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Abstract

Solving inverse problems with a small number of measurements has important
applications in medical imaging, including image reconstruction for undersampled
MRI and sparse-view CT. With the progress of machine learning, traditional image
reconstruction methods have been outperformed by models that learn to directly
map measurements to medial images. However, these models require both ground
truth medical images and their measurements for training, which complicates data
collection and harms their generalization performance to unknown measurement
processes. To address these issues, we propose a fully unsupervised technique for
inverse problem solving, leveraging the recently introduced score-based generative
models. Specifically, we train a score-based generative model to capture the prior
distribution of medical images, which is subsequently combined with a given
physical measurement process to sample images consistent with measurements
at the test time. Our method makes no assumption on the measurement process
during training, and can be flexibly adapted to any linear measurement processes.
Empirically, we observe comparable or better performance to supervised learning
techniques, with better generalization to unknown measurement processes on
several MRI/CT datasets.

1 Introduction

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are commonly used imaging
tools for medical diagnosis. Reconstructing MRI/CT images from raw measurements (k-space
for MRI and sinograms for CT) is a well-known linear inverse problem. In order to speed up the
hour-long process of MRI acquisition and reduce the dose of harmful ionizing radiation needed for
CT scans, we aim to reduce the number of measurements required for solving these inverse problems
by estimating and leveraging the prior information of MRI/CT images. Specifically, we consider
image reconstruction tasks for undersampled MRI and sparse-view CT.

Many machine learning algorithms [1, 2, 3, 4, 5, 6] have been proposed to perform medical image
reconstruction given a small number of measurements. However, most of these methods are supervised
learning techniques. They learn to map measurements directly to medical images, by training on a
large dataset comprising pairs of medical images and MRI/CT measurements. This complicates the
data collection procedure and moreover, limits their generalization capability to different measurement
processes that may appear at the test time, leading to counterintuitive instabilities such as more
measurements causing worse performance [7].

We sidestep this difficulty by proposing unsupervised methods that make no assumption on the
measurement process during training. Specifically, we train a score-based generative model [8, 9, 10]
on medical images as the data prior, and modify the sampling algorithm as a general way to solve
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inverse problems with linear measurement processes. As an emerging family of techniques that have
achieved top performance in image generation [8, 10, 11, 12], score-based generative models allow
us to match or outperform the performance of supervised learning techniques, while being more
resilient to the change of measurement processes, such as using a different number of measurements.

2 Background

The latest development of score-based generative models [10] leverages a Markovian diffusion
process to progressively perturb data to noise, and then learns to smoothly convert noise to samples
by solving its time reversal. Importantly, reversing the diffusion process requires estimating scores,
i.e., gradients of log probability density functions of the data distribution, from a training dataset.

Perturbation process Suppose the dataset is sampled from an unknown data distribution ppxq. For
any datapoint x˚ P Rn „ ppxq, we perturb it with a stochastic process over a time horizon r0, 1s,
governed by a stochastic differential equation (SDE) of the following form

dxt “ fpxt, tqdt` gptqdwt, (1)

where fp¨, tq : Rn Ñ Rn and gptq P R are called the drift and diffusion coefficients, twt P RnutPr0,1s
denotes a standard Wiener process (a.k.a., Brownian motion), and txtutPr0,1s symbolizes the trajectory
of random variables in the stochastic process. We further denote the marginal probability distribution
of xt as ptpxq, and the transition distribution from x0 to xt as p0tpxt | x0q. By definition, we clearly
have x0 “ x˚ and p0pxq ” ppxq. The drift and diffusion coefficients are typically hand-crafted
such that the distribution at the end of the perturbation process, p1pxq, is close to a pre-defined prior
distribution πpxq. Examples of such SDEs include Variance Exploding (VE), Variance Preserving
(VP), and subVP SDEs [10].

Sampling process By reversing the perturbation process in Eq. (1), we can start from a sample
x1 „ p1pxq and gradually remove the noise therein to obtain a data sample x0 „ p0pxq ” ppxq.
Crucially, the time reversal of Eq. (1) is given by the following reverse-time SDE [13, 14]

dxt “
“

fpxt, tq ´ gptq
2∇xt

log ptpxtq
‰

dt` gptqdw̄t, (2)

where tw̄tutPr0,1s is now a standard Wiener process in the reverse-time direction, and dt represents
an infinitesimal negative time step, since the above SDE must be solved backwards from t “ 1 to
t “ 0. When x1 „ p1pxq, the trajectory of the reverse stochastic process given by Eq. (2) is again
txtutPr0,1s, same as the one obtained by the forward SDE in Eq. (1). Once given an initial sample
from p1pxq, as well as scores at each intermediate time step, ∇x log ptpxq, we can use any numerical
SDE solver to solve the reverse-time SDE in Eq. (2). The initial sample can be approximately drawn
from πpxq since p1pxq « πpxq, while the scores can be estimated by training a neural network
sθpx, tq (named the time-dependent score model) with denoising score matching [15, 10], such that
sθ˚px, tq « ∇x log ptpxq. Here θ˚ denotes the optimal model parameters. In Algorithm 1, we
provide one such sampling method based on the classic Euler-Maruyama solver.

3 Method

By incorporating data consistency constraints into the sampling process, we can use score-based
generative models to solve linear inverse problems. We consider a compressed sensing [16, 17, 18]
setting, while replacing sparsity with a data prior learned by our score models.

SupposeA P Rmˆn is a linear operator with full rank, i.e., rankpAq “ minpn,mq. Let x P Rn be
a signal, and y P Rm be a corresponding observation obtained by m measurements. In an inverse
problem, we are given an observation y and aim to find x such thatAx “ y. In order for the inverse
problem to have at least one solution, we clearly require m ď n. Since there might be multiple
solutions, we further assume a prior distribution over x, denoted as ppxq. With this assumption,
solving the inverse problem becomes equivalent to finding the posterior distribution ppx | yq.

To facilitate our theoretical discussion, we introduce an alternative formulation ofA below:
Lemma 1. IfA has full rank, we can always write it asA “ CΛT , where T P Rnˆn is an invertible
matrix, Λ P Rnˆn is a diagonal matrix taking values in t0, 1u that satisfies trpΛq “ m, and
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Algorithm 1 Unconditional sampling
Require: N
1: x̂1 „ πpxq,∆tÐ 1

N
2: for i “ N ´ 1 to 0 do
3: tÐ i`1

N

4: x̂t´∆t Ð x̂t ` gptq
2sθ˚px̂t, tq∆t

5: z „ N p0, Iq
6: x̂t´∆t Ð x̂t´∆t ` gptq

?
∆t z

7: return x̂0

Algorithm 2 Inverse problem solving
Require: N , y, λ
1: x̂1 „ πpxq,∆tÐ 1

N
2: for i “ N ´ 1 to 0 do
3: tÐ i`1

N
4: ŷt „ p0tpyt | yq
5: x̂t Ð λT´1ΛC´1

Λ ŷt ` p1 ´ λqT´1ΛT x̂t `

T´1
pI ´ΛqT x̂t

6: x̂t´∆t Ð x̂t ` gptq
2sθ˚px̂t, tq∆t

7: z „ N p0, Iq
8: x̂t´∆t Ð x̂t´∆t ` gptq

?
∆t z

9: return x̂0

CΛ : Rn Ñ Rm is a linear operator that takes any vector a P Rn and reduces its dimensionality to
m by removing each i-th element of a if Λii “ 0.

For example, T corresponds to the Fourier transform for undersampled MRI reconstruction, and the
Radon transform for sparse-view CT reconstruction.

Given a dataset tx1,x2, ¨ ¨ ¨ ,xNu
i.i.d.
„ ppxq, the approach outlined in Algorithm 1 allows us to

train a time-dependent score model sθ˚px, tq to generate samples from ppxq. To sample from
ppx | yq, however, we will need to incorporate the additional information of y into the sampling
process. In inverse problems, y and x are connected through y “ Ax. By introducing yt “ Axt,
we generalize this connection to stochastic processes tytutPr0,T s and txtutPr0,T s. When the drift
coefficient fp¨, tq in Eq. (1) is linear, the transition density for txtutPr0,T s is always a Gaussian
distribution [10], taking the form p0tpxt | x0q “ N pxt | αptqx0, βptqIq where αptq and βptq
can be computed from fp¨, tq and gptq. The transition density of tytutPr0,T s is therefore given by
p0tpyt | y0q “ N pyt | αptqy0, βptqAA

TIq. When y0 is fixed to y˚, the marginal distributions of
yt equals p0tpyt | y0 “ y˚q and can be computed in closed form.

Suppose x̂t is an intermediate sample obtained by running one step of the sampler in Algorithm 1,
and let ŷt „ p0tpyt | yq. Our goal is to steer x̂t towards ŷt to promote data consistency. To this end,
we propose to find a steering function h : Rn Ñ Rn, such that x̂1t “ hpx̂tq satisfies both x̂1t « x̂t

andAx̂1t « ŷt. Specifically, this steering function needs to minimize the distance between x̂1t and x̂t,
as well as the distance between x̂1t and the hyperplaneAx “ ŷt. We propose to balance these two
objectives by solving the following optimization problem

x̂1t “ arg min
zPRn

tp1´ λq ‖z ´ x̂t‖2T ` min
uPRn

λ ‖z ´ u‖2T u

s.t. Au “ ŷt,
(3)

where 0 ă λ ă 1 controls the strength of the data-consistency loss, and we choose the norm
‖a‖2T :“ ‖Ta‖22 to simplify our theoretical analysis. The following result gives a closed-form
solution to the optimization problem in Eq. (3).

Theorem 1. The optimal solution x̂1t is given by

x̂1t “ λT´1ΛC´1
Λ ŷt ` p1´ λqT

´1ΛT x̂t ` T
´1pI ´ΛqT x̂t, (4)

where C´1
Λ : Rm Ñ Rn denotes any right inverse of CΛ.

By transforming x̂t to x̂1t after each sampling step, we can incorporate y to generate approximate
samples from ppx | yq. Our method requires minimal modification to the original unconditional
sampling method of score-based generative models. For example, we can convert the sampler in
Algorithm 1 to an inverse problem solver in Algorithm 2 by adding just two lines of pseudo-code.

A concurrent work in [19] proposes a different method to solve inverse problems with score-based
generative models, leveraging posterior sampling and Langevin dynamics. In comparison, our
method is applicable to a larger family of sampling methods in score-based generative models, such
as numerical SDE solvers [10], and achieves better empirical performance in our experiments.
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Table 1: Performance on image reconstruction for
undersampled MRI and sparse-view CT.

Method Measurements PSNR SSIM
Undersampled MRI on BraTS 240ˆ 240

Cascade DenseNet 30 28.35˘2.30 0.845˘0.038

DuDoRNet 30 37.88˘3.03 0.985˘0.007

Langevin 30 36.44˘2.28 0.952˘0.016

Ours 30 37.63˘2.70 0.958˘0.015

Sparse-view CT on LIDC 320ˆ 320

FISTA-TV 23 20.08˘4.89 0.799˘0.061

cGAN 23 19.83˘3.07 0.479˘0.103

Neumann 23 17.18˘3.79 0.454˘0.128

SIN-4c-PRN 23 30.48˘3.99 0.895˘0.047

Ours 23 35.24˘2.71 0.905˘0.046

Figure 1: PSNR vs. number of measurements
for undersampled MRI on BraTS. Shaded ar-
eas represent standard deviation.

4 Experiments

We consider two important examples of inverse problem solving in medical imaging: image recon-
struction for undersampled MRI and sparse-view CT. We compare the performance of our method
against traditional reconstruction algorithms as well as other deep learning based methods.

Datasets For undersampled MRI, we use the Brain Tumor Segmentation (BraTS) 2021 dataset [20,
21]. We slice 2D images of resolution 240 ˆ 240 from original 3D MRI volumes. We simulate
measurements by computing the k-space with Fast Fourier Transform, and follow [22, 23] to un-
dersample the k-space with an equispaced Cartesian mask. For sparse-view CT, we use the Lung
Image Database Consortium image collection (LIDC) [24, 25] dataset. We obtain 2D images of
resolution 320ˆ 320 by slicing the 3D CT volumes. We simulate measurements (sinograms) with a
parallel-beam geometry using projection angles equally distributed across 180 degrees.

Evaluation Our baselines include the traditional CT reconstruction method FISTA-TV [26], su-
pervised learning methods Cascade DenseNet [27], DuDoRNet [28], cGAN [5], Neumann [29],
SIN-4c-PRN [6], and a concurrent unsupervised learning method based on Langevin dynamics
sampling from score-based generative models [30], which we denote as “Langevin”. We evaluate
the performance of different methods using the peak signal-to-noise ratio (PSNR) and the structural
similarity metric (SSIM [31]). For deep learning based methods, we train and tune the corresponding
models with 30 measurements for MRI and 23 projections for CT. We use the same score models in
both Langevin and our method.

Results We provide experimental results in Table 1 and Fig. 1. For undersampled MRI, our method
achieves comparable performance to the best supervised learning technique DuDoRNet. However,
DuDoRNet cannot generalize well to different number of measurements since, as a supervised
learning technique, it is specifically trained using 30 measurements. In contrast, our method is
unsupervised and can generalize to an arbitrary number of measurements. As shown in Fig. 1, our
method uniformly outperforms competing methods when using measurements other than 30. For
sparse-view CT, we are able to outperform all baselines, even including supervised learning methods
tested with the same number of measurements (23 projections) for training.

5 Conclusion

This paper describes a new method to solve linear inverse problems with score-based generative
models. Our method is fully unsupervised, requires no paired or labeled data for training, and can
flexibly adapt to different measurement processes at the test time. Preliminary results demonstrate
that our method can match or outperform existing supervised learning counterparts for undersampled
MRI and sparse-view CT reconstruction, while being more robust to the change of the number of
measurements.
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A Related Work

The idea of solving inverse problems with generative models has been proposed in the Compressed
Sensing with Generative Models (CSGM) framework [18]. However, the original CSGM method is
centered around latent variable models such as Generative Adversarial Networks (GANs [32]) and
Variational Auto-Encoders (VAEs [33, 34]). It is unclear how to apply CSGM to other families of
generative models like Energy-Based Models (EBMs [35]) and score-based generative models.

Solving linear inverse problems with unsupervised learning and denoising score matching [15] has
also been explored in [36]. In contrast with our approach, their method requires projecting an noisy
sample onto the kernel space of a linear operator, which can be expensive to compute for high
dimensional data. They did not consider applications in medical imaging either.

Concurrently, ref. [30] extends the NCSNv2 model [9], a score-based generative model sampled by
annealed Langevin dynamics [8], to solve inverse problems in downsampled MRI reconstruction.
Our method is applicable to more general sampling methods [10] for score-based generative models,
such as numerical SDE solvers, Predictor-Corrector samplers, and probability flow ODE samplers.
We also obtained uniformly better empirical performance in our experiments.

B Proofs

Lemma 1. IfA has full rank, we can always write it asA “ CΛT , where T P Rnˆn is an invertible
matrix, Λ P Rnˆn is a diagonal matrix taking values in t0, 1u that satisfies trpΛq “ m, and
CΛ : Rn Ñ Rm is a linear operator that takes any vector a P Rn and reduces its dimensionality to
m by removing each i-th element of a if Λii “ 0.

Proof. Let A “ paT1 ,a
T
2 , ¨ ¨ ¨ ,a

T
mq P Rmˆn. Since A has full rank, the row vectors

ta1,a2, ¨ ¨ ¨ ,amu are linearly independent. We can therefore extend them to a total of n linearly
independent vectors, i.e., ta1,a2, ¨ ¨ ¨ ,am, b1, ¨ ¨ ¨ , bn´mu. Due to the linear independence, we
know T “ paT1 ,a

T
2 , ¨ ¨ ¨ ,a

T
m, b

T
1 , ¨ ¨ ¨ , b

T
n´mq P Rnˆn has full rank and is invertible. Next, we define

Λ “ diagp1, 1, ¨ ¨ ¨ , 1
loooomoooon

m

, 0, 0, ¨ ¨ ¨ , 0
loooomoooon

n´m

q,

where diag converts a vector to a diagonal matrix. Clearly trpΛq “ m and A “ CΛT , which
completes the proof.

Lemma 2. Let C´1
Λ : Rm Ñ Rn be any right inverse of CΛ : Rn Ñ Rm. For any u P Rn and

ŷt P Rm, we have

CΛTu “ ŷt ðñ ΛTu “ ΛC´1
Λ ŷt

Proof. By the definition of CΛ, we have CΛ “ CΛΛ, and

@a P Rn, b P Rn : CΛa “ CΛb ðñ Λa “ Λb. (5)

To prove the “if” direction, we note that

ΛTu “ ΛC´1
Λ ŷt ùñ CΛΛTu “ CΛΛC´1

Λ ŷt

ùñ CΛTu “ CΛC
´1
Λ ŷt

ùñ CΛTu “ ŷt.

To prove the “only if” direction, we have

CΛTu “ ŷt ùñ CΛTu “ CΛC
´1
Λ ŷt

piq
ùñ ΛTu “ ΛC´1

Λ ŷt,

where (i) is due to the property in Eq. (5). This completes the proof for both directions.
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Theorem 1. The optimal solution x̂1t is given by

x̂1t “ λT´1ΛC´1
Λ ŷt ` p1´ λqT

´1ΛT x̂t ` T
´1pI ´ΛqT x̂t, (4)

where C´1
Λ : Rm Ñ Rn denotes any right inverse of CΛ.

Proof. The optimization objective function in Eq. (3) can be written as

p1´ λq ‖z ´ x̂t‖2T ` λ ‖z ´ u‖
2
T

“p1´ λq ‖Tz ´ T x̂t‖22 ` λ ‖Tz ´ Tu‖
2
2

“p1´ λq ‖Tz ´ T x̂t‖22 ` λ ‖ΛT pz ´ uq ` pI ´ΛqT pz ´ uq‖22
“p1´ λq ‖Tz ´ T x̂t‖22 ` λ ‖ΛT pz ´ uq‖

2
2 ` λ ‖pI ´ΛqT pz ´ uq‖22

“p1´ λq ‖Tz ´ T x̂t‖22 ` λ
∥∥ΛTz ´ΛC´1

Λ ŷt

∥∥2
2
` λ ‖pI ´ΛqT pz ´ uq‖22

Since Au “ ŷt, we have CΛTu “ ŷt and equivalently ΛTu “ ΛC´1
Λ ŷt due to Lemma 2. This

constraint does not restrict the value of pI ´ΛqTu. Therefore, whenAu “ ŷt, we have

‖z ´ x̂t‖2T `min
u
p1´ λqλ ‖z ´ u‖2T

“p1´ λq ‖Tz ´ T x̂t‖22 `min
u
λ
∥∥ΛTz ´ΛC´1

Λ ŷt

∥∥2
2
` λ ‖pI ´ΛqT pz ´ uq‖22

“p1´ λq ‖Tz ´ T x̂t‖22 ` λ
∥∥ΛTz ´ΛC´1

Λ ŷt

∥∥2
2

“p1´ λq ‖ΛTz ´ΛT x̂t‖22 ` λ
∥∥ΛTz ´ΛC´1

Λ ŷt

∥∥2
2
` p1´ λq ‖pI ´ΛqTz ´ pI ´ΛqT x̂t‖22 .

This simplifies the optimization problem in Eq. (3) to

min
z
p1´ λq ‖ΛTz ´ΛT x̂t‖22 ` λ

∥∥ΛTz ´ΛC´1
Λ ŷt

∥∥2
2
` p1´ λq ‖pI ´ΛqTz ´ pI ´ΛqT x̂t‖22 ,

which is minimizing a quadratic function of z. The optimal solution z˚ is thus in closed form:

z˚ “ T´1rpI ´ΛqT x̂t ` p1´ λqΛT x̂t ` λΛC´1
Λ ŷts.

According to the definition, x̂1t “ z
˚, whereby the proof is completed.

C Additional details

Training and sampling We use the NCSN++ model architecture in [10], and perturb the data with
the Variance Exploding (VE) SDE. Instead of generating samples according to the numerical SDE
solver in Algorithm 1, we use the Predictor-Corrector (PC) sampler as described in [10] since it
generally has better performance for VE SDEs. In PC samplers, the predictor refers to a numerical
solver for the reverse-time SDE while the corrector can be any Markov chain Monte Carlo (MCMC)
method that only depends on the scores. One such MCMC method considered in this work is
Langevin dynamics, whereby we transform any initial sample xp0q to an approximate sample from
ptpxq via the following procedure:

xpi`1q Ð xpiq ` ε∇x log ptpx
piqq `

?
2ε zpiq, i “ 0, 1, ¨ ¨ ¨ , N ´ 1. (6)

Here N P Ną0, ε ą 0, and zpiq „ N p0, Iq. The theory of Langevin dynamics guarantees that in the
limit of N Ñ8 and εÑ 0, xpNq is a sample from ptpxq under some regularity conditions. Note that
Langevin dynamics only requires the knowledge of ∇x log ptpxq, which can be approximated using
the time-dependent score model sθ˚px, tq. In PC samplers, each predictor step immediately follows
multiple consecutive corrector steps, all using the same sθ˚px, tq evaluated at the same t. This jointly
ensures that our intermediate sample at t is approximately distributed according to ptpxq. As shown
in [10], PC sampling often outperforms numerical solvers for the reverse-time SDE, especially when
the forward SDE in Eq. (1) is a VE SDE. In order to use PC samplers for inverse problem solving,
our modification is similar to the change made in Algorithm 2 for Algorithm 1. Specifically, we run
line 4 & 5 in Algorithm 2 before every corrector or predictor step. The step size ε in the Langevin
corrector, as well as λ in Eq. (3) are all tuned by running Bayesian optimization for 100 steps.
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Datasets The Lung Image Database Consortium image collection (LIDC) [24, 25] consists of
diagnostic and lung cancer screening thoracic computed tomography (CT) scans for lung cancer
detection and diagnosis, which contains 1018 cases. We convert the Hounsfield units loaded from
dicom files to the attenuation coefficients and set the background as zero. Then, 2D CT images are
sliced from 3D CT cases. The sinogram are simulated from 2D CT images based on parallel-beam
geometry with different number of projection angles that are equally distributed across 180 degrees.
We conduct experiments of 2D MRI image reconstruction on a multi-modality MR image dataset.
The Brain Tumor Segmentation (BraTS) 2021 dataset [20, 21] collected for a image segmentation
challenge contains 2000 cases (8000 MRI scans), where each case has four different MR contrasts:
native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR). For each 3D MR volume, we extract 2D slices from 3D volumes and simulate
k-space data by Fourier Transform. To reconstruct MR images, k-space data is under-sampled by
a equispaced Cartesian mask, where the center k-space is fully sampled while the left k-space is
under-sampled by equispaced columns.

Baselines To evaluate the proposed method, we compare with baseline models including the tradi-
tional CT reconstruction method FISTA-TV [26], supervised learning methods for CT reconstruction:
cGAN [5], Neumann [29], SIN-4c-PRN [6], and for MRI reconstruction: Cascade DenseNet [27],
and DuDoRNet [28].

CT Reconstruction: FISTA-TV [26] is a fast iterative shrinkage-thresholding algorithm (FISTA) for
solving linear inverse problems in image processing. It uses a total variation term as the regularization
in the optimization procedure. Each optimization iteration involves a matrix-vector multiplication
followed by a shrinkage/soft-threshold step. Conventional iterative CT reconstruction algorithms like
FISTA-TV are typically slow due to their iterative nature. In ref. [5], authors propose to cast sparse-
view CT reconstruction as a sinogram inpainting problem. Specifically, they propose to use conditional
GANs to complete the projection data (sinogram) prior to reconstructing CT images, thereby avoiding
the costly iterative tomographic inversion. However, the imperfect sinogram inpainting may cause
other image artifacts. To reduce such artifacts, SIN-4c-PRN [6] proposed a 2-step sparse-view CT
reconstruction model, which contains a sinogram inpainting network (SIN) to generate super-resolved
sinograms and then a post-processing refining network (PRN) to further remove image artifacts. Both
networks are connected through a filtered back-projection operation (FBP) operation. Meanwhile, in
another parallel direction, researchers proposed to learn the regularizer used in optimization from
training data, outperforming traditional regularizers. Specifically, ref. [29] presented an end-to-end,
data-driven method for solving inverse problems inspired by the Neumann series, called a Neumann
network, which directly solves the linear inverse problem with a data-driven nonlinear regularizer.
Note that except for iterative reconstruction algorithm FISTA-TV, all the other deep-learning-based
algorithms are supervised learning methods that require paired measurements (sinogram) and ground
truth medical images for training networks.

MRI Reconstruction: To reconstruct de-aliased MR images from under-sampled k-space data,
ref. [27] proposed a cascaded dilated dense network (CDDN) for MRI reconstruction, based on stacked
dense blocks with residual connections while using the zero-filled MR image as inputs. Specifically,
they use a two-step data consistency layer for k-space correction, and replace corresponding phase-
coding lines of generated image with the original sampled k-space data after each block. Based on
this model, ref. [28] proposed a dual domain recurrent network (DuDoRNet) to to simultaneously
recover k-space and images for MRI reconstruction, in order to address aliasing artifacts in both
frequency and image domains. The original model in [28] also embedded a deep T1 prior to make use
of fully-sampled short protocol (T1) as complementary information. For a fair comparison with other
supervised learning approaches, in our experiments, we do not include this additional information but
train the DuDoRNet model without T1 prior. In this setting, we also observe that cascaded densenet
generalizes better to more measurements than DuDoRNet.
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