causal de Finetti theorems in [Guo et al.|[2023a])

In contrast to previous work’s focus on structure identification, this work studies causal effect
identification and estimation in exchangeable data. Markovian models here mean there are no
unmeasured confounders for each tuple of random variables observed in an exchangeable sequence.

To start with, we introduce the necessary terminologies inherited from|Guo et al.[[2023a].

Definition 2 (ICM generative process) We say data is generated from an ICM generative process
with respect to a DAG G if the sequence of random variable arrays {X..,,} is infinitely exchangeable
and satisfies X;n) L NTi;[n] yNDi.  1|PA ) for all i € [d] and n € N, where PA; denotes
parents of node X;, ND; denotes the corresponding non-descendants and ND; denotes the set of
non-descendants excluding its own parents. By causal de Finetti theorems, it is equivalent to say the
Jjoint distribution of the sequence can be represented as:

N d
P(X:;[N] = X:,[N]) = // H Hp(xi;n |Pa1gn701)dyl(01) o .dVd(ad), (4)

n=11i=1

where v; are probability measures.

In this work, we assume that any probability measure has X1 = Xog = Xz

a corresponding density function. Following Definition 2} : 94 94

an immediate result is any distribution P g(en;arated by an ; j 5’

ICM generative process is Markov to ICM(G). Definition

in Appendix [A] defines formally what we mean by an X1 = Xopp > X

ICM operator on a DAG G. Here we illustrate an example ~Figure 2: An example of ICM(G): Two
of ICM(G) and the use of our notation. Consider a DAG ~data tuples are generated by an ICM
G := X; « X, — X3 with 3 variable indices. Two generative process with respect to G :=
data tuples are generated under an ICM generative process X1 A Xo - X3, where.).( iin 18 the i-
with respect to G. Fig. [2] shows the Markov structure th variable in the n-th position and gray
compatible with the above ICM generative process. means latent variables.

3 Causal Effect in Exchangeable Data

We first motivate our study of causal effects in exchangeable data by noting exogenous variables are
different from causal de Finetti parameters. Traditional causal effect in i.i.d. processes is defined as



graph surgery with respect to SCMs (cf. Section[2.T)). Such a definition does not transfer its operational
meaning to that in exchangeable processes because SCMs fail to characterize ICM generative
processes. In this section, we first define what causal effect means and show their differences in
properties compared to that of i.i.d. processes. We proceed to illustrate in the simplest possible case
- a pair of random variables, and then provide a general statement for the multivariate case.

Figure 3]illustrates how SCMs fail to characterize ICM generative processes in the bivariate example.
In SCMs, a fixed assignment of values to exogenous variables Ux and Uy uniquely determines the
values of all the observable variables X and Y. This is not the case for ICM generative processes. A
fixed assignment to causal de Finetti parameters 6 and v only restricts the observable variables X
and Y to sample from fixed distributions but does not uniquely determine their values. Therefore,
do-operator commonly defined as graph surgery in SCMs demands a new operational meaning in
ICM generative processes. Definition deﬁnes that do(X = z) in ICM generative processes means
assigning the sampling density p(z|0) to 6(X = :C) Doing so, we have:

i.i.d. generative process :P(Y = y|do(X = z)) = p(y|x,10) = P(Y = y|z),v0 € R (5)

ICM generative process :P(Y = y|do(X = z)) = /p(y\x, V)p()dy = P(Y =ylz) (6)

Despite being identical in expression, causal effect has different implications in i.i.d. and ICM
generative processes. Under i.i.d., the randomness captured in P is driven only by the randomness
in exogenous variables Uy-. Under the ICM generative process, the randomness in P is driven both
by p(y|z,v) and the randomness in the causal de Finetti parameter p(¢)). It is well-known that
i.i.d is a subcase of exchangeability. Here we observe that the causal effect expression follows the
same pattern, i.e., the causal effect expression in i.i.d. is also a subcase of that under exchangeability

whenever p(¢) = §(¢p = o).

Equipped with this operational meaning of intervention, we next consider the set of feasible interven-
tion targets. Here we first clarify what we mean by the data-generating process. Data generated from
i.i.d. or ICM processes refers to a sequence of random variables. For example, in the bivariate case,
the sequence is (X1,Y1), (X2, Ya),. ... Often one omits position indices in i.i.d. because:

N
i.i.d. generative process : P(X1,Y7,..., XN, Yy) nd H P(X,,Y,) e [P(X, VN (D)

n=1

The first equality is due to independence and the second equality is due to identical distributions. One
thus does not differentiate the position indices in i.i.d. as P(X,Y") characterizes the joint distribution
fully by Eq. (7). Intervention is thus defined only on X and Y rather than X,, and Y,,. However, in
the ICM generative process, P(X,Y") cannot fully characterize the joint distribution. An example
application of Definition [2]in the bivariate case gives:

N
ICM gen. process : P(x1,y1,...,TN,YN) = // H PYn|Tn, V)p(2n]0)du(0)dv () (8)

n=1

Eq. (8) shows that one can no longer omit the position indices in ICM generative processes, as
P(X,Y) cannot fully characterize the joint distribution. Intervention in ICM generative processes
thus should be considered at the level of X,, and Y,,. Deﬁnition@ presented below, formalizes the
concept of causal effect in ICM generative processes. In particular, both intervention sets and target
variables of interest can be any random variables observed in the sequence.

Definition 3 (Causal Effect in ICM generative processes) Let X and Y be two disjoint sets of

variables generated by an ICM-generative process. For each realization x of X, P(y|do(x)) in the

ICM-generative process denotes the probability of Y =y induced by assigning p(z;,,, [paigm7 0;) =

§(Xim = miy) in Eq. @), VX, € X, and substituting X = x in the remaining conditional
distributions.

Although marginal distribution P(X,Y") cannot characterize the joint distribution in Eq. (8) due
to mutual dependence of X,,,Y,, with causal de Finetti parameters 6 and ¢, we note variables in

https://encyclopediaofmath.org/index.php?title=Delta-function
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different positions share identical marginal distributions. Mathematically, data generated under an
exchangeable process shares identical marginal distributions: P(X,,,Y,) = P(X,,, Ym),Vn # m.
This also means that identical interventions performed on variables in different positions result in
the same post-interventional distributions: P(Y,,|do(X,, = z)) = P(Yy|do(X,, = x)),¥n # m.
Similar to i.i.d., quantities such as P(Y|do(X = x)) are thus well-defined in ICM generative
processes. Corollary [I|proves the multivariate equivalent of identical marginal intervention effects
in ICM generative processes.

Corollary 1 (Identical marginal post-interventional distributions) Ler P be the distribution for

some ICM generative process. Let I and J be two disjoint subsets in [d] := {1,...,d}. Denote
Xy = {Xin 1 ¢ € I} and similarly for Xj.,,. Then,
P(X .y | do(Xp = %)) = P(X i | do(Xpm = x)),Vn #m 9

i.e., identical interventions on variables in different positions share the same marginal post-
interventional distributions. See Appendix[B|for the proof.

One can thus omit the notation of position indices when appropriate as supported by Corollary [T]and
as illustrated in Figure[I|Block A. In the next section, we address a focal problem in causal effect
estimation: causal effect identifiability in ICM generative processes.

3.1 Causal Effect Identifiability in ICM generative processes

Continuing with the bivariate example in Fig. [3|(b), consider X1, Y7, X», Y5 is generated under an
ICM generative process with respect to G := X — Y. Suppose one performs hard intervention on X1,
i.e.,do(X; = Z). Applying traditional truncated factorization developed for i.i.d. data (Eq. (2)) yields:

P(x1,y1,22,y2|do(X1 = 2)) = P(y1|2) P(y2|r2) P(v2) 10—z (10)

However, the independence between (X1,Y7) and (X5, Y3) in i.i.d. generative processes does not
hold in ICM generative processes. In fact, in ICM generative processes, applying Definition 3] gives:

P(x1,y1, 22, yaldo(X, = 2)) = / P12, B)p(alen, O)p()dep(ae)la—s (D)

Eq. (TT) does not equal to Eq. (I0) whenever p(¢) # (¢ = o) for some 1. Thus, for data gener-
ated under ICM generative processes, a new theorem for truncated factorization is required. See Theo-
rem|I|for the statement for general multivariate distributions and Appendix [C|for a detailed derivation.

Theorem 1 (Truncated Factorization in ICM generative processes) For a given graph G, let P
be the probability distribution for data generated under an ICM generative process with respect to
G and let p be the corresponding density. The post-interventional distribution after intervening on
X = X has density given by:

P, xanldo(X = %) = ] p(xi-nglpal ) [T p(xivilpad v |x_sr  (12)
i€lx iglx

where Ix = {i : X;.,, € X} denotes the set of variable indices being intervened on and N; := {n :
Xi.n € X} denotes the set of position indices corresponding to variable index i in the intervention
set X and [-IN;] denotes the set of positive integers less than or equal to N excluding values in N;.

Theorem [I] presents a procedure for computing the joint post-interventional distribution using
pre-interventional conditional distributions when intervening on any set of variables in the Markovian
model. This demonstrates that causal effects are identifiable in Markovian models under ICM
generative processes. Note that the traditional truncated factorization in i.i.d. processes is again a
special case of Eq. just as i.i.d. processes are a special case of exchangeable processes.

3.2 Conditional Interventional distributions

The fundamental difference between i.i.d. and ICM generative processes lies in the violation of the
independence condition inherent to i.i.d.. Consequently, interventional distributions computed by
conditioning on observations differ between the two. Specifically, causal effect of do(X; = &) on Y3



given X5, Y; differs when computed under i.i.d. (Eq. (I3)) and ICM generative processes (Eq. (I4)).
This difference arises because (X1,Y7) L (X2, Y3) holds in i.i.d but not in ICM generative processes.

i.i.d. generative processes : P(Y7|do(X; = &), X,Y2) = P(Y1|2) (13)
ICM generative processes : P(Y1|do(X; = %), X2, Ys) = P(Y1|%, X2, Y2) (14)

Fig. |1|(c) depicts this example of intervention via graph surgery on ICM(G) where the operational
meaning of edge deletion is explained in Figure 3| We observe that conditioning on the collider node
Y5 in the ICM generative process renders Y7 £ Xs|Ys. Lemmaprovides the corresponding general
statement for the multivariate case when conditioning on other observations. See Appendix [D|for
the proof.

Lemma 1 (Intervention effect conditioned on other observations) For a given graph G, let P be
the distribution for the ICM generative process with respect to G. Let X be the intervention set.
Assume X = Xr,p, := { Xy, : Vi € I}. Let S C [N] such that n ¢ S and [—1] denotes [d]\I. Then,

P(Xﬂl;n|d0<XI;n = &)7X:;S) = HP<Xi;n|Xi;S7PAi;SU{n}>|XI;n:X (15)
il

A similar argument also applies to the intervention effect conditioned on observations of experimental
results performed on other tuples of random variables in the sequence. Appendix [E]discusses in detail.
Here we show the implications of conditional interventional distributions via a causal Pélya urn model.

Causal Pélya Urn Model Imagine an urn with left and right compartments. The experimenter puts
a white balls and 3 black balls in each compartment. At each step n, one ball is uniformly drawn
from the left and one ball is uniformly drawn from the right. The chosen two balls in the order of left
and right are then placed in a dark chamber unobserved by the experimenter. A hidden mechanism
reads the color of the two balls and outputs X,,, Y,, to the experimenter. The mechanism outputs
X, = 1 whenever the n-th left ball is black else X,, = 0 and Y,, = 1 whenever the left and right
balls disagree in color. After observing X,, and Y,,, the experimenter puts the original balls back in
the corresponding compartment and add a ball of the same color as X, in the left and add a ball of
the same color as Z,, := (1 — X,,) * Y, + (1 — Y},) % X, in the right.

Causal de Finetti application The causal Pdlya urn model is a real-world illustration of
causal de Finetti thereom in its bivariate form. The joint distribution of observed sequence
P(z1,y1,...,Tn,yn) for all n € N can be perfectly modelled as the RHS of Eq. @) with two
variables and X — Y:

[ Tptwn |2 toptan | 3001000 d800,

where p(0), p(1)) are Beta distributions and p(y,, | zn, ), p(x, | 6) are Bernoulli distributions.
Appendix[F|provides a detailed analysis of how causal Pélya Urn Model satisfies both exchangeability
and certain conditional independences conditions. Therefore causal de Finetti theorems apply to the
causal Pélya urn model in the sense the joint observational distribution can be equivalently modelled as
ICM generative processes in bivariate form. Next, we study how intervention propagates in this model.

Discussion For a given n, if X,,, = 1,Y,, = 0 for many m < n, then it is more likely X,, = 1,Y,, =
0 as there are more black balls are added to both left and right urn compartments. Consider an
intervention: imagine an agent replaces the left ball in the dark chamber to be a white ball for the n-th
draw, do(X,, = 0), then if X,,, = 1,Y;,, = 0 for many m < n, it is more likely that ¥;, = 1 as more
black balls are placed in the right compartment and X, is fixed to be a white ball by intervention. This
illustrates a practical example of the aforementioned conditional post-interventional distributions.
After the intervention, the observer, ignorant of what happens in the dark chamber, proceeds as
normal with the replacement process. The intervention thus changes the dynamics of causal P6lya
urn model. We consider causal Pélya model interesting as it illustrates through simple game-like
settings that observables (X, Y;,) satisfying Yinp L Xopa | X [n] are indeed driven by the independent
mechanisms hidden from the observers. This is akin to how Nature hides causal mechanisms from
observers and scientists can only reason through observables.

3.3 Rules of compact representation of causal effect

From Theorem (1] any interventional effect P(Y |do(X)) can be obtained from marginalization. How-
ever, in practice, marginalization on many variables is computationally expensive. Further, Theorem



[[requires observations and measurements of all joint variables which is resource-intensive in practice.
Such problem on the observability of variables is more explicitly posed as out-of-variable problem
in|Guo et al.|[2023b]. In this section, we present rules that allow simplification of causal expressions.

Lemma 2 (Intervention effect on differing positions) Given a graph G and let P be the distribu-
tion for the ICM generative process with respect to G. Let X and 'Y be two disjoint sets such that
X is the intervention set and Y is the target set. Let Nx = {n : X;.,, € X} be the set of position
indices being intervened, and similarly Ny be the set of position indices being targeted to observe.
Assume Nx NNy = (. Then,

P(Y | do(X =x)) = P(Y), (16)

Lemma 3 (Intervention effect within the same position) Given a graph G and let P be the distri-
bution for the ICM generative process with respect to G. Let X be the intervention set such that it
consists only Xr,, wheren € S C [N] and I C [d] is a set of variable indices. Let Y be the target
set such that it consists only Xj., wheren € S C [N] and J C [d]. NoteINJ = (). Then,

P(Y |do(X = %)) =Y _P(Y | %,pax)P(pax), (17)

pax

where PAx denotes the parent set of intervened variables X.

Lemma 2] shows that the interventional distributions on target variables of interest are unchanged
when only intervening on variables in differing positions other than the target variables. Lemma
[3] shows for arbitrary causal queries when acting on a consistent set of variables across positions (i.e.,
the intervention set X consists of X, ,,, where each position n shares the same set of variable indices
I being intervened on), the post-interventional distribution can be estimated by only observing and
measuring Y, X, PAx, where PAx denotes the parent set of X. This is consistent with the parent
adjustment formula under i.i.d. generative processes, with the additional dependence structure across
variables in differing positions. See Appendix [G]and [H|for detailed statements and proofs.

4 Causal Effect in Multi-environment data

In Section 3] we establish the identifiability of causal effects given the graph G and the distribution
P generated by an ICM generative process. Note under i.i.d. generative processes, causal effect
identification hinges on the knowledge of causal diagram G. Here, we show that generalizing causality
to an exchangeable framework does not necessarily mean we have less ability to perform graphical
identification and effect estimation. In fact, with an unknown graph, ICM generative processes allow
one to identify graph and causal effects simultaneously. In other words, data adhering to the ICM
principle and generated under an exchangeable process alone is sufficient for both graphical and
effect identification.

Theorem 2 (Causal effect identification in ICM generative processes) Denote Y, X be two dis-
Jjoint subsets of observable variables in {X..,,}nen. Then P(Y|do(X = x)) is identifiable given
the distribution P from the class of distributions generated from ICM generative processes. Here
identifiability means the causal query can be computed uniquely from P.

Informally, Theorem [2] says that for ICM generative processes, both causal graphs and causal effects
can be identified simultaneously. This is derived from a concatenation of Theorem 5 in |Guo et al.
[2023a] and Theorem [I] in the current work. Theorem 5 in |[Guo et al][2023a] shows for ICM
generative processes, causal graph is identifiable and Theorem I|shows the computation, and thus
identifiability, of causal effects in ICM generative processes given graph.

To see how to apply Theorem [2]in practice, we build connection between exchangeable and grouped
or multi-environment data and propose the Do-Finetti algorithm. In the causal literature, grouped data
refers to data available from multiple environments, each producing (conditionally) i. i. d observations
from a different distribution, which are related through some invariant causal structure shared by all
environments. We can interpret multi-environment data through the lens of exchangeability as follow:
In each environment e, we observe exchangeable random variables Xi[ N where X jm denotes the d-

th random variable observed at n-th position in environment e. N, denotes the number of observations
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Figure 4: Our method’s (do-Finetti) performance in simultaneously identifying DAG (right) and causal
effect estimation (left), compared to the i.i.d. algorithm (i.i.d.) and corresponding methods with known
true DAG (do Finetti with true DAG and i.i.d. with true DAG) in bivariate setting. Left shown are the
mean and standard deviation of MSE compared to analytic solutions for each method aggregated over
100 experiments. Right shows the accuracy of identifying the correct underlying DAG for each method.
Do-Finetti identifies unique causal structures and achieves near-perfect causal effect estimation.

from environment e. Data across environments are independent and identically distributed in the sense
that the distribution of Xﬁ[ N] and Xf[ N] is identical for all N < min(N,, N,/). Each environment

thus provides a finite marginal of an i.i.d copy of the same exchangeable process.

The Do-Finetti algorithm combines Causal-de-Finetti algorithm developed in |Guo et al.| [2023a]]
and the truncated factorization for ICM generative processes developed in Section [3]of this paper.
It provides a proof-of-concept algorithm to verify that multi-environment data generated under
the independent causal mechanism principle alone via an exchangeable process can simultaneously
estimate the causal effect and causal graph. See Algorithm(T]in Appendix[[|for details of the procedure.

5 Experiments

We construct synthetic datasets according to causal Plya urn model (cf. Section[3.2)) and demonstrate
that Do-Finetti algorithm can estimate causal effects and graphs simultaneously. We compare with
the standard method in i.i.d. processes (i.e., PC algorithm and truncated factorization Eq. (2)) and
show empirically that the traditional truncated factorization cannot estimate causal effects in our
setting. We then perform ablation studies to attribute errors to either graphical misclassification or
effect estimation.

Let superscript ¢ denote variables generated in environment e. The data-generating process for
X — Y, for example, as follows:

0° ~ Beta(a, 8), ¢ ~ Beta(a, )
X =Y : X7 :=Ber(0°),Y := Ber(¢°) ® X7

where @ denotes xor operation and X7, Y, denote variables generated at the ¢-th position in
environment e. We collect two pairs of random variables across all environments and run do-Finetti
algorithm to compute the post-interventional distributions with randomly initialized intervened
variable and its corresponding values as in Eq. (I2). We repeat the experiment for 100 times and
report the mean squared error loss between predicted and analytic solutions across varying number of
environments. Fig. ] shows i.i.d. fails to estimate causal effects, giving high estimation error in ICM
generative processes. Even with knowledge of the true DAG and infinite data, i.i.d. with true DAG
never achieves analytic solutions (Fig. Pf_ﬁl) On the other hand, do-Finetti achieves near-zero causal
effect estimation error, meaning correct DAG identification and correct effect estimation. Appendix
[K]details exact experiment setups.



6 Discussion

Causality and exchangeability. Causal effect estimation in randomized controlled trials [Rubin,
2005] relies on the exchangeability assumption between the controlled and treatment group. More
recent work [Dawid, [2021] introduces a decision-theoretic framework for causality and uses
pre-treatment and post-treatment exchangeability as foundational assumptions on external data used
to solve a decision problem. [Jensen et al.|[2020] studies exchangeability in the context of object
conditioning. It shows object conditioning, due to exchangeability, mitigates latent confounding
and measurement errors for causal inference. |Guo et al.|[2023a]] characterize independent causal
mechanisms in exchangeable data via causal de Finetti theorems. Reizinger et al.|[2024] proposes
relaxed conditions for causal discovery in ICM generative processes and shows exchangeable
non-i.i.d. data is the key to both structure and representation identifiability. This work extends on
causal de Finetti and studies causal effect identification and estimation in ICM generative processes.

Causal effect estimation in multi-environment data. Bareinboim and Pearl| [2016] study the
transportability of causal effects for populations under different experimental conditions. |Peters
and Meinshausen| [[2016] quantify causal effect estimation and its uncertainties through exploiting
invariance of causal mechanisms. |Jaber et al.|[2019]] develop a complete algorithm for causal effect
identification in the Markov equivalence class of causal graphs which was previously deemed impos-
sible to identify further without additional assumptions in the i.i.d. framework. In the present work,
we show ICM generative processes, naturally arising in multi-environment data, allow simultaneous
causal structure recovery and effect identification. Further, we illustrate via a causal P6lya urn model
that an exchangeable process, though related, is not limited to only multi-environment data.

Causality in non-i.i.d. data. A classical problem in causality is the study of interference, motivated
by real-world complex interdependencies within subjects. For example, in social networks and
infectious disease, treatments on one subject affects outcomes of other subjects. [Sherman| [2022]
provides a general identification formula of causal estimands under dependent data when graphs
contain unobserved confounders. (Ogburn and VanderWeele| [2014] provides a comprehensive review
on causal inference under interference and studies how to determine what variables must be measured
for computation of causal estimands. [Zhang et al.| [2023]] provides an elegant study on modeling
uncertain interaction using linear graphical causal models. [Maier|[2014] studies causal discovery in
relational data. This work focuses on a particular type of non-i.i.d. data, namely exchangeable data.
In contrast with classical setting where we assume aprior known causal graph and develop causal
estimands from thereon, the series of causal de Finetti work focus on empirical inference of causality
from exchangeable non-i.i.d. data. This we hope paves the way to uncover governing laws of Nature
from empirical observations.

Real-world Applications. Exchangeable data offers an expressive and realistic representation of
complex structured relational data, which often appears in clinical studies [Bowman and Georgel
1995]], microarray gene expression data [Qin} [2006]], or in high-dimensional inference tasks for
images [Korshunova et al., 2018, 2020], 3D point cloud modeling [Yang et al.l [2020] to topic
modeling [McAuliffe and Blei, 2007]]. While it is beyond the scope of the present work, we hope
that our work, through building a theoretical framework of interventions in exchangeable data, may
ultimately help study and understand naturally occurring mechanisms in scientific domains.

7 Conclusion

We study causal effects and prove a generalized truncated factorization for an important class of
exchangeable generative processes. We show for conditional interventional distributions that other ob-
servations are relevant to the causal query for exchangeable but not for i.i.d. data. We introduce causal
Pélya urn models and demonstrate in-practice interventions in exchangeable data. We develop a Do-
Finetti algorithm that performs simultaneous DAG and effect estimation from multi-environment data.

It is exciting to start to understand the complexities of non-i.i.d. data, and much is left to do: from
developing algorithms that perform at scale to understanding counterfactual queries in exchangeable
contexts. Appendix [[]details limitations and broader impact. Going beyond i.i.d. has been a major
bottleneck when applying machine learning to real-world applications, and exchangeable data offers
a doable and realistic next step.
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A Graphical Terminology

A graph G consists of vertices V' and edges E. The set of vertices is often denoted as { X1, ..., X, }.
We say a pair of vertices is connected with a directed edge if X; — X;. The set of edges E' contains
a set of pairs {X; — X; : X;, X; € V}. If there does not exist a sequence of edges such that
X; = -+ = X, for some X; € V, then G is acyclic. Whenever X; — X, € F, then X is the
child of X; and that X; is the parent of X; in G. One use PA; to denote the parents of X; and
CH; to denote its children. A sequence of vertices X7, ..., X} forms a directed path in G if, for
everyi = 1,...,k, we have X; — X;11. One say that X is an ancestor of Y in G, and that Y is a
descendant of X, if there exists a directed path X1, ..., X} with X; = X and X;, = Y. We write
DE, as descendants of X; and ND; as non-descendants of X; and ND; as non-decendants of X
excluding its own parents.

Both graph and probability distribution encode conditional independence relationships. Given a
probability distribution P, we say X 1L Y |W, if P(X|Y,W) = P(X|W). In graphical terms, we
detect the set of conditional independence in a DAG through d-separation.

Definition 4 (d-separation) A path p is d-separated by a block of node Z if and only if one of the
two conditions holds: 1) p contains a chain X; — X, — X; or a fork X; < X,,, — X, s.t.
Xm € Z; 2) p contains X; — Xy, < X s.t. the middle node X, ¢ Z and DE,,, ¢ Z. We then say
Z d-separates X and Y if it blocks every path from a node in X to anodein'Y.

Definition 5 (I-map) Given a probability distribution P, Z(P) denotes the set of conditional inde-
pendence relationships of the form X LY | Z that hold in P. Given a DAG G, Z(G) denotes the set
of conditional independence assumptions read-off via d-separation.

Definition 6 (Markovian and Faithful) A distribution P is Markov to a DAG G if Z(G) C Z(P).
A distribution P is faithful to G if Z(P) C Z(Q).

Next we proceed to define what is ICM(G), through explicating the ICM operator.

Definition 7 (ICM operator on a DAG G) Let U be the space of DAGs with vertices X1, ..., Xq.
Let V be the space of acyclic directed mixed graphs (ADMG [Richardson| |2003]) with vertices
{(Xi;n)}, where i € [d],n € N. A mapping F from U to V is an ICM operator if F(G) satisfies
1) F(G) restricted to the subset of vertices {Xi.,...,Xan} is a DAG G, for any n € N; 2)
Xin <> Xi.m whenever n # m for all i € [d]; 3) there are no other edges other than those stated
above. We denote the resulting ADMG as ICM(G) and PAgn denotes the parents of X;., and similarly

NDgn for the corresponding non-descendants.

B Proof of Corollary I|

Definition 8 (Exchangeable arrays) An array of size d contains variables (X1, . .., Xa.n) where
Xan denotes the d-th random variable in n-th array. Such an array is denoted as X..,,. A finite
sequence of size d arrays is exchangeable, if for any permutation map T,

P(Xi;ﬂ'(l)7 ce 7X:;7T(N)) = P(X:;la v ;X"N) (18)

)

Next we show exchangeability implies identical marginal distributions. This is a standard result in
exchangeable sequences [de Finetti| |1931]], here we include it for completeness.

Theorem 3 (Exchangeable implies identical marginal distribution) Let P be the distribution for
some exchangeable processes, where X...1, ..., X, are exchangeable arrays. Then for any n # m:
P(X,n) == P(X:;m,) (19)
Proof of Theorem[3| Without loss of generality, assume n < m. Let m : [N] — [N] be the
permutation mapping such that w(i) = i,Vi # {n,m} and 7(n) = m,w(m) = n.
Then, by definition of exchangeability,
P(X:;l =Xl Xn =Xiny--- 7X“m =Ximy--- ;X:;N = X:;N) (20)

B B

= P(X:;l =Xily-- - »X“n = Ximy e aX"m =Xiny .- 7X:;N = X:;N) (21)

) B

Integrating out every values X..,,, m # n, we have P(X..., = X..,) = P(X.,, = X..,) for all values
X:.n. Therefore, X..,,, and X..,, shares identical marginal distribution.
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Corollary 1 (Identical marginal post-interventional distributions) Let P be the distribution for

some ICM generative process. Let I and J be two disjoint subsets in [d] := {1,...,d}. Denote
X1 = { X : ¢ € I} and similarly for Xj.,,. Then,
P(X i | do(Xp = %)) = P(X o | do(Xpm = X)), Vn #m 9)

i.e., identical interventions on variables in different positions share the same marginal post-
interventional distributions. See Appendix[B|for the proof.

Proof of Corollary [[| By Theorem[3] P(X..,,) = P(X.;mm), Vn # m. One can thus drop the notation
of position indices when considering X..,, for some n as X.,,, ~ P from identical P. Due to truncated
factorization in i.i.d. case (Eq.[2), any post-interventional distributions can be represented as pre-
interventional distributions. Thus post-interventional distributions in P(X..,, = X..,|do(X 1., = X))
is uniquely determined by P and so is P(X..,, = X..,|do(X ., = X)). Since P is identical, then so
is the post-interventional distributions. Marginalizing out irrelevant variable indices that are not
contained in I U J gives the desired result.

C Proof of Theorem 1]

Notation Let X;.,, denote the random variable corresponding to i-th variable index and n-th position
index for data generated under ICM generative processes. Write X..,, := (X1.,..., Xgn) and
Xagny = (Xaa,...,Xgn). Define UP;. := (Xiy1;,...,Xq;), which contains all random
variables that have higher variable index value than ¢, i.e. upstream of node .

Theorem 1 (Truncated Factorization in ICM generative processes) For a given graph G, let P
be the probability distribution for data generated under an ICM generative process with respect to
G and let p be the corresponding density. The post-interventional distribution after intervening on
X = x has density given by:

P, xanldo(X = %) = [] p(xi-nglpal ) [T p(xivilpad v |x_sr  (12)
i€lx iglx

where Ix := {i : X;.,, € X} denotes the set of variable indices being intervened on and N; := {n :
Xi.n € X} denotes the set of position indices corresponding to variable index i in the intervention
set X and [—IN;] denotes the set of positive integers less than or equal to N excluding values in N;.

Proof of Theorem [l Without loss of generality, we reorder the variables according to reversed
topological ordering, i.e., a node’s parents will be placed after this node. Note a reversed topological
ordering is not unique, but it must satisfy a node’s descendants will come before itself.

By chain rule, P(X..1,...,X..n) = [[; P(Xyn]|UP;;(n)). By Theorem 7 (Causal conditional de
Finetti) in\Guo et al.|[|2023d)], since P is generated under some ICM generative process, there exists
a latent variable 6; with suitable probability measure v such that

N
P ) [ ) = / T1 peialpal,, 6:)dn(6,) 22)
n=1

N
=/Hp(wi;nkmin,@z-)p(&)d& (23)
n=1

In this work, assume for every probability measure v there exists a corresponding probability density
associated with it and thus the second equality follows.

Note by the second condition in causal de Finetti theorem - multivariate version in|Guo et al.|[2023d],
we have L

Xistn] L NDi ] [PAi )
where PA; selects parents of node i and ND; selects non-descendants of node i in G. ND; denotes
the set of non-descendants of node 1 excluding its own parents. Then the naive application of the
conditional independence on P(X;,n1|UP;;n) gives:

P(Xz,[N]|UPz,[N]) = P(Xz,[NHPAz[N])
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Combining gives:

N
P(xin[upiny) = P(xin |Pa;q;[N]) = / 1 p(xi.nlpal,. 6:)p(6:)db; (24)
n=1

Applying Eq. 24| on the chain rule decomposition of the joint distribution,
P(Xo,..., Xon) = [ [ P(Xiv [PAT ) (25)

Inheriting Definition 3}

When i ¢ Ix, intervention on X does not change the probability distribution but just enforces
consistency PAgn with values in X, i.e.,

P(Xin|PAT s do(X = %)) = P(Xin [PAT ) |x g Vi € Ix (26)

When i € Ix, intervention on X affect variables only contained in the subset of X;N,. Let
Xin € XN, Then p(z;p [paigw 0;) = 0(Xi.n = Tiwn ). Aggregating together,

P(xn @ag[N],do(X = X)) :/ H 0(Xin = Zisn) H p(xi;nlpaigmaei)p(ei)dei (27)

neN; n€[~N;]

“Wn

_ {P(xi;[ﬁNi] {paig;[ﬂNi]) when pa,.,, consistent with X ¥n € N;
0 else

(28)
- P(xi;[ﬁNi][pag[ﬁNi])‘X:*, Vi€ Ix (29)

Combining Eq. [26land
P(Xy1,..., Xonldo(X = %)) = [[ P(Xion, IPAS n) T PR [PAT ) [ BO)

D Proof of Lemmal(ll

Lemma 1 (Intervention effect conditioned on other observations) For a given graph G, let P be
the distribution for the ICM generative process with respect to G. Let X be the intervention set.
Assume X = Xr,p, := { X, : Vi € I}. Let S C [N] such that n & S and [—1] denotes [d]\I. Then,
P(Xﬂl;n|d0(XI;n = )A()7X:;S) = HP(Xi;n|Xi;87PAi;SU{n})|X1;n:5( (15)
igl
Proof of Lemma(Il By Theorem|]]
P(X:;Su{n}ldo(xl;n = f‘)) = HP(XZ’;S|PAZ‘G;S) HP(Xi;SU{n} |PAgsu{n})‘XI:n:5{ (31)
i€l igl !
By Lemmal2] since n ¢ S,
P(X.s|do(Xrn = x)) = P(X;;5) = HP(Xi;S‘PAig;S) HP(Xi;S|PAig;S) (32)
il il
By do-operator can be used as normal conditional probability,
P(X:;Su{n}‘dO(XI;n = )A())
P(X.s|do(Xp;n = %))
_ Hiel P(Xi%S|PAig;s) Higzl P(Xi;su{n}|PAz‘g;Su{n})’xl;n:ﬁ
Hie[ P(Xi;s ‘PAig;S) Hiel P(Xi;S|PA{'G;s)

(33)

P(X_nldo(Xr;, = %), X.i8) =

(34)

g
B H P(Xi;SU{TL}|PA’L';SU{7L})‘XI;TL:5€ (35)
o P(X;s|PAYg)
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By P is the distribution for some ICM generative process, it satisfies the conditions of causal de
Finetti theorem (multivariate) version:

Xim) L NDl 1 |PAZ ]
where PA; selects parents of node i and ND; selects non-descendants of node i in G. By exchangeabil-
ity, one can use arbitrary set other than [n), here use S. Applying above conditional independence,

we have

as PAY CNDg Therefore,

mn —

P(X;s|PAfg) = P(Xis|PATg ) (36)
With properties of conditional probability,

P(Xis0{n} ‘PAgSu{n})’XI .
H in=X = P(Xz,n|Xz,S7PAZg n ) . (37)
P(Xi;S|PA1;g;s) ;Su{n} ‘XI;n—x
The result follows.

E Conditioned interventional effect on other experiments

Under i.i.d. generative processes, if different interventions are placed on the system, then one often
considers that data is coming from different environments and observing one experiment result
cannot provide extra information about other experiments performed on random variables in different
positions of the sequence. For example, consider a sequence of random variables generated by i.i.d.,
ie., (X1,Y1,21),(Xo,Ys, Z5),... such that X,, — Y,, — Z, for all n. Then,

i.i.d. generative processes : P(Y1|do(X; = z),do(Ys = y), Z3) = P(Y1]|do(X; = x))  (38)

due to (X1,Y1,7Z1) L (Xs,Ys,Z5). Therefore interventions on inconsistent intervention targets
across the i.i.d. generated sequence can be equivalently considered as a mixture of data sampled from
different environments, i.e., identical copies of SCMs with different hard-interventions.

However, this is not the case in ICM generative processes. Continuing the previous example, and let
the sequence be data generated from an ICM generative process. Then,

ICM generative processes : P(Y7 = y1|do(X; = z),do(Ya = y), Zo = 22)

= /p(y1|:c, 02)p(0z|22,y)db 7 (39

Eq. B9 explicitly shows that knowing the intervention effect on Y5 acting on Zs helps one to infer the
causal de Finetti parameter 0y and thus the intervention effect of X; on Y7.

E.1 Derivation of Eq. [39]

Consider a DAG G := X — Y — Z and a distribution P generated by the ICM generative process
corresponding to /C'M (G). By truncated factorization in Theorem' we have:

P(Zy=z21,Y1=uy1, X1 =, 25 = 29, Yo = y, Xo = xa|do(X1 = &),do(Ya = 7)) (40)
— [ 86 = 2)plaalox)p(x)d0x [ plonle, 651502 = D)pl6y )by [ bzl O2)p(alon.02)d0
=p(z2) =p(y1|2)
(41)
— plan) / Pzl 02)p(1lyr, 02 )p(y | )p(0)d6 5 2)
= plaz) [ pleaOzlidp(er, o, 02)db 3)

The merge of p(22|7,02)p(0z) = p(z2,02|7) is due to 0 is independent of Y, for any n as Z,
is always a collider in the path. The merge of p(z1|y1,02)p(y1|Z) = p(z1,y1|%,0z) is due to
Zy L X1]0z,Y:1. Marginalizing away X», Z; and note P(Zy = z3|do(X; = z),do(Y2 = y)) =
P(Zy = z3|do(X1 = x)) by Lemmal[2] We have the desired result.
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F Causal Pélya Urn Model

F.1 Exchangeability of causal Pélya urn model

We first want to show exchangeability of the pair of the random variables (X, Y;) in the sequence
X1,Y1, X5, Y, ..., X, Y, that are generated via a causal Pélya urn model. Assume n pairs of
(X;,Y;) are observed: out of n balls we observe ng times that X,, = 1,Y,, = 1, ny times that
X, = 1Y, = 0, ng times that X,, = 0,Y,, = 1 and ny4 times that X,, = 0,Y,, = 0 where
n1 + ngo + ng + ng = n. Note for the first time the number of balls in the urn for left and right
compartment is « + 3 each, for the second draw o + 3 + 1 each, and for the k-th draw o+ 3+ k — 1
each. The probability that we draw (X,, = 1,Y,, = 1) pairs first, followed by (X, = 1,Y,, = 0)
second, and then (X,, = 0,Y;, = 1) third, followed by (X,, = 0,Y;, = 0) last is:

PX;=1,Y1=1,...,X,=0,Y,=0) (44)

1 1 -1 -1

y a B )% ( a+ o B+ )5 x ( a+ny y B+ ny )

a+pB a+p a+pB+1 a+pB+1 a+B4+n—1 a+B+n —1

(45)

a—+n « a+ny+ne—1 a+ny—1

X X X oo X X 46

(a—I—ﬁ—l—nl a—l—ﬂ—i—nl) (oz—i—ﬁ—l—nl—i—ng—l a+6+n1+n2—1)( )
« ( 15} » o+ ng « ( B+nsg—1 " a+mng+n3—1 )
a+pf+n+ne a+pf+n +ne a+p+n+ne+n3s—1 a+f+n+na+ng—1

47)

B+nz+ng—1 B4+n;+ng—1

a+pB+n—1 a+pB+n—1
(48)

B+ ns3 « B+ ny

X
(a+6+n1+n2+n3 a+ B +ny+ng+ng

x( )

For any permutation of the order 7 : [n] — [n], the denominator will not change as each step, we put
an additional ball in each of the left and right compartments of the urn regardless of the color of the
ball observed.

If we observe j-th black ball, i.e., X,, = 1 in the left compartment and I-th Y,,|X,, in the right
compartment such that Z,, = 1 at step m, then the numerator in the probability is (o« +j — 1) x (e +
I — 1) with the denominator as (a« + 8+ m — 1) x (o + 8 + m — 1). Therefore, for any sequence
Ty Y1y -y TnyYn if X; = 1 occurs my times and Z; = 1 = (1 — X;) * Y; + (1 — Y;) * X; occurs
my times, then the final probability will always be equal to

PXi=21,Y1=y1,..., Xn =20, Y0 = Un) (49)
I e+ - DILS™ B+ = DILE e+ - DI ™8+ — 1)
B [T (a+B8+k—1)x (a+B+k—1)
(a+mi—DB+n—m —Dla+B - {a+me—D(B+n—mes— 1) (a+8—1)!
(a—D(B - (a+B+n—-1) (a=DIB-D(a+B+n-1)!

(50)

D

F.2 Conditional independences of causal Pélya urn model

For any n € N, we show }/[n] 1 X4 | X[n}’ ie., P(Yv[n] | X[n]) = P(Yv[n] ‘ X[n],Xn+1).
By conditional probability is the division of two joints, we have
P(Xl = f,Ul,Yl = y17~"7X7L = l'n,Yn = yn)
P(Xl :l‘l,...,Xn Zl‘n)
(52)
[[Zi(e+i-DIES™ (B+i - DIE (e+i - DIGL™ B+ -1 [ (a+i- D™ B+i—1)

- [Tio(a+B8+k—1)x (a+B+k—1) / o (a+B+k—1)
(53)

P(Yn:ynv"~7Y1:y1|Xn:1'n»'~~aX1:1'1):

CIEE(e+i-DIEE™B+i-1)
N [T (a+B8+k—1) S
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To compute the joint probability of
PXi=z1,Y1=y1,. ., Xo = 0, Yo, = Y, Xng1 = Tp1) (55)
[[Z(e+i- DTG B+i- D2 (a+5 - DI B+ - 1)

= 56
[ij(a+B8+k—1) X (a+B+k—1) (56)
" (a4+my)ly, =1+ (B+n—m1)ls,,  —0 57)
a+B+n
Dividing P(X; = x1,..., X, = @y, Xyu41 = Tpn41) leads to the same result.

F.3 Application of causal de Finetti theorems

According to causal de Finetti theorems, given the causal P6lya urn model satisfies both exchange-
ability and certain conditional independence relationships, there must exist two unique independent
prior functions that allow the joint distribution to be factored into two independent products. Here we
provide an explicit representation. Let B(6; a, §) denotes beta distribution with parameter «, § and

B(0; @, 8) = i 00 (1 — 0)°

P(Xl=$17Y1=y1,-~-,XnZl‘n,Yn:yn) (58)
= /ezn i x (1 — )20 ) B(0; a, )dOX (59)
/rlpzn[(17‘Tn)*yn+(17yn)*w'n](1 _w) Z [(I=zn)*yn+(1—yn) *wn (w’a ﬂ) 'IIZJ (60)
_ [ (OK + 6 — 1 /9(}—{-2 xl—l e)n—zn mi-‘rﬂ—lde (61)
(a—1)!
/wa+2n S w)"_zn = tB=1 ), where 2, = (1 — x,) * yp + (1 — yn) * T, (62)
note Z Ty = M1, Z Zn = Mg, by conjugate priors with bernoulli and beta distributions (63)
= (a+p-1) ]2F(5 +n—my)l(a+my) T(B+n—mo)l'(ar+ my) (64)
(a—1)Y(B—1)! I(a+ B +n) I+ B+n)
_(a+mi = DIB+n—mi - Dlia+ 8- 1! (a+my—1(B+n—my—1)ats—1)
B (a—D(B-D(a+B+n—1) (a—D(B-D(a+B+n—1)
(65)

G Lemma/2and its proof

Lemma 2 (Intervention effect on differing positions) Given a graph G and let P be the distribu-
tion for the ICM generative process with respect to G. Let X and Y be two disjoint sets such that
X is the intervention set and Y is the target set. Let Nx := {n : X;., € X} be the set of position
indices being intervened, and similarly Ny be the set of position indices being targeted to observe.
Assume Nx N Nv = (. Then,

P(Y | do(X =x)) = P(Y), (16)

Proof of Lemma Rl Given an ICM generative process, the sequence is exchangeable by definition.
By causal de Finetti’s theorems, the joint distribution can be represented as

Xty X)) = /.../Hp(x:;n|01,...,Gd)du(el)...dy(ad) (66)
/ / I pxnl6r,....00) ] p(x:nl61,....0a)dv(6:)...dv(6,)

neNy ngNvy
(67)
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The post-interventional distribution is:

p(X:1, .., X n|do(X = ) (68)
/ / I pxinldo(X =x),01,...,04) ] p(x:nldo(X =x),61,...,604)dv(6:)...dv(0,)
n€ENy ngNy
(69)
/ / II pGxinl6:.....00) J] p(x X =x),01,...,04)dv(6,)...dv(0)
neENy ngNvy
(70)

The second equality follows from Definition 3| on the operational meaning of do-operator in ICM
generative processes: since Nx N Ny, there is no overlapping variables between X..,, and X, for
all n € N, which leads to no change of probability distribution.

Next, we proceed to integrating out every variable in X..,, for n € Nvy. Due to do-operation replaces
intervened variable’s conditional distribution as delta-distributions and keep the rest as conditional
distributions while enforcing consistency over the intervened set of variables, the post-interventional
distribution is in fact a conditional distribution by Theorem [I| with enforced consistency. Thus
integration on all variables lead to summation 1.

/ / H P(Xin|do(X =x),01,...,04)dx.,, =1 (71)
nZNvy
Therefore,

DXy [do(X / /Hp om0y 001 . dv(8))  (T2)

neENy
= p(x:Ny) (73)

Marginalizing out every other variable in X..N except the target variables in Y, the result follows.

H Lemma/[3jand its proof

Lemma 3 (Intervention effect within the same position) Given a graph G and let P be the distri-
bution for the ICM generative process with respect to G. Let X be the intervention set such that it
consists only Xr,, wheren € S C [N] and 1 C [d] is a set of variable indices. Let Y be the target
set such that it consists only Xj., wheren € S C [N] and J C [d]. NoteINJ = (). Then,

P(Y | do(X = %)) = ) P(Y | %,pax)P(pax), (17)
pax

where PAx denotes the parent set of intervened variables X.

Proof of Lemma[3l The proof follows a similar idea as in the case of i.i.d. data, here we include it
for completeness. Note the joint distribution can be written as (by argument in Proof of Theorem([I))

Then when intervening on X which shares the identical set of variable indices across different
samples, do-operation means assigning P(X;.N|PA ;) to delta-distribution for all i € 1. This can
equivalently be expressed as a division of conditional distributions:

P(X:;N) h X —
P(X.n|do(X = x)) = { et PinPAiN when x (75)
0 else

Next we proceed to show

[ P(Xin|PAiN) = P(Xin|PALN) = P(X|PAX)
i€l
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Without loss of generality, we can always order Xy,N according to reversed topological ordering
such that all X;’s non-descendants will be placed after the variable index i. Note if X; is the
non-descendant of X;, then so is PA;. If not, suppose some variable in PA ; is a descendant of X,
then X is a descendant of that variable, so X is a descendant of X;, contradiction. This means
after re-ordering due to X;n L ND; N|PA;.N, where ND; iy = PA\ (iy;n U XsioN in this case,
we have:

P(XinlPALn) = [ [ P(Xin|PALN, Xsin) = [ [ P(Xin|PAiN) (76)
4 i€l
Then,
A\ P(X:;N)
P(X.n|do(X =x)) = Pl PAx) P(PAx) (77)
Integrating on every variable other than those contained in Y, we have
P(Y|do(X = %)) = ) P(Y|%,pax)P(pax) (78)

pax
I Do-Finetti Algorithm

Do Finetti algorithm recovers graphical estimation and causal effect estimation simultaneously
through collecting multi-environment data, that is marginal copies of an exchangeable process. The
algorithm combines Causal-de-Finetti algorithm developed in|Guo et al.| [2023a] and the truncated
factorization for ICM generative processes developed in Section |3|of this paper.

Algorithm 1 "Do-Finetti" Algorithm: causal effect estimation in ICM-generative processes

Input: For e € £, we have (X7.,,,... ,Xgm)g:l where X denotes the i-th variable observed at
n-th position in environment e. Let N denote the number of observations in each environment
e. Assume N > 2. Let X and Y be two disjoint subsets of variables such that X, Y C
{(X1ny oy Xan) F .

Output: P(Y = y|do(X = x))

Step 1: Run Causal-de-Finetti Algorithm on multi-environment data and return estimated Q .

Step 2: Estimate the probability distribution from grouped data P(X:;l, ..., X..N), e.g., histograms
for discrete variables or kernel density estimation [[Simonoff, |1996] for continuous variables.

Step 3: Marginalize out variables not included in X U Y according to the truncated factorization for

ICM generative processes with G = G (see Eq. or below):

p(x:;l, cee >X:;N|d0(X =x)) = H p(xi§[_‘Ni] paig;[ﬁN,i]) H P(Xi;[N]|Pa§[N])|X:x
i€lx iZIx

Step 4: Return P(Y = y|do(X = x)

J Proof of Theorem 2]

Theorem 4 (Unique graphical identification theorem [Guo et al.,[2023a]]) Consider the set of
distributions that are both Markov and faithful to IC M (G), denoted as £(G). Then,

E(G1) = E(G2) ifand only if Gy = G (79)

Theorem 2 (Causal effect identification in ICM generative processes) Denote Y, X be two dis-
Jjoint subsets of observable variables in {X..,,}nen. Then P(Y|do(X = x)) is identifiable given
the distribution P from the class of distributions generated from ICM generative processes. Here
identifiability means the causal query can be computed uniquely from P.

Proof of Theorem 2] Denote P be the set of distributions that is Markov and faithful to the DAG G.
Consider a statistical model P := {P¢ : G is a DAG}. We say G is identifiable from P if G — Pg
is one-to-one, i.e., Pq, = Pq, if G1 = Ga. This directly follows from Theorem 5 in [Guo et al.|
2023d)]. As G is identifiable from P theoretically, given the pair P, G, by Theorem[I|in this paper,
we know the truncated factorization over all observable variables. Through marginalization for
arbitrary target set 'Y and arbitrary intervention set X, the causal query is uniquely computable.
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K Experimental Details

The data-generating process is described as below for each of the bivariate graph:
0° ~ Beta(a, 8), ¢ ~ Beta(a, )
X =Y : X7 :=Ber(6°),Y := Ber(¢°) & X7
Y — X : X7 :=Ber(§°) ® Y, Y := Ber(¢)°)
X 1Y :X?:=Ber(0°,Y := Ber(¢)°)

where @ denotes xor operation and X, Y,® denotes variable generated at ¢-th position in environment
eandseta = 1,5 = 3.

The experiments can be reproduced using single laptop with CPUs with a time estimate within 5
minutes. The code is building on top of |Guo et al.| [2023a] under license CC-BY 4.0. For each
experiment, we randomly generate data corresponding to one of the three graphs. We randomly
choose the intervened variable X = X1, Y7, X5 or Y5 and randomly determine the intervened value &
to be 0 or 1. Our goal is to estimate the post-interventional distribution P(X1, Y7, X5, Ya|do(X = &))

as accuracy as possible. Our mean squared error loss is the predicted P with analytic P summing over
all possible enumeration of X, Y7, X2, Y5 values. We use PC algorithm for i.i.d. graph identification
and truncated factorization as in Eq. [2]for effect estimatinon given estimated DAG. Similarly, we
run Do-Finetti algorithm. We compare with the analytic solutions that can be derived due to Beta-
bernoulli distributions are conjugate priors towards each other. Section [K.I|shows an example of
derivation. To clearly see errors in MSE loss in causal effect estimation is not purely driven by
graphical misclassification, we provide true oracle DAG to each of the method — Do-Finetti-w-true-
dag and IID-w-true-dag — and observe that even with inifinte data, IID can never achieves near-zero
causal effect estimation errors as shown in Fig. fa] This means the traditional truncated factorization
fails to characterize causal effects in ICM generative processes.

K.1 Analytic solution

We choose Beta and bernoulli distributions in particular due to they are conjugate prior properties to
allow us to calculate easily their analytic solutions. Note the distributions can be arbitrary and we
can approximate the integration via standard methods, e.g. histograms or kernel density estimations.
Taking the example of X — Y generated under the data-generating process described in Experiment
section, then by truncated factorization in ICM generative processes we have:

P(Y1|do(x1), X2, Y2) = P(Yil|z1, X2,Y2) (80)
P(Y1,Ys|z1, X>)

= =7 81

P(VaIX) ®D

The second equality is due to ICM generative processes properties Yo L X;|X5. Note by causal de
Finetti, we know:

P(y1,ya|z1,x2) = /p(yi|3€iﬂ/))l9(¢)di/} (82)

Given Bernoulli distribution, we can re-write the assignment function Y, = Ber()¢) & X¢ in terms
of probability distribution, where z = (1 — z) x y + (1 — y) * = and p(y|x, ) = P=(1 — )12,

Note p(1)) follows a Beta distribution such that p(v) = U ) L y NN marginal likelihood from

B(a,B)
manipulation gives P(y1, y2|z1,22) = %, where ay =) zn+a,fn =N =3 2z, + 0.

Putting it all together,
Bla+2z1+29,2—21 — 20+ )

P(yi|do(z1), 2,y2) = Blat 10— ) (83)
Recall B(a, 8) = Fé?(zi%ﬁ) and I'(n) = (n — 1)!. Rearranging gives:
B B B . Bla,2+p)  T(B+2) La+B8+1)
__pHl 4
_Q+B+1_5_0.8 (85)
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Similarly, P(y1|do(x1)) = P(y1|x1) = B(a + 21,14 8 — z1). Then, P(y; = 0|do(z1 = 0)) =

D(a)T(148) _ 1 — —
m = thenoz— 1,/8—3

L. Limitations and Broader Impacts

Limitations This work has taken first steps in formulating what intervention means in exchangeable
data satisfying the ICM principle. However, much is left to do: from understanding interventions
to counterfactual queries, from Markovian models to semi-Markovian models. We note there is
a whole world of possibilities in formalizing causality in exchangeable data settings: both from
the traditional causality view — e.g., [Karlsson and Krijthe, [2024]] perform confounder detection in
multi-environment data — and from the view of representation learning where [Reizinger et al., 2022]]
show that nonlinear ICA under certain assumptions can perform causal discovery in a de Finetti
framework. We hope this work opens up possibilities to connect to interventional representation
learning and the branches of causality research.

Broader Impacts This paper is a foundational research that studies causal interventions under
exchangeable contexts. It is intended to advance the field of machine learning and through studying
causality, this work intends to provide control and understanding over the world and the current
increasingly more opaque and ‘black-box’ models to safeguard potential harms for society. However,
we note, every innovation has the potential to be misused with malicious intent. For example, we
foresee that once offering more control and understanding, users have the potential to have more
precise manipulation. This paper at its current status still presents a huge gap between theory and
practice.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We include reproducible code in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include experimental details in the appendix and provide a description of
experiments in the main text.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We include error bars in our experimental figures.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Include in the experimental detail descriptions in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This paper is a foundational research on causality which conforms with the
code of ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss both potential positive and negative societal impact in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose risks for data release or misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite causal de Finetti that this work’s code is building on top of.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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